Convergence of products of matrices in projective spaces *

Shmuel Friedland ${ }^{\dagger}$
Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago
Chicago, Illinois 60607-7045 ${ }^{\ddagger}$
and
Institute for Mathematics and its Applications
400 Lind Hall, 207 Church St., S.E.
Minneapolis, MN 55455-0436

July 28, 2004

Abstract

Let $A_{k}, k \in \mathbb{N}$ be a sequence of $n \times n$ complex valued matrices which converge to a matrix A. If A and each A_{k} is positive then the product $\frac{A_{k} A_{k-1} \ldots A_{2} A_{1}}{\left\|A_{k} A_{k-1} \ldots A_{2} A_{1}\right\|}$ converges to a rank one matrix positive matrix $\mathbf{u w}^{\mathrm{T}}$, where \mathbf{u} is a positive column eigenvector of A. If each A_{k} is nonsingular and A has exactly one simple eigenvalue λ of the maximal modulus with the corresponding eigenvector \mathbf{u}, then $e^{\sqrt{-1} \theta_{k}} \frac{A_{k} A_{k-1} \ldots A_{2} A_{1}}{\left\|A_{k} A_{k-1} \ldots A_{2} A_{1}\right\|}, \theta_{k} \in \mathbb{R}$ converges to a rank one matrix uw ${ }^{\mathrm{T}}$.

2000 Mathematical Subject Classification: 15A48, 47H09, 65L20
Keywords: Positive matrices, contractions, convergence of products of matrices, projective spaces.

1 Introduction

For $\mathbb{F}=\mathbb{R}, \mathbb{C}$ denote by $\mathbb{F}^{n}, \mathrm{M}_{n}(\mathbb{F}), \mathrm{GL}_{n}(\mathbb{F})$ the n-dimensional column vector space, the algebra of $n \times n$ matrices and the subgroup of $n \times n$ invertible matrices over the field \mathbb{F}. Denote by $\|\cdot\|$ any vector norm on \mathbb{F}^{n} or on $\mathrm{M}_{n}(\mathbb{F})$. Let $\|\cdot\|_{2}$ be the ℓ_{2}

[^0]norm on \mathbb{F}^{n} induced by the standard inner product $\langle\mathbf{x}, \mathbf{y}\rangle:=\mathbf{y}^{*} \mathbf{x}$ on \mathbb{F}^{n} and denote by $\|\cdot\|_{2}$ the induced operator norm on $\mathrm{M}_{n}(\mathbb{F})$. Consider an iteration scheme
\[

$$
\begin{equation*}
\mathbf{x}_{k}:=A_{k} \mathbf{x}_{k-1}, \quad \mathbf{x}_{0} \in \mathbb{F}^{n}, A_{k} \in \mathrm{M}_{n}(\mathbb{F}), k \in \mathbb{N} . \tag{1.1}
\end{equation*}
$$

\]

This system is called convergent if $\mathbf{x}_{k}, k \in \mathbb{N}$ is a convergent sequence for each $\mathbf{x}_{0} \in$ \mathbb{F}^{n}. This is equivalent to the convergence of the infinite product $\ldots A_{k} A_{k-1} \ldots A_{2} A_{1}$, which is defined as the limit of $A_{k} A_{k-1} \ldots A_{2} A_{1}$ as $k \rightarrow \infty$. For the stationary case $A_{k}=A, k \in \mathbb{N}$ the necessary and sufficient conditions for convergency are well known. First, the spectral radius $\rho(A)$ can not exceed 1 . Second, if $\rho(A)=1$, then 1 is an eigenvalue of A and all its Jordan blocks have size 1. Third all other eigenvalues λ of A different from 1 satisfy $|\lambda|<1$.

In some instances, as Lyapunov exponents in dynamical systems [11], one interested if the line spanned by the vector \mathbf{x}_{i} converges for all $\mathbf{x}_{0} \neq 0$ in some homogeneous open Zariski set in \mathbb{F}^{n} [2]. If this condition holds we call (1.1) projectively convergent.

For the stationary case $0 \neq A_{k}=A \in \mathrm{M}_{n}(\mathbb{C})$ it is straightforward to show that (1.1) is projectively convergent if and only if among all the eigenvalues λ of A satisfying $|\lambda|=\rho(A)$, there is exactly one eigenvalue λ_{0} which has Jordan blocks of the maximal size. See for example the arguments in [4, Thm 2.2].

A variation of projectively convergent iterations was considered in the literature for the nonnegative matrices under the name nonhomogeneous matrix products [7], [12] and [8]. Let $\mathbb{R}_{+}:=(0, \infty)$ and denote by $\mathbb{R}_{+}^{n} \subset \mathbb{R}^{n}, \mathrm{M}_{n}\left(\mathbb{R}_{+}\right) \subset \mathrm{M}_{n}(\mathbb{R})$ the cone of positive vectors and the semialgebra of positive matrices. Denote by $\mathbb{P R}_{+}^{n}$ and $\mathbb{P M}_{n}\left(\mathbb{R}_{+}\right)$the projective space formed by the rays spanned by $\mathrm{x} \in \mathbb{R}_{+}^{n}$ and $A \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$. Then $\mathbb{P R}_{+}^{n}$ has the Hilbert (hyperbolic) metric. Furthermore each $A \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$acts on $\mathbb{P} \mathbb{R}_{+}^{n}$, where this action is denoted $\hat{A}: \mathbb{P}_{+}^{n} \rightarrow \mathbb{P} \mathbb{R}_{+}^{n}$, and \hat{A} is a contraction [1]. That is the Lipschitz constant $L(\hat{A})$ of \hat{A} is less than 1 . Let $A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right), k \in \mathbb{N}$ be a sequence of positive matrices. Then the condition $\lim _{k \rightarrow \infty} L\left(\widehat{A_{1} \ldots A_{k}}\right)=0$, which is equivalent to the notion of weak ergodicity of the products $A_{1} \ldots A_{k}, k \in \mathbb{N}[12]$, implies that for each $\mathbf{x}_{0} \in \mathbb{R}_{+}^{n}$ the ray spanned by $A_{1} \ldots A_{k} \mathbf{x}_{0}$ converges to a fixed ray in $\mathbb{P R}_{+}^{n}$.

Clearly $A_{k} \ldots A_{1}, \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right), k \in \mathbb{N}$ is projectively convergent if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{A_{k} A_{k-1} \ldots A_{2} A_{1}}{\left\|A_{k} A_{k-1} \ldots A_{2} A_{1}\right\|}=E, \quad(\text { where }\|E\|=1) \tag{1.2}
\end{equation*}
$$

and $E \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$. We show that the assumption

$$
\begin{equation*}
\lim _{k \rightarrow \infty} L\left(\widehat{A_{k} \ldots A_{1}}\right)=0 \quad\left(\Longleftrightarrow \lim _{k \rightarrow \infty} L\left(\widehat{A_{1}^{\mathrm{T}} \ldots A_{k}^{\mathrm{T}}}\right)=0\right) \tag{1.3}
\end{equation*}
$$

does not imply (1.2).
The aim of this paper is to show
Theorem 1.1 Let $A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right), k \in \mathbb{N}$ be a sequence of positive matrices which converges to a positive matrix $A \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$. Then (1.2) holds. Furthermore

$$
\begin{equation*}
E=\mathbf{u w}^{\mathrm{T}}, \quad \mathbf{u}, \mathbf{w} \in \mathbb{R}_{+}^{n}, \quad A \mathbf{u}=\rho(A) \mathbf{u} \tag{1.4}
\end{equation*}
$$

One can view the above Theorem as an improvement of [12, Thm 3.6].
Theorem 1.2 ${ }^{1}$ Let $A_{k} \in \mathrm{GL}_{n}(\mathbb{C}), k \in \mathbb{N}$ be a sequence of matrices which converges to a matrix $0 \neq A \in \mathrm{M}_{n}(\mathbb{C})$. Assume furthermore that $\rho(A)>0$ and the circle $\{z: \in \mathbb{C},|z|=\rho(A)\}$ contains exactly one eigenvalue λ of A, which is a simple root of its characteristic polynomial. Let $A \mathbf{u}=\lambda \mathbf{u}, 0 \neq \mathbf{u} \in \mathbb{C}^{n}$. Then the complex line spanned by $A_{k} \ldots A_{1} \in \mathrm{M}_{n}(\mathbb{C})$ converges to the complex line spanned by $\mathbf{u w}^{\mathrm{T}} \in \mathrm{M}_{n}(\mathbb{C})$, for some $0 \neq \mathbf{w} \in \mathbb{C}^{n}$. Hence for each $\mathbf{x}_{0} \in \mathbb{C}^{n}$ such that $\mathbf{w}^{\mathrm{T}} \mathbf{x}_{0} \neq 0$, the complex line spanned by \mathbf{x}_{k} given by (1.1) converges to the complex line spanned by \mathbf{u}.

We now list briefly the contents of the paper. In $\S 2$ we recall basic results on the real and complex projective spaces used in this paper. In $\S 3$ we discuss Lipschitz continuous maps and contractions, and simple conditions for pointwise convergence of the products of Lipschitzian maps to a constant map. In $\S 4$ we prove Theorem 1.1 and use it to prove Theorem 1.2 in the real case. In $\S 5$ we prove Theorem 1.2 in the complex case by using directly the results of $\S 3$ and Theorem 1.2 in the real case. In $\S 6$ we extend Theorem 1.1 to strictly totally positive matrices (of order $p)$. We also extend Theorem 1.2 to the case where the limit matrix A, has p simple eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$, such that $\left|\lambda_{1}\right|>\ldots>\left|\lambda_{p}\right|>0$ and all other eigenvalues of A lie in $|z|<\left|\lambda_{p}\right|$.

2 Projective spaces

In this section we recall the well known notions and results about projective spaces used here. Recall that for $\mathbb{F}=\mathbb{R}, \mathbb{C}$ the spaces $\mathbb{P F}^{n}, \mathbb{P M}_{n}(\mathbb{F}), \mathbb{P G L}(\mathbb{F})$ are obtained by identifying the orbits of the action of $\mathbb{F}^{*}:=\mathbb{F} \backslash\{0\}$ on the nonzero elements of the corresponding sets. (\mathbb{F}^{*} acts by multiplication.) Then $\mathbb{P R}^{n}, \mathbb{P M}_{n}(\mathbb{R})$ and $\mathbb{P}^{n}, \mathbb{P M}_{n}(\mathbb{C})$ are compact real and complex manifolds respectively. (For the reason that will be seen later our notation for $\mathbb{P F}^{n}$ is slightly different from the standard notation.) Note that we can view $\mathbb{P M}_{n}(\mathbb{F})$ as isomorphic to $\mathbb{P F}^{n^{2}}$. For any $U \subset \mathbb{F}^{n}$

[^1]we denote by $\hat{U} \subset \mathbb{P}^{n}$ the set generated by the orbits of $\mathbb{F}^{*}(U \backslash\{0\}) .(\widehat{\{0\}}=\emptyset$. A set $V \subset \mathbb{P F}^{n}$ is called a (projective) variety if $V=\hat{U}$, where U is the zero set of a finite number of homogeneous polynomials over \mathbb{F} in $\mathbb{F}^{n} . H \subset \mathbb{P F}^{n}$ is called a hyperplane if $H=\hat{U}$, where U is a subspace of \mathbb{F}^{n} of codimension $1 . V \subset \mathbb{P F}^{n}$ is called a linear space if it is an intersection of a finite number of hyperplanes. $W \subset \mathbb{P}^{n}$ is called Zariski open if $W=\mathbb{P F}^{n} \backslash V$ for some variety V.

For $\mathbf{x} \in \mathbb{F}^{n} \backslash\{0\}, A \in \mathrm{M}_{n}(\mathbb{F}) \backslash\{0\}$ denote by $\hat{\mathbf{x}}, \hat{A}$ the corresponding elements of $\mathbb{P F}^{n}, \mathbb{P M}_{n}(\mathbb{F})$ respectively. Let $A \in \mathrm{GL}_{n}(\mathbb{F})$. Then A acts on $\mathbb{F}^{n} \backslash\{0\}$, so $\widehat{A \mathbf{x}}=\hat{A} \hat{x}$ for any $\mathbf{x} \in \mathbb{F}^{n} \backslash\{0\}$. That is \hat{A} acts on $\mathbb{P} \mathbb{F}^{n}$. Let $A \in \mathrm{M}_{n}(\mathbb{F}) \backslash\{0\}$ Then \hat{A} acts on Zariski open set $\mathbb{P F}^{n} \backslash \widehat{\operatorname{ker} A}$.

Since $\mathbb{P F}^{n}, \mathbb{P M}_{n}(\mathbb{F})$ are compact for any sequences

$$
\mathbf{x}_{k} \in \mathbb{F}^{n} \backslash\{0\}, A_{k}, B_{k} \in \mathrm{M}_{n}(\mathbb{F}) \backslash\{0\}, k \in \mathbb{N}
$$

we can find a subsequence $k_{l}, l \in \mathbb{N}$ and corresponding $\mathbf{x} \in \mathbb{F}^{n} \backslash\{0\}, A, B \in \mathrm{M}_{n}(\mathbb{F}) \backslash\{0\}$, depending on $k_{l}, l \in \mathbb{N}$ such that

$$
\lim _{l \rightarrow \infty} \hat{\mathbf{x}}_{k_{l}}=\hat{\mathbf{x}}, \quad \lim _{l \rightarrow \infty} \hat{A}_{k_{l}}=\hat{A}, \quad \lim _{l \rightarrow \infty} \hat{B}_{k_{l}}=\hat{B}
$$

Note also

$$
\begin{aligned}
\lim _{l \rightarrow \infty} \widehat{A_{k_{l}} \mathbf{x}_{k_{l}}} & =\widehat{A \mathbf{x}}=\hat{A} \hat{\mathbf{x}} \quad \text { if } A \mathbf{x} \neq 0 \\
\lim _{l \rightarrow \infty} \widehat{A_{k_{l}} B_{k_{l}}} & =\widehat{A B}=\hat{A} \hat{B} \quad \text { if } A B \neq 0
\end{aligned}
$$

The convergence of sequences in $\mathbb{P F}^{n}$ and $\mathbb{P M}_{n}(\mathbb{F})$ are equivalent to the following statement:

Proposition 2.1 Let $\mathbf{x}_{k} \in \mathbb{F}^{n} \backslash\{0\}, A_{k} \in \mathrm{M}_{n}(\mathbb{F}) \backslash\{0\}, k \in \mathbb{N}$. Then sequences $\hat{\mathbf{x}}_{k}, \hat{A}_{k}, k \in \mathbb{N}$ converge in $\mathbb{P F}^{n}, \mathbb{P M}_{n}(\mathbb{F})$ respectively if and only if there exist two sequences $\mu_{k}, \nu_{k} \in\{z \in \mathbb{C}:|z|=1\} \cap \mathbb{F}, k \in \mathbb{N}$ such that the sequences $\mu_{k} \frac{\mathbf{x}_{k}}{\left\|\mathbf{x}_{k}\right\|}$, $\nu_{k} \frac{A_{k}}{\left\|A_{k}\right\|}, k \in \mathbb{N}$ converge in $\mathbb{F}^{n}, \mathrm{M}_{n}(\mathbb{F})$ respectively.

Note that for $\mathbb{F}=\mathbb{R} \mu_{k}, \nu_{k} \in\{1,-1\}$. Thus if $\mathbf{x}_{k} \in \mathbb{R}_{+}^{n}, A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$it is clear that in Proposition 2.1 we may assume that $\mu_{k}=\nu_{k}=1$. Hence for $A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right), k \in \mathbb{N}$, $\widehat{A_{k} \ldots A_{1}}$ converges in $\mathbb{P M}_{n}(\mathbb{R})$ if and only if (1.2) holds.

Let $\mathbb{P}_{+}^{n}, \mathbb{P M}_{n}\left(\mathbb{R}_{+}\right)\left(\approx \mathbb{P}_{+}^{n^{2}}\right)$ be the set of orbits in $\mathbb{R}_{+}^{n}, \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$under the action of \mathbb{R}_{+}(by multiplication). We view $\mathbb{P R}_{+}^{n}, \mathbb{P M}_{n}\left(\mathbb{R}_{+}\right)$as corresponding subsets of $\mathbb{P R}^{n}, \mathbb{P M}_{n}(\mathbb{R})$ respectively. Note that $\mathbb{P M}_{n}\left(\mathbb{R}_{+}\right)$acts on $\mathbb{P R}_{+}^{n}$. Sometime it is convenient to identify \mathbb{P}_{+}^{n} and $\mathbb{P M}_{n}\left(\mathbb{R}_{+}\right)$with the open set of positive probability
vectors and the open set of positive matrices whose sum of coordinates is equal to 1 respectively.

Recall the notion of Hilbert (hyperbolic) metric on $\mathbb{P}_{+}^{n}[9]$, which is not equivalent to the metric induced by the standard Riemannian metric on the compact manifold $\mathbb{P R}^{n}$. Let

$$
\begin{equation*}
d(\hat{\mathbf{x}}, \hat{\mathbf{y}})=\log \frac{\max _{i} \frac{x_{i}}{y_{i}}}{\min _{i} \frac{x_{i}}{y_{i}}}, \quad \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}, \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\mathrm{T}} \in \mathbb{R}_{+}^{n} \tag{2.1}
\end{equation*}
$$

It is straightforward to show that $d(\cdot, \cdot)$ is a metric on $\mathbb{P R}_{+}^{n}, \mathbb{P R}_{+}^{n}$ is a complete separable metric space with respect to $d(\cdot, \cdot)$, which has an infinite diameter. Moreover, $\mathcal{Y} \subset \mathbb{P R}_{+}^{n}$ is compact with respect to the above metric if and only if \mathcal{Y} is compact with respect to the standard metric on $\mathbb{P P}^{n}$.

3 Convergence of contractions

Let \mathcal{X} be a complete metric space with the metric $d(\cdot, \cdot)$. For $T: \mathcal{X} \rightarrow \mathcal{X}$ let

$$
L(T):=\sup _{x \neq y \in \mathcal{X}} \frac{d(T x, T y)}{d(x, y)} \in[0, \infty]
$$

We assume here that $a \cdot \infty=\infty \cdot a=\infty$ for any $a \in \mathbb{R}_{+}$and $0 \cdot \infty=\infty \cdot 0=0$. Note that $L(T)=0$ if and only if T is a constant operator. For any $T, Q: \mathcal{X} \rightarrow \mathcal{X}$ $L(T Q) \leq L(T) L(Q) . T$ is called Lipschitz continuous if $L(T)<\infty$. T is called a contraction if $L(T)<1$. Assume that T is a contraction. Then it is well known that T has a unique fixed point ξ. Furthermore the sequence $T^{i}, i \in \mathbb{N}$ converges pointwise to a constant operator $Q: \mathcal{X} \rightarrow\{\xi\}$. That is $T^{i} x \rightarrow \xi$ for any $x \in \mathcal{X}$.

Lemma 3.1 Let $T_{i}, i \in \mathbb{N}$ be a sequence of operators on a complete metric space \mathcal{X}. Let $Q_{i}:=T_{1} T_{2} \ldots T_{i}, i \in \mathbb{N}$ be a sequence of operators. Assume that the following two conditions hold:

$$
\begin{align*}
\lim _{i \rightarrow \infty} L\left(Q_{i}\right) & =0 \tag{3.1}\\
\lim _{i \rightarrow \infty} \sup _{j \in \mathbb{N}} L\left(Q_{i}\right) d\left(T_{i+1} \ldots T_{i+j} x, x\right) & =0, \quad \text { for some } x \in \mathcal{X} . \tag{3.2}
\end{align*}
$$

Then $Q_{i}, i \in \mathbb{N}$ converges pointwise to a constant operator $Q: \mathcal{X} \rightarrow\{\xi\}$ for some $\xi \in \mathcal{X}$.

Proof. Since

$$
\begin{aligned}
& d\left(Q_{i+j} x, Q_{i} x\right)=d\left(Q_{i}\left(T_{i+1} \ldots T_{i+j} x\right), Q_{i} x\right) \leq L\left(Q_{i}\right) d\left(T_{i+1} \ldots T_{i+j} x, x\right) \leq \\
& \sup _{k \in \mathbb{N}} L\left(Q_{i}\right) d\left(T_{i+1} \ldots T_{i+k} x, x\right)
\end{aligned}
$$

the condition (3.2) implies that $Q_{i} x, i \in \mathbb{N}$ is a Cauchy sequence. Hence $\lim _{i \rightarrow \infty} Q_{i} x=$ ξ. Clearly

$$
\begin{equation*}
d\left(Q_{i} y, \xi\right) \leq d\left(Q_{i} y, Q_{i} x\right)+d\left(Q_{i} x, \xi\right) \leq L\left(Q_{i}\right) d(x, y)+d\left(Q_{i} x, \xi\right) \tag{3.3}
\end{equation*}
$$

The condition (3.1) implies the lemma.
Recall that a metric spaces \mathcal{X} has a finite diameter if $\sup _{x, y \in \mathcal{X}} d(x, y)<\infty$. Clearly any compact metric space has a finite diameter. Note that if \mathcal{X} is has a finite diameter then (3.1) implies (3.2).

Corollary 3.2 Let $T_{i}, i \in \mathbb{N}$ be a sequence of operators on a complete metric space \mathcal{X} of finite diameter. Let $Q_{i}:=T_{1} T_{2} \ldots T_{i}, i \in \mathbb{N}$ be a sequence of operators. Assume that the condition (3.1) holds. Then $Q_{i}, i \in \mathbb{N}$ converges pointwise to a constant operator $Q: \mathcal{X} \rightarrow\{\xi\}$ for some $\xi \in \mathcal{X}$. In particular, if $T_{i}, i \in \mathbb{N}$ is a sequence of uniform contractions, i.e. $L\left(T_{i}\right) \leq a<1$ for all $\in \mathbb{N}$, on a complete metric space \mathcal{X} of finite diameter then (3.1) holds.
$A=\left(a_{i j}\right)_{1}^{n} \in \mathrm{M}_{n}(\mathbb{R})$ is called a nonnegative matrix if $a_{i j} \geq 0, i, j=1, \ldots, n$. A is called row allowable (column allowable) if A is nonnegative and $A \mathbb{R}_{+}^{n} \subset \mathbb{R}_{+}^{n}$ $\left(A^{\mathrm{T}} \mathbb{R}_{+}^{n} \subset \mathbb{R}_{+}^{n}\right)$, i.e. each row (column) of A contains a positive element. A is called primitive if A is nonnegative and there is $m \in \mathbb{N}$ such that $A^{m} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$. From here and to the end of this section we assume that A is row allowable unless stated otherwise. Then A acts on $\mathbb{P R}_{+}^{n}$, i.e. $\hat{A}: \mathbb{P R}_{+}^{n} \rightarrow \mathbb{P R}_{+}^{n}$. It is known that \hat{A} is Lipschitz continuous and $L(\hat{A}) \leq 1$ [7]. It was shown by Birkhoff [1] that for $A \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right) \hat{A}$ is a contraction. It is known [12] that

$$
\begin{equation*}
L(\hat{A})=\frac{1-\sqrt{\psi(A)}}{1+\sqrt{\psi(A)}} \text {, where } \psi(A):=\min _{i, j, k, l \in[1, n]} \frac{a_{i k} a_{j l}}{a_{i l} a_{j k}}, A=\left(a_{i j}\right)_{1}^{n} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right) . \tag{3.4}
\end{equation*}
$$

For a row allowable nonpositive $A \psi(A)=0 \Longleftrightarrow L(\hat{A})=1$. (For a nonnegative non row allowable A we let $\psi(A)=-1 \Longleftrightarrow L(A)=\infty$.) Note that $L(\hat{A})=0$ if and only if A is a positive rank one matrix. Thus $L(\hat{A})=0 \Longleftrightarrow L\left(\widehat{A^{\mathrm{T}}}\right)=0$. Furthermore if $A_{k}, k \in \mathbb{N}$ is a sequence of row allowable matrices then the equivalence of the two conditions stated in (1.3) holds.

Let $A_{k}=\left(a_{i j, k}\right)_{i, j}^{n}, B_{k}=\left(b_{i j, k}\right)_{i, j=1}^{n} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$for $k=N, N+1, \ldots$ and some $N \in \mathbb{N}$. We say that $A_{k}, B_{k}, k \in \mathbb{N}$ are asymptotically equal, and denote it by $\left\{A_{k}\right\} \sim\left\{B_{k}\right\}$, if

$$
\lim _{k \rightarrow \infty} \frac{a_{i j, k}}{b_{i j, k}}=1, \quad \text { for } i, j=1, \ldots, n
$$

The following result is known, e.g. [7].
Lemma 3.3 Let $A_{k}, k \in \mathbb{N}$ be a sequence of nonnegative row allowable matrices. Then $\lim _{k \rightarrow \infty} L\left(A_{k}\right)=0$ if and only if there exists a sequence of positive rank one matrices $B_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right), k \in \mathbb{N}$ such that $\left\{A_{k}\right\} \sim\left\{B_{k}\right\}$.

Theorem 3.4 Let $A_{k} \in \mathrm{M}_{n}(\mathbb{R}), k \in \mathbb{N}$ be a sequence of nonnegative row (column) allowable matrices. Then $\lim _{k \rightarrow \infty} L\left(\widehat{A_{1} \ldots A_{k}}\right)=0\left(\lim _{k \rightarrow \infty} L\left(\widehat{A_{k}^{\mathrm{T}} \ldots A_{1}^{\mathrm{T}}}\right)=0\right)$ if and only if there exists $\mathbf{u} \in \mathbb{R}_{+}^{n}, \mathbf{v}_{k} \in \mathbb{R}_{+}^{n}, k$ for $k>N$ such that $\left\{A_{1} \ldots A_{k}\right\} \sim\left\{\mathbf{u v}_{k}^{\mathrm{T}}\right\}$ $\left(\left\{A_{k}^{\mathrm{T}} \ldots A_{1}^{\mathrm{T}}\right\} \sim\left\{\mathbf{v}_{k} \mathbf{u}^{\mathrm{T}}\right\}\right)$.

Proof. Lemma 3.3 implies that if $\left\{A_{1} \ldots A_{k}\right\} \sim\left\{\mathbf{u v}_{k}^{\mathrm{T}}\right\}$, where $\mathbf{u}, \mathbf{v}_{k} \in \mathbb{R}_{+}^{n}$, then $\lim _{k \rightarrow \infty} L\left(A_{1} \ldots A_{k}\right)=0$. Assume that $A_{k}, k \in \mathbb{N}$ are row-allowable and $\lim _{k \rightarrow \infty} L\left(A_{1} \ldots A_{k}\right)=0$. Hence there exists $k \in \mathbb{N}$ such that $Q_{k}=\left(q_{i j, k}\right)_{i, j=1}^{n}=$ $A_{1} \ldots A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$for $k>N$. Then [7, Thm 1] implies that $Q_{k}, k \in \mathbb{N}$ tends to row proportionality. That is there exists $U=\left(u_{i j}\right) \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$such that

$$
\lim _{k \rightarrow \infty} \frac{q_{i l, k}}{q_{j l, k}}=u_{i j}, \quad i, j \text { and } i, j=1, \ldots, n .
$$

Clearly $u_{i i}=1$ and $u_{i j}=\frac{1}{u_{j i}}$. As $\frac{q_{i l, k}}{q_{j l, k}}=\frac{q_{i l, k}}{q_{m l, k}} \frac{q_{m l, k}}{q_{j l, k}}$ it follows that $u_{i j}=u_{i m} u_{m j}$. Hence $u_{i j}=u_{i 1} u_{1 j}=\frac{u_{i 1}}{u_{j 1}}$. Let

$$
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{\mathrm{T}}:=\left(u_{11}, u_{21}, \ldots, u_{n 1}\right)^{\mathrm{T}}, \quad \mathbf{v}_{k}=\left(q_{11, k}, q_{12, k}, \ldots, q_{1 n, k}\right)^{\mathrm{T}}
$$

and the theorem follows.

Corollary 3.5 Let $A_{k} \in \mathrm{M}_{n}(\mathbb{R}), k \in \mathbb{N}$ be a sequence of nonnegative row allowable matrices. Assume that $\lim _{k \rightarrow \infty} L\left(\widehat{A_{1} \ldots A_{k}}\right)=0$. Then $\widehat{A_{1} \ldots A_{k}}: \mathbb{P R}_{+}^{n} \rightarrow \mathbb{P R}_{+}^{n}$ converges to a constant operator $Q: \mathbb{P R}_{+}^{n} \rightarrow\{\hat{\mathbf{u}}\}$ for some $\mathbf{u} \in \mathbb{R}_{+}^{n}$.

Since $\mathbb{P R}_{+}^{n}$ is not compact under the hyperbolic metric it follows that Corollary 3.5 is a stronger version of Lemma 3.1. We now give an example which shows that the
condition (1.3) for $A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$does not imply (1.2). Let $A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$be a periodic sequence, i.e. $A_{k+m}=A_{k}$ for all $k \in \mathbb{N}$ and some $m>1$. Since $L\left(\widehat{A_{k} \ldots A_{1}}\right) \leq$ $L\left(\hat{A}_{k}\right) \ldots L\left(\hat{A}_{1}\right)$ we deduce that (1.3) holds. Assume the normalization $\rho\left(A_{m} \ldots A_{1}\right)=$ 1. Then $\left(A_{m} \ldots A_{1}\right)^{k} \rightarrow \mathbf{u v}^{\mathrm{T}}$, where $A_{m} \ldots A_{1} \mathbf{u}=\mathbf{u}, \mathbf{v}^{\mathrm{T}} A_{m} \ldots A_{1}=\mathbf{v}^{\mathrm{T}}, \mathbf{v}^{\mathrm{T}} \mathbf{u}=1$ for some $\mathbf{u}, \mathbf{v} \in \mathbb{R}_{+}^{n}$. Then for $p \in[1, m-1] \cap \mathbb{Z} \lim _{k \rightarrow \infty} A_{k m+p} \ldots A_{m k+1} A_{m k} \ldots A_{1}=$ $A_{p} \ldots A_{1} \mathbf{u v}^{\mathrm{T}}$. Clearly, we can choose A_{1}, \ldots, A_{m} such that (1.2) does not hold.

A special version of the following weak generalization of Theorem 3.4 will be needed to prove Theorem 1.2 in the complex case. Recall that \mathbb{P}^{n} is a compact complex manifold. Let $d(\cdot, \cdot)$ be the Fubini-Study metric on $\mathbb{P}^{n}[6]$. Then \mathbb{P}^{n} has a finite diameter.

Theorem 3.6 Let $\mathcal{X} \subset \mathbb{P}^{n}$ be a compact set with respect to the Fubini-Study metric d on \mathcal{X} and assume that \mathcal{X} has a nonempty interior. Let $B_{k} \in \mathrm{M}_{n}(\mathbb{C}), k \in \mathbb{N}$ be a sequence of matrices such that $\widehat{\operatorname{ker} B_{k}} \cap \mathcal{X}=\emptyset$ and $T_{k}:=\hat{B}_{k}: \mathcal{X} \rightarrow \mathcal{X}$ for each $k \in \mathbb{N}$. Let $Q_{k}:=T_{1} \ldots T_{k}, k \in \mathbb{N}$. Assume that $\lim _{k \rightarrow \infty} L\left(Q_{k}\right)=0$. Then Q_{k} converges converges pointwise to a constant operator $Q: \mathcal{X} \rightarrow\{\hat{\mathbf{w}}\}$ for some $\hat{\mathbf{w}} \in \mathcal{X}$. Furthermore the limit of any convergent subsequence $\lim _{l \rightarrow \infty} \widehat{B_{1} \ldots B_{k_{l}}}=$ $\hat{C} \in \mathbb{P M}_{n}(\mathbb{C})$ is of the form $\widehat{\mathbf{w z}^{\mathrm{T}}}$, where \mathbf{z} depends on a subsequence.

Proof. Corollary 3.2 yields that $Q_{k}, k \in \mathbb{N}$ converges to a constant operator Q such that $Q \mathcal{X}=\{\hat{\mathbf{w}}\}$. Assume that $\lim _{l \rightarrow \infty} \widehat{B_{1} \ldots B_{k_{l}}}=\hat{C} \in \mathbb{P M}_{n}(\mathbb{C})$. Since \mathcal{X} has an interior, there exists an interior point $\hat{\mathbf{x}} \in \mathcal{X}$ such that $\mathbf{x} \notin \operatorname{ker} C$. Hence $\hat{\mathbf{w}}=\lim _{l \rightarrow \infty} Q_{k_{l}}(\hat{\mathbf{x}})=\hat{C} \hat{\mathbf{x}}=\widehat{C \mathbf{x}}$. Since this result holds for any \mathbf{y} in the small neighborhood of \mathbf{x} it follows that C is a rank one matrix of the form $\mathbf{w} \mathbf{z}^{\mathrm{T}}$.

Corollary 5.2 gives a family of examples for which Theorem 3.6 applies.

4 Proof of Theorem 1.1 and Theorem 1.2 for \mathbb{R}

To prove Theorems 1.1 and 1.2 we use the following well known fact:
Proposition 4.1 Let \mathcal{X} be a compact metric space. Then a sequence $x_{k} \in$ $\mathcal{X}, k \in \mathbb{N}$ converges to ξ if and only if from any convergent subsequence $x_{l_{i}}, i \in \mathbb{N}$ there exists a subsequence $x_{p_{j}}, j \in \mathbb{N}$ which converges to ξ.

Proof of Theorem 1.1. From the definition of $\psi\left(A^{\mathrm{T}}\right)$ in (3.4) it follows that $\lim _{k \rightarrow \infty} \psi\left(A_{k}^{\mathrm{T}}\right)=\psi\left(A^{\mathrm{T}}\right) \in(0,1)$. Hence $L\left(A_{1}^{\mathrm{T}} \ldots A_{k}^{\mathrm{T}}\right) \leq L\left(A_{1}^{\mathrm{T}}\right) \ldots L\left(A_{k}^{\mathrm{T}}\right) \rightarrow 0$. Theorem 3.4 yields the existence of $\mathbf{w}, \mathbf{x}_{k} \in \mathbb{R}_{+}^{n}$ such that $\left\{A_{1}^{\mathrm{T}} \ldots A_{k}^{\mathrm{T}}\right\} \sim\left\{\mathbf{w} \mathbf{x}_{k}^{\mathrm{T}}\right\}$. Hence $\left\{A_{k} \ldots A_{1}\right\} \sim\left\{\mathbf{x}_{k} \mathbf{w}^{\mathrm{T}}\right\}$.

Let $C_{k}:=A_{k} A_{k-1} \ldots A_{2} A_{1}, k \in \mathbb{N}$. Assume that $\hat{C}_{k_{l}} \rightarrow \hat{C}$. Since $\mathbb{P R}^{n}$ is compact from each subsequence $\hat{\mathbf{x}}_{k_{l}}$ we can find as subsequence $\hat{\mathbf{x}}_{l_{i}}$ such that $\hat{\mathbf{x}}_{l_{i}} \rightarrow \hat{\mathbf{y}}$ where $\mathbf{y} \in \mathbb{R}^{n}$ is a probability vector. Since $\left\{A_{k} \ldots A_{1}\right\} \sim\left\{\mathbf{x}_{k} \mathbf{w}^{\mathrm{T}}\right\}$ it follows that $\hat{C}_{l_{i}} \rightarrow$ $\widehat{\mathbf{y w}^{\mathrm{T}}} \Rightarrow \hat{C}=\hat{\mathbf{y}} \hat{\mathbf{w}}^{\mathrm{T}}$.

We first deduce the theorem in the case A is a rank one matrix $A=\mathbf{u v}^{\mathrm{T}}$. Assume that $\hat{C}_{k_{l}} \rightarrow \hat{\mathbf{y}} \hat{\mathbf{w}}^{\mathrm{T}}$. From the sequence k_{l} pick up a subsequence p_{q} such that $\hat{C}_{p_{q}-1} \rightarrow \hat{\mathbf{z}} \hat{\mathbf{w}}^{\mathrm{T}}$ for some probability vector \mathbf{z}. Under the above assumptions

$$
\lim _{p_{q} \rightarrow \infty} \hat{C}_{p_{q}}=\lim _{p_{q} \rightarrow \infty} \widehat{A_{p_{q} C_{p_{q}-1}}}=\widehat{\mathbf{u v}^{\mathrm{T}} \mathbf{z w}^{\mathrm{T}}}=\widehat{\mathbf{u w}^{\mathrm{T}}} .
$$

Therefore $\lim _{k \rightarrow \infty} \hat{C}_{k}=\widehat{\mathbf{u w}^{\mathrm{T}}}$ and the theorem follows.
We now consider the general case. Without loss of generality we assume that the spectral radius of A is equal to 1 . Then $A^{m} \rightarrow \mathbf{u v}^{\mathrm{T}}$, where $\mathbf{u}^{\mathrm{T}} \mathbf{v}=1$. Choose $\epsilon_{m}, m \in \mathbb{N}$ a sequence of positive decreasing numbers tending to zero with the following property:

$$
X_{1}, \ldots, X_{m} \in \mathrm{M}_{n}(\mathbb{R}) \text { and }\left\|X_{i}-A\right\|<\epsilon_{m}, i=1, \ldots, m \Rightarrow\left\|X_{1} X_{2} \ldots X_{m}-A^{m}\right\|<\frac{1}{m}
$$

Let N_{m} the following increasing sequence: $\left\|A_{k}-A\right\|<\epsilon_{m}$ for each $k>N_{m}$. Hence $\left\|A_{j+m} \ldots A_{j+1}-A^{m}\right\|<\frac{1}{m}$ for any $j>N_{m}$.

Let $C_{k}:=A_{k} A_{k-1} \ldots A_{2} A_{1}, k \in \mathbb{N}$. Assume that $\hat{C}_{k_{l}} \rightarrow \widehat{\mathrm{yw}^{\mathrm{T}}}$. First choose a subsequence $\left\{q_{j}\right\}$ of $\left\{k_{l}\right\}$ such that $q_{j+1}-q_{j}>N_{j+1}+j+1$, where $q_{0}=0$. Let $r_{j}=q_{j}-j$ for $j \in \mathbb{N}$. Note that $r_{j+1}>q_{j}+N_{j+1}$. Hence

$$
\left\|A_{q_{j}} \ldots A_{r_{j}+1}-A^{j}\right\|<\frac{1}{j}, \quad \text { for all } j \in \mathbb{N} .
$$

From the sequence $r_{j}, j \in \mathbb{N}$ choose a subsequence $r_{j_{m}}$ such that $\hat{C}_{r_{j_{m}}} \rightarrow \widehat{\mathbf{z w}^{\mathrm{T}}}$ for a probability vector $\mathbf{z} \in \mathbb{R}^{n}$. Note that since $r_{j_{m}}+j_{m}=q_{j_{m}}$ it follows that $\hat{C}_{q_{j_{m}}} \rightarrow \widehat{\mathrm{yw}^{\mathrm{T}}}$. On the other hand $\hat{C}_{q_{j_{m}}}=A_{q_{j_{m}}} \widehat{\ldots A_{r_{j_{m}}+1}} \hat{C}_{r_{j_{m}}}$. Our assumptions yield that the second factor converges to $\widehat{\mathbf{z w}^{\mathrm{T}}}$. Our construction yields that the first factor converges to $\widehat{\mathbf{v u}^{\mathrm{T}}}$. Hence $\hat{C}_{k_{l}} \rightarrow \widehat{\mathbf{u w}^{\mathrm{T}}}$ and the theorem follows in this case too.

Let $A \in \mathrm{M}_{n}(\mathbb{R})$ be a primitive matrix. Then A is row and column allowable. Furthermore $\rho(A)>1$ and there exists $\mathbf{u}, \mathbf{v} \in \mathbb{R}_{+}^{n}, \mathbf{v}^{\mathrm{T}} \mathbf{u}=1$ such that $A \mathbf{u}=\rho(A) \mathbf{u}, \mathbf{v}^{\mathrm{T}} A=\rho(A) \mathbf{v}^{\mathrm{T}}$. Moreover $\lim _{m \rightarrow \infty} \rho(A)^{-m} A^{m}=\mathbf{u v}^{\mathrm{T}}$. The arguments of the proof of Theorem 1.1 yield:

Corollary 4.2 Let $A_{k}, k \in \mathbb{N}$ be a sequence of column allowable matrices such that $\lim _{k \rightarrow \infty} A_{k}=A$, where A is a primitive matrix. Then (1.2) and (1.4) hold.

Proof of Theorem 1.2 in the real case. We assume that $A_{k} \in \mathrm{M}_{n}(\mathbb{R}), k \in \mathbb{N}$. Hence $\lim _{k \rightarrow \infty} A_{k}=A \in \mathrm{M}_{n}(\mathbb{R})$. Since the nonreal eigenvalues of A come in pairs z, \bar{z}, it follows that the unique eigenvalue of A on the circle $\{z:|z|=\rho(A)\}$ is equal to $\pm \rho(A)$. By multiplying each A_{k} and A by $\pm \rho(A)^{-1}$ we may assume that $\rho(A)=1$ and 1 is an eigenvalue of $A .1$ is a simple eigenvalue of the characteristic polynomial of A and all other eigenvalues of A lie inside the unit disk $|z|<1$. By considering $T A_{k} T^{-1}$ instead of A_{k} and $T A T^{-1}$ instead of A it is enough to prove the theorem in the case

$$
A \mathbf{e}=\mathbf{e}, A^{\mathrm{T}} \mathbf{v}=\mathbf{v}, \quad \mathbf{e}=(1, \ldots, 1)^{\mathrm{T}}, \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)^{\mathrm{T}} \in \mathbb{R}_{+}^{n}, v_{1}+\ldots+v_{n}=1
$$

Indeed, since 1 is a simple root the characteristic polynomial of A, there exists $Q \in \mathrm{GL}_{n}(\mathbb{R})$ such that $B:=Q A Q^{-1}=(1) \oplus B^{\prime}$ for some $B^{\prime} \in \mathrm{M}_{n-1}(\mathbb{R})$. Hence $B \mathbf{e}_{1}=B \mathbf{e}_{1}^{\mathrm{T}}=\mathbf{e}_{1}=(1,0, \ldots, 0)^{\mathrm{T}}$ We claim that for $n \geq 2$ there exists $S \in \mathrm{GL}_{n}(\mathbb{R})$ such that

$$
S \mathbf{e}_{1}=\mathbf{e}, \quad S^{\mathrm{T}} \mathbf{v}=\mathbf{e}_{1}, \quad \text { for any } \mathbf{v} \in \mathbb{R}_{+}^{n}, \mathbf{e}^{\mathrm{T}} \mathbf{v}=1
$$

The first equation yields that the first column of S is \mathbf{e}. The second equation yields that the last $n-1$ columns of S orthogonal to \mathbf{v}. Pick any $n-1$ linearly independent vectors in $\mathbf{s}_{2}, \ldots, \mathbf{s}_{n} \in \mathbb{R}^{n}$ which are orthogonal to \mathbf{v}. Then $S:=\left(\mathbf{e}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{n}\right) \in$ $\mathrm{GL}_{n}(\mathbb{R})$ satisfies the above condition. Now let $T=S Q$.

Our assumptions yield

$$
\lim _{m \rightarrow \infty} A^{m}=\mathbf{e v}^{\mathrm{T}}
$$

As in the proof of Theorem 1.1, let us consider first the case $A=\mathbf{e v}^{\mathrm{T}}$. As $\lim _{k \rightarrow \infty} A_{k}=A$ and A is a positive matrix it follows that $A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$for $k \geq M$. Theorem 1.1 yields that $\widehat{A_{k} \ldots A_{M}}$ converges to $\widehat{\mathbf{e w}_{0}}$. Hence $\lim _{k \rightarrow \infty} \widehat{A_{k} \ldots A_{1}}=\widehat{\mathbf{e w}^{\mathrm{T}}}$, where $\mathbf{w}^{\mathrm{T}}=\mathbf{w}_{0}^{\mathrm{T}} A_{M-1} \ldots A_{1}$. This proves the theorem in this case.

Assume that $A \neq \mathbf{e v}^{\mathrm{T}}$. As $\lim _{m \rightarrow \infty} A^{m}=\mathbf{e v}^{\mathrm{T}}$ it follows that there exists $m \in \mathbb{N}$ such that $A^{m} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$. Hence $A_{k+m-1} \ldots A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$for $k \geq N$. Theorem 1.1 yields that $\lim _{k \rightarrow \infty} A_{k m+N \ldots} \widehat{N+1} \rightarrow \widehat{\mathbf{e w}_{0}^{\mathrm{T}}}$. Hence

$$
\lim _{k \rightarrow \infty} A_{k m+j+N \ldots} A_{N+1}=\widehat{A^{j} \mathbf{e w}_{0}^{\mathrm{T}}}=\widehat{\mathbf{e w}_{0}^{\mathrm{T}}}
$$

and the theorem follows in this case too.

5 Proof of Theorem 1.2 in the complex case.

Since $\mathrm{M}_{n}(\mathbb{C}) \sim \mathbb{C}^{n^{2}}$ it follows that $\mathbb{P M}_{n}(\mathbb{C}) \sim \mathbb{P} \mathbb{C}^{n^{2}}$. Let d_{1} be the Fubini-Study metric on $\mathbb{P M}_{n}(\mathbb{C})$. Let $\hat{A} \in \mathbb{P M}_{n}(\mathbb{C})$. Then $\hat{A}: \mathbb{P C}^{n} \backslash \widehat{\operatorname{ker} A} \rightarrow \mathbb{P}^{n}$ is a holomorphic map.

Lemma 5.1 Let $E \in \mathrm{M}_{n}(\mathbb{C})$ be rank one matrix with $\rho(E)>0$, i.e. $E=$ $\mathbf{v u}^{\mathrm{T}}, \mathbf{u}^{\mathrm{T}} \mathbf{v} \neq 0$. Let $O_{r}:=\left\{\hat{\mathbf{x}} \in \mathbb{P}^{n}: d(\hat{\mathbf{x}}, \hat{\mathbf{v}}) \leq r\right\}$ such that $O_{r} \cap \widehat{\operatorname{ker} E}=\emptyset$. Then $\hat{E}: O_{r} \rightarrow\{\hat{\mathbf{v}}\}$. Assume that $E_{k} \in \mathrm{M}_{n}(\mathbb{C}) \backslash\{0\}, k \in \mathbb{N}$ converges to E. Then there exists N such that $\hat{E}_{k}: O_{r} \rightarrow O_{r}$ is a sequence of uniform contractions for $k>N$, i.e. $d\left(\hat{E}_{k} \hat{\mathbf{x}}, \hat{E}_{k} \hat{\mathbf{y}}\right) \leq \kappa d(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ for all $\hat{\mathbf{x}}, \hat{\mathbf{y}} \in O_{r}$ some $\kappa \in(0,1)$ and $k>N$. Moreover there exists $\epsilon>0$, depending on E, r and $\kappa \in(0,1)$, such that for each $\hat{B} \in \mathbb{P M}_{n}(\mathbb{C})$ satisfying $d_{1}(\hat{B}, \hat{E}) \leq \epsilon$ one has $\hat{B}: O_{r} \rightarrow O_{r}$ and $L(\hat{B}) \leq \kappa$.

Proof. Clearly $\widehat{E \mathbf{x}}=\hat{\mathbf{v}}$ if $\mathbf{u}^{\mathrm{T}} \mathbf{x} \neq 0$. Hence $\hat{E}: O_{r} \rightarrow\{\hat{\mathbf{v}}\}$. Since $\widehat{\operatorname{ker} E_{k}}$ converges $\widehat{\operatorname{ker} E}$ it follows that $\hat{E}_{k} \mid O_{r}$ converges uniformly to $\hat{E} \mid O_{r}$. In particular $\hat{E}_{k}: O_{r} \rightarrow O_{r}$ for $k>M$.

Let $B \in \mathrm{M}_{n}(\mathbb{C}) \backslash\{0\}$. Then for each $\mathbf{x} \in \mathbb{P}^{n} \backslash \widehat{\operatorname{ker} B}$ we can define the local distortion of \hat{B} at $\hat{\mathbf{x}}$:

$$
\delta(\hat{B}, \hat{\mathbf{x}})=: \lim _{m \rightarrow \infty} \sup _{\hat{\mathbf{y}} \neq \hat{\mathbf{z}}, d(\hat{\mathbf{y}}, \hat{\mathbf{x}}) \leq \frac{1}{m}, d(\hat{\mathbf{z}}, \hat{\mathbf{x}}) \leq \frac{1}{m}} \frac{d(\hat{B} \hat{\mathbf{y}}, \hat{B} \hat{\mathbf{z}})}{d(\hat{\mathbf{y}}, \hat{\mathbf{z}})}
$$

For any $\mathcal{Y} \subset \mathbb{P}^{n} \backslash \widehat{\operatorname{ker} B}$ let

$$
\delta(\hat{B}, \mathcal{Y}):=\sup _{\hat{\mathbf{x}} \in \mathcal{Y}} \delta(\hat{B}, \mathbf{x})
$$

Recall that a set \mathcal{Y} is called convex if any two points $\mathbf{x}, \mathbf{y} \in \mathcal{Y}$ can be connected by a geodesic that completely lies in \mathcal{Y}. It is a standard fact that if $\mathcal{Y} \subset \mathbb{P}^{n} \backslash \widehat{\operatorname{ker} B}$ is a convex set then

$$
d(\hat{B} \hat{x}, \hat{B} \hat{y}) \leq \delta(\hat{B}, \mathcal{Y}) d(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \quad \text { for all } \hat{\mathbf{x}}, \hat{\mathbf{y}} \in \mathcal{Y}
$$

Clearly $\delta(\hat{E}, \hat{\mathbf{x}})=0$ for all $\hat{\mathbf{x}} \in \mathbb{P}^{n} \backslash \widehat{\operatorname{ker} E}$. As $E_{k} \rightarrow E$ it follows that $\lim _{k \rightarrow \infty} \delta\left(\hat{E}_{k}, \hat{\mathbf{x}}\right)=$ 0 for all $\hat{\mathbf{x}} \in \mathbb{P} \mathbb{C}^{n} \backslash \widehat{\operatorname{ker} E}$. Use this fact and the fact that O_{r} can be covered by a finite number of convex balls $\{\hat{\mathbf{y}}: d(\hat{\mathbf{y}}, \hat{\mathbf{x}})<r(\hat{\mathbf{x}})\}, \hat{\mathbf{x}} \in O_{r}$ to deduce the the first part of the lemma.

We now deduce the second part of the lemma. Since O_{r} and $\widehat{\operatorname{ker} E}$ closed and disjoint it follows that $d\left(O_{r}, \widehat{\operatorname{ker} E}\right)=2 a>0$. Hence there exists ϵ_{1} such that $d\left(O_{r}, \widehat{\operatorname{ker} B}\right) \geq a$ if $d_{1}(\hat{B}, \hat{E}) \leq \epsilon_{1}$. It is not difficult to show that

$$
\lim _{t \backslash 0} \max _{\hat{B}, d_{1}(\hat{B}, \hat{E}) \leq t} \delta\left(\hat{B}, O_{r}\right)=\delta\left(\hat{E}, O_{r}\right)=0 .
$$

Hence for ϵ small enough and $d_{1}(\hat{B}, \hat{E}) \leq \epsilon$ one has $d\left(\hat{B} O_{r}, \hat{E} O_{r}\right)=d\left(\hat{B} O_{r}, \hat{u}\right)<r$ and $L(\hat{B})=\delta\left(\hat{B}, O_{r}\right)<\kappa$.

Corollary 5.2 Let $E \in \mathrm{M}_{n}(\mathbb{C})$ be a rank one nonnilpotent matrix and let $r>$ $0, \kappa \in(0,1)$ be given as in Lemma 5.1. Let $B_{k} \in \mathrm{M}_{n}(\mathbb{C}) \backslash\{0\}$ and assume that $d_{1}\left(\hat{B}_{k}, \hat{E}\right) \leq \epsilon$ for each $k \in \mathbb{N}$. Then for $\mathcal{X}=O_{r}$ the assumptions of Theorem 3.6 hold.

In what follows we use the concepts of the exterior products $\left.\wedge_{k} \mathbb{F}^{n} \subset \mathbb{F}^{n} \begin{array}{l}n \\ k\end{array}\right)$ and the operators $\wedge_{k} A \in \mathrm{M}_{\substack{n \\ k \\ k}}(\mathbb{F})$ induced by $A \in \mathrm{M}_{n}(\mathbb{F})$. In matrix theory $\wedge_{k} A$ is called $k-t h$ compound matrix, and its entries are given as the $k \times k$ minors of A. For any $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathbb{F}^{n}$ the coordinates of $\mathbf{x}_{1} \wedge \ldots \wedge \mathbf{x}_{k} \in \wedge \mathbb{F}^{n}\binom{n}{k}$ are $\binom{n}{k}$ minors of the $n \times k$ matrix ($\mathrm{x}_{1} \ldots \mathrm{x}_{k}$) arranged in the lexicographical order. Note any nonzero vector $\mathbf{x}_{1} \wedge \ldots \wedge \mathbf{x}_{k}$ represents a unique subspace $\mathbf{X}=\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ of dimension k, which is an element of the Grassmannian $\operatorname{Gr}(\mathrm{k}, \mathrm{n}, \mathbb{F})$. Then $\mathbf{y}_{1} \wedge \ldots \wedge \mathbf{y}_{k}$ represents \mathbf{X} if and only if $\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)=\operatorname{span}\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right)$. See for example [5] for the properties of the compound matrices and [3] for a concise survey of mulitilinear algebra used in this paper.

In particular we use the following facts. Let $A, B \in \mathrm{M}_{n}(\mathbb{C})$. Then
(a) $\wedge_{k} A B=\wedge_{k} A \wedge_{k} B$.
(b) $A \mathrm{x}_{1} \wedge \ldots \wedge A \mathrm{x}_{k}=\wedge_{k} A\left(\mathrm{x}_{1} \wedge \ldots \wedge \mathrm{x}_{k}\right)$. If $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ spans a k-dimensional invariant subspace of A then $\mathbf{x}_{1} \wedge \ldots \wedge \mathbf{x}_{k}$ is an eigenvector of $\wedge_{k} A$. In particular if $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are k-linearly independent eigenvectors of A corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ then $\mathbf{x}_{1} \wedge \ldots \wedge \mathbf{x}_{k}$ is an eigenvector of $\wedge_{k} A$ corresponding to the eigenvalue $\lambda_{1} \ldots \lambda_{k}$. (c) Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A counting with their multiplicities. Then $\lambda_{i_{1}} \ldots \lambda_{i_{k}}$ for all $1 \leq i_{1}<\ldots<i_{k} \leq n$ are all $\binom{n}{k}$ eigenvalues of $\wedge_{k} A$.
Proof of Theorem 1.2 in the complex case.
By our assumptions the spectral circle $\{z:|z|=\rho(A)\}$ contains exactly one eigenvalue λ of algebraic multiplicity 1 . By considering $\rho(A)^{-1} A$ we may assume that 1 is a simple algebraic eigenvalue of A, while other eigenvalues of A are in the open unit disk. Hence $\lim _{k \rightarrow \infty} A^{m}=\mathbf{u v}^{\mathrm{T}}, \mathbf{u}^{\mathrm{T}} \mathbf{v}=1$. Let $E:=\mathbf{v u}^{\mathrm{T}}$. Lemma 5.1
yields that there exists $\epsilon>0$ so that for each $B \in \mathrm{M}_{n}(\mathbb{C})$ satisfying $d_{1}(\hat{B}, \hat{E}) \leq \epsilon$ one has $\hat{B}: O_{r} \rightarrow O_{r}$ and $L\left(\hat{B}, O_{r}\right) \leq \frac{1}{2}$. From the arguments of the proof of Theorem 1.1 it follows that there exists $m \in \mathbb{N}, N \in \mathbb{Z}_{+}$such that $d_{1}\left(A_{k+1}^{\mathrm{T}} \ldots A_{k+m}^{\mathrm{T}}, \hat{E}\right) \leq \epsilon$ for any $k \geq N$.

Note that for $k>N$ we have $C_{k}=A_{k} \ldots A_{1}=C_{N+1, k} Q_{N}$, where $C_{p, k}:=$ $A_{k} A_{k-1} \ldots A_{p+1} A_{p}, p \leq k \in \mathbb{N}$ and $Q_{0}=I$ if $N=0$ and $Q_{N}:=A_{N} \ldots A_{1}$ if $N \geq 1$. Since $A_{j} \in \mathrm{GL}_{n}(\mathbb{C})$ for $j \in \mathbb{N}$ to prove the theorem it is enough to consider the case $N=0$. That is we assume that the sequence $A_{k}^{\mathrm{T}} \ldots A_{k+m-1}^{\mathrm{T}}: O_{r} \rightarrow$ $O_{r}, k \in \mathbb{N}$ is a sequence of uniform contractions on O_{r}. Corollary 3.2 implies that $\lim _{k \rightarrow \infty} \hat{C}_{j, m k+j-1}^{\mathrm{T}} \hat{\mathbf{x}}=\hat{\mathbf{w}}_{j}$ for any $\hat{\mathbf{x}} \in O_{r}$ and some $\hat{\mathbf{w}}_{j} \in O_{r}$ for $j=1, \ldots, m$.

Assume that $\hat{C}_{k_{l}} \rightarrow \hat{C} \in \mathbb{P M}_{n}(\mathbb{C})$, where $C \in \mathrm{M}_{n}(\mathbb{C}) \backslash\{0\}$. We claim that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \widehat{A_{k_{l}} \ldots A_{1}}=\hat{C}=\widehat{\mathbf{z y}^{\mathrm{T}}}, \text { for some } \mathbf{y}, \mathbf{z} \in \mathbb{C}^{n} \backslash\{0\} . \tag{5.1}
\end{equation*}
$$

Choose a subsequence $\left\{p_{q}\right\}_{q \in \mathbb{N}}$ of $\left\{k_{l}\right\}_{l \in \mathbb{N}}$ such that each $p_{q}-(j-1)$ is divisible by m for some $j \in[1, m] \cap \mathbb{N}$. Then Theorem 3.6 yields that $\lim _{q \rightarrow \infty} \widehat{C_{j, p q}}=\widehat{\mathbf{w}_{j} \mathbf{z}^{\mathrm{T}}}$. Hence $C=\mathbf{z y}^{\mathrm{T}}$ where $\mathbf{y}=A_{1}^{\mathrm{T}} \ldots A_{j-1}^{\mathrm{T}} \mathbf{w}_{j}$, where $A_{0}=I$.

To prove the theorem it is enough to show that $\mathbf{z} \in \operatorname{span}(\mathbf{u})$ and $\mathbf{y} \in \operatorname{span}(\mathbf{w})$ for some fixed $\mathbf{w} \in \mathbb{C}^{n} \backslash\{0\}$. This is done by converting the complex matrices to the real matrices of double dimension, taking the second compounds of the corresponding matrices and using the results of Theorem 1.2 for the real case.

Recall that any linear transformation of \mathbb{C}^{n} to itself represented by a matrix $L \in$ $\mathrm{M}_{n}(\mathbb{C}), L=P+\sqrt{-1} Q, P, Q \in \mathrm{M}_{n}(\mathbb{R})$ can be presented by $\tilde{L}:=\left(\begin{array}{cc}P & -Q \\ Q & P\end{array}\right)$. This is done by representing any $\mathbf{z} \in \mathbb{C}^{n}, \mathbf{z}=\mathbf{x}+\sqrt{-1} \mathbf{y}, \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ by $\tilde{\mathbf{z}}:=\left(\mathbf{x}^{\mathrm{T}}, \mathbf{y}^{\mathrm{T}}\right)^{\mathrm{T}} \in$ $\mathbb{R}^{2 n}$. Then $\widetilde{L \mathbf{z}}=\tilde{L} \tilde{\mathbf{z}}$ and $\widetilde{L_{1} L_{2}}=\tilde{L}_{1} \tilde{L}_{2}$ for any $L_{1}, L_{2} \in \mathrm{M}_{n}(\mathbb{C})$. Note that one dimensional subspace $\operatorname{span}(\mathbf{z}) \in \mathbb{C}^{n}, \mathbf{z} \neq 0$ corresponds to the two dimensional subspace $\operatorname{span}(\tilde{\mathbf{z}}, \widetilde{\sqrt{-1} \mathbf{z}}) \in \mathbb{R}^{2 n}$. Assume that $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of L counted with their multiplicities. It is straightforward to show $\lambda_{1}, \bar{\lambda}_{1}, \ldots, \lambda_{n}, \bar{\lambda}_{n}$ are the eigenvalues of \tilde{L} counted with their multiplicities. (For a diagonable L the proof reduces to the case where $L \in \mathrm{M}_{1}(\mathbb{C})$.) Moreover if L is rank one nonnilpotent then \tilde{L} is rank two diagonable.

The assumptions of the theorem yield that $\tilde{A}_{k} \in \mathrm{GL}_{2 n}(\mathbb{R}), k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty} \tilde{A}_{k}=$ \tilde{A}. Hence $\wedge_{2} \tilde{A}_{j} \in \operatorname{GL}_{\binom{2 n}{2}}(\mathbb{R})$ and $\lim _{k \rightarrow \infty} \wedge_{2} \tilde{A}_{2}=\wedge_{2} \tilde{A}$. Since A was rank one nonnilpotent matrix \tilde{A} is a rank two diagonable matrix. Hence $\wedge_{2} \tilde{A}$ is a rank one matrix with the eigenvector $\tilde{\mathbf{u}} \wedge \widetilde{\sqrt{-1} \mathbf{u}}$ corresponding to the eigenvalue $|\lambda|^{2}>0$. Thus we
can apply real version Theorem 1.2 for the sequence $\wedge_{2} \tilde{A}_{k}, k \in \mathbb{N}$. Hence

$$
\lim _{k \rightarrow \infty} \wedge_{2} \widetilde{\tilde{A}_{k} \ldots \wedge_{2}} \tilde{A}_{1}=\hat{F}, F=(\tilde{\mathbf{u}} \wedge \widetilde{\sqrt{-1} \mathbf{u}}) \mathbf{s}^{\mathrm{T}}, \text { for some } \mathbf{s} \in \mathbb{R}^{\binom{2 n}{2}} \backslash\{0\}
$$

Compare that with (5.1) to deduce that $\widehat{\wedge_{2} \mathbf{z y}^{\mathrm{T}}}=\hat{F}$. Equivalently $\widehat{\wedge_{2}} \widetilde{\mathbf{z y}^{\mathrm{T}}}=a F$ for some $a \neq 0$. This shows that first that $\mathbf{z} \in \operatorname{span}(\mathbf{u})$. Second that $\tilde{\mathbf{y}} \wedge \widetilde{\sqrt{-1} \mathbf{y}}=\mathbf{s}$. Since \mathbf{s} is fixed the one dimensional subspace $\operatorname{span}(\mathbf{y})$ does not depend on the convergent subsequence $C_{k_{l}}, l \in \mathbb{N}$. Thus we can choose \mathbf{w} to be equal to \mathbf{y} for one convergent subsequence $C_{k_{l}}, l \in \mathbb{N}$.

6 Finer results

The aim of this section is to consider the convergence of $A_{k} \ldots A_{1} \mathbf{x}_{0}$ under the assumptions of Theorems 1.1 and 1.2 when $\mathbf{w}^{T} \mathbf{x}_{0}=0$. In this case we need to pass to the exterior products. In this section we assume that the vector and operator norms on \mathbb{F}^{n} and $\mathrm{M}_{n}(\mathbb{F})$ for $\mathbb{F}=\mathbb{R}, \mathbb{C}$ are the l_{2} norms $\|\cdot\|_{2}$.

To extend the results of Theorem 1.1 one needs to recall the notions of strictly totally positive matrices and (discrete) Tchebyshev systems. See for example [5] or [10] for the notion of strictly totally positive matrices and [10] for the classical notion of Tchebyshev systems. We call $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p} \in \mathbb{R}^{n}$ a p-Tchebyshev system if $\mathbf{x}_{1} \in \mathbb{R}_{+}, \mathbf{x}_{1} \wedge \mathbf{x}_{2} \in \mathbb{R}_{+}^{\binom{n}{2}}, \ldots, \mathbf{x}_{1} \wedge \ldots \wedge \mathbf{x}_{p} \in \mathbb{R}_{+}^{\binom{n}{p}}$. A vector $\mathbf{x} \in \mathbb{R}^{n}$ is said to have exactly k-changes of signs, denoted by $S(\mathbf{x})=k$, if by replacing any zero coordinate of \mathbf{x} by a positive or negative number one obtains a vector \mathbf{y} whose coordinates have exactly k changes of signs. It is straightforward to show that if $S(\mathbf{x})=k \leq n-1$, the there exists a k-Tchebyshev system $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ such that $\mathbf{x}_{k}= \pm \mathbf{x}$.

Recall that $A \in \mathrm{M}_{n}(\mathbb{R})$ is called strictly totally positive of order $p \in[1, n] \cap \mathbb{Z}$ $\left(S T P_{p}\right)$ if $\wedge_{k} A \in \mathrm{M}_{\binom{n}{k}}\left(\mathbb{R}_{+}\right)$for $k=1, \ldots, p$. (Here $\wedge_{1} A:=A$.) That is A and all its $k \leq p$ compounds are positive. The spectrum of $A \operatorname{spec} A$ is of the form $\left\{\lambda_{1}, \ldots, \lambda_{p}\right\} \cup \operatorname{spec}_{p+1} A$. Here $\lambda_{1}>\ldots>\lambda_{p}>0$ are p positive real numbers and $\operatorname{spec}_{p+1} A \subset\left\{z \in \mathbb{C}:|z|<\lambda_{p}\right\}$ if $p<n$. $\left(\operatorname{spec}_{n+1} A=\emptyset\right.$.) Each λ_{i} is a simple root of $\operatorname{det}(\mathrm{zI}-\mathrm{A})$ for $i=1, \ldots, p$. Furthermore one can choose the signs of the eigenvectors of A and A^{T} corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ such that they form Tchebyshev systems:

$$
A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i},\left\|\mathbf{u}_{i}\right\|=1, S\left(\mathbf{u}_{i}\right)=i-1, i=1, \ldots, p, \mathbf{u}_{1} \in \mathbb{R}_{+}^{n}, \ldots, \mathbf{u}_{1} \wedge \ldots \wedge \mathbf{u}_{p} \in \mathbb{R}_{+}^{\binom{n}{p}},
$$

$$
\begin{align*}
A^{\mathrm{T}} \mathbf{v}_{i} & =\lambda_{i} \mathbf{v}_{i}, S\left(\mathbf{v}_{i}\right)=i-1, i=1, \ldots, p, \quad \mathbf{v}_{1} \in \mathbb{R}_{+}^{n}, \ldots, \mathbf{v}_{1} \wedge \ldots \wedge \mathbf{v}_{p} \in \mathbb{R}_{+}^{\binom{n}{p}} \\
\mathbf{v}_{i}^{\mathrm{T}} \mathbf{u}_{j} & =\delta_{i j}, \quad i, j=1, \ldots, p \tag{6.1}
\end{align*}
$$

Theorem 6.1 Let $A_{k} \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right), k \in \mathbb{N}$ be a sequence of $S T P_{p}$ matrices which converge to a $S T P_{p}$ matrix $A \in \mathrm{M}_{n}\left(\mathbb{R}_{+}\right)$for some $p \in[2, n]$ satisfying (6.1). Then there exists a p-Tchebyshev system $\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}$ such that the following conditions hold. Let $C_{k}=A_{k} \ldots A_{1}$ for $k \in \mathbb{N}$. Then

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \frac{\lambda_{i+1}\left(C_{k}\right)}{\lambda_{i}\left(C_{k}\right)}=0, i=1, \ldots, p-1, \tag{6.2}\\
& \lim _{k \rightarrow \infty} \frac{\wedge_{i} C_{k}}{\prod_{j=1}^{i} \lambda_{j}\left(C_{k}\right)}=\mathbf{u}_{1} \wedge \ldots \wedge \mathbf{u}_{i}\left(\mathbf{w}_{1} \wedge \ldots \wedge \mathbf{w}_{i}\right)^{\mathrm{T}}, i=1, \ldots, p, \tag{6.3}\\
& C_{k}=\sum_{i=1}^{p} \lambda_{i}\left(C_{k}\right) \mathbf{u}_{i, k} \mathbf{w}_{i, k}^{\mathrm{T}}+o\left(\left|\lambda_{p}\left(C_{k}\right)\right|\right), \mathbf{w}_{i, k}^{\mathrm{T}} \mathbf{u}_{j, k}=\delta_{i j}, \tag{6.4}\\
& C_{k} \mathbf{u}_{i, k}=\lambda_{i}\left(C_{k}\right) \mathbf{u}_{i, k},\left\|\mathbf{u}_{i, k}\right\|=1, C_{k}^{\mathrm{T}} \mathbf{w}_{i, k}=\lambda_{i}\left(C_{k}\right) \mathbf{w}_{i, k}, \tag{6.5}\\
& \mathbf{u}_{1, k} \wedge \ldots \wedge \mathbf{u}_{i, k}, \mathbf{w}_{1, k} \wedge \ldots \wedge \mathbf{w}_{i, k} \in \mathbb{R}_{+}^{\left(n_{i}^{n}\right)}, \\
& \lim _{k \rightarrow \infty} \mathbf{u}_{i, k}=\mathbf{u}_{i}, \lim _{k \rightarrow \infty} \mathbf{w}_{i, k}=\mathbf{w}_{i}, \mathbf{w}_{i}^{\mathrm{T}} \mathbf{u}_{j}=\delta_{i j}, i, j=1, \ldots, p . \tag{6.6}
\end{align*}
$$

Proof. Assume first the assumptions of Theorem 1.1. Let $\mathbf{u}_{1, k}, \mathbf{w}_{1, k}$ be as above. Assume furthermore let $\left\|\mathbf{u}_{1, k}\right\|=1$. From the proof of Theorem 1.1 it follows that $\mathbf{u}_{1, k} \rightarrow \mathbf{u}_{1}=\mathbf{u}$. Let E be defined by (1.2). Then $\rho(E)=\mathbf{w}^{\mathrm{T}} \mathbf{u}$. Hence $\frac{\lambda_{1}\left(C_{k}\right)}{\left\|C_{k}\right\|} \rightarrow \frac{\mathbf{w}^{\mathrm{T}} \mathbf{u}}{\|\mathbf{u}\|\|\mathbf{w}\|}$. Hence (6.3) holds for $p=1$. The proof of Theorem 1.1 yields that one has the equality (6.4) for $p=1$. Here $\mathbf{w}_{1}=\left(\mathbf{w}^{\mathrm{T}} \mathbf{u}\right)^{-1} \mathbf{w}$.

We now show the theorem for the case $p=2$. Let $\mathrm{M}_{\binom{n}{2}}\left(\mathbb{R}_{+}\right) \ni B_{k}:=\wedge_{2} A_{k} \rightarrow$ $B:=\wedge_{2} A \in \mathrm{M}_{\binom{n}{2}}\left(\mathbb{R}_{+}\right)$. As $\frac{\lambda_{1}\left(C_{k}\right)}{\left\|C_{k}\right\|} \rightarrow\left\|\mathbf{w}_{1}\right\|^{-1}$ (1.2) yields (6.2) for $p=2$. Let $D_{k}:=B_{k} \ldots B_{1}, k \in \mathbb{N}$. Clearly $\lambda_{1}\left(D_{k}\right)=\lambda_{1}\left(C_{k}\right) \lambda_{2}\left(C_{k}\right)$ and the corresponding Perron eigenvectors of $D_{k}, D_{k}^{\mathrm{T}}$ are $\mathbf{u}_{1, k} \wedge \mathbf{u}_{2, k}, \mathbf{w}_{1, k} \wedge \mathbf{w}_{2, k} \in \mathbb{R}_{+}^{\binom{n}{2}}$. Then Theorem 1.1 applied to $B_{k}, k \in \mathbb{N}$ yields that

$$
\begin{aligned}
& \operatorname{span}\left(\mathbf{u}_{1, k}, \mathbf{u}_{2, k}\right) \rightarrow U_{2}=\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in \operatorname{Gr}(2, \mathrm{n}, \mathbb{R}), \\
& \operatorname{span}\left(\mathbf{w}_{1, k}, \mathbf{w}_{2 . k}\right) \rightarrow W_{2} \in \operatorname{Gr}(2, \mathrm{n}, \mathbb{R}) .
\end{aligned}
$$

As $\mathbf{w}_{1, k}^{\mathrm{T}} \mathbf{u}_{2, k}=0,\left\|\mathbf{u}_{2, k}\right\|=1$ and $\mathbf{w}_{1, k} \rightarrow \mathbf{w}_{1}$ it follows that $\operatorname{span}\left(\mathbf{u}_{2, k}\right) \rightarrow \operatorname{span}\left(\mathbf{u}_{2}\right)$. As $\mathbf{u}_{1, k} \wedge \mathbf{u}_{2, k} \in \mathbb{R}_{+}^{\binom{n}{2}}$ it follows that $\mathbf{u}_{2, k} \rightarrow \mathbf{u}_{2}$. Clearly $\mathbf{w}_{1} \in W_{2}$. As $\mathbf{w}_{2, k}^{\mathrm{T}} \mathbf{u}_{1, k}=$ $0, \mathbf{w}_{2, k}^{\mathrm{T}} \mathbf{u}_{2, k}=1$ it follows that $\mathbf{w}_{2, k} \rightarrow \mathbf{w}_{2}$, which is the unique vector in W_{2}
satisfying the conditions $\mathbf{w}_{2}^{\mathrm{T}} \mathbf{u}_{1}=0, \mathbf{w}_{2}^{\mathrm{T}} \mathbf{u}_{2}=1$. So $\mathbf{w}_{1, k} \wedge \mathbf{w}_{2, k} \rightarrow \mathbf{w}_{1} \wedge \mathbf{w}_{2} \in \mathbb{R}_{+}^{\binom{n}{2}}$, which is the positive eigenvector of the following rank one matrix

$$
E_{2}:=\frac{\mathbf{u}_{1} \wedge \mathbf{u}_{2}\left(\mathbf{w}_{1} \wedge \mathbf{w}_{2}\right)^{\mathrm{T}}}{\left\|\mathbf{u}_{1} \wedge \mathbf{u}_{2}\right\|\left\|\mathbf{w}_{1} \wedge \mathbf{w}_{2}\right\|}=\lim _{k \rightarrow \infty} \frac{D_{k}^{\mathrm{T}}}{\left\|D_{k}^{\mathrm{T}}\right\|}
$$

The above equality is equivalent to (6.3) for $i=2$.
Recall that all the eigenvalues of D_{k} are of the form $\lambda \mu, \lambda, \mu \in \operatorname{spec}\left(C_{k}\right)$, where either $\lambda \neq \mu$ or $\lambda=\mu$ is a multiple eigenvalue of D_{k}. Thus if $|\lambda| \geq|\mu|$ then $\lambda_{2}\left(D_{k}\right)>|\mu|$ unless $\lambda=\lambda_{1}\left(D_{k}\right), \mu=\lambda_{2}\left(C_{k}\right)$. Combine all these facts to obtain (6.4) for $p=2$.

Assume now that $p>2$. By considering the compound matrices $\wedge_{i} A_{k}, k \in \mathbb{N}$ for $i=3, \ldots, p$ we deduce the rest of theorem as in the case $p=2$.

Assume the assumptions of Theorem 6.1. Let $\mathbf{z} \in \mathbb{R}^{n}$ and $S(\mathbf{z})=p-1$. Since $\pm \mathbf{z}$ can be completed to a p-Tchebyshev $\mathbf{z}_{1}, \ldots, \mathbf{z}_{p}$ it follows that it is impossible that $\mathbf{w}_{i}^{\mathrm{T}} \mathbf{z}=0$ for $i=1, \ldots, p$. Thus one can estimate the behavior of $\widehat{C_{k} \mathbf{z}}$ as $k \rightarrow \infty$.

Theorem 6.2 Let $A_{k} \in \mathrm{GL}_{n}(\mathbb{C}), k \in \mathbb{N}$. Assume that for $k>N$ the following conditions satisfied: For $p \in[1, n] \cap \mathbb{Z}$ there exists $\alpha \in(0,1)$ and:
(a) biorthonormal sets $\mathbf{x}_{1, k}, \ldots, \mathbf{x}_{p, k}, \mathbf{y}_{1, k}, \ldots, \mathbf{y}_{p, k} \in \mathbb{C}^{n}$ such that

$$
\begin{aligned}
& \left\|\mathbf{x}_{i, k}\right\|=1, \mathbf{y}_{i, k}^{\mathrm{T}} \mathbf{x}_{j, k}=\delta_{i j}, i, j=1, \ldots, p, k>N \\
& \lim _{k \rightarrow \infty} \mathbf{x}_{i, k}=\mathbf{u}_{i},\left\|\mathbf{u}_{i}\right\|=1, \lim _{k \rightarrow \infty} \mathbf{y}_{i, k}=\mathbf{v}_{i}, \mathbf{v}_{i}^{\mathrm{T}} \mathbf{u}_{j}=\delta_{i j}, i, j=1, \ldots, p
\end{aligned}
$$

(b) $\lambda_{1, k}, \ldots, \lambda_{p, k} \in \operatorname{spec}\left(A_{k}\right)$ are simple roots of the characteristic polynomial of A_{k} such that
$A_{k} \mathbf{x}_{i, k}=\lambda_{i, k} \mathbf{x}_{i, k}, A_{k}^{\mathrm{T}} \mathbf{y}_{i, k}=\lambda_{i, k} \mathbf{y}_{i, k},\left|\lambda_{i, k}\right| \geq \alpha\left|\lambda_{i+1, k}\right|, i=1, \ldots, p, \quad$ for any $k>N$,
where $\lambda_{p+1, k}$ is any eigenvalue of A_{k} different from $\lambda_{1, k}, \ldots, \lambda_{p, k}$. Furthermore, there exists an operator norm $\|\|\cdot\|\|: \mathrm{M}_{n}(\mathbb{C}) \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\left\|\left|A_{k}-\sum_{i=1}^{p} \lambda_{i, k} \mathbf{x}_{i, k} \mathbf{y}_{i, k}^{\mathrm{T}}\right|\right\||\leq \alpha| \lambda_{p, k} \mid, \quad k>N \tag{6.7}
\end{equation*}
$$

Let $C_{k}:=A_{k} \ldots A_{1}, k \in \mathbb{N}$. Then there exists $N_{1}>N$ that for $k>N_{1}$ the following conditions hold. C_{k} has p simple eigenvalues $\lambda_{1}\left(C_{k}\right), \ldots, \lambda_{p}\left(C_{k}\right)$ such that $\left|\lambda_{1}\left(C_{k}\right)\right|>\ldots>\left|\lambda_{p}\left(C_{k}\right)\right|$. It is possible to choose the corresponding eigenvectors of $C_{k}, C_{k}^{\mathrm{T}}$ as $\mathbf{u}_{1, k}, \ldots, \mathbf{u}_{p, k}, \mathbf{w}_{1, k}, \ldots, \mathbf{w}_{p, k}$ such that equalities (6.2) - (6.6) hold.

Proof. We first consider the case $p=1$. By considering the matrices $\lambda_{1, k}^{-1} A_{k}$ it is enough to prove the above theorem in the case $\lambda_{1, k}=1$ for $k>N$. Let $R_{k}:=A_{k}-\mathbf{x}_{1, k} \mathbf{y}_{1, k}^{\mathrm{T}}$ for $k>N$. The spectral decomposition of A yields and (6.7) yields

$$
\begin{equation*}
R_{k} \mathbf{x}_{1, k}=R_{k}^{\mathrm{T}} \mathbf{y}_{1, k}=0, \quad\| \| R_{k}\| \| \leq \alpha, \quad k>N . \tag{6.8}
\end{equation*}
$$

In order to use the arguments of the proof of Theorem 1.1 it is enough to show that for each $m>1$ there exists $K(m)$ such that if $j>K(m)$

$$
\begin{equation*}
\left|\left\|A_{j+m} \ldots A_{j+1}-\mathbf{u}_{1} \mathbf{v}_{1}^{\mathrm{T}}\right\|\right|<|\alpha|^{m}+\frac{1}{m} \tag{6.9}
\end{equation*}
$$

Consider the product

$$
\begin{equation*}
A_{j+m} \ldots A_{j+1}=\left(\mathbf{x}_{1, j+m} \mathbf{y}_{1, j+m}^{\mathrm{T}}+R_{j+m}\right) \ldots\left(\mathbf{x}_{1, j+1} \mathbf{y}_{1, j+1}^{\mathrm{T}}+R_{j+1}\right) \tag{6.10}
\end{equation*}
$$

Expand this product to 2^{m} terms. The first term in this product is

$$
\mathbf{x}_{1, j+m} \mathbf{y}_{1, j+m}^{\mathrm{T}} \ldots \mathbf{x}_{1, j+1} \mathbf{y}_{1, j+1}^{\mathrm{T}}=\left(\prod_{i=j+1}^{j+m-1} \mathbf{y}_{1, i+1}^{\mathrm{T}} \mathbf{x}_{1, i}\right) \mathbf{x}_{1, j+m} \mathbf{y}_{1, j+1}^{\mathrm{T}} .
$$

Hence it converges to $\mathbf{u}_{1} \mathbf{v}_{1}^{\mathrm{T}}$ as $j \rightarrow \infty$. Consider the last term in (6.10). Since $\|\|\cdot \mid\|$ is an operator norm

$$
\left\|\left|R_{j+m} \ldots R_{j+1}\| \| \leq\left\|R_{j+m}\right\|\|\ldots\|\right| \mid R_{j+1}\right\| \| \leq \alpha^{m}
$$

It is left to show that that all other $2^{m}-2$ terms in (6.10) tend to zero. Each of this term contains either a factor $\mathbf{x}_{j+i+1} \mathbf{y}_{j+i+1}^{\mathrm{T}} R_{j+i}$ or $R_{j+i+1} \mathbf{x}_{j+i} \mathbf{y}_{j+i}^{\mathrm{T}}$. Use (6.8) to deduce

$$
\begin{aligned}
& \mathbf{x}_{j+i+1} \mathbf{y}_{j+i+1}^{\mathrm{T}} R_{j+i}=\mathbf{x}_{j+i+1}\left(\mathbf{y}_{j+i+1}-\mathbf{y}_{j+i}\right)^{\mathrm{T}} R_{j+i}, \\
& R_{j+i+1} \mathbf{x}_{j+i} \mathbf{y}_{j+i}^{\mathrm{T}}=R_{j+i+1}\left(\mathbf{x}_{j+i}-\mathbf{x}_{j+i+1}\right) \mathbf{y}_{j+i}^{\mathrm{T}} .
\end{aligned}
$$

If a term contains more then one of such factors choose the above modification at one factor exactly. Now estimate the norm of this term by taking the products of the norms of m factors. It now follows that each of this terms tends to zero. Hence (6.9) follows. Now we can repeat the arguments of the proof of Theorem 1.2 to prove the theorem for $p=1$.

To prove the theorem for $p>1$ we consider the wedge products $\wedge_{i} A_{k}, k \in \mathbb{N}$ for $i \in[2, p]$. The spectral analysis of $\wedge_{i} A_{k}$ implies that $\wedge_{i} A_{k}, k \in \mathbb{N}$ satisfy the above conditions for $p=1$. Use the arguments of the proof of Theorem 6.1 to deduce the
theorem in this case.

Assume that $R \in \mathrm{M}_{n}(\mathbb{C})$ has a spectral radius $\rho(R) \in[0,1)$. It is well known that for any $\alpha \in(\rho(R), 1)$ there exists an operator norm $\left\|\|\cdot\|: \mathrm{M}_{n}(\mathbb{C}) \rightarrow[0, \infty)\right.$ such that $\|\|R\|\| \leq \alpha$.

Corollary 6.3 Let $A_{k} \in \mathrm{GL}_{n}(C), k \in \mathbb{N}$. Assume that $\lim _{k \rightarrow \infty} A_{k}=A \in$ $\mathrm{M}_{n}(\mathbb{C})$. Suppose furthermore that $\lambda_{1}, \ldots, \lambda_{p}$ are p simple roots of $\operatorname{det}(\mathrm{zI}-\mathrm{A})$, where $\rho(A)=\left|\lambda_{1}\right|>\ldots>\left|\lambda_{p}\right|>0$. Assume furthermore that any other eigenvalue $\lambda \in \operatorname{spec} A \backslash\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ satisfies $|\lambda|<\left|\lambda_{p}\right|$. Then $A_{k}, k \in \mathbb{N}$ satisfy the assumptions of Theorem 6.2, where $A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}, i=1, \ldots, p$.

References

[1] G. Birkhoff, Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc. 85 (1957), 219-227.
[2] J. Borcea and B. Shapiro, On families of functions satisfying finite recurrence relations, preprint January 14, 2004.
[3] R.A. Brualdi, S. Friedland and A. Pothen, The sparse basis problem and multilinear algebra, SIAM J. Matrix Anal. Appl. 16 (1995), 1-20.
[4] S. Friedland, Invariant measures of groups of homeomorphisms and Auslander's conjecture, J. Ergod. Th. © Dynam. Sys. 15 (1995), 1075-1089.
[5] F.R. Gantmacher, The Theory of Matrices, Chelsea Publ. Company, vol. II, 1964.
[6] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Interscience, 1978.
[7] J. Hajnal, On product of non-negative matrices, Math. Proc. Camb. Phil. Soc. 79 (1976), 521-530.
[8] D.J. Hartfiel, Nonhomogeneous Matrix Products, World Scientific Publishing Co., 2002.
[9] D. Hilbert, Neue Begründung der Bolya-Lobatschefskyschen Geometrie, Math. Ann. 57 (1903), 137-150.
[10] S. Karlin, Total Positivity, Stanford Univ. Press, 1968.
[11] V. I. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-221.
[12] E. Seneta, Nonnegative Matrices and Markov Chains, 2nd ed., Springer, 1981.

[^0]: *Dedicated to Richard Brualdi on his birthday
 ${ }^{\dagger}$ Partially supported by NSF
 ${ }^{\ddagger}$ Tel.: +1-312-996-3041; fax: +1-312-996-1491; email: friedlan@uic.edu

[^1]: ${ }^{1}$ Acknowledgement A variant of this theorem was suggested by Boris Shapiro.

