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Abstract

Let Ak, k ∈ N be a sequence of n×n complex valued matrices which converge
to a matrix A. If A and each Ak is positive then the product AkAk−1...A2A1

||AkAk−1...A2A1||
converges to a rank one matrix positive matrix uwT, where u is a positive
column eigenvector of A. If each Ak is nonsingular and A has exactly one
simple eigenvalue λ of the maximal modulus with the corresponding eigenvector
u, then e

√−1θk AkAk−1...A2A1
||AkAk−1...A2A1|| , θk ∈ R converges to a rank one matrix uwT.

2000 Mathematical Subject Classification: 15A48, 47H09, 65L20
Keywords: Positive matrices, contractions, convergence of products of matrices,
projective spaces.

1 Introduction

For F = R,C denote by Fn, Mn(F), GLn(F) the n-dimensional column vector space,
the algebra of n×n matrices and the subgroup of n×n invertible matrices over the
field F. Denote by || · || any vector norm on Fn or on Mn(F). Let || · ||2 be the `2
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norm on Fn induced by the standard inner product 〈x,y〉 := y∗x on Fn and denote
by || · ||2 the induced operator norm on Mn(F). Consider an iteration scheme

xk := Akxk−1, x0 ∈ Fn, Ak ∈ Mn(F), k ∈ N. (1.1)

This system is called convergent if xk, k ∈ N is a convergent sequence for each x0 ∈
Fn. This is equivalent to the convergence of the infinite product ...AkAk−1...A2A1,
which is defined as the limit of AkAk−1...A2A1 as k → ∞. For the stationary case
Ak = A, k ∈ N the necessary and sufficient conditions for convergency are well
known. First, the spectral radius ρ(A) can not exceed 1. Second, if ρ(A) = 1,
then 1 is an eigenvalue of A and all its Jordan blocks have size 1. Third all other
eigenvalues λ of A different from 1 satisfy |λ| < 1.

In some instances, as Lyapunov exponents in dynamical systems [11], one inter-
ested if the line spanned by the vector xi converges for all x0 6= 0 in some homo-
geneous open Zariski set in Fn [2]. If this condition holds we call (1.1) projectively
convergent.

For the stationary case 0 6= Ak = A ∈ Mn(C) it is straightforward to show
that (1.1) is projectively convergent if and only if among all the eigenvalues λ of A
satisfying |λ| = ρ(A), there is exactly one eigenvalue λ0 which has Jordan blocks of
the maximal size. See for example the arguments in [4, Thm 2.2].

A variation of projectively convergent iterations was considered in the literature
for the nonnegative matrices under the name nonhomogeneous matrix products [7],
[12] and [8]. Let R+ := (0,∞) and denote by Rn

+ ⊂ Rn, Mn(R+) ⊂ Mn(R) the
cone of positive vectors and the semialgebra of positive matrices. Denote by PRn

+

and PMn(R+) the projective space formed by the rays spanned by x ∈ Rn
+ and

A ∈ Mn(R+). Then PRn
+ has the Hilbert (hyperbolic) metric. Furthermore each

A ∈ Mn(R+) acts on PRn
+, where this action is denoted Â : PRn

+ → PRn
+, and

Â is a contraction [1]. That is the Lipschitz constant L(Â) of Â is less than 1.
Let Ak ∈ Mn(R+), k ∈ N be a sequence of positive matrices. Then the condition
limk→∞ L(Â1...Ak) = 0, which is equivalent to the notion of weak ergodicity of the
products A1...Ak, k ∈ N [12], implies that for each x0 ∈ Rn

+ the ray spanned by
A1...Akx0 converges to a fixed ray in PRn

+.
Clearly Ak...A1,∈ Mn(R+), k ∈ N is projectively convergent if

lim
k→∞

AkAk−1...A2A1

||AkAk−1...A2A1|| = E, (where ||E|| = 1) (1.2)

and E ∈ Mn(R+). We show that the assumption

lim
k→∞

L(Âk...A1) = 0 ( ⇐⇒ lim
k→∞

L(ÂT
1 ...AT

k ) = 0) (1.3)
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does not imply (1.2).
The aim of this paper is to show

Theorem 1.1 Let Ak ∈ Mn(R+), k ∈ N be a sequence of positive matrices which
converges to a positive matrix A ∈ Mn(R+). Then (1.2) holds. Furthermore

E = uwT, u,w ∈ Rn
+, Au = ρ(A)u. (1.4)

One can view the above Theorem as an improvement of [12, Thm 3.6].

Theorem 1.2 1 Let Ak ∈ GLn(C), k ∈ N be a sequence of matrices which con-
verges to a matrix 0 6= A ∈ Mn(C). Assume furthermore that ρ(A) > 0 and the
circle {z :∈ C, |z| = ρ(A)} contains exactly one eigenvalue λ of A, which is a
simple root of its characteristic polynomial. Let Au = λu, 0 6= u ∈ Cn. Then the
complex line spanned by Ak...A1 ∈ Mn(C) converges to the complex line spanned by
uwT ∈ Mn(C), for some 0 6= w ∈ Cn. Hence for each x0 ∈ Cn such that wTx0 6= 0,
the complex line spanned by xk given by (1.1) converges to the complex line spanned
by u.

We now list briefly the contents of the paper. In §2 we recall basic results on the
real and complex projective spaces used in this paper. In §3 we discuss Lipschitz
continuous maps and contractions, and simple conditions for pointwise convergence
of the products of Lipschitzian maps to a constant map. In §4 we prove Theorem
1.1 and use it to prove Theorem 1.2 in the real case. In §5 we prove Theorem 1.2
in the complex case by using directly the results of §3 and Theorem 1.2 in the real
case. In §6 we extend Theorem 1.1 to strictly totally positive matrices (of order
p). We also extend Theorem 1.2 to the case where the limit matrix A, has p simple
eigenvalues λ1, ..., λp, such that |λ1| > ... > |λp| > 0 and all other eigenvalues of A
lie in |z| < |λp|.

2 Projective spaces

In this section we recall the well known notions and results about projective spaces
used here. Recall that for F = R,C the spaces PFn,PMn(F),PGLn(F) are obtained
by identifying the orbits of the action of F∗ := F\{0} on the nonzero elements
of the corresponding sets. (F∗ acts by multiplication.) Then PRn,PMn(R) and
PCn,PMn(C) are compact real and complex manifolds respectively. (For the reason
that will be seen later our notation for PFn is slightly different from the standard
notation.) Note that we can view PMn(F) as isomorphic to PFn2

. For any U ⊂ Fn

1Acknowledgement A variant of this theorem was suggested by Boris Shapiro.
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we denote by Û ⊂ PFn the set generated by the orbits of F∗(U\{0}). ({̂0} = ∅.)
A set V ⊂ PFn is called a (projective) variety if V = Û , where U is the zero set
of a finite number of homogeneous polynomials over F in Fn. H ⊂ PFn is called
a hyperplane if H = Û , where U is a subspace of Fn of codimension 1. V ⊂ PFn

is called a linear space if it is an intersection of a finite number of hyperplanes.
W ⊂ PRn is called Zariski open if W = PFn\V for some variety V .

For x ∈ Fn\{0}, A ∈ Mn(F)\{0} denote by x̂, Â the corresponding elements of
PFn,PMn(F) respectively. Let A ∈ GLn(F). Then A acts on Fn\{0}, so Âx = Âx̂
for any x ∈ Fn\{0}. That is Â acts on PFn. Let A ∈ Mn(F)\{0} Then Â acts on
Zariski open set PFn\k̂erA.

Since PFn,PMn(F) are compact for any sequences

xk ∈ Fn\{0}, Ak, Bk ∈ Mn(F)\{0}, k ∈ N

we can find a subsequence kl, l ∈ N and corresponding x ∈ Fn\{0}, A, B ∈ Mn(F)\{0},
depending on kl, l ∈ N such that

lim
l→∞

x̂kl
= x̂, lim

l→∞
Âkl

= Â, lim
l→∞

B̂kl
= B̂.

Note also

lim
l→∞

Âkl
xkl

= Âx = Âx̂ if Ax 6= 0,

lim
l→∞

Âkl
Bkl

= ÂB = ÂB̂ if AB 6= 0.

The convergence of sequences in PFn and PMn(F) are equivalent to the following
statement:

Proposition 2.1 Let xk ∈ Fn\{0}, Ak ∈ Mn(F)\{0}, k ∈ N. Then sequences
x̂k, Âk, k ∈ N converge in PFn,PMn(F) respectively if and only if there exist two
sequences µk, νk ∈ {z ∈ C : |z| = 1} ∩ F, k ∈ N such that the sequences µk

xk
||xk|| ,

νk
Ak
||Ak|| , k ∈ N converge in Fn, Mn(F) respectively.

Note that for F = R µk, νk ∈ {1,−1}. Thus if xk ∈ Rn
+, Ak ∈ Mn(R+) it is clear that

in Proposition 2.1 we may assume that µk = νk = 1. Hence for Ak ∈ Mn(R+), k ∈ N,
Âk...A1 converges in PMn(R) if and only if (1.2) holds.

Let PRn
+,PMn(R+)(≈ PRn2

+ ) be the set of orbits in Rn
+, Mn(R+) under the ac-

tion of R+ (by multiplication). We view PRn
+,PMn(R+) as corresponding subsets

of PRn,PMn(R) respectively. Note that PMn(R+) acts on PRn
+. Sometime it is

convenient to identify PRn
+ and PMn(R+) with the open set of positive probability
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vectors and the open set of positive matrices whose sum of coordinates is equal to
1 respectively.

Recall the notion of Hilbert (hyperbolic) metric on PRn
+ [9], which is not equiv-

alent to the metric induced by the standard Riemannian metric on the compact
manifold PRn. Let

d(x̂, ŷ) = log
maxi

xi
yi

mini
xi
yi

, x = (x1, ..., xn)T,y = (y1, ..., yn)T ∈ Rn
+. (2.1)

It is straightforward to show that d(·, ·) is a metric on PRn
+, PRn

+ is a complete sepa-
rable metric space with respect to d(·, ·), which has an infinite diameter. Moreover,
Y ⊂ PRn

+ is compact with respect to the above metric if and only if Y is compact
with respect to the standard metric on PRn.

3 Convergence of contractions

Let X be a complete metric space with the metric d(·, ·). For T : X → X let

L(T ) := sup
x 6=y∈X

d(Tx, Ty)
d(x, y)

∈ [0,∞].

We assume here that a · ∞ = ∞ · a = ∞ for any a ∈ R+ and 0 · ∞ = ∞ · 0 = 0.
Note that L(T ) = 0 if and only if T is a constant operator. For any T, Q : X → X
L(TQ) ≤ L(T )L(Q). T is called Lipschitz continuous if L(T ) < ∞. T is called a
contraction if L(T ) < 1. Assume that T is a contraction. Then it is well known
that T has a unique fixed point ξ. Furthermore the sequence T i, i ∈ N converges
pointwise to a constant operator Q : X → {ξ}. That is T ix → ξ for any x ∈ X .

Lemma 3.1 Let Ti, i ∈ N be a sequence of operators on a complete metric space
X . Let Qi := T1T2...Ti, i ∈ N be a sequence of operators. Assume that the following
two conditions hold:

lim
i→∞

L(Qi) = 0. (3.1)

lim
i→∞

sup
j∈N

L(Qi)d(Ti+1...Ti+jx, x) = 0, for some x ∈ X . (3.2)

Then Qi, i ∈ N converges pointwise to a constant operator Q : X → {ξ} for some
ξ ∈ X .

5



Proof. Since

d(Qi+jx,Qix) = d(Qi(Ti+1...Ti+jx), Qix) ≤ L(Qi)d(Ti+1...Ti+jx, x) ≤
sup
k∈N

L(Qi)d(Ti+1...Ti+kx, x)

the condition (3.2) implies that Qix, i ∈ N is a Cauchy sequence. Hence limi→∞Qix =
ξ. Clearly

d(Qiy, ξ) ≤ d(Qiy, Qix) + d(Qix, ξ) ≤ L(Qi)d(x, y) + d(Qix, ξ). (3.3)

The condition (3.1) implies the lemma. 2

Recall that a metric spaces X has a finite diameter if supx,y∈X d(x, y) < ∞.
Clearly any compact metric space has a finite diameter. Note that if X is has a
finite diameter then (3.1) implies (3.2).

Corollary 3.2 Let Ti, i ∈ N be a sequence of operators on a complete metric
space X of finite diameter. Let Qi := T1T2...Ti, i ∈ N be a sequence of operators.
Assume that the condition (3.1) holds. Then Qi, i ∈ N converges pointwise to a
constant operator Q : X → {ξ} for some ξ ∈ X . In particular, if Ti, i ∈ N is a
sequence of uniform contractions, i.e. L(Ti) ≤ a < 1 for all ∈ N, on a complete
metric space X of finite diameter then (3.1) holds.

A = (aij)n
1 ∈ Mn(R) is called a nonnegative matrix if aij ≥ 0, i, j = 1, ..., n.

A is called row allowable (column allowable) if A is nonnegative and ARn
+ ⊂ Rn

+

(ATRn
+ ⊂ Rn

+) , i.e. each row (column) of A contains a positive element. A is
called primitive if A is nonnegative and there is m ∈ N such that Am ∈ Mn(R+).
From here and to the end of this section we assume that A is row allowable unless
stated otherwise. Then A acts on PRn

+, i.e. Â : PRn
+ → PRn

+. It is known that
Â is Lipschitz continuous and L(Â) ≤ 1 [7]. It was shown by Birkhoff [1] that for
A ∈ Mn(R+) Â is a contraction. It is known [12] that

L(Â) =
1−

√
ψ(A)

1 +
√

ψ(A)
, where ψ(A) := min

i,j,k,l∈[1,n]

aikajl

ailajk
, A = (aij)n

1 ∈ Mn(R+). (3.4)

For a row allowable nonpositive A ψ(A) = 0 ⇐⇒ L(Â) = 1. (For a nonnegative
non row allowable A we let ψ(A) = −1 ⇐⇒ L(A) = ∞.) Note that L(Â) = 0
if and only if A is a positive rank one matrix. Thus L(Â) = 0 ⇐⇒ L(ÂT) = 0.
Furthermore if Ak, k ∈ N is a sequence of row allowable matrices then the equivalence
of the two conditions stated in (1.3) holds.
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Let Ak = (aij,k)n
i,j , Bk = (bij,k)n

i,j=1 ∈ Mn(R+) for k = N, N + 1, ... and some
N ∈ N. We say that Ak, Bk, k ∈ N are asymptotically equal, and denote it by
{Ak} ∼ {Bk}, if

lim
k→∞

aij,k

bij,k
= 1, for i, j = 1, ..., n.

The following result is known, e.g. [7].

Lemma 3.3 Let Ak, k ∈ N be a sequence of nonnegative row allowable matrices.
Then limk→∞ L(Ak) = 0 if and only if there exists a sequence of positive rank one
matrices Bk ∈ Mn(R+), k ∈ N such that {Ak} ∼ {Bk}.

Theorem 3.4 Let Ak ∈ Mn(R), k ∈ N be a sequence of nonnegative row (col-

umn) allowable matrices. Then limk→∞ L(Â1...Ak) = 0 (limk→∞ L(ÂT
k ...AT

1 ) = 0) if
and only if there exists u ∈ Rn

+,vk ∈ Rn
+, k for k > N such that {A1...Ak} ∼ {uvT

k }
({AT

k ...AT
1 } ∼ {vkuT}).

Proof. Lemma 3.3 implies that if {A1...Ak} ∼ {uvT
k }, where u,vk ∈ Rn

+, then
limk→∞ L(A1...Ak) = 0. Assume that Ak, k ∈ N are row-allowable and
limk→∞ L(A1...Ak) = 0. Hence there exists k ∈ N such that Qk = (qij,k)n

i,j=1 =
A1...Ak ∈ Mn(R+) for k > N . Then [7, Thm 1] implies that Qk, k ∈ N tends to row
proportionality. That is there exists U = (uij) ∈ Mn(R+) such that

lim
k→∞

qil,k

qjl,k
= uij , i, j and i, j = 1, ..., n.

Clearly uii = 1 and uij = 1
uji

. As qil,k

qjl,k
= qil,k

qml,k

qml,k

qjl,k
it follows that uij = uimumj .

Hence uij = ui1u1j = ui1
uj1

. Let

u = (u1, u2, ..., un)T := (u11, u21, ..., un1)T, vk = (q11,k, q12,k, ..., q1n,k)T

and the theorem follows. 2

Corollary 3.5 Let Ak ∈ Mn(R), k ∈ N be a sequence of nonnegative row allow-
able matrices. Assume that limk→∞ L(Â1...Ak) = 0. Then Â1...Ak : PRn

+ → PRn
+

converges to a constant operator Q : PRn
+ → {û} for some u ∈ Rn

+.

Since PRn
+ is not compact under the hyperbolic metric it follows that Corollary 3.5

is a stronger version of Lemma 3.1. We now give an example which shows that the
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condition (1.3) for Ak ∈ Mn(R+) does not imply (1.2). Let Ak ∈ Mn(R+) be a pe-
riodic sequence, i.e. Ak+m = Ak for all k ∈ N and some m > 1. Since L(Âk...A1) ≤
L(Âk)...L(Â1) we deduce that (1.3) holds. Assume the normalization ρ(Am...A1) =
1. Then (Am...A1)k → uvT, where Am...A1u = u,vTAm...A1 = vT,vTu = 1 for
some u,v ∈ Rn

+. Then for p ∈ [1,m − 1] ∩ Z limk→∞Akm+p...Amk+1Amk...A1 =
Ap...A1uvT. Clearly, we can choose A1, ..., Am such that (1.2) does not hold.

A special version of the following weak generalization of Theorem 3.4 will be
needed to prove Theorem 1.2 in the complex case. Recall that PCn is a compact
complex manifold. Let d(·, ·) be the Fubini-Study metric on PCn [6]. Then PCn has
a finite diameter.

Theorem 3.6 Let X ⊂ PCn be a compact set with respect to the Fubini-Study
metric d on X and assume that X has a nonempty interior. Let Bk ∈ Mn(C), k ∈ N
be a sequence of matrices such that k̂erBk ∩ X = ∅ and Tk := B̂k : X → X for
each k ∈ N. Let Qk := T1...Tk, k ∈ N. Assume that limk→∞ L(Qk) = 0. Then
Qk converges converges pointwise to a constant operator Q : X → {ŵ} for some
ŵ ∈ X . Furthermore the limit of any convergent subsequence liml→∞ B̂1...Bkl

=
Ĉ ∈ PMn(C) is of the form ŵzT, where z depends on a subsequence.

Proof. Corollary 3.2 yields that Qk, k ∈ N converges to a constant operator
Q such that QX = {ŵ}. Assume that liml→∞ B̂1...Bkl

= Ĉ ∈ PMn(C). Since X
has an interior, there exists an interior point x̂ ∈ X such that x 6∈ kerC. Hence
ŵ = liml→∞Qkl

(x̂) = Ĉx̂ = Ĉx. Since this result holds for any y in the small
neighborhood of x it follows that C is a rank one matrix of the form wzT. 2

Corollary 5.2 gives a family of examples for which Theorem 3.6 applies.

4 Proof of Theorem 1.1 and Theorem 1.2 for R

To prove Theorems 1.1 and 1.2 we use the following well known fact:

Proposition 4.1 Let X be a compact metric space. Then a sequence xk ∈
X , k ∈ N converges to ξ if and only if from any convergent subsequence xli , i ∈ N
there exists a subsequence xpj , j ∈ N which converges to ξ.

Proof of Theorem 1.1. From the definition of ψ(AT) in (3.4) it follows that
limk→∞ ψ(AT

k ) = ψ(AT) ∈ (0, 1). Hence L(AT
1 ...AT

k ) ≤ L(AT
1 )...L(AT

k ) → 0. Theo-
rem 3.4 yields the existence of w,xk ∈ Rn

+ such that {AT
1 ...AT

k } ∼ {wxT
k }. Hence

{Ak...A1} ∼ {xkwT}.
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Let Ck := AkAk−1...A2A1, k ∈ N. Assume that Ĉkl
→ Ĉ. Since PRn is compact

from each subsequence x̂kl
we can find as subsequence x̂li such that x̂li → ŷ where

y ∈ Rn is a probability vector. Since {Ak...A1} ∼ {xkwT} it follows that Ĉli →
ŷwT ⇒ Ĉ = ŷŵT.

We first deduce the theorem in the case A is a rank one matrix A = uvT.
Assume that Ĉkl

→ ŷŵT. From the sequence kl pick up a subsequence pq such that
Ĉpq−1 → ẑŵT for some probability vector z. Under the above assumptions

lim
pq→∞

Ĉpq = lim
pq→∞

̂ApqCpq−1 = ûvTẑwT = ûwT.

Therefore limk→∞ Ĉk = ûwT and the theorem follows.
We now consider the general case. Without loss of generality we assume that

the spectral radius of A is equal to 1. Then Am → uvT, where uTv = 1. Choose
εm,m ∈ N a sequence of positive decreasing numbers tending to zero with the
following property:

X1, ..., Xm ∈ Mn(R) and ||Xi −A|| < εm, i = 1, ...,m ⇒ ||X1X2...Xm −Am|| < 1
m

.

Let Nm the following increasing sequence: ||Ak −A|| < εm for each k > Nm. Hence
||Aj+m...Aj+1 −Am|| < 1

m for any j > Nm.

Let Ck := AkAk−1...A2A1, k ∈ N. Assume that Ĉkl
→ ŷwT. First choose a

subsequence {qj} of {kl} such that qj+1 − qj > Nj+1 + j + 1, where q0 = 0. Let
rj = qj − j for j ∈ N. Note that rj+1 > qj + Nj+1. Hence

||Aqj ...Arj+1 −Aj || < 1
j
, for all j ∈ N.

From the sequence rj , j ∈ N choose a subsequence rjm such that Ĉrjm
→ ẑwT

for a probability vector z ∈ Rn. Note that since rjm + jm = qjm it follows that

Ĉqjm
→ ŷwT. On the other hand Ĉqjm

= ̂Aqjm
...Arjm+1Ĉrjm

. Our assumptions

yield that the second factor converges to ẑwT. Our construction yields that the
first factor converges to v̂uT. Hence Ĉkl

→ ûwT and the theorem follows in this
case too. 2

Let A ∈ Mn(R) be a primitive matrix. Then A is row and column allow-
able. Furthermore ρ(A) > 1 and there exists u,v ∈ Rn

+,vTu = 1 such that
Au = ρ(A)u,vTA = ρ(A)vT. Moreover limm→∞ ρ(A)−mAm = uvT. The argu-
ments of the proof of Theorem 1.1 yield:
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Corollary 4.2 Let Ak, k ∈ N be a sequence of column allowable matrices such
that limk→∞Ak = A, where A is a primitive matrix. Then (1.2) and (1.4) hold.

Proof of Theorem 1.2 in the real case. We assume that Ak ∈ Mn(R), k ∈ N.
Hence limk→∞Ak = A ∈ Mn(R). Since the nonreal eigenvalues of A come in pairs
z, z, it follows that the unique eigenvalue of A on the circle {z : |z| = ρ(A)} is
equal to ±ρ(A). By multiplying each Ak and A by ±ρ(A)−1 we may assume that
ρ(A) = 1 and 1 is an eigenvalue of A. 1 is a simple eigenvalue of the characteristic
polynomial of A and all other eigenvalues of A lie inside the unit disk |z| < 1. By
considering TAkT

−1 instead of Ak and TAT−1 instead of A it is enough to prove
the theorem in the case

Ae = e, ATv = v, e = (1, ..., 1)T, v = (v1, ..., vn)T ∈ Rn
+, v1 + ... + vn = 1.

Indeed, since 1 is a simple root the characteristic polynomial of A, there exists
Q ∈ GLn(R) such that B := QAQ−1 = (1) ⊕ B′ for some B′ ∈ Mn−1(R). Hence
Be1 = BeT

1 = e1 = (1, 0, ..., 0)T We claim that for n ≥ 2 there exists S ∈ GLn(R)
such that

Se1 = e, STv = e1, for any v ∈ Rn
+, eTv = 1.

The first equation yields that the first column of S is e. The second equation yields
that the last n−1 columns of S orthogonal to v. Pick any n−1 linearly independent
vectors in s2, ..., sn ∈ Rn which are orthogonal to v. Then S := (e1, s2, ..., sn) ∈
GLn(R) satisfies the above condition. Now let T = SQ.

Our assumptions yield
lim

m→∞Am = evT.

As in the proof of Theorem 1.1, let us consider first the case A = evT. As
limk→∞Ak = A and A is a positive matrix it follows that Ak ∈ Mn(R+) for k ≥ M .
Theorem 1.1 yields that ̂Ak...AM converges to êw0. Hence limk→∞ Âk...A1 = êwT,
where wT = wT

0 AM−1...A1. This proves the theorem in this case.
Assume that A 6= evT. As limm→∞Am = evT it follows that there exists m ∈ N

such that Am ∈ Mn(R+). Hence Ak+m−1...Ak ∈ Mn(R+) for k ≥ N . Theorem 1.1
yields that limk→∞ ̂Akm+N ...AN+1 → êwT

0 . Hence

lim
k→∞

̂Akm+j+N ...AN+1 = Âj êwT
0 = êwT

0

and the theorem follows in this case too. 2
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5 Proof of Theorem 1.2 in the complex case.

Since Mn(C) ∼ Cn2
it follows that PMn(C) ∼ PCn2

. Let d1 be the Fubini-Study
metric on PMn(C). Let Â ∈ PMn(C). Then Â : PCn\k̂erA → PCn is a holomorphic
map.

Lemma 5.1 Let E ∈ Mn(C) be rank one matrix with ρ(E) > 0, i.e. E =
vuT,uTv 6= 0. Let Or := {x̂ ∈ PCn : d(x̂, v̂) ≤ r} such that Or ∩ k̂erE = ∅. Then
Ê : Or → {v̂}. Assume that Ek ∈ Mn(C)\{0}, k ∈ N converges to E. Then there
exists N such that Êk : Or → Or is a sequence of uniform contractions for k > N ,
i.e. d(Êkx̂, Êkŷ) ≤ κd(x̂, ŷ) for all x̂, ŷ ∈ Or some κ ∈ (0, 1) and k > N . Moreover
there exists ε > 0, depending on E, r and κ ∈ (0, 1), such that for each B̂ ∈ PMn(C)
satisfying d1(B̂, Ê) ≤ ε one has B̂ : Or → Or and L(B̂) ≤ κ.

Proof. Clearly Êx = v̂ if uTx 6= 0. Hence Ê : Or → {v̂}. Since k̂erEk

converges k̂erE it follows that Êk|Or converges uniformly to Ê|Or. In particular
Êk : Or → Or for k > M .

Let B ∈ Mn(C)\{0}. Then for each x ∈ PCn\k̂erB we can define the local
distortion of B̂ at x̂:

δ(B̂, x̂) =: lim
m→∞ sup

ŷ 6=ẑ,d(ŷ,x̂)≤ 1
m

,d(ẑ,x̂)≤ 1
m

d(B̂ŷ, B̂ẑ)
d(ŷ, ẑ)

.

For any Y ⊂ PCn\k̂erB let

δ(B̂,Y) := sup
x̂∈Y

δ(B̂,x).

Recall that a set Y is called convex if any two points x,y ∈ Y can be connected by
a geodesic that completely lies in Y. It is a standard fact that if Y ⊂ PCn\k̂erB is
a convex set then

d(B̂x̂, B̂ŷ) ≤ δ(B̂,Y)d(x̂, ŷ) for all x̂, ŷ ∈ Y.

Clearly δ(Ê, x̂) = 0 for all x̂ ∈ PCn\k̂erE. As Ek → E it follows that limk→∞ δ(Êk, x̂) =
0 for all x̂ ∈ PCn\k̂erE. Use this fact and the fact that Or can be covered by a
finite number of convex balls {ŷ : d(ŷ, x̂) < r(x̂)}, x̂ ∈ Or to deduce the the first
part of the lemma.
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We now deduce the second part of the lemma. Since Or and k̂erE closed and
disjoint it follows that d(Or, k̂erE) = 2a > 0. Hence there exists ε1 such that
d(Or, k̂erB) ≥ a if d1(B̂, Ê) ≤ ε1. It is not difficult to show that

lim
t↘0

max
B̂,d1(B̂,Ê)≤t

δ(B̂, Or) = δ(Ê, Or) = 0.

Hence for ε small enough and d1(B̂, Ê) ≤ ε one has d(B̂Or, ÊOr) = d(B̂Or, û) < r
and L(B̂) = δ(B̂, Or) < κ. 2

Corollary 5.2 Let E ∈ Mn(C) be a rank one nonnilpotent matrix and let r >
0, κ ∈ (0, 1) be given as in Lemma 5.1. Let Bk ∈ Mn(C)\{0} and assume that
d1(B̂k, Ê) ≤ ε for each k ∈ N. Then for X = Or the assumptions of Theorem 3.6
hold.

In what follows we use the concepts of the exterior products ∧kFn ⊂ F(n
k) and the

operators ∧kA ∈ M(n
k)

(F) induced by A ∈ Mn(F). In matrix theory ∧kA is called
k− th compound matrix, and its entries are given as the k×k minors of A. For any
x1, ...,xk ∈ Fn the coordinates of x1 ∧ ... ∧ xk ∈ ∧F(n

k) are
(
n
k

)
minors of the n × k

matrix (x1...xk) arranged in the lexicographical order. Note any nonzero vector
x1∧ ...∧xk represents a unique subspace X = span(x1, ...,xk) of dimension k, which
is an element of the Grassmannian Gr(k,n,F). Then y1 ∧ ... ∧ yk represents X if
and only if span(x1, ...,xk) = span(y1, ...,yk). See for example [5] for the properties
of the compound matrices and [3] for a concise survey of mulitilinear algebra used
in this paper.

In particular we use the following facts. Let A,B ∈ Mn(C). Then
(a) ∧kAB = ∧kA ∧k B.
(b) Ax1∧ ...∧Axk = ∧kA(x1∧ ...∧xk). If x1, ...,xk spans a k-dimensional invariant
subspace of A then x1∧...∧xk is an eigenvector of ∧kA. In particular if x1, ...,xk are
k-linearly independent eigenvectors of A corresponding to the eigenvalues λ1, ..., λk

then x1 ∧ ... ∧ xk is an eigenvector of ∧kA corresponding to the eigenvalue λ1...λk.
(c) Let λ1, ..., λn be the eigenvalues of A counting with their multiplicities. Then
λi1 ...λik for all 1 ≤ i1 < ... < ik ≤ n are all

(
n
k

)
eigenvalues of ∧kA.

Proof of Theorem 1.2 in the complex case.
By our assumptions the spectral circle {z : |z| = ρ(A)} contains exactly one

eigenvalue λ of algebraic multiplicity 1. By considering ρ(A)−1A we may assume
that 1 is a simple algebraic eigenvalue of A, while other eigenvalues of A are in the
open unit disk. Hence limk→∞Am = uvT,uTv = 1. Let E := vuT. Lemma 5.1
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yields that there exists ε > 0 so that for each B ∈ Mn(C) satisfying d1(B̂, Ê) ≤ ε one
has B̂ : Or → Or and L(B̂, Or) ≤ 1

2 . From the arguments of the proof of Theorem

1.1 it follows that there exists m ∈ N, N ∈ Z+ such that d1( ̂AT
k+1...A

T
k+m, Ê) ≤ ε for

any k ≥ N .
Note that for k > N we have Ck = Ak...A1 = CN+1,kQN , where Cp,k :=

AkAk−1...Ap+1Ap, p ≤ k ∈ N and Q0 = I if N = 0 and QN := AN ...A1 if
N ≥ 1. Since Aj ∈ GLn(C) for j ∈ N to prove the theorem it is enough to
consider the case N = 0. That is we assume that the sequence AT

k ...AT
k+m−1 : Or →

Or, k ∈ N is a sequence of uniform contractions on Or. Corollary 3.2 implies that
limk→∞ ĈT

j,mk+j−1x̂ = ŵj for any x̂ ∈ Or and some ŵj ∈ Or for j = 1, ..., m.
Assume that Ĉkl

→ Ĉ ∈ PMn(C), where C ∈ Mn(C)\{0}. We claim that

lim
l→∞

Âkl
...A1 = Ĉ = ẑyT, for some y, z ∈ Cn\{0}. (5.1)

Choose a subsequence {pq}q∈N of {kl}l∈N such that each pq − (j − 1) is divisible by

m for some j ∈ [1, m] ∩ N. Then Theorem 3.6 yields that limq→∞ ĈT
j,pq

= ŵjzT.
Hence C = zyT where y = AT

1 ...AT
j−1wj , where A0 = I.

To prove the theorem it is enough to show that z ∈ span(u) and y ∈ span(w) for
some fixed w ∈ Cn\{0}. This is done by converting the complex matrices to the real
matrices of double dimension, taking the second compounds of the corresponding
matrices and using the results of Theorem 1.2 for the real case.

Recall that any linear transformation of Cn to itself represented by a matrix L ∈
Mn(C), L = P +

√−1Q, P,Q ∈ Mn(R) can be presented by L̃ :=
(

P −Q
Q P

)
. This

is done by representing any z ∈ Cn, z = x +
√−1y, x,y ∈ Rn by z̃ := (xT,yT)T ∈

R2n. Then L̃z = L̃z̃ and L̃1L2 = L̃1L̃2 for any L1, L2 ∈ Mn(C). Note that one
dimensional subspace span(z) ∈ Cn, z 6= 0 corresponds to the two dimensional

subspace span(z̃,
√̃−1z) ∈ R2n. Assume that λ1, ..., λn are the eigenvalues of L

counted with their multiplicities. It is straightforward to show λ1, λ1, ..., λn, λn are
the eigenvalues of L̃ counted with their multiplicities. (For a diagonable L the proof
reduces to the case where L ∈ M1(C).) Moreover if L is rank one nonnilpotent then
L̃ is rank two diagonable.

The assumptions of the theorem yield that Ãk ∈ GL2n(R), k ∈ N and limk→∞ Ãk =
Ã. Hence ∧2Ãj ∈ GL(2n

2 )(R) and limk→∞ ∧2Ã2 = ∧2Ã. Since A was rank one non-

nilpotent matrix Ã is a rank two diagonable matrix. Hence ∧2Ã is a rank one matrix

with the eigenvector ũ ∧ √̃−1u corresponding to the eigenvalue |λ|2 > 0. Thus we
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can apply real version Theorem 1.2 for the sequence ∧2Ãk, k ∈ N. Hence

lim
k→∞

̂∧2Ãk... ∧2 Ã1 = F̂ , F = (ũ ∧ √̃−1u)sT, for some s ∈ R(2n
2 )\{0}.

Compare that with (5.1) to deduce that ∧̂2z̃yT = F̂ . Equivalently ∧2z̃yT = aF for

some a 6= 0. This shows that first that z ∈ span(u). Second that ỹ ∧ √̃−1y = s.
Since s is fixed the one dimensional subspace span(y) does not depend on the con-
vergent subsequence Ckl

, l ∈ N. Thus we can choose w to be equal to y for one
convergent subsequence Ckl

, l ∈ N. 2

6 Finer results

The aim of this section is to consider the convergence of Ak...A1x0 under the as-
sumptions of Theorems 1.1 and 1.2 when wTx0 = 0. In this case we need to pass
to the exterior products. In this section we assume that the vector and operator
norms on Fn and Mn(F) for F = R,C are the l2 norms || · ||2.

To extend the results of Theorem 1.1 one needs to recall the notions of strictly
totally positive matrices and (discrete) Tchebyshev systems. See for example [5]
or [10] for the notion of strictly totally positive matrices and [10] for the classical
notion of Tchebyshev systems. We call x1, ...,xp ∈ Rn a p-Tchebyshev system if

x1 ∈ R+,x1 ∧ x2 ∈ R(n
2)

+ , ...,x1 ∧ ... ∧ xp ∈ R(n
p)

+ . A vector x ∈ Rn is said to have
exactly k-changes of signs, denoted by S(x) = k, if by replacing any zero coordinate
of x by a positive or negative number one obtains a vector y whose coordinates have
exactly k changes of signs. It is straightforward to show that if S(x) = k ≤ n − 1,
the there exists a k-Tchebyshev system x1, ...,xk such that xk = ±x.

Recall that A ∈ Mn(R) is called strictly totally positive of order p ∈ [1, n] ∩ Z
(STPp) if ∧kA ∈ M(n

k)
(R+) for k = 1, ..., p. (Here ∧1A := A.) That is A and

all its k ≤ p compounds are positive. The spectrum of A spec A is of the form
{λ1, ..., λp} ∪ spec p+1A. Here λ1 > ... > λp > 0 are p positive real numbers and
spec p+1A ⊂ {z ∈ C : |z| < λp} if p < n. (spec n+1A = ∅.) Each λi is a simple
root of det (zI − A) for i = 1, ..., p. Furthermore one can choose the signs of the
eigenvectors of A and AT corresponding to λ1, ..., λk such that they form Tchebyshev
systems:

Aui = λiui, ||ui|| = 1, S(ui) = i− 1, i = 1, ..., p,u1 ∈ Rn
+, ...,u1 ∧ ... ∧ up ∈ R(n

p)
+ ,

14



ATvi = λivi, S(vi) = i− 1, i = 1, ..., p, v1 ∈ Rn
+, ...,v1 ∧ ... ∧ vp ∈ R(n

p)
+ ,

vT
i uj = δij , i, j = 1, ..., p. (6.1)

Theorem 6.1 Let Ak ∈ Mn(R+), k ∈ N be a sequence of STPp matrices which
converge to a STPp matrix A ∈ Mn(R+) for some p ∈ [2, n] satisfying (6.1). Then
there exists a p-Tchebyshev system w1, ...,wp such that the following conditions hold.
Let Ck = Ak...A1 for k ∈ N. Then

lim
k→∞

λi+1(Ck)
λi(Ck)

= 0, i = 1, ..., p− 1, (6.2)

lim
k→∞

∧iCk∏i
j=1 λj(Ck)

= u1 ∧ ... ∧ ui(w1 ∧ ... ∧wi)T, i = 1, ..., p, (6.3)

Ck =
p∑

i=1

λi(Ck)ui,kwT
i,k + o(|λp(Ck)|), wT

i,kuj,k = δij , (6.4)

Ckui,k = λi(Ck)ui,k, ||ui,k|| = 1, CT
k wi,k = λi(Ck)wi,k, (6.5)

u1,k ∧ ... ∧ ui,k, w1,k ∧ ... ∧wi,k ∈ R(n
i)

+ ,

lim
k→∞

ui,k = ui, lim
k→∞

wi,k = wi, wT
i uj = δij , i, j = 1, ..., p. (6.6)

Proof. Assume first the assumptions of Theorem 1.1. Let u1,k,w1,k be as above.
Assume furthermore let ||u1,k|| = 1. From the proof of Theorem 1.1 it follows
that u1,k → u1 = u. Let E be defined by (1.2). Then ρ(E) = wTu. Hence
λ1(Ck)
||Ck|| →

wTu
||u|| ||w|| . Hence (6.3) holds for p = 1. The proof of Theorem 1.1 yields

that one has the equality (6.4) for p = 1. Here w1 = (wTu)−1w.
We now show the theorem for the case p = 2. Let M(n

2)
(R+) 3 Bk := ∧2Ak →

B := ∧2A ∈ M(n
2)

(R+). As λ1(Ck)
||Ck|| → ||w1||−1 (1.2) yields (6.2) for p = 2. Let

Dk := Bk...B1, k ∈ N. Clearly λ1(Dk) = λ1(Ck)λ2(Ck) and the corresponding

Perron eigenvectors of Dk, D
T
k are u1,k ∧ u2,k,w1,k ∧ w2,k ∈ R(n

2)
+ . Then Theorem

1.1 applied to Bk, k ∈ N yields that

span(u1,k,u2,k) → U2 = span(u1,u2) ∈ Gr(2, n,R),
span(w1,k,w2.k) → W2 ∈ Gr(2, n,R).

As wT
1,ku2,k = 0, ||u2,k|| = 1 and w1,k → w1 it follows that span(u2,k) → span(u2).

As u1,k ∧ u2,k ∈ R(n
2)

+ it follows that u2,k → u2. Clearly w1 ∈ W2. As wT
2,ku1,k =

0, wT
2,ku2,k = 1 it follows that w2,k → w2, which is the unique vector in W2
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satisfying the conditions wT
2 u1 = 0, wT

2 u2 = 1. So w1,k ∧w2,k → w1 ∧w2 ∈ R(n
2)

+ ,
which is the positive eigenvector of the following rank one matrix

E2 :=
u1 ∧ u2(w1 ∧w2)T

||u1 ∧ u2|| ||w1 ∧w2|| = lim
k→∞

DT
k

||DT
k ||

.

The above equality is equivalent to (6.3) for i = 2.
Recall that all the eigenvalues of Dk are of the form λµ, λ, µ ∈ spec (Ck), where

either λ 6= µ or λ = µ is a multiple eigenvalue of Dk. Thus if |λ| ≥ |µ| then
λ2(Dk) > |µ| unless λ = λ1(Dk), µ = λ2(Ck). Combine all these facts to obtain
(6.4) for p = 2.

Assume now that p > 2. By considering the compound matrices ∧iAk, k ∈ N for
i = 3, ..., p we deduce the rest of theorem as in the case p = 2. 2

Assume the assumptions of Theorem 6.1. Let z ∈ Rn and S(z) = p − 1. Since
±z can be completed to a p-Tchebyshev z1, ..., zp it follows that it is impossible that
wT

i z = 0 for i = 1, ..., p. Thus one can estimate the behavior of Ĉkz as k →∞.

Theorem 6.2 Let Ak ∈ GLn(C), k ∈ N. Assume that for k > N the following
conditions satisfied: For p ∈ [1, n] ∩ Z there exists α ∈ (0, 1) and:
(a) biorthonormal sets x1,k, ...,xp,k,y1,k, ...,yp,k ∈ Cn such that

||xi,k|| = 1, yT
i,kxj,k = δij , i, j = 1, ..., p, k > N,

lim
k→∞

xi,k = ui, ||ui|| = 1, lim
k→∞

yi,k = vi, vT
i uj = δij , i, j = 1, ..., p.

(b) λ1,k, ..., λp,k ∈ spec (Ak) are simple roots of the characteristic polynomial of Ak

such that

Akxi,k = λi,kxi,k, AT
k yi,k = λi,kyi,k, |λi,k| ≥ α|λi+1,k|, i = 1, ..., p, for any k > N,

where λp+1,k is any eigenvalue of Ak different from λ1,k, ..., λp,k. Furthermore, there
exists an operator norm ||| · ||| : Mn(C) → [0,∞) such that

|||Ak −
p∑

i=1

λi,kxi,kyT
i,k||| ≤ α|λp,k|, k > N. (6.7)

Let Ck := Ak...A1, k ∈ N. Then there exists N1 > N that for k > N1 the
following conditions hold. Ck has p simple eigenvalues λ1(Ck), ..., λp(Ck) such that
|λ1(Ck)| > ... > |λp(Ck)|. It is possible to choose the corresponding eigenvectors of
Ck, C

T
k as u1,k, ...,up,k,w1,k, ...,wp,k such that equalities (6.2) - (6.6) hold.
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Proof. We first consider the case p = 1. By considering the matrices λ−1
1,kAk

it is enough to prove the above theorem in the case λ1,k = 1 for k > N . Let
Rk := Ak − x1,kyT

1,k for k > N . The spectral decomposition of A yields and (6.7)
yields

Rkx1,k = RT
k y1,k = 0, |||Rk||| ≤ α, k > N. (6.8)

In order to use the arguments of the proof of Theorem 1.1 it is enough to show that
for each m > 1 there exists K(m) such that if j > K(m)

|||Aj+m...Aj+1 − u1vT
1 ||| < |α|m +

1
m

. (6.9)

Consider the product

Aj+m...Aj+1 = (x1,j+myT
1,j+m + Rj+m)...(x1,j+1yT

1,j+1 + Rj+1). (6.10)

Expand this product to 2m terms. The first term in this product is

x1,j+myT
1,j+m...x1,j+1yT

1,j+1 = (
j+m−1∏

i=j+1

yT
1,i+1x1,i)x1,j+myT

1,j+1.

Hence it converges to u1vT
1 as j →∞. Consider the last term in (6.10). Since ||| · |||

is an operator norm

|||Rj+m...Rj+1||| ≤ |||Rj+m|||...|||Rj+1||| ≤ αm.

It is left to show that that all other 2m − 2 terms in (6.10) tend to zero. Each of
this term contains either a factor xj+i+1yT

j+i+1Rj+i or Rj+i+1xj+iyT
j+i. Use (6.8)

to deduce

xj+i+1yT
j+i+1Rj+i = xj+i+1(yj+i+1 − yj+i)TRj+i,

Rj+i+1xj+iyT
j+i = Rj+i+1(xj+i − xj+i+1)yT

j+i.

If a term contains more then one of such factors choose the above modification at
one factor exactly. Now estimate the norm of this term by taking the products of
the norms of m factors. It now follows that each of this terms tends to zero. Hence
(6.9) follows. Now we can repeat the arguments of the proof of Theorem 1.2 to
prove the theorem for p = 1.

To prove the theorem for p > 1 we consider the wedge products ∧iAk, k ∈ N for
i ∈ [2, p]. The spectral analysis of ∧iAk implies that ∧iAk, k ∈ N satisfy the above
conditions for p = 1. Use the arguments of the proof of Theorem 6.1 to deduce the
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theorem in this case. 2

Assume that R ∈ Mn(C) has a spectral radius ρ(R) ∈ [0, 1) . It is well known
that for any α ∈ (ρ(R), 1) there exists an operator norm ||| · ||| : Mn(C) → [0,∞)
such that |||R||| ≤ α.

Corollary 6.3 Let Ak ∈ GLn(C), k ∈ N. Assume that limk→∞Ak = A ∈
Mn(C). Suppose furthermore that λ1, ..., λp are p simple roots of det (zI − A),
where ρ(A) = |λ1| > ... > |λp| > 0. Assume furthermore that any other eigenvalue
λ ∈ spec A\{λ1, ..., λp} satisfies |λ| < |λp|. Then Ak, k ∈ N satisfy the assumptions
of Theorem 6.2, where Aui = λiui, i = 1, ..., p.
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