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Overview

1 Perron-Frobenius theorem for irreducible nonnegative tensors.

2 Diagonal scaling of nonnegative tensors to tensors with given
rows, columns and depth sums.
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SVD of nonnegative matrices

A ∈ Rm×n, σ1(A) ≥ . . . ≥ 0 singular values
Ayi = σi(A)xi , A>xi = σi(A)yi
±σi(A), i = 1, . . . are critical values of f (x,y) = x>Ay
restricted to ‖x‖2 = ‖y‖2 = 1

Perron-Frobenius for A = [aij ] ∈ Rm×n
+ :

u ∈ Rm
+,v ∈ Rn

+, u>u = v>v = 1 Av = σ1(A)u, A>u = σ1(A)v

maxx∈Rm,y∈Rn,‖x‖2=‖y‖2=1 x>Ay = u>Av.

G(A) = (V1 ∪ V2,E) bipartite graph on
V1 = 〈m〉 := {1, . . . ,m},V2 := 〈n〉, (i , j) ∈ E ⇐⇒ aij > 0.

If G(A) connected. Then u,v unique.

Proof: A>A,AA> are irreducible
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Rank one approximations for 3-tensors

Rm×n×l IPS: 〈A,B〉 =
∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖2 =
√
〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of X
PX(T ) =

∑d
i=1〈T ,Xi〉Xi , ‖PX(T )‖22 =

∑d
i=1〈T ,Xi〉2

‖T ‖22 = ‖PX(T )‖22 + ‖T − PX(T )‖22

Best rank one approximation of T :
minx,y,z ‖T − x⊗ y⊗ z‖2 = min‖x‖2=‖y‖2=‖z‖2=1,a ‖T − a x⊗ y⊗ z‖2

Equivalent: max‖x‖2=‖y‖2=‖z‖2=1
∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=
∑

j=k=1 ti,j,kyjzk = λx
T × x⊗ z = λy, T × x⊗ y = λz
λ singular value, x,y, z singular vectors
How many distinct singular values are for a generic tensor?
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`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)
>‖p := (

∑n
i=1 |xi |p)

1
p

Problem: max‖x‖p=‖y‖p=‖z‖p=1
∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=
∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t
2s−1 , t , s ∈ N)

See L.-H. Lim 2005 for more general results
p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobenius
theorem?, UNIQUENESS

Yes, for p ≥ 3, No, for p < 3,
Friedland-Gauber-Han [5]
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Outline of the proof

Define: F : Rm
+ × Rn

+ × Rl
+ → Rm

+ × Rn
+ × Rl

+:

F ((x,y, z))i,1 =
(
‖x‖p−3

p
∑n,l

j=k=1 ti,j,kyjzk

) 1
p−1

, i = 1, . . . ,m

F ((x,y, z))j,2 =
(
‖y‖p−3

p
∑m,l

i=k=1 ti,j,kxizk

) 1
p−1

, j = 1, . . . ,n

F ((x,y, z))k ,3 =
(
‖z‖p−3

p
∑m,n

i=j=1 ti,j,kxiyj

) 1
p−1

, k = 1, . . . , l

Assume
∑n,l

j=k=1 ti,j,k > 0, i = 1, . . . ,m,∑m,l
i=k=1 ti,j,k > 0, j = 1, . . . ,n,

∑m,n
i=j=1 ti,j,k > 0, k = 1, . . . , l

F 1-homogeneous monotone, maps open positive cone Rm
+ ×Rn

+ ×Rl
+

to itself.
T = [ti,j,k ] induces tri-partite graph on 〈m〉, 〈n〉, 〈l〉:
i ∈ 〈m〉 connected to j ∈ 〈n〉 and k ∈ 〈l〉 iff ti,j,k > 0, sim. for j , k
If tri-partite graph is connected then F has unique positive eigenvector
If F completely irreducible, i.e. F N maps nonzero nonnegative vectors
to positive, nonnegative eigenvector is unique and positive
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Numerical counterexamples

F := [fi,j,k ] ∈ R2×2×2
+ : f1,1,1 = f2,2,2 = a > 0 otherwise, fi,j,k = b > 0.

f (x,y, z) = b(x1 + x2)(y1 + y2)(z1 + z2) + (a− b)(x1y1z1 + x2y2z2).

For p1 = p2 = p3 = p > 1 positive singular vectors:
x = y = z = (0.51/p,0.51/p)>.

For a = 1.2,b = 0.2 and p = 2 additional positive singular vectors:
x = y = z ≈ (0.9342,0.3568)>,
x = y = z ≈ (0.3568,0.9342)>.

For a = 1.001,b = 0.001 and p = 2.99 additional positive singular
vectors:
x = y = z ≈ (0.9667,0.4570)>,
x = y = z ≈ (0.4570,0.9667)>
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Fixed point iterations for p ≥ 3

Assume F completely irreducible

To find the fixed point iterate:

(xk ,yk , zk ) := F (xk−1,yk−1, zk−1)

and renormalize xk ,yk , zk to have `p norm to be one

This iterations should converge geometrically to unique positive
singular vectors
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Scaling of nonnegative matrices to matrices with given
row and column sums

0 ≤ A = [aij ] ∈ Rm×n
+ has row and column and sums:

r = (r1, . . . , rm)>,c = (c1, . . . , cn)
>,:∑

j aij = ri > 0,
∑

i aij = cj > 0.∑m
i=1 ri =

∑n
j=1 cj

Find nec. and suf. conditions for scaling:
A′ = [aijexi+yj ],x ∈ Rm,y ∈ Rn such that A′ has given row, column

Most known case: m = n, r = c = 1:
rescaling to doubly stochastic matrix

A: completely irreducible: A 6= A1 ⊕ A2,A1 ∈ Rn1×n2
+ :

Exists permutation matrices P,Q: PAQ has positive diagonal and is
irreducible
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Scaling of nonnegative matrices II

Thm A ∈ Rn×n
+ rescable to d.s. iff there exists a d.s. matrix with the

same zero pattern as A.

Sinkhorn algorithm 1964-67: Rescaling rows and columns converges
geometrically to d.s.

Menon-1968 A ∈ Rm×n
+ rescable to have r,c row and column sums if

there exists a matrix B ∈ Rm×n
+ with the same zero pattern as A and

r,c row and column sums.
The rescaled matrix is unique

Brualdi 1968: A ∈ Rm×n
+ , A completely irreducible

A 6= A1 ⊕ A2,A1 ∈ Rm1×n1 .

PAQ =

[
A11 0
A21 A22

]
then the columns sums of c corresponding to the

columns of A11 are strictly less then the row sums of r of the rows of
A11.
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Scaling of nonnegative tensors to tensors with given
row, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has row, column and depth sums:
r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)
> > 0:

∑
j,k ti,j,k = ri > 0,

∑
i,k ti,j,k = cj > 0,

∑
i,j ti,j,k = dk > 0∑m

i=1 ri =
∑n

j=1 cj =
∑l

k=1 dk

Find nec. and suf. conditions for scaling:
T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column and
depth sum
Solution: Convert to the minimal problem:
minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑
i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to a
solution of the scaling problem (Lagrange multipliers)
fT is convex
fT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.
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Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: I.the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and
equalities II. r>x = c>y = d>z = 0
imply x = 0m,y = 0n, z = 0l .

In general T is rescalable if I. and II. imply
xi + yj + zk = 0 if ti,j,k > 0

T is rescalable iff there exists T ′ ∈ Rm×n×l
+ with r, c,d

row,column,depth sums, and the same zero pattern as T .

Are variants Brualdi theorem hold in the tensor case?
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Rescaling versus Newton method

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works T.
Kolda.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function (Use Armijo rule or first
rescaling rows and columns)

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm

True for matrices too

Shmuel Friedland Univ. Illinois at Chicago () Fixed points theorems for nonnegative tensors and Newton method
October 29, 2009 SIAM LA09, Monterey, CA 13

/ 15



Rescaling versus Newton method

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works T.
Kolda.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function (Use Armijo rule or first
rescaling rows and columns)

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm

True for matrices too

Shmuel Friedland Univ. Illinois at Chicago () Fixed points theorems for nonnegative tensors and Newton method
October 29, 2009 SIAM LA09, Monterey, CA 13

/ 15



Rescaling versus Newton method

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works T.
Kolda.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function (Use Armijo rule or first
rescaling rows and columns)

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm

True for matrices too

Shmuel Friedland Univ. Illinois at Chicago () Fixed points theorems for nonnegative tensors and Newton method
October 29, 2009 SIAM LA09, Monterey, CA 13

/ 15



Rescaling versus Newton method

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works T.
Kolda.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function (Use Armijo rule or first
rescaling rows and columns)

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm

True for matrices too

Shmuel Friedland Univ. Illinois at Chicago () Fixed points theorems for nonnegative tensors and Newton method
October 29, 2009 SIAM LA09, Monterey, CA 13

/ 15



Rescaling versus Newton method

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works T.
Kolda.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function (Use Armijo rule or first
rescaling rows and columns)

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm

True for matrices too

Shmuel Friedland Univ. Illinois at Chicago () Fixed points theorems for nonnegative tensors and Newton method
October 29, 2009 SIAM LA09, Monterey, CA 13

/ 15



References I

R.A. Brualdi, Convex sets of nonnegative matrices, Canad. J. Math
20(1968), 144-157.

R.A. Brualdi, S.V. Parter and H. Schneider, The diagonal
equivalence of a nonnegative matrix to a stochastic matrix, J.
Math. Anal. Appl. 16 (1966), 31–50.

K.C. Chang, K. Pearson, and T. Zhang, Perron-Frobenius theorem
for nonnegative tensors, Commun. Math. Sci. 6, (2008), 507-520.

S. Friedland, Positive diagonal scaling of a nonnegative tensor to
one with prescribed slice sums, arXiv:0908.2368v1.

S. Friedland, S. Gauber and L. Han, Perron-Frobenius theorem for
nonnegative multilinear forms, arXiv:0905.1626.

S. Gaubert and J. Gunawardena, The Perron-Frobenius theorem
for homogeneous, monotone functions, Trans. Amer. Math. Soc.
356 (2004), 4931-4950.

Shmuel Friedland Univ. Illinois at Chicago () Fixed points theorems for nonnegative tensors and Newton method
October 29, 2009 SIAM LA09, Monterey, CA 14

/ 15



References II

L.H. Lim, Singular values and eigenvalues of tensors: a variational
approach, CAMSAP 05, 1 (2005), 129-132.

M.V. Menon, Matrix links, an extremisation problem and the
reduction of a nonnegative matrix to one with with prescribed row
and column sums,Canad. J. Math 20 (1968), 225-232.

M.V. Menon and H. Schneider, The spectrum of a nonlinear
operator associated with a matrix, Linear Algebra Appl. 321–334.

R. Nussbaum, Hilbert’s projective metric and iterated nonlinear
maps, Memoirs Amer. Math. Soc., 1988, vol. 75.

R. Sinkhorn and P. Knopp, Concenring nonnegative matrices and
doubly stochastic matrices, Pac. J. Math. 21 (1967), 343-348.

Shmuel Friedland Univ. Illinois at Chicago () Fixed points theorems for nonnegative tensors and Newton method
October 29, 2009 SIAM LA09, Monterey, CA 15

/ 15


