
NONNEGATIVE MATRIX INEQUALITIES AND THEIRAPPLICATION TO NONCONVEX POWER CONTROL OPTIMIZATIONCHEE WEI TAN�, SHMUEL FRIEDLANDy, AND STEVEN LOWzAbstrat. Maximizing the sum rates in a multiuser Gaussian hannel by power ontrol is a nononvexNP-hard problem that �nds engineering appliation in Code Division Multiple Aess (CDMA) wirelesssystem. In this paper, we extend and apply several fundamental nonnegative matrix inequalities initiated byFriedland and Karlin in a 1975 paper to solve this nononvex power ontrol optimization problem. Leveragingnonnegative matrix theory suh as the Subinvariane Theorem and the Perron-Frobenius Theorem, we (1)show that this problem in the power domain an be reformulated as an equivalent onvex maximizationproblem over a losed unbounded onvex set in the logarithmi signal-to-interferene-noise ratio domain, (2)propose two relaxation tehnqiues that utilize the reformulation problem struture to ompute progressivelytight bounds, and (3) propose a global optimization algorithm with �-suboptmality to ompute the optimalpower ontrol alloation.Keywords and phrases: Nononvex optimization, onvex relaxation, maximization of onvex funtions,nonnegative matrix theory, spetral radii of irreduible nonnegative matries, wireless networks.2000 Mathematis Subjet Classi�ation. 15A42, 15A48, 47N10, 49K35, 65K05, 94A40.1. Introdution. We study the problem of total data throughput maximization usingpower ontrol in Code Division Multiple Aess (CDMA) wireless ommuniation systems,where interferene is a major soure of performane impairment. Due to the broadast na-ture of the wireless medium, the data rates in a wireless network are a�eted by interferenewhen all the users transmit simultaneously over the same frequeny band using CDMA.Power ontrol is used to mitigate the e�et of multiuser interferene on performane andmaximize the total data rates of all users [3℄. The CDMA wireless network an be mod-eled by an information-theoreti interferene hannel that treats multiuser interferene asadditive noise [3℄. Finding the optimal power alloation that maximizes sum rates overthis multiuser Gaussian hannel requires solving a nononvex problem [18, 4, 3, 6, 14℄. Thisnononvex problem also �nds appliations in throughput maximization for digital subsriberline (DSL) wireline systems [13, 15, 16℄.1The omplexity of an exhaustive searh is prohibitively expensive, sine this problemis NP-hard, and may even be hard to approximate [15℄. The authors in [4, 18℄ formulatedthe problem as a signomial program, and used a suessive onvex approximation methodbased on geometri programming. In [6℄, the solution to a two-user speial ase was ana-lyzed. The authors in [15℄ showed the NP-hardness of the problem, and used the Lyapunovtheorem in funtional analysis to dedue a zero duality gap result between a related pri-mal of a ontinuous problem formulation in the DSL setting and its dual. The authors in[16℄ estimated the size of this duality gap for the �nite problem in the DSL setting usingLagrangian dual relaxation that is ombined with a linear program. The authors in [19℄proposed approximation algorithms to solve the problem with individual power onstraints(CDMA uplink system). The authors in [20℄ solved the problem with a single total poweronstraint (CDMA downlink system) under low to medium interferene onditions.We now state briey the sum rate maximization problem with individual power on-straints. (See x2 for all de�nitions, notations and motivations.) Let F = [fij ℄Li=j=1 and�Department of Computer Siene, City University Hong Kong, Kowloon, Hong Kong(heewtan�ityu.edu.hk).yDepartment of Mathematis, Statistis and Computer Siene, University of Illinois at Chiago, Chiago,Illinois 60607-7045, USA, and Berlin Mathematial Shool, Berlin, Germany, (friedlan�ui.edu).zDepartment of Computer Siene, California Institute of Tehnology, CA 91125, (slow�alteh.edu).1The sum rate maximization problem we study in this paper di�ers from that in the DSL system inthat eah user alloates power only in a single frequeny, whereas eah user in a DSL system alloates theirpower over more than one frequeny. 1



v = (v1; : : : ; vL)> be an L�L matrix with zero diagonal and positive o� diagonal elementsand a positive vetor respetively. Let �p = (�p1; : : : ; �pL)> and w = (w1; : : : ; wL)> be a givenpositive vetor and a given probability vetor respetively. The sum rate maximizationproblem is given by max0�pl��pl 8 l LXl=1 wl log 1 + plPj 6=l fljpj + vl! : (1.1)This is a nononvex optimization problem that has a nonlinear-frational objetive fun-tion of positive variables over a simple box onstraint set. The exat solution to this problemis also known to be (strongly) NP-hard [15℄. An often used tehnique to takle nononvexityis the standard Lagrange dual relaxation of (1.1) in the power domain. However, the short-oming of this approah is that there an exist a positive duality gap between the globaloptimal primal and optimal dual value of (1.1) [15℄. Also, �nding an optimal primal solutiongiven an optimal dual solution, or vie versa, is in general diÆult.We adopt a reformulation-relaxation approah to takle (1.1). Our reformulation pos-sesses ertain desirable properties, whih enables the appliation of nonnegative matrixtheory, espeially the Friedland-Karlin inequalities stated in [9℄, to �nd the global optimalsolution and motivate eÆient relaxation tehniques. In partiular, we utilize the problemstruture to develop suitable fast omputational proedures for solving and omputing use-ful bounds to the sum rate maximization problem. Furthermore, analytial solution to boththe sum rate maximization problem and its relaxation problems an also be haraterizedby the spetra of speially-rafted nonnegative matries. A by-produt of our analysis is are�nement of the Friedland-Karlin inequalities in [9℄ and its appliation to an inverse prob-lem in nonnegative matrix theory. From an engineering perspetive, our algorithms operatein the logarithmi signal-to-interferene-noise ratio domain or, equivalently the dB domainthat is lingua frana in existing wireless tehnology.Overall, the ontributions of the paper are as follows:1. We study a reformulation of the sum rate maximization problem showing that it isequivalent to a onvex maximization problem on a losed unbounded onvex set.2. Exploiting the reformulation problem struture, we propose two relaxation teh-niques that �nds progressively tighter bounds on the global optimal value. The�rst one is a onvex relaxation tehnique that uses Lagrange duality (and its on-netion to onvex envelope relaxation) and the Friedland-Karlin inequalities (basiinequalities that haraterize the spetral radius of a nonnegative matrix) to solvea sequene of linear programs. The seond method exploits the spetra of speially-rafted nonnegative matries in a suessive onvex approximation method.3. Utilizing the relaxation tehniques, we propose a global optimization algorithm(with �-suboptmality) to solve the sum rate maximization problem.4. We give new appliations of the Friedland-Karlin inequalities to inverse problemsin nonnegative matrix theory.5. Numerial examples illustrate the performane of our tehniques, and inlude aomparison between our relaxation tehniques and the standard Lagrange dual re-laxation.This paper is organized as follows. In x2, we state de�nitions, notations and a shortmotivation. We give a haraterization of the image of the multidimensional box [0; �p℄ � RL+by the map , in terms of the spetral radii of a set of nonnegative matries. In x3, we studythe sum rate maximization problem for power ontrol in wireless network. We give neessaryand suÆient onditions on an extremal point p 2 [0; �p℄ to be a loal optimal value. In x4,we exploit the reformulation problem struture to study two relaxation tehniques to �nduseful upper bounds to the global optimal value. In x5, we propose a global optimization2



algorithm to solve the sum rate maximization problem. In x6, we evaluate the performaneof our algorithms. In x7, we onlude our paper. In xA, viewed as an appendix, we restatesome useful results for [9℄ and give several appliations and extensions, whih are needed inthis paper.2. Notations and preliminary results. Throughout the paper, we use the followingnotations. Let Rm�n � Rm�n+ denote the set of m�n matries and its subset of nonnegativematries. For A;B 2 Rm�n , we denote A � B if B�A 2 Rm�n+ . We denote A � B;A < B ifB�A is a nonzero nonnegative and positive matrix, respetively. We denote the entries of amatrix A 2 Rm�n by the small letters, i.e A = [aij ℄m;ni;j=1. Identify Rm = Rm�1 ;Rm+ = Rm�1+ .A olumn vetor is denoted by the bold letter x = (x1; : : : ; xL)> 2 RL . We denote ex :=(ex1 ; : : : ; exm)>. For x > 0, we let x�1 := ( 1x1 ; : : : ; 1xm )> and logx = (logx1; : : : ; logxL)>.Let x Æ y denote the Shur produt of the vetors x and y, i.e., x Æ y = [x1y1; : : : ; xLyL℄T .Let 1 = (1; : : : ; 1)> 2 RL . For p � �p 2 RL , denote by [p; �p℄ the set of all x 2 RLsatisfying p � x � �p. For a vetor y = (y1; : : : ; yL)>, denote by diag(y) the diagonalmatrix diag(y1; : : : ; yL). We also let (By)l denote the lth element of the vetor By. ThePerron-Frobenius eigenvalue of a nonnegative matrix F is denoted as �(F ), and the Perron(right) and left eigenvetor of F assoiated with �(F ) are denoted by x(F ) and y(F ) (orsimply x and y when the ontext is lear) respetively. Assume that F is an irreduiblenonnegative matrix. Then �(F ) is simple and positive, and x(F );y(F ) > 0 [2℄. We willassume the normalization: x(F )Æy(F ) is a probability vetor. The super-sript (�)> denotestranspose. For a positive integer n, denote by hni the set f1; : : : ; ng. Let P : X ! Y be amapping from the spae X to the spae Y . For a subset Z � X , we denote by P (Z) theimage of the set Z.Consider an interferene hannel with L logial transmitter/reeiver pairs. The datatransmission in this system with L users an be modeled as a Gaussian interferene hannelgiven by the following baseband signal model:yl = hllxl +Xj 6=l hljxj + zl; (2.1)where yl 2 C 1�1 is the reeived signal of the lth user, hlj 2 C 1�1 is the hannel oeÆientbetween the transmitter of the jth user and the reeiver of the lth user, x 2 CN�1 is thetransmitted (information arrying) signal vetor, and zl's are the i.i.d. additive omplexGaussian noise oeÆient with variane nl=2 on eah of its real and imaginary omponents.The �rst term on the right-hand side of (2.1) represents the desired signal, whereas theseond term represents the interferene signals from other users. At eah transmitter, thesignal is onstrained by an average power onstraint, i.e., E [jxlj2℄ = pl, whih we assume tobe upper bounded by �pl for all l.The vetor p = (p1; : : : ; pL)> is the transmit power vetor and is the optimizationvariable of interest in this paper. Let G = [glj ℄Ll;j=1 > 0L�L represent the hannel gain,where glj = jhlj j2 is the hannel gain from the jth transmitter to the lth reeiver, andn = (n1; : : : ; nL)> > 0, where nl is the noise power at the lth reeiver. Assuming a linearmathed-�lter reeiver at eah user (treating multiuser interferene as additive Gaussiannoise), the Signal-to-Interferene-Noise Ratio (SIR) for the lth reeiver is de�ned as theratio of the reeived signal power gllpl to the sum of interferene signal power and additiveGaussian noise power Pj 6=l gljpj + nl. We denote the SIR of the lth reeiver by l, andonsider it as a salar nonnegative funtion of p as follows. Let us �rst de�neF = [fij ℄Li;j=1; where fij = � 0; if i = jgijgii ; if i 6= j (2.2)3



and g = (g11; : : : ; gLL)>; n = (n1; : : : ; nL)>;v = � n1g11 ; n2g22 ; : : : ; nLgLL�> : (2.3)For p = (p1; : : : ; pL)> � 0, we de�ne the following transformation: p 7! (p), wherel(p) := gllplPj 6=l gljpj + nl ; l = 1; : : : ; L; (2.4)and we denote the vetor (p) = (1(p); : : : ; L(p))> = p Æ (Fp+ v)�1.We state the following result on (2.4).Lemma 2.1 ([8℄). Let p � 0 be a nonnegative vetor. Assume that (p) is de�ned by(2.4). Then �(diag((p))F ) < 1, where F is de�ned by (2.2). Hene, for  = (p),p = P () := (I � diag()F )�1 diag()v: (2.5)Vie versa, if  is in the set � := f � 0; �(diag()F ) < 1g; (2.6)then the vetor p de�ned by (2.5) is nonnegative. Furthermore, (P (p)) = . That is, : RL+ ! �, and P : �! RL+ are inverse mappings.Proof. Observe that (2.4) is equivalent to the equality:p = diag()Fp+ diag()v: (2.7)First, let us assume that p is a positive vetor, i.e., p > 0. Hene, (p) > 0. Sine all o�-diagonal entries of F are positive it follows that the matrix diag()F is irreduible. As v > 0,we dedue that maxl2[1;n℄ (diag()Fp)lpl < 1. The min-max haraterization of Wielandt of�(diag()F ), [2℄ and [10, (38), pp.64℄, implies that �(diag()F ) < 1. Hene, (p) 2 �.Assume that p � 0. Note that pl > 0 () l(p) > 0. So p = 0 () (p) = 0. Clearly,�((0)F ) = �(0L�L) = 0 < 1. Assume that p  0. Let A = fl : pl > 0g. Denote (p)(A)the vetor omposed of positive entries of (p). Let F (A) be the prinipal submatrixof F with rows and olumns in A. It is straightforward to see that �(diag((p))F ) =�(diag((p)(A)F (A)). The arguments above imply that�(diag((p))F ) = �(diag((p)(A)F(A)) < 1:Assume that  2 �. Then(I � diag()F )�1 = 1Xk=0(diag()F )k � 0L�L: (2.8)Hene, P () � 0. The de�nition of P () implies that (P ()) = . 2Lemma 2.2. The set � � RL+ is monotoni with respet to the order �. That is, if 2 � and  � � � 0 then � 2 �. Furthermore, the funtion P () is monotone on �.P () � P (�) if  2 � and  � � � 0: (2.9)Equality holds if and only if  = �.Proof. Clearly, if  � � � 0 then diag()F � diag(�)F whih implies �(diag()F ) ��(diag(�)F ). Hene, � is monotoni. Next, we use the Neumann expansion (2.8) to dedue4



the monotoniity of P . The equality ase is straightforward. 2Note that (p) is not monotoni in p. Indeed, if one inreases only the lth oordinateof p, then one inreases the lth oordinate of (p) and dereases all other oordinates of(p). As usual, let el = (Æl1; : : : ; ÆlL)>; l = 1; : : : ; L be the standard basis in RL . In whatfollows, we need the following result.Theorem 2.1. Let l 2 [1; L℄ be an integer and a > 0. Denote [0; a℄l�RL�1+ the setof all p = (p1; : : : ; pL)> 2 RL+ satisfying pl � a. Then the image of the set [0; a℄l �RL�1+ bythe map  (2.4), is given by�(diag()(F + (1=a)ve>l )) � 1; 0 � : (2.10)Furthermore, p = (p1; : : : ; pL) 2 RL+ satis�es the ondition pl = a if and only if  = (p)satis�es �(diag()(F + (1=a)ve>l )) = 1: (2.11)Proof. Suppose that  satis�es (2.10). We laim that  2 �. Suppose �rst that  > 0.Then diag()(F + t1ve>l ) � diag()(F + t2ve>l ) for any t1 < t2. [10, Lemma 2, x2, Ch.XIII℄ yields �(diag()F ) < �(diag()(F + t1ve>l )) < �(diag()(F + t2ve>l )) < (2.12)�(diag()(F + (1=a)ve>l )) � 1 for 0 < t1 < t2 < 1=a:Thus,  2 �. Combine the above argument with the arguments of the proof of Lemma 2.1to dedue that  2 � for  � 0.We now show that P ()l � a. The ontinuity of P implies that it suÆes to onsiderthe ase  > 0. Combine the Perron-Frobenius theorem (see, e.g., [2℄) with (2.12) to dedue0 < det(I � diag()(F + tve>l )) for t 2 [0; a�1): (2.13)We now expand the right-hand side of the above inequality. Let B = xy> 2 RL�L be arank one matrix. Then B has L � 1 zero eigenvalues and one eigenvalue equal to y>x.Hene, I�xy> has L�1 eigenvalues equal to 1 and one eigenvalue is (1�y>x). Therefore,det(I � xy>) = 1� y>x. Sine  2 �, (I � diag()F ) is invertible. Thus, for any t 2 R,det(I � diag()(F + tve>l )) =det(I � diag()F ) det(I � t((I � diag()F )�1 diag()v)e>l ) (2.14)det(I � diag()F )(1� te>l (I � diag()F )�1 diag()v):Combine (2.13) with the above identity to dedue that1 > te>l (I � diag()F )�1 diag()v = tP ()l for t 2 [0; a�1): (2.15)Letting t % a�1, we dedue that P ()l � a. Hene, the set of  de�ned by (2.10) is asubset of ([0; a℄l � RL�1+ ).Let p 2 [0; a℄l�RL�1+ and denote  = (p). We show that  satis�es (2.10). Lemma 2.1implies that �(diag()F ) < 1. Sine p = P () and pl � a, we dedue (2.15). Use (2.14) todedue (2.13). As �(diag()F ) < 1, the inequality (2.13) implies that �(diag()F+tv>el) <1 for t 2 (0; a�1). Hene, (2.10) holds.It is left to show the ondition (2.11) holds if and only if P ()l = a. Assume thatp = (p1; : : : ; pL)> 2 RL+ ; pl = a and let  = (p). We laim that equality holds in (2.10).5



Assume to the ontrary that �(diag()(F + (1=a)ve>l )) < 1. Then, there exists � >  suhthat �(diag(�)(F + (1=a)ve>l )) < 1. Sine P is monotoni P (�)l > pl = a. On the otherhand, sine � satis�es (2.10), we dedue that P (�)l � a. This ontradition yields (2.11).Similarly, if  � 0 and (2.11), then P ()l = a. 2Corollary 2.2. Let �p = (�p1; : : : ; �pL)> > 0 be a given positive vetor. Then([0; �p℄), the image of the set [0; �p℄ by the map  (2.4), is given by� �diag() �F + (1=�pl)ve>l �� � 1; for l = 1; : : : ; L; and  2 RL+ : (2.16)In partiular, any  2 RL+ satisfying the onditions (2.16) satis�es the inequalities � � = (�1; : : : ; �L)>; where �l = �plvl ; i = 1; : : : ; L: (2.17)Proof. Theorem 2.1 yields that ([0; �p℄) is given by (2.16). Using (2.4), we havel(p) = pl((Fp)l + vl) � plvl � �plvl for p 2 [0; �p℄:Note that equality holds for p = �plel. 2Remark 1. Corollary 2.2 shows that the (nononvex) set (2.16) is ontained in aretangular set (2.17).3. The sum rate maximization problem. We assume the use of singe-user deoderat eah reeiver, i.e., treating interferene as additive Gaussian noise, and all users haveperfet hannel state information at the reeiver. We also assume that the oherene time ofthe hannel is less than the duration of the whole transmission by any user. This assumptionis valid for example when fading ours suÆiently slowly in the hannel, i.e., at-fading, sothat the hannel an be onsidered essentially �xed during transmission. We further assumethat all users employ random Gaussian odes for transmission. In pratie, Gaussian odesan be replaed by �nite-order signal onstellations suh as the use of quadrature-amplitudemodulation (QAM) or other pratial (suboptimal) oding shemes. Assuming a �xed biterror rate (BER) at the reeiver, the Shannon apaity formula an be used to dedue theahievable data rate (maximum information rate) of the lth user as [5℄:log�1 + l(p)� � nats/symbol; (3.1)where � is the SNR gap to apaity, whih is always greater than 1. In this paper, we absorb(1=�) into gll for all l, and instead write the ahievable data rate as log(1 + l(p)).Let w = (w1; : : : ; wL)> � 0 be a given probability vetor, where wl is a weight assignedto the lth link to reet priority (a larger weight reets a higher priority). The problem ofmaximizing the sum rate an be stated as the following optimization problem:maximize �w((p)) = LXl=1 wl log(1 + l(p))subjet to 0 � p � �p;variables: p = (p1; : : : ; pL)> 2 RL+ : (3.2)Let p? = (p?1; : : : ; p?L)> be a global optimal solution to (3.2). We �rst derive neessaryonditions obtained by straightforward di�erentiation for an optimal solution p? of (3.2).6



Lemma 3.1. Denote the gradient of �w byr�w() = � w11 + 1 ; : : : ; wL1 + L�> = w Æ (1+ )�1:Let (p) be de�ned as in (2.4). Then, H(p) = [ �l�pj ℄Ll=j=1, the Hessian matrix of (p), isgiven by H(p) = diag((Fp+ v)�1)(� diag((p))F + I):In partiular, rp�w((p)) = H(p)>r�w((p)):Corollary 3.1. Divide the set hLi = f1; : : : ; Lg into the following three disjointsets Smax, Sin and S0:Smax = fl 2 hLi; p?l = �plg; Sin = fl 2 hLi; p?l 2 (0; �pl)g; S0 = fl 2 hLi; p?l = 0g:Then, the following onditions hold.(H(p?)>r�w((p?)))l � 0 for l 2 Smax;(H(p?)>r�w((p?)))l = 0 for l 2 Sin; (3.3)(H(p?)>r�w((p?)))l � 0 for l 2 S0:Proof. Assume that p?l = �pl. Then ��pl�w((p))(p?) � 0. Assume that 0 < p?l < �pl.Then ��pl�w((p))(p?) = 0. Assume that p?l = 0. Then ��pl�w((p))(p?) � 0. 2Instead of solving (3.2) diretly, we now turn to a reformulation-relaxation approah thatsolves and provides useful bounds to (3.2) indiretly. We �rst need the following lemma.Lemma 3.2. Let w be a probability vetor, and assume that p? = (p?1; : : : ; p?L)> is anoptimal solution to (3.2). Then p?l = �pl for some l. Furthermore if wj = 0 then p?j = 0.Proof. Assume to the ontrary that p? < �p. Let ? = (p?). Sine P is ontinuous on�, there exists  2 � suh that  > ? suh that P () < �p. Clearly, �w((p?)) < �w().As  = (P ()), we dedue that p? is not an optimal solution to (3.2), ontrary to ourassumptions.Suppose that wj = 0. For p = (p1; : : : ; pL)>, let pj be obtained from p by replaingthe jth oordinate in p by 0. Assume that pj > 0. Then l(p) < l(pj) for l 6= j. Sinewj = 0, it follows that �w((p)) < �w((pj)). 2We ombine the above lemma with Theorem 2.1 and Corollary 2.2 to dedue an alter-native formulation of (3.2).Theorem 3.2. Problem (3.2) is equivalent to the following optimization problem:maximize �w()subjet to �(diag()(F + (1=�pl)ve>l )) � 1 8 l;variables:  = (1; : : : ; L)> 2 RL+ : (3.4)where ? is an optimal solution of the above problem if and only if P (?) is an optimalsolution p? of the problem (3.2). In partiular, any optimal solution ? satis�es the equality(2.16) for some integer l 2 [1; L℄. 7



Remark 2. Note that (3.4) is a nononvex problem having a stritly onave objetivefuntion and a set of nononvex spetral radius onstraints.We now show that the optimization problem (3.4) an be restated as an optimizationproblem with a onvex objetive funtion on a losed unbounded onvex domain. For = (1; : : : ; L)> > 0, we de�ne the logarithmi mapping:~ = log; (3.5)i.e.,  = e~ . Reall that for an irreduible nonnegative matrix B 2 RL�L+ log �(exB) is aonvex funtion [12℄. Furthermore, log(1+ et) is a stritly onvex funtion in t 2 R. Hene,the optimization problem in (3.4) is equivalent to the problem:maximize �w(e~)subjet to log �(diag(e~)(F + (1=�pl)ve>l )) � 0 8 l;variables: ~ = (~1; : : : ; ~L)> 2 RL : (3.6)The unboundedness of the onvex set in (3.6) is due to the identity 0 = e�1. In view ofLemma 3.2, it suÆes to onsider the optimization problem (3.2) in the ase where w > 0.Using the reformulation in (3.6), we dedue the following result that any solution satisfying(3.3) in (3.1) is also loal optimal to (3.2).Theorem 3.3. Consider the optimization problem (3.2). Then any point 0 � p? ��p satisfying the onditions (3.3) is a loal optimal solution.Proof. Sine w > 0, �w(e~) is a stritly onvex funtion in ~ 2 RL . Hene, the optimalvalue of (3.6) is ahieved exatly on the extreme points of the losed unbounded set spei�edin (3.6). (It may happen that some oordinates of the extreme point are �1.) Translatingthis observation to the optimization problem (3.2), we dedue the theorem. 2Sine the reformulation in (3.6) is a onvex maximization problem over a losed un-bounded onvex set, we hoose not to rehash the standard global optimization methods forsolving a standard onvex maximization problem (f. [21, 11℄). Rather, we hoose to exploitthe problem struture of (3.6) to �rst ompute good bounds to (3.6) (f. Setion 4) andthen to propose a global optimization algorithm (with �-suboptimality) to solve (3.6) (f.Setion 5). The global optimization algorithm is motivated by the relaxation tehniquesand the problem struture (log-onvexity of the spetral radius and separability in the ob-jetive funtion), and di�ers from the standard global optimization tehnique found in theliterature, e.g., [21, 11℄.We now give simple lower and upper bounds on the value of (3.2).Lemma 3.3. Consider the optimization problem (3.2). Let Bl = (F + (1=�pl)ve>l )) forl = 1; : : : ; L. Denote R = maxl2hLi �(Bl). Let � be de�ned by (2.17). Then�w((1=R)1) � maxp2[0;�p℄�w((p)) � �w(�):Proof. By Corollary 2.2, (p) � � for p 2 [0; �p℄. Hene, the upper bounds holds.Clearly, for  = (1=R)1, we have that �(diag()Bl) � 1 for l 2 hLi. Then, from Theorem3.2, �w((1=R)1) yields the lower bound. Equality is ahieved in the lower bound whenp? = tx(Bi), where i = argmaxl2hLi �(Bl), for some t > 0. 2The upper bound in Lemma 3.3 is trivial and an be too loose to be useful (as itdisregards the interferene power and the number of interferers at eah reeiver). The lowerbound is obtained when all the users have a ommon SIR value. Neessary onditions underwhih this lower bound is tight is given later (f. Corollary 5.2). We will examine how toexploit the problem struture of (3.6) to obtain progressively tighter bounds in Setion 4.8
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�	�����������	Fig. 4.1. Overview of the two relaxation tehniques and a global optimization tehnique used on the sumrate maximization problem: The relaxation tehniques are 1) A onvex relaxation with branh-and-boundmethod, and 2) a relaxation by three di�erent versions of a matrix ~F with suessive onvex approximationmethod and its onnetion to inverse problem given in the appendix (see Theorems 4.2 and 4.3 in theappendix). The global optimization tehnique relies on the �rst relaxation tehnique to �nd a good initialpoint (within �-suboptimality) that is then ombined with the suessive onvex approximation method tosolve the sum rate maximization problem. The key optimization problems (whether onvex or nononvex)and their relationships are also highlighted.4. Relaxations and onvex approximations. In this setion, we use two di�erentapproahes that exploits the problem struture of (3.4) or equivalently (3.6) to onstrutseveral relaxed versions of (3.4), whih an ompute useful upper bounds to (3.4). The�rst relaxation approah leverages the Friedland-Karlin inequalities, the separability of theobjetive funtion and its onvex envelope over box onstraints (a sum of readily omputedfuntions) to onstrut a linear program whose optimal value upper bounds that of (3.4).Progressively tigher bounds are then obtained by suessive partitioning of the box on-straints. The seond relaxation approah replaes the L spetral onstraints in (3.4) bya single one, whih has three di�erent versions depending on the hoie of a nonnegativematrix. Eah relaxed version is still nononvex, but neessary onditions under whih therelaxations are tight are given. Further, simpler algorithms derived from this approah areshown numerially to solve optimally these relaxation, thus providing useful upper boundsto (3.2). Figure 4.1 gives an overview of the development of these two relaxation approahesas well as a global optimization approah based on these relaxation tehniques (see Setion5 later).4.1. Convex Relaxation. We replae the (onvex) spetral radius onstraint set in(3.6) with a larger set by exploiting the Friedland-Karlin inequalities. We thus onsider the9



following optimization problem:maximize �w(e~)subjet to Xj (x(F + (1=�pl)ve>l ) Æ y(F + (1=�pl)ve>l ))j~j � � log �(F + (1=�pl)ve>l ) 8 l;�K � ~l � log �l; 8 l;variables: ~ = (~1; : : : ; ~L)> 2 RL : (4.1)Note that (4.1) is a onvex maximization problem with a polyhedron onstraint set (stilla nononvex and NP-hard problem). Observe that the onstraint set of (4.1) onsists of apolyhedron and a box onstraint set. In partiular, this onstraint struture allows us toompute useful upper bounds to (4.1) by exploiting several results in [7℄ that onnets therelationship between relaxation via onvexi�ation and the Lagrange dual relaxation. Morepreisely, the optimal Lagrange dual of (4.1) (whih upper bounds (4.1)) an be omputedby onsidering the onvex envelope of (4.1).To ompute the onvex envelope of a separable funtion over a box onstraint set, itis suÆient to ompute the onvex envelope of the individual summand of the funtionover their respetive domains (f. Theorem 2.3 in [7℄). For any l, the onvex envelope ofwl log(1 + e~l) over a onstraint set �~l � ~l � �~l is a linear funtion in ~l given bywl log(1 + e �~l)� log(1 + e �~l)�~l � �~l ( ~l � �~l) + log(1 + e �~l)! : (4.2)Now, using (4.2) and let �~l = �K; �~l = log �l for all l, we replae the objetive funtionof (4.1) by its onvex envelope over the box onstraint set f�K � ~l � log �l; 8 lg to obtainthe following linear program:2maximize �w(e~) :=Xl wl � log(1 + �l)� log(1 + e�K)log �l +K ( ~l +K) + log(1 + e�K)�subjet to Xj (x(F + (1=�pl)ve>l ) Æ y(F + (1=�pl)ve>l ))j~j � � log �(F + (1=�pl)ve>l ) 8 l;�K � ~l � log �l; 8 l;variables: ~ = (~1; : : : ; ~L)> 2 RL : (4.3)Interestingly, the optimal Lagrange dual of (4.3) (equivalent to the optimal value of(4.3) and also obtained by a dual linear program) is equal to the optimal Lagrange dualof (4.1) [7℄. In other words, (4.3) is the \dual of the dual" of (4.1). For all K (even forK ! 1), the optimal Lagrange dual of (4.3) upper bounds the optimal Lagrange dual of(3.6). Thus, the optimal value of (4.3) gives an upper bound to (3.6).Although the upper bound obtained by solving (4.3) may be loose, tighter boundsto (3.6) an be obtained iteratively by ombining this onvex relaxation approah with abranh-and-bound method in [1, 7, 11℄ that subdivides the set f�K � ~l � log �l; 8 lginto suessively smaller subsets (the retangular method, see, e.g., Chapter 7 in [11℄). Thesearh for the global optimal solution is performed over the subdivided sets organized in abinary tree data struture. More preisely, using the branh-and-bound method, (4.3) issolved in the �rst iteration (at the root of the binary tree). In subsequent iterations (lowerlevels of the binary tree), the set of lower and upper bounds on ~ in (4.3) is replaed by asubdivided set, and the objetive funtion of (4.3) is then replaed with a reweighted funtion2Due to separability, the onvex envelope of �w(e~), denoted by �w(e~), is the sum of the onvexenvelope of its onstituents. 10



using (4.2), i.e., the onvex envelope of �w(e~) over the subdivided set. In partiular,at the kth iteration of the branh-and-bound algorithm, we onsider a subdivided boxf ~l j �~l(k) � ~l � �~l(k); 8 lg and solvemaximize Xl wl log(1 + e �~l(k))� log(1 + e �~l(k))�~l(k)� �~l(k) ( ~l � �~l(k)) + log(1 + e �~l(k))!subjet to Xj (x(F + (1=�pl)ve>l ) Æ y(F + (1=�pl)ve>l ))j~j � � log �(F + (1=�pl)ve>l ) 8 l;�~l(k) � ~l � �~l(k); 8 l;variables: ~ = (~1; : : : ; ~L)> 2 RL ; (4.4)at one of the two nodes at the kth iteration of the branh-and-bound algorithm. We denote~LPk as the optimal solution to (4.4). A feasible power vetor an be obtained from pLPk =minfP (e~LPk ); �pg, and a lower bound to (3.2) is then given by �w((pLPk)). Rules tosubdivide a retangular box onstraint and branh into a seleted subdivided set as well asthe onvergene of this branh-and-bound method an be found in [1℄.In this method, at the kth iteration of the branh-and-bound algorithm, taking themaximum over all the lower bound at eah hild node aross all the levels in the binary tree(denote this maximum value as Lkbb and its orresponding solution as ~BBk) gives a globallower bound on the optimal value of (3.2). Likewise, taking the maximum over all the upperbound at eah hild node aross all the levels in the binary tree (denote this maximum valueas Ukbb) gives a global upper bound on the optimal value of (3.2). The di�erene betweenthese two bounds is noninreasing with k. Suppose Ukbb � Lkbb � � for some positive �, thenwe have �w(?) � �w(e~BBk ) + �. From a geometrial perspetive, this relaxation methodsystematially narrows down the SIR region that ontains the global optimal solution of(3.6), i.e., loate a �-suboptimal neighborhood of ~?.4.2. Relaxation by Interferene Matries. In this setion, we study the seondrelaxation method that uses speially onstruted nonnegative matries to �nd useful upperbounds to (3.2). Conditions under whih the relaxations are tight are stated, and simpler(lower omplexity and faster) algorithms are proposed to ompute the upper bounds.Now, we onsider a general matrix ~F that is used to denote one of the following threematries: 1) F + diag(�)�1;2) F + �1=1>�p�v1> ;3) F + (1=�pi)ve>i ; i = argmaxl �(F + (1=�pl)ve>l ): (4.5)Observe that the entries of ~F are funtions of all the problem parameters of (3.2). Inthe following, we onsider a relaxation problem to (3.4) that has only a single spetral radiusonstraint in ~F . We then utilize the spetra of ~F to �nd useful upper bounds to (3.4), whihin turns upper bounds (3.2).Lemma 4.1. Let 0 � p � �p. Assume that (p) is given by (2.4) and ~F is given by anyof the three matries in (4.5). Thenp � diag((p)) ~Fp; (4.6)and �(diag((p)) ~F ) � 1: (4.7)11



Proof. The assumption that 0 � pl � �pl implies that nlgll � ~fllpl. From the de�nition of(p), we dedue that pl = l(p)�Pj 6=l fljpj + vl�, whih together with the de�nition of ~Fand the above observation implies (4.6). The inequality (4.7) is a onsequene of Wielandt'sharaterization of the spetral radius of an irreduible nonnegative matrix [10℄. Indeed, ifp > 0, i.e. all the oordinates of p are positive, then (p) > 0. Hene, diag((p))) ~F is apositive matrix. Then, using Wielandt's haraterization, we have�(diag((p)) ~F ) � maxl=1;:::;L (diag((p)) ~Fp)lpl � 1:Observe next that if pl = 0, then ((p))l = 0. So if some of pl = 0, then �(diag((p)) ~F )is the spetral radius of the maximal positive submatrix of diag((p)) ~F . By applyingWielandt's haraterization to this positive submatrix, we dedue (4.7). 2Lemma 4.1 shows that any feasible p satis�es (4.7). This leads to the following relaxationof (3.4) that has only a single onstraint involving ~F in (4.5).Lemma 4.2. The optimal value ofmaximize �w()subjet to �(diag() ~F ) � 1; � �;variables:  = (1; : : : ; L)> 2 RL+ : (4.8)is not less than the optimal value of (3.2). Further, using P (), the optimal solution of(4.8) expressed in the power domain is given by x(diag( 0) ~F ), where 0 solves (4.8). Inpartiular, P () = p? if P ( 0) satis�es (3.3) in Corollary 3.1.Proof. In view of (4.7), we see that the optimal value in (4.8) is ahieved on a biggerset than the optimal value in (3.2). In view of (4.6), the optimal solution to (4.8) satis�esp = diag(0) ~Fp. Together with (4.7), this implies that p = x(diag(0) ~F ). 2Remark 3. Note that the onstraint  � � has been inluded expliitly in (4.8), beausethe spetral radius onstraint �(diag() ~F ) � 1 does not imply  � � (f. Corollary 2.2 and(3.4)).The seond relaxation method is to solve (4.8) by onsidering all the three hoies of ~Fin (4.5), and �nd the tightest relaxation to (3.2) among the three hoies of ~F . Note that,in (4.5), the �rst two nonnegative matries have positive diagonals, whereas the third non-negative matrix has only a single positive diagonal element. This fat will be important inharaterizing the optimal solution to the relaxation problems based on the inverse problemgiven in the appendix (see Theorems 4.2 and 4.3 later). From a omputational viewpoint,solving (4.8) is also useful when L is large (as the omputational time to solve (3.4) inreaseswith L).Corollary 4.1. We have �(diag( 0) ~F ) = 1 in (4.8), where  0 solves (4.8) opti-mally.Proof. Corollary 4.1 is easily proved by noting that both the objetive funtion and thespetral radius funtion in (4.8) inrease with . 212



~F Neessary ondition for P (0) = p?F + diag(�)�1 p?l = f0; �pg; 8 lF + �1=1> �p�v1> p? = �pF + (1=�pi)ve>i , p?i = �pi,i = argmaxl �(F + (1=�pl)ve>l ) w = x Æ y (f. Corollary 5.2)Table 4.1A omparison of the di�erent versions of ~F in the seond relaxation method, wherein the optimalsolution in (4.8) is given by 0. Neessary onditions under whih the relaxed problem (4.9) solves (3.6),equivalently (3.2), are given.Using the logarithmi mapping in (3.5), solving (4.8) is thus equivalent to solvingmaximize �w(e~)subjet to log �(diag(e~) ~F ) � 0;~ � log �;variables: ~ = (~1; : : : ; ~L)> 2 RL : (4.9)Still, (4.9) or equivalently (4.8) is nononvex and hard to solve. In the following, we giveonditions that relate the optimal power p? and the solution of (4.9) for di�erent ~F . Theseonditions are also neessary when the solution of (4.9) solves (3.6), i.e., (4.9) is a tightrelaxation of (3.6).Corollary 4.1 implies that if the optimizer of (4.8) 0 satis�es P ( 0) � �p, then P (0) isalso the global optimizer of (3.2). Hene, P ( 0) � �p is a neessary and suÆient onditionfor the relaxation to be tight. Weaker neessary onditions an however be obtained byheking that the following holds: diag(e~0) ~Fp? = p? (4.10)for some p?. A summary of the neessary onditions on p? satisfying (4.10) for the threedi�erent versions of ~F is given in Table 4.1, whereby the relaxed problem (4.9) solves (3.6).Now, we onsider using a suessive onvex approximation method to solve (4.9) diretly.This method is motivated by the inverse problem given in the appendix. This is given inthe following algorithm to solve (4.9) and also yield a feasible solution to (3.2).Algorithm 1 (Iteratively Reweighted Relaxation Algorithm).1. Compute the weight m(k + 1):m(k + 1) = r�w(e~(k)) Æ e~(k)1> �r�w(e~(k)) Æ e~(k)� ; (4.11)2. Obtain ~(k + 1) as the optimal solution to:maximize Plml(k + 1)~subjet to log �(diag(e~) ~F ) � 0;~l � log �l; 8 l;variables: ~ = (~1; : : : ; ~L)> 2 RL : (4.12)13



3. Compute the power: p(k + 1) = minnP (e~(k+1)); �po : (4.13)Theorem 4.3. For any ~(0) in a suÆiently lose neighborhood of ~0, ~(k) in Algo-rithm 1 onverges to the optimal solution of (4.8).Proof. We use the fat that in a suÆiently lose neighborhood of ~0, the domain setis onvex, and the objetive funtion �w(e~) is twie ontinuously di�erentiable. We thenuse a suessive onvex approximation tehnique to ompute ~0 assuming that the initialpoint is suÆiently lose to ~0. The onvergene onditions for suh a tehnique are givenin [17, 4℄. Instead of solving (4.8) diretly, we replae the objetive funtion of (4.8) ina neighborhood of a feasible point ~(0) by its Taylor series (up to the �rst order terms):r�w(e~) Æ e~ � �w(e~(0)) + (r�w(e~(0)) Æ e~(0))>(~ � ~(0)). Assume a feasible ~(0) thatis lose to ~0. We then ompute a feasible ~(k + 1) by solving the (k + 1)th approximationproblem:maximize �r�w(e~(k)) Æ e~(k)=1>(r�w(e~(k)) Æ e~(k))�> (~ � ~(k))subjet to log �(diag(e~) ~F ) � 0;~l � log �l; 8 l;variables: ~ = (~1; : : : ; ~n)> 2 RL ; (4.14)where ~(k) is the optimal solution of the kth approximation problem. This inner approxima-tion tehnique onverges to a loal optimal solution [17, 4℄. In addition, if ~(0) is suÆientlylose to ~ 0, then limk!1 ~(k) = ~ 0.Next, we leverage Corollary A.6 in the appendix to solve (4.14). At the global opti-mality of (4.8), we have the neessary ondition of (4.8): x(diag(e~0) ~F ) Æ y(diag(e~0) ~F ) =r�w(e~0) Æ e~0=1>(r�w(e~0) Æ e~0).Interestingly, Algorithm 1 an be viewed as an iteratively reweighted method thatprodues better estimates as the optimization progresses. The weights in (4.12) are de-termined by the previous solution. Now, suppose the positive weight vetor r�w(e~0) Æe~0=1>(r�w(e~0) Æ e~0) is used as the weight input to (4.12). Then, (4.12) outputs ~ 0.Intuitively speaking, if the weight vetor is approximately proportional to r�w(e~0) Æe~0=1>(r�w(e~0) Æ e~0), then Algorithm 1 should onverge to a unique ~ 0. Based on theinverse problem given in the appendix (see Theorems 4.2 and 4.3), we quantify this in thefollowing for the di�erent hoies of ~F (and the diagonals of ~F matter in a unique ~0).Theorem 4.2. Suppose that ~F is given by 1) F+diag(�)�1 or 2) F+�1=1>�p�v1> .Let m = (m1; : : : ;mL)> be a positive probability vetor. Thenmax=(1;:::;L)>>0;�(diag() ~F )�1 LXl=1 ml log l = LXl=1 ml log 0l ; (4.15)where 0 = (01; : : : ; 0L)> > 0 is the unique vetor satisfying the following onditions:�(diag(0) ~F ) = 1 and x(diag( 0) ~F ) Æ y(diag( 0) ~F ) =m.Proof. We use Theorem A.3 and Corollary A.6 in the appendix to prove Theorem 4.2. 2Combining Theorem A.3 and Corollary A.10 in the appendix, we dedue the followingresult. 14



Theorem 4.3. Suppose that ~F is given by 3) F + (1=�pi)ve>i ; i = argmaxl �(F +(1=�pl)ve>l ). Letm = (m1; : : : ;mL)> be a positive probability vetor satisfying the ondition:X8 j 6=lmj > ml for all l 2 hLi: (4.16)Then max=(1;:::;L)>>0;�(diag()F̂ )�1 LXl=1 ml log l = LXl=1 ml log 0l ; (4.17)where 0 = (01; : : : ; 0L)> > 0 is a vetor satisfying the following onditions: �(diag( 0)F̂ ) =1 and x(diag(0)F̂ ) Æ y(diag(0)F̂ ) =m.The above last two theorems enable us to hoose m for whih we know the solutionto the optimization problems (4.15) and (4.17). Namely, hoose �1;�2 > 0 suh thatA1 = diag(�1) ~F ;A2 = diag(�2)F̂ have spetral radius one. Let mi = x(Ai) Æ y(Ai) fori = 1; 2. Then for m1, (4.15) has the unique optimal solution ? = �1. For m2, (4.17)has an optimal solution ? = �2. In view of Theorem A.3, m2 does not have to satisfy theondition P8 j 6=lmj > ml for all l 2 hLi.4.3. Relaxation with Improved Initialization. Observe that it is viable to applythe �rst relaxation tehnique, i.e., the onvex relaxation and branh-and-bound method,to (4.9), and obtain upper bounds to (4.9). The bounds obtained will be looser thanthat employed on (3.6). On the other hand, Algorithm 1 requires an intital point that issuÆiently lose to the optimal solution. We now propose a natural proedure of �ndingsuh a good initial point. The basi idea is to employ the �rst relaxation tehnique, i.e.,solve (4.4) iteratively by branh and bound to loate a point log(minfP (e~LPk ); �pg) loseenough to the optimal solution ~? (, i.e., a point in a �-suboptimal region), and then inputit as the initial point in Algorithm 1.5. Global Optimization Algorithm. We now state a global optimization algorithmthat ombines the relaxation tehniques and the improved initialization in Setion 4 to solve(3.6) and equivalently to yield an optimal solution to (3.2) to within a presribed aurayon the suboptimality.Algorithm 2 (Iteratively Reweighted Optimal Algorithm).Initial Phase: Set a presribed auray �. Find a �-suboptimal region of (3.6) usingthe branh-and-bound tehnique in Setion 4 and output the solution that yields the tightestlowest bound Lbb: ~BB. Set ~(0) = ~BB.1. Compute the weight m(k + 1):m(k + 1) = r�w(e~(k)) Æ e~(k)1> �r�w(e~(k)) Æ e~(k)� ; (5.1)2. Obtain ~(k + 1) as the optimal solution to:maximize Plml(k + 1)~subjet to log �(diag(e~)(F + (1=�pl)ve>l )) � 0 8 l;variables: ~ = (~1; : : : ; ~L)> 2 RL : (5.2)3. Compute the power: p(k + 1) = minnP (e~(k+1)); �po : (5.3)15



Theorem 5.1. Suppose we have Ubb �Lbb � � at the ompletion of the initial phase inAlgorithm 2, and the initial phase output ~BB is a feasible solution to (3.6). If ~(0) = ~BB,then ~(k) in Algorithm 2 onverges to a point ~� in a �-suboptimal neighborhood of theoptimal solution of (3.6), i.e., �w(e~?)��w(e~�) � �.Furthermore, ~(k) in Algorithm 2 onverges to ~? for a suÆiently small �.Proof. Theorem 5.1 an be proved by ombining the previous proofs in Setion 4.The following result demonstrates a speial ase in whih the optimal solution to (3.2)is given analytially, and an be omputed by Algorithm 2 using a simpler initial point andin only one iteration.Corollary 5.2. If ~?l is equal for all l, then w = x(F +(1=�pi)ve>i )Æy(F +(1=�pi)ve>i ),where i = argmaxl �(F + (1=�pl)ve>l ). In this speial ase, ~(k) in Algorithm 2 onvergesto � log �(F + (1=�pi)ve>i ) in only one iteration from any initial point ~(0) suh that ~l(0)are equal for all l. Moreover, p(k) in Algorithm 2 onverges to the optimal solution of (3.2)given by x(F + (1=�pi)ve>i ) (up to a saling fator).Proof. Suppose that ~?l is equal (to a value ~?) for all l. At optimality, the onstraintset of (3.6) redues to ~? + log �(F + (1=�pl)ve>l ) � 0 for all l, and sine at least oneof the spetral radius onstraints in (3.6) is tight, ~? = � log �(F + (1=�pi)ve>i ), wherei = argmaxl �(F + (1=�pl)ve>l ) (f. the third matrix in (4.5)). Now, from Corollary A.6, wealso have the optimality ondition:x(diag(e~?)(F+(1=�pi)ve>i ))Æy(diag(e~?)(F+(1=�pi)ve>i )) = r�w(e~?)Æe~?=1>(r�w(e~?)Æe~?):(5.4)Using the fat that ~?l is equal for all l, (5.4) redues tox(F + (1=�pi)ve>i ) Æ y(F + (1=�pi)ve>i ) = w:Hene, w = x(F + (1=�pi)ve>i ) Æ y(F + (1=�pi)ve>i ) only if ~?l is equal for all l.To prove the onvergene of ~(k), any initial point ~(0) suh that ~l(0) are equal for alll yields m(k) = w for all k. Hene, the solution to (5.2) is always � log �(F + (1=�pi)ve>i ).Sine the optimality of (3.2) and (3.6) impliesdiag(e~?)(F + (1=�pi)ve>i )p? = p? = �(diag(e~?)(F + (1=�pi)ve>i ))p?; (5.5)p? an be interpreted as the right eigenvetor of diag(e~?)(F + (1=�pi)ve>i ). Together withthe assumption that ~?l is equal for all l, this implies that p? = x(F + (1=�pi)ve>i ) (up to asaling fator). This proves Corollary 5.2.An example with a geometrial illustration of Corollary 5.2 is given in the following.Example 5.1. We give a simple illustrative example for the two user ase. Thehannel gains are given by G11 = 0:73; G12 = 0:04; G21 = 0:03; G22 = 0:89 and the AWGNfor the �rst and seond user are 0.1 and 0.3 respetively. The individual maxmimum powervetor �p is (1; 50)>. We then set w = x(F + (1=�pi)ve>i ) Æ y(F + (1=�pi)ve>i ), where i = 1in (3.2). The rate of the two users evaluated at the solution of (3.2) given by p? = x(F +(1=�pi)ve>i ) (up to a saling fator) is then plotted on the ahievable rate region (showing thatmaximizing the minimum rate oinides with the weighted sum rate). Algorithm 2 onvergesto this point in one iteration starting from any positive initial point suh that ~(k) = 1 (upto a saling fator).6. Numerial Examples. In this setion, we evaluate the performane of our globaloptimization algorithm, the relaxation tehniques, Algorithm 1 and Algorithm 2. In thebranh-and-bound tehnique, we hoose the retangular set with the largest upper boundand use the rule that splits the retangular set with the longest edge [1℄. We use nats persymbol for the sum rate unit. 16
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Fig. 5.1. Ahievable rate region for a 2-user interferene hannel. From a geometrial perspetive, theweighted sum rate point (with the weight vetor w = x(F + (1=�pi)ve>i ) Æ y(F + (1=�pi)ve>i ), where i = 1,superimposed on the rate region) evaluated at the optimal solution ? = � log �(F +(1=�pi)ve>i )(1; 1)> �ndsthe largest hyperube that is ontained inside the ahievable rate region.6.1. Expt. 1 (Comparison with Lagrange dual relaxation). We ompare theupper bounds obtained by our relaxation tehniques and the Lagrange dual relaxation. Weonsider the two-user example in [15℄:max0�pl�2; l=1;2 12 log�1 + p1p2 + 1�+ 12 log�1 + p2p1 + 1� : (6.1)In [15℄, the optimal value of (6.1) and its optimal Lagrange dual value is omputed expliitlyas (log 3)=2 and (log 5)=2 respetively, i.e., a positive duality gap value of log(5=3)=2. Theoptimal solution p? is either (2; 0)> or (0; 2)> (i.e., ? is (2; e�K)> or (e�K ; 2)> in (3.4)respetively) as, for the two-user ase with w1 = w2, it suÆes to hek the exteme pointsof the feasible set of (6.1) to solve (6.1) [6℄.Figure 6.1 illustrates how the �rst method by onvex relaxation omputes an upperbound to (6.1). In this example, an upper bound very lose to the optimal value of (log 3)=2within an aeptable auray an be obtained after solving two linear programs. An upperbound better than the optimal Lagrange dual value (log 5)=2 is obtained after solving tenlinear programs, and it takes another twelve more linear programs to ertify that (log 3)=2is the global optimal value. The binary tree in Figure 6.1 has a total of fourteen levels(only the root and the �rst two levels are shown in Figure 6.1. Figure 6.2 shows the upperand lower bounds omputed by the branh-and-bound method, and the branh and boundmethod onverges after twenty-two iterations (� = 1:5� 10�3).Next, we apply the seond relaxation method that uses Algorithm 1 on (6.1), and weuse an initial vetor (�0:172; �1:061)> (not too lose to ~?). The optimal value omputedby Algorithm 1 when we use: 1) ~F = F + diag(�), 2) ~F = F + (1=1> �p)v1> and 3)17



Solve (4.3): [0:5108; 1:0866℄A : [0:5493; 0:5493℄ B : [0:4999; 1:0836℄E : [0:5108; 1:0746℄ F : [0:5493; 0:5493℄Fig. 6.1. Solving (6.1) using the �rst relaxation tehnique: Suessive linear program with a branh-and-bound algorithm (the retangular method, see, e.g., Chapter 7 in [11℄). We use a retangular set[�K; log(2)℄2 with K = 100. The lower and upper bounds are depited in brakets next to the subdividedset. At the root of the tree, (4.3) is solved (original retangle). We then have Lbb = 0:5108 and Ubb =1:0866. In the seond iteration, the retangular set is partitioned into two: A and B (A is the set f~1 2[�K; log(2)=2℄; ~2 2 [�K; log 2℄g and B is the set f~1 2 [log(2)=2; log 2℄; ~2 2 [�K; log 2℄g). We thenhave Lbb = 0:5493 and Ubb = 1:0836. At the third iteration, we partition the set B to obtain the bottomleaf hildren C and D (C is the set f~1 2 [log(2)=2; log 2℄; ~2 2 [log(2)=2; log 2℄g and D is the set f~1 2[log(2)=2; log 2℄; ~2 2 [�K; log(2)=2℄g). We then have Lbb = 0:5493 and Ubb = 1:0746. Observe that a lowerand upper bound of 0:5493 within aeptable auray to the optimal primal value (log 3)=2 is obtained aftersolving two linear programs (at the node with set A ontaining the global optimal solution (�K; log 2)> ).Note that set F ontaining the other global optimal solution (log 2; �K)> also yields the same lower andupper bound of 0:5493 within aeptable auray after solving three linear programs.
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Fig. 6.2. Upper and lower bounds on the sum rate omputed by the �rst relaxation tehnique that usessuessive linear programs and branh-and-bound in Expt. 1.~F = F + (1=�pi)ve>i are given by (log 3)=2, (log 5)=2 and (log 3)=2, respetively. The �rstand third version of ~F yield the global optimal primal value (as well as a feasible powervetor (2; 0)>), whereas the seond version yields the optimal dual value (with an infeasiblepower vetor (4; 0)>). This shows that Algorithm 1 an �nd the global optimal powersolution to (3.2) (f. the neessary ondition in the seond row of Table 4.1).Lastly, using the feasible ~ output by the �rst relaxation method: (log(2=3); log(2=3))>and (log 2;�K)> that yields Lbb at the root and �rst level of the binary tree in Fig.6.1, respetively, as initial points, Algorithm 2 onverges to the global optimal solution(log 2;�K)> .6.2. Expt. 2 (Convergene of Algorithm 2). The hannel gains are given byG11 = 0:73; G12 = 0:04; G21 = 0:03; G22 = 0:89 and the AWGN for the �rst and seond user18
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(a) (b)Fig. 6.4. Illustration of the onvergene of the branh-and-bound relaxation for (a) 100 users and (b)200 users in Expt. 3.are 0.1 and 0.1 respetively. The individual maxmimum power vetor �p is (1:8; 20:5)> . Wethen set w = x(F + (1=�pi)ve>i ) Æ y(F + (1=�pi)ve>i ), where i = 1 in (3.2), and the optimalpower is p? = x(F+(1=�pi)ve>i ) in (3.2) (hene the optimal solution to (3.4) is 8:334(1; 1)>.).Using the two di�erent outputs from the branh-and-bound algorithm (at the root level andat the 10th iteration) shown in Figure 6.3(a) as initial points, the onvergene of Algorithm2 is shown in Figure 6.3(b). As observed in Figure 6.3(b), Algorithm 2 onverges to theoptimal solution with the two di�erent initial points as input after four iterations.6.3. Expt. 3 (Larger examples of branh-and-bound relaxation). Figure 6.4illustrates the onvergene of the branh-and-bound relaxation method for randomly gener-ated problems with a larger number of users. As observed from Figure 6.4, when L = 100,the optimal solution an be omputed after solving 190 linear programs, but it takes another310 linear programs to ertify that the optimal solution is within a (1� 10�3)-suboptimalregion. When L = 200, the optimal solution an be omputed after solving 4 linear pro-grams, but it takes approximately another 1400 linear programs to ertify that the optimalsolution is within a (1� 10�3)-suboptimal region.7. Conlusion. We studied the nononvex sum rate maximization problem that �ndsappliations in power ontrol of CDMA wireless networks. Using tools from nonnegativematrix theory, in partiular the Perron-Frobenius Theorem and the Friedland-Karlin in-equalities, we showed that this problem an be reformulated as an equivalent onvex max-imization problem on a losed unbounded onvex set. Utilizing the reformulation problemstruture, we studied two relaxation tehniques to ompute progressively tight bounds to19



the nononvex problem. One was based on onvex relaxation by onvex envelope and theother was based on suessive onvex approximation. We showed that the optimal solutionto the sum rate maximization and its relaxation problems an be analytially harater-ized by the spetra of speially-rafted nonnegative matries. Motivated by the relaxationtehniques, we proposed a global optimization algorithm with �-suboptmality to solve thesum rate maximization problem. We also gave new appliations of the Friedland-Karlininequalities to inverse problems in nonnegative matrix theory. As future work, we plan toextend our results in this paper to a multiple-frequeny hannel that has appliations in aDSL multiuser system.Appendix A. Results related to Friedland-Karlin inequalities. In this setion,we reall some results from [9℄ and state the extensions of these results, and then illustratetheir appliations in this paper. We �rst state the following extension of [9, Theorem 3.1℄:Theorem A.1. Let A 2 RL�L+ be an irreduible nonnegative matrix. Assume thatx(A) = (x1(A); : : : ; xL(A))>;y(A) = (y1(A); : : : ; yL(A))> > 0 are left and right Perron-Frobenius eigenvetors of A, normalized suh that x(A)Æy(A) is a probability vetor Suppose is a nonnegative vetor. Then�(A)Yl (x(A)Æy(A))ll � �(diag()A): (A.1)If  is a positive vetor then equality holds if and only if all l are equal. Furthermore, forany positive vetor z = (z1; : : : ; zL)>, the following inequality holds:�(A) � LYl=1� (Az)lzl �(x(A)Æy(A))l : (A.2)If A is an irreduible nonnegative matrix with positive diagonal elements, then equality holdsin (A.2) if and only if z = tx(A) for some positive t.Proof. Theorem 3.1 in [9℄ makes the following assumptions. First, in (A.1), it assumesthat  > 0. Seond, in (A.2), it assumes that �(A) = 1. Third, the equality ase in (A.2)for z > 0 is stated for a positive matrix A. We now show how to dedue the stronger versionof Theorem 3.1 laimed here.First, by using the ontinuity argument, we dedue the validity of (A.1) for any  � 0.Seond, by replaing A by tA, where t > 0, we dedue that it suÆes to show (A.2) in thease �(A) = 1.Third, to dedue the equality ase in (A.2) for z > 0, we need to examine the proofof Lemma 3.2 in [9℄. The proof of the Lemma 3.2 applies if the following ondition holds.For any sequene of probability vetors zi = (z1;i; : : : ; zL;i)>; i = 1; : : :, whih onvergesto a probability vetor � = (�1; : : : ; �L)>, where � has at least one zero oordinate, thefuntion QLl=1 � (Az)lzl �(x(A)Æy(A))l tends to 1 on the sequene zi; i = 1; : : :. Assume thatA = fl 2 hLi; �l = 0g. Note that the omplement of A in hLi, denoted by A is nonempty.Sine A = [aij ℄ has positive diagonal entries, it follows that (Az)lzl � all > 0 for eahl 2 hLi. Sine A is irreduible, there exist l 2 A and m 2 A suh that alm > 0. Hene,limi!1 (Azi)lzl;i =1. This shows that the unboundedness ondition holds. 2The following result gives an interpretation of (A.1) in terms of the supporting hyper-plane of the onvex funtion log �(e�B), where B 2 RL�L+ is irreduible and � 2 RL .Theorem A.2. Let B 2 RL�L+ be an irreduible nonnegative matrix. Let � =(�1; : : : ; �L)> 2 RL satisfy the ondition �(e�B) = 1. Denote A = e�B and assume that20



x(A) = (x1(A); : : : ; xL(A))>;y(A) = (y1(A); : : : ; yL(A))> > 0 are left and right Perron-Frobenius eigenvetors of A, normalized suh that x(A) Æ y(A) is a probability vetor. LetH(�) = LXl=1 xl(A)yl(A)(�l � �l): (A.3)Then H(�) � 0 is the unique supporting hyperplane to the onvex set log �(e�B) � 0 at� = �.Proof. Let � 2 RL . Then e�B = e���A. Theorem A.1 implies that H(�) � log �(e�B).Thus, H(�) � 0 if log �(e�B) � 0. Clearly, H(�) = 0. Hene, H(�) � 0 is a supportinghyperplane of the onvex set log �(e�B) � 0. Sine the funtion log �(e�B) is a smoothfuntion of �, it follows that H(�) � 0 is unique. 2We now give an appliation of (A.2) in Theorem A.1.Theorem A.3. Let B 2 RL�L+ be an irreduible nonnegative matrix. Let � =(�1; : : : ; �L)> 2 RL . Letm = x(diag(e�)B)Æy(diag(e�)B) = (m1; : : : ;mL)> be a probabilityvetor. Then, for any positive vetor z = (z1; : : : ; zL)>,LXl=1 ml log zl(Bz)l � � log �(diag(e�)B) +Xl=1 ml�l: (A.4)If B has a positive diagonal, then equality holds if and only if z = tx(diag(e�)B) for somet > 0.Proof. Let A = diag(e�)B. ThenLXl=1 ml log (Bz)lzl = LXl=1 ml log (Az)lzl �Xl=1 ml�l:Use (A.2) to dedue (A.4). The equality ase follows from the equality ase in (A.2). 2We now turn to applying Theorem A.1 to solve the following inverse problem.Problem A.4. Let B 2 RL�L+ ;m 2 RL+ be given irreduible nonnegative ma-trix and positive probability vetor, respetively. When does there exist � 2 RL suh thatx(diag(e�)B) Æ y(diag(e�)B) = m? If suh � exists, when is it unique up to an additiont1? To solve the inverse problem, we reall Theorem 3.2 in [9℄ (a onsequene of TheoremA.1, i.e., Theorem 3.1 in [9℄) that is reprodued in the following.Theorem A.5. Let A 2 RL�L+ ;u;v 2 RL+ be given, where A is irreduible withpositive diagonal elements and u;v are positive. Then, there exists D1; D2 2 RL�L+ suhthat D1AD2u = u; v>D1AD2 = v>; D1 = diag(f); D2 = diag(g) and f ;g > 0: (A.5)The pair (D1; D2) is unique to the hange (tD1; t�1D2) for any t > 0. There exist � 2 RLsuh that x(diag(e�B)) Æ y(diag(e�B)) = m. Furthermore, � is unique up to an additiont1. Corollary A.6. Let B 2 RL�L+ ;m 2 RL+ be a given irreduible nonnegative matrixwith positive diagonal elements and a positive probability vetor, respetively. Then, thereexists � 2 RL suh that x(diag(e�)B) Æ y(diag(e�)B) = m. Furthermore, � is unique up21



to an addition of t1. In partiular, this � an be omputed by solving the following onvexoptimization problem: maximize m>�subjet to log �(diag(e�)B) � 0;variables: � = (�1; : : : ; �L)> 2 RL : (A.6)Proof. Let u = 1;v = m. Then, from Theorem A.5, there exists D1; D2 two diagonalmatries with positive diagonal entries suh thatD1BD21 = 1;m>D1BD2 =m>. Considerthe matrix D2D1B = D2(D1BD2)D�12 . It is straightforward to see that x(D2D1B) Æy(D2D1B) =m. Hene, � is the unique solution of diag(e�) = D2D1.Assume that � 2 RL satis�es x(diag(e�)B) Æ y(diag(e�)B) = m. By onsidering~� = � + t1, we may assume that �(diag(e�)B) = 1. Let D4 = diag(x(diag(e�)B). Then(D�14 diag(e�)BD4)1 = 1. Let D3 = D�14 diag(e�). Hene, y(D3BD4) = m. In view ofTheorem A.5, diag(e�) = D4D3 = D2D1 = diag(e�).Next, we show that (A.6) omputes the required �. Sine (A.6) is onvex, we applythe Karush-Kuhn-Tuker onditions to (A.6). The stationarity of the Lagrangian yieldsx(diag(e�)B) Æ y(diag(e�)B) =m, thus proving the orollary. 2We illustrate the neessity of the irreduible nonnegative matrix having positive diagonalelements in Corollary A.6 by the following example.Example A.7. Let us look at the matrix F de�ned in (2.2) having zero diagonalentries and positive o�-diagonal entries. For L = 2, it is easy to show that x(F ) Æ y(F ) =( 12 ; 12 )>. In partiular, for L = 2, Problem A.4 is not solvable for m 6= ( 12 ; 12 )>. Similarly,given positive u;v 2 R2 suh that u Æ v 6= t(1; 1) for any positive t, (A.5) does not hold forA = F . For L � 3, the situation is di�erent, and is illustrated in the following result.Theorem A.8. Let L � 3; A 2 RL�L+ ;u = (u1; : : : ; uL)>;v = (v1; : : : ; vL)> 2 RL+be given, where A is a matrix with zero diagonal entries and positive o�-diagonal elements,and u;v are positive. Assume that m = u Æv is a probability vetor satisfying the onditionX8 j 6=lmj > ml for all l 2 hLi: (A.7)Then, there exists D1; D2 2 RL�L+ suh that (A.5) holds.Proof. Let Ai = A + (1=i)I; i = 1; : : :, where I is the L� L identity matrix. TheoremA.5 implies Bi = D1;iAiD2;i; D1;i = diag(fi); D2;i = diag(gi); Biu = u; v>Bi = v>;fi = (f1;i; : : : ; fL;i)>; wi = (g1;i; : : : ; gL;i)>; si = maxj2hLi fj;i = maxj2hLi gj;i; i = 1; : : : :Note that eah entry of Bi is bounded by maxj ujminj uj . By passing to the subsequeneBik ; fik ;gik ; 1 �i1 < i2 < : : :, we an assume that the �rst subsequene onverges to B, and the last twosubsequenes onverge in generalized sense:limk!1Bik = B = [bjl℄ 2 RL�L+ ; limk!1 fik = f = (f1; : : : ; fL)>; limk!1 gij = g = (g1; : : : ; gL)>;fj ; gj 2 [0;1℄; j = 1; : : : ; L; limk!1 sik = s = maxj2hLi fj = maxj2hLi gj 2 [0;1℄:Note that Bu = u; v>B = v>: (A.8)22



Assume �rst that s <1. Then B = diag(f)A diag(g). In view of (A.8), f Æg > 0. Thisproves the theorem in this ase.Assume now that s =1. LetF1 = fj 2 hLi; fj =1g; F+ = fj 2 hLi; fj 2 (0;1); g F0 = fj 2 hLi; fj = 0g;G1 = fj 2 hLi; gj =1g; G+ = fj 2 hLi; gj 2 (0;1); g G0 = fj 2 hLi; gj = 0g:Sine o�-diagonal entries of A are positive, and B 2 RL�L+ it follows that F1 = G1 = flgfor some l 2 hLi. Furthermore, F+ = G+ = ;. So F0 = G0 = hLinflg. Assume �rst thatl = 1. Then the prinipal submatrix [bjl℄Lj=l=2 is zero. (A.8) yields thatbj1 = uju1 ; b1j = vjv1 for j = 2; : : : ; L; b11u1v1 + LXj=2 ujvj = u1v1:Sine b11 � 0, the above last equality ontradits the ondition (A.7) for l = 1. Similarargument implies the impossibility of F1 = G1 = flg for any l � 2. Hene, s <1 and weonlude the theorem. 2We do not know whether, under the onditions of Theorem A.8, the diagonal matries(D1; D2) are unique up to the transformation (tD1; t�1D2). We now generalize the abovetheorem.Theorem A.9. LetL � 2; A = [ajl℄Lj=l=1 2 RL�L+ ; 0 < u = (u1; : : : ; uL)>; v = (v1; : : : ; vL)> 2 RL+be given. Assume that A has positive o�-diagonal elements, and m = u Æ v is a probabilityvetor satisfying the ondition X8 j 6=lmj > ml (A.9)for eah l suh that all = 0. Then, there exists D1; D2 2 RL�L+ suh that (A.5) holds.Proof. Assume �rst that L � 3. In view of Theorems A.5 and A.8, it suÆes to assumethat A has positive and zero diagonal entries. Apply the proof of Theorem A.8 and thefollowing observation. If F1 = G1 = flg then all = 0.Assume now that L = 2. Note that if A has a zero diagonal then the ondition (A.7)an not hold. Assume now that A has at least one positive diagonal element. Then theabove arguments for L � 3 apply. 2Corollary A.10. Let B = [bjl℄Lj=l=1 2 RL�L+ ;m 2 RL+ be a given matrix withpositive o�-diagonal elements and a positive probability vetor, respetively. Assume thatL � 2 and m satis�es the onditions (A.9) for eah l suh that bll = 0. Then, there exists� 2 RL suh that x(diag(e�)B) Æ y(diag(e�)B) =m.REFERENCES[1℄ V. Balakrishnan, S. Boyd and S. Balemi, Branh and bound algorithm for omputing the minimumstability degree of parameter-dependent linear systems, International Journal of Robust and Non-linear Control, 1 (4), 295-317, 1991.[2℄ A. Berman and R. J. Plemmons, Nonnegative Matries in the Mathematial Sienes, Aademi Press,1979.[3℄ M. Chiang, P. Hande, T. Lan and C. W. Tan, Power Control in Wireless Cellular Networks, Founda-tions and Trends in Networking, 2 (4), 381-533, 2008.23
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