
Combinatorial Optimization

Solution of Selected problems

MCS 521, Fall 2017
LCD-grad 38317,

Tu&Th 4–5:15, Lincoln Hall 201
Instructor: Shmuel Friedland

Office: 715 SEO, phone: (312) 413-2176, e:mail: friedlan@uic.edu,
web: http://www.math.uic.edu/∼friedlan

Last update November 30, 2017

1 Linear Programming - Appendix of [1]

Problem A.1. Prove that there exists a vector x ≥ 0, , such that Ax ≤ b, if
and only if for each y ≥ 0 satisfying y>A ≥ 0 one has y>b ≥ 0. (We assume
that A = [aij] ∈ Rm×n, and x = (x1, . . . , xn)> ∈ Rn,y = (y1, . . . , ym)>,b =
(b1, . . . , bm)> ∈ Rm.)
Solution. The if part. We assume that there exists a vector x ≥ 0 such that
Ax ≤ b. Suppose that y ≥ 0 satisfying y>A ≥ 0. First, note that since x ≥ 0
and y>A ≥ 0 we get that (y>A)x ≥ 0. Second, note that Ax ≤ b is equivalent to
the coordinate inequalities: (Ax)i ≤ bi for each i ∈ [m] = {1, . . . ,m}. y ≥ 0 means
yi ≥ 0 for each i ∈ [m] . Hence yi(Ax)i ≤ yibi for i ∈ [m]. Summing on all i ∈ [m]
we obtain

0 ≤ (y>A)x = y>(Ax) =
m∑
i=1

yi(Ax)i ≤
m∑
i=1

yibi = y>b.

The only if part Suppose there is no x ≥ 0 such that Ax ≤ b. This is equivalet to
the statement that the system

Âx ≤ b̂, Â =

[
A
−In

]
∈ R(m+n)×n, b̂ =

[
b
0n

]
∈ Rm+n. (1.1)

is not solvable. (Here In ∈ Rn×n is the identity matrix and 0n ∈ Rn is the zero
vector.) By Farkas Lemma (Theorem A.1) there exists ŷ ∈ Rm+n such that ŷ ≥ 0,
ŷ>Â = 0 and ŷ>b̂ < 0. Write ŷ> = (y>1 ,y

>
2),y1 ∈ Rm,y2 ∈ Rn. Then ŷ ≥ 0 is

equivalent to y1,y2 ≥ 0. As ŷÂ = y>1 A − y>2 In = y>1 A − y2 it follows that the
condition ŷ>Â = 0 is equivalent to y>1 A = y>2 . As y2 ≥ 0 it follows that y>1 A ≥ 0.
Next observe that ŷ>b̂ = y>1 b. In conclusion we showed that there exists y1 ≥ 0
such that y>1 A ≥ 0 and y>1 b < 0. This concludes the proof of only if part.

Problem A.2. Prove that there exists a vector x > 0 that that Ax = 0 if and only
if for each y satisfying y>A ≥ 0 one has y>A = 0.

1

Solution. The if part. We assume that there exists a vector x > 0 that that
Ax = 0. Suppose that there exists y satisfying y>A ≥ 0. Observe that

0 = y>0 = y>(Ax) = (y>A)x =
n∑
i=1

(y>A)ixi.

As xi > 0 and (y>A)i ≥ 0 we deduce that (y>A)ixi ≥ 0 and equality holds if and
only if (y>A)i = 0. Hence (y>A)x =

∑n
i=1(y>A)ixi ≥ 0 and equality holds if and

only if y>A = 0. As we showed above(y>A)x = 0. Hence y>A = 0.
The only if part Suppose that there is no vector x > 0 that that Ax = 0. This
is equivalent to the following statement that for each ε > 0 there is no solution to
the system Ax = 0 and x ≥ ε1n, where 1n = (1, . . . , 1)> ∈ Rn. The nonsolvability
of the above system is equivalent to the nonsolvability of the following system of
inequalities:

Âx ≤ b̂, Â =

 A
−A
−In

 ∈ R(2m+n)×n, b̂ =

 0m
0m
−ε1n

 ∈ R2m+n

By Farkas Lemma (Theorem A.1) there exists ŷ ∈ R2m+n such that ŷ ≥ 0, ŷ>Â = 0
and ŷ>b̂ < 0. Write ŷ> = (y>1 ,y

>
2 ,y

>
3),y1,y2 ∈ Rm,y3 ∈ Rn. Then ŷ ≥ 0 is equiv-

alent to y1,y2,y3 ≥ 0. As ŷÂ = y>1 A− y>2 A− y>3 In = (y1 − y2)>A− y3 it follows
that the condition ŷ>Â = 0 is equivalent to (y1−y2)>A = y>3 . As y3 ≥ 0 it follows
that (y1−y2)>A ≥ 0. Next observe that ŷ>b̂ = (y1−y2)>0m−εy>3 1n = −εy>3 1n.
Hence the conditions ŷ>b < 0 is equivalent to y>3 1n > 0. So y3 0. In conclusion
we showed that there exists y4 = y1 − y2 ∈ Rm such that y>4 A = y>3 0. This
concludes the proof of only if part.

Problem A.6. Prove that

max{c>x : x ≥ 0, Ax ≤ b} = min{y>b : y ≥ 0,y>A ≥ c>} (1.2)

assuming that both sets are nonnempty. We now show that the above equality fol-
lows from Theorem A.5 (Duality Theorem). We first use the solution of Problem
A.1 to show that the system x ≥ 0, Ax ≤ b is equivalent to (1.1). Hence the left-
hand side of (1.2) is max{c>x : , Âx ≤ b̂}, and the given set is nonempty. The
duality theorem for this maximum problem is that the above maximum is equal
to the following minimum: min{ŷ>b̂ : ŷ ≥ 0, ŷ>Â = c>}, provided that the
second set is also nonempty. Write ŷ> = (y>1 ,y

>
2), where y1 ∈ Rm,y2 ∈ Rn. So

ŷ ≥ 0 is equivalent to y1,y2 ≥ 0, Note that ŷ>Â = ŷ1A − y>2 . So ŷÂ = c> is
y>1 A− y>2 = c>. Equivalently, y>2 = y>1 A− c>. Hence the assumption that y2 ≥ 0
is equivalent to y>1 A ≥ c>. Therefore the solvalbility of the system given in the
right-hand side of (1.2) is equivalent to the solvability of ŷ ≥ 0, ŷÂ = c>. Thus
we showed that (1.2) follows from the duality theorem for the maximum problem
max{c>x : , Âx ≤ b̂}.

Problem A.9.(i) Prove that for ay matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn
one has

sup{c>x : Ax ≤ b} = inf{y>b : y ≥ 0,y>A = c>}, (1.3)

2

provided that at least one set is nonempty.
Solution. If both set are nonempty then the above equality follows from the

Duality Theorem (Theorem A.5). So we assume now that one set is feasible and
another one is not. Assume for example that the set {Ax ≤ b} is not empty,
while the set {y ≥ 0,y>A = c>} is empty. We claim that this is equivalent to
the equality sup{c>x : Ax ≤ b} = ∞. Example: x ≤ 0 and c = −1. (Here
m = n = 1 and A = [1],b = 0. Then y ≥ 0andy = c is not feasible. Clearly, if
sup{c>x : Ax ≤ b} =∞ the set {y ≥ 0,y>A = c>} is empty by the weak duality
theorem. So it is left to show that if sup{c>x : Ax ≤ b} = δ < ∞ then the set
{y ≥ 0,y>A = c>} is nonempty. Indeed, apply Corollary A.3. Hence, to conclude
the proof of (1.3) we need to define that inf{y>b : y ≥ 0,y>A = c>} = ∞ if the
set {y ≥ 0,y>A = c>} is empty.

Similarly we define sup{c>x : Ax ≤ b} = −∞ if the set {x, Ax ≤ b} is empty.
Then in a similar way we prove that if the set {x, Ax ≤ b} is empty and the set
{y ≥ 0,y>A = c>} is nonempty then (1.3) holds.
(ii) Assume that m = n = 1, A = 0 and b = c = −1.

Problem: Proof of Corollary A.6:

max{c>x : x ≥ 0, Ax = b} = min{y>b : y>A ≥ c>}. (1.4)

Prove Corollary A.6 from Theorem A.5 by. Do the following substitutions in (1.4).
Call y = −x′,x = y′, A′ = A>,b′ = −c, c′ = b. Then y>b = −(x′)>c = −(c′)>x′

and y>A ≥ c> is equivalent to A′x′ ≤ b′. Hence the right-hand side of (1.4) is
−max{(c′)>x′, A′x′ ≤ b′}. Next c>x = −(b′)>y′ subject to y′ ≥ 0, (y′)>A′ =
(c′)>. Hence (1.4) is equivalent to

−min{(b′)>y′,y′ ≥ 0, (y′)>A′ = (c′)>} = −max{(c′)>x′, A′x′ ≤ b′},

which is equivalent to Theorem A.5.

2 Chapter 2

2.1 §2.1: Minimum spanning trees

Problem 2.1: Kruskal algorithm: The choice of edges and their weight: ((p,d),2);
((h,g),3); ((a,r),4); ((d,f),5); (a,q),7); ((r,h),8); ((g,f),9);((b,r),13). Total weight 51.
Prim algorithm from r: ((r,a),4); ((a,q),7); ((r,h),8);((h,g),3); ((g,f),9);((f,d),5);((d,p),2);((r,b),13).
Total weight 51.
Problem 2.6: I. Use Kruskal algorithm until one is left with no vertices or isolated
vertices.
II. Use Prim algorithm from a vertex r unitl it stops. Remove all the verttices on
this tree, to obtain a subgraph G′ of G. If some vertices are left, restart Prim’s algo
on the corresponding subgraph. Continue in this manner until one is left with no
vertices or isolated verstices.
Problem 2.7: Assume that G = (V,E). Let E′ be the set of all edges with negative
and zero costs. Let G(E′) = G′ = (V ′, E′) be the induced subgraph G by E′. If
V ′ = V and G′ is connected we are done. Otherwise let Gi = (Vi, E

′
i), i = 1, . . . , k

be the connected components of G′. Let Ĝ = (V̂ , Ê) be the induced subgraph of G,

3

where we view each set of vertices Vi as one vertex {Vi}, i = 1, . . . , k. If v ∈ V is not
a vertex in V ′ we have this vertex in V̂ . An edge ê ∈ Ê, if it is was edge e ∈ E from
some vertex u ∈ Vi, or u ∈ V \ V ′ to another vertex different v ∈ Vi, or v ∈ V \ V ′.
Note that now Ĝ may have multiple edges. Now find in Ĝ, where the weight of each
edge is positive, a MST. Add the edges in G, corresponding to MST in Ĝ, to E′ to
obtain a solution to the connector problem.
Problem 2.8: Recall that a spanning tree of G = (V,E) has exaclty |V | − 1 edges.
Assume that c : E → R are the costs of edges. Let c′ : E → R be a another cost of
edges, where c′(e) = c(e) + t for some fixed t and all e ∈ E. Then for each spanning
tree T = (V,E(T)) of e have that c′(T) = c(T) + (|V | − 1)t. Henc a minimum
spanning tree of G with respect to the cost c is also a minimum spanning tree with
respect to c′. Now choose t big enough, for example t = 1−min{c(e), e ∈ E, c(e) < 0}
to reduce the MST problem with positive costs.
Problem 2.9: Consider the subgraph of MST H ′ = (V, T \ e). It has teo connected
components H1 = (V1, T1), H2 = (V2, T2), where each Hi is a tree, and V1 ∪ V2 =
V, T1 ∪ T2 = T \ e. Let D = δ(V1, V2) ⊂ E be the cut between V1 and V2. So
e ∈ D. Let f ∈ D be an edge with the minimal weight in D. So cf ≤ ce. Clearly,
T ′ = T1 ∪ T2 ∪ {f} is a spanning tree of G. Also c(T)− c(T ′) = ce − cf ≥ 0. But T
is a MST. So c(T) = c(T ′), hence ce = cf .
Problem 2.10. Add an edge e = vw ∈ E \ T to T . We have now a cycle in
H ′ = (V, T ∪ {e}. we have a unique simple path from v to w in T and an edge vw.
Suppose that on this path from v to w in T we had an edge f such that cf > ce.
Remove this edge from T ∪ {e} to obtain a new tree T ′ = (T ∪ {e}) \ {f}. Clearly
c(T ′) = c(T) + ce − cf < c(T), which contradicts that T is MST. Hence cf ≤ ce for
each edge f in T in the path from v to w on T .

Assume now that we have a spanning tree T with the property that for each edge
e = vw ∈ E \ T and each edge f ∈ T in the path from v to w cf ≤ ce. We claim
that T is a MST. We show that our tree is obtained by using Kruskal’s algorithm.
Assume that f1 ∈ T is has minimal cost from all edges of T . We claim that f1 has
the minimum cost in E. Suppose not. So there exists e1 = v1w1 ∈ E such that
ce1 < cf1 . So e1 6∈ T . According to our assumption for each edge f in the path for
v1w1 in T we have that ce ≥ cf ≥ cf1 which is contradiction. Assume now that in
the stage k − 1 of Kruskal’s algorithm we can choose an edge from our tree T . It is
left to show that in the stage k we can choose the next edge from our tree. Suppose
not. So we chose the edge ek = vkwk of the smallest cost that is connecting between
different connected components of the forest spanned by the subtrees of our tree T .
There is a path in T from vk to wk. In this path there is at least one edge fk that
also connects the forest spanned by our tree in the k−1 stage of Kruskal’s algorithm.
By our assumption we cfk ≤ cek . This contradicts that we can not choose in the
stage k of Kruskal’s algorithm an edge from T . Hence, our T is given by Kruskal’s
algorithm, hence it is a MST.
Problem 2.16: Claim: MST H = (V, T) is also a solution to the min max problem
for finding a spanning tree whose maximal cost edge is minimal. For a spanning
tree H ′ = (V, T ′) let µ(T ′) = max{ce′ , e′ ∈ T ′}. Suppose not. Then there exists a
spanning tree H ′ = (V, T ′) such µ(T ′) = ce′ < µ(T) = ce. Consider the disconnected
graph H1 = (V, T \ e) which has two connected components. Since H ′ is connected,
there is f ′ ∈ T ′ which connects these two connected components. So cf ′ ≤ ce′ < ce.
Let T2 = (T \ e) ∪ {f ′}. Then H2 = (V, T2) is a spanning tree and c(T2) = c(T) −

4

ce + cf ′ < c(T), contradicting that T is a MST.
A solution to min max problem does not have to be a minimal spanning tree.

Assume that G = K3 = ({u, v, w}, {(u, v), (u,w), (v, w)}, where c(u,v) = c(u,w) =
2, c(v,w) = 1. Then T ′ = {(u, v), (u,w)} solves the min max problem but is not a
MST.

2.2 §2.2: Shortest paths

Problem 2.18. Consider the digraph G = (V,E) with V = {r, a, b, c} and the
diedges with the corresponding costs: ((r, a), 2), ((r, b), 4), ((a, b), 3), ((b, c), 4). A
minium spanning ditree is ((r, a), 2), ((a, b), 3), ((b, c), 4). However, teh shortest path
from r to b is the arc (r, b), 4). The arcs on the spanning tree ((r, a), 2), ((r, b), 4), ((b, c), 4)
from a spanning ditree, so each path on it of the minimal length. However, this is
not a MST.
Problem 2.21. An acyclic sort: h = 9, j = 8, g = 7, f = 6, d = 5, k = 4, b = 3, a =
2, r = 1. Then the triples: v, yv, r(v) are given by

(r, 0, 0), (a, 2, r), (b, 5, r), (k, 7, r), (d, 9, k), (f, 6, a), (g, 9, f), (j, 12, g), (h, 13, g).

Problem 2.22. Add new vertices r, s to G = (V,E) and the following arcs with
the zero cost. Arcs (r, v) for each v ∈ R, and arcs (w, s) for each w ∈ S. Call the
new graph G′ = (V ′, E′). Find the least-cost dipath from r to s in G′. It is of the
form rPs, where P is the least cost dipath in G from R to S.
Problem 2.23. There are fou possibilities for two arcs that are incident to w. Here
u and v are two distinct vertices in the digraph G = (V,E) which are different from
w (1): (u,w), (v, w); (2) (u,w), (w, v); (3) (w, u), (w, v); (4) (u,w), (w, u).

So we delete vertex w from G, and add a new edge (u, v) with the cost c′(u,v) =

c(u,w) + c(w,v) in the case (2). If we had already a diedge (u, v) in our digraph, then
we choose the new cost of this edge as min(c(u,v), c

′
(u,v)). Now find minimal cost

dipaths in the smaller graph from r to any vertex in the smaller graph. In the case
(1) the smallest cost dipath form r to w is either to go to u and then to w or go to
v and then to w, whatever is the smallest cost. In the case (2) , and (4) it is the
cost to go to u and then from u to w. In the case (3) w is not reachable from r.
Problem 2.34. Label vertices V = {1, . . . , n + 1}. Then consider the following
diedges with the following costs: First ((i, i+ 1), ai) for i = 1, . . . , n. Then diedges
((1, i), 0) for i = 2, . . . , n, and ((i, n + 1), 0) for i = 2, . . . , n. This is an acyclic
graph. All dipaths from r = 1 to s = n+ 1 are of the form (1, j), (j, j + 1), . . . , (k−
1, k), (k, n+ 1). The cost of each dipath is

∑j−1
k=i ak. for all 1 ≤ i ≤ j ≤ n+ 1. (Note

that if i = j we agree that the above sum is 0.) Thus we need to find the minimum
cost path. Note that teh number of edges is n+ (n− 1) + (n− 1) = 3n− 2. Hence
the complexity of finding the smallest cost path is O(m) = O(n).
Problem 2.35. First we construct the following graph on 2k vertices {t1, t′1, . . . , tk, t′k}.
We first have diedge (ti, t

′
i) with cost pi. We have a didedge from (t′i, tj) if job i

needed to be performed before the job j. We assume that we have an acyclic graph.
We also assume that for each j on has at most one job i that proceeds it. (Otherwise
everything becomes much more complicated. See the last paragraph of the solution.)
Recall that in each acyclic graph G = (V,E) we must have a set nonempty set of
sources U ⊆ V , which the set of all v ∈ V such that there is no u ∈ V such that
(u, v) ∈ E. In our case the set of sources are of the form ti for some i ∈ I, where

5

I ⊆ {1, . . . , k}. Those are the jobs whose completion do not need other jobs to
be completed. Introduce a new vertex r and the diedges (r, ti) where i ∈ I. The
cost of these edges is 0. The cost of the edge (ti, t

′
i) is pi. The cost of (t′i, tj) IS

ALSO 0. Then we have a family of dipaths which do no have any common vertices
except of the beginning vertex r. On each dipath from r we are doing the processing
sequentially. The time to finish all jobs is the cost of the longest path.

If however, a job j needs more than one preceding jobs to finish, then we have
a more complicated situation. For each j let P (j) be the set of all preceding jobs.
Then we have to introduce additional vertices in our graph, denoted as P (j), where
P (j) is not empty. If P (j) = {i}, then we identify P (j) with t′i as before. Otherwise
P (j) is an extra vertex. We have edges (t′i, P (j)) for each i ∈ P (j). Now we need to
give COSTS to diedges (t′i, P (j)). Suppose we already computed the the cost of the
minimum dipath from r to t′i for i ∈ P (j), which we denote by yi. The we take the
maximum of yi for all i ∈ P (j) and call it µj . Then the cost of (t′i, P (j)) is µj − yi.
Then the cost of the path from r to P (j) is µj , which is the time we need to wait
before we can do the job j. Finally we have an arc (P (j), tj) with cost 0.

3 Chapter 3

3.1 §3.1: Network Flow Problems

Problem 3.3: Prove directly that there is no maximum flow if and only if there
is an (r, s) dipath , each of arcs has ue = ∞. Proof. Assume first that there is a
dipath v0v1 · · · vk such that v0 = r, vk = s and uvi−1vi = ∞. Let xvi−1vi = M for
i = 1, . . . , k and xe = 0 for all other diedges. Then x is a flow, and it satisfies the
condition 0 ≤ xe ≤ ue on all diedges of G. Clearly, fx(s) = M . SInce we can choose
M as big as we wish, there is no maximum flow.

Assume now that there is no maximum flow. That is any (r, s)-cut has inifinite
value, i.e., any (r, s)-cut contains an edge with with an infinite capacity. Let G′ =
(V,E′) be the subgraph of G = (V,E) such that E′ is the subset of E of all edges
with infinite capacity. Let R ⊆ V be the set of all vertices in V with are reachable
by a dipath from r. So r ∈ R. We claim that R contains s. Suppose not. Then R
is an (r, s) cut. Clearly, δ′(R) the set of all diedges from R to R̄ = V \R is empty.
Otherwise R is not the set of all vertices in V which can be reach by a dipath from
r in G′. Hence δ(R) in G contains only diedges with a finite arc. But then there is
a maximum flow. This contradiction yields that s ∈ R. Hence there exists a dipath
from r to s, whose all edges have infinite capacities.
Problem 3.4: Construct
(a) many integral maximum flows and many minimum cuts. For each i consider
the following digraph: the dipath raibicidis plus an edge bidi where each edge
has capacity 1. Then the maximum value of the flow is 1. There are two max-
imum integer flows using the dipaths raibicidis and raibidis. There are 3 mini-
mal cuts {r}, {r, ai}, {r, ai, bi, ci, di}. Now to have an exponential number of min-
imal number of cuts and of minimal maximum flows just consider G = (V,E),
V = {r, s} ∪i=1 {ai, bi, ci, di} with the above edges and capaciities for i = 1, . . . , n.
Then the maximum flow has value n, exactly 2n maximum integer flows, and at least
2n minimal cuts consisting of either the vertex {ai} or {ai, bi, ci, di} for i = 1, . . . , n
in addition to the vertex r.

6

(b) many integral maximum flows and one minimum cuts. Start with a directed
bipartite matching: (vi, wi) for i = 1, . . . , n. Capacity of viwi is ∞. Take r, and
joint it with r′ by diedge rr′ with capacity 1. Now join r′ with each vi: r

′vi with
capacity ∞. Now join wi with s with capacity ∞. The value of the maximum flow
is 1. All maximum integer valued flows are rr′viwis where the value on this dipath
of the flow is 1. One minimal (r, s)-cut: {r}.
(c) one maximum flows and many minimum cuts. Take a digraph which is a dipath
rv1 · · · vns. The capacity of each diedge is one. There is only one maximum flow:
xe = 1. Any r cut of the form rv1 · · · vi has capacity 1.
Problem 3.6: A minimum cut is R = {r, q, a} with the value of 4. So for any
maximal flow we must have the following values: xrp = 1, xqb = 1, xbq = 0, xas =
1, xap = 1, xp,0 = 0. Since the value of the maximum flow is 4 we get xbs = 3. Hence
xpb = 2 and xqa = 2. Finally xrq = 3. So the flow is unique.
Problem 3.7: Assume that δ(R1) and δ(R2) are minimum cuts. It is straightfor-
ward to show the following inclusions:

δ(R1 ∩R2), δ(R1 ∪R2) ⊆ δ(R1) ∪ δ(R2), δ(R1 ∩R2), δ(R1 ∪R2) ⊆ δ(R̄1) ∪ δ(R̄2).
(3.1)

Assume that x is a maximum flow. Then xe = ue for e ∈ δ(R1) ∪ δ(R2) and xe = 0
for e ∈ δ(R̄1) ∪ δ(R̄2). The inclusions (3.1) yield that xe = ue for e ∈ δ(R1 ∩ R2)
and xe = 0 for e ∈ δ(R1 ∩R2). As

fs(x) = x(δ(R1 ∩R2))− x(δ(R1 ∩R2) = u(δ(R1 ∩R2))− 0

it follows that u(δ(R1∩R2)) is minimum cut. Similarly, (3.1) yields that δ(R1∪R2)
is also a minimum cut.
Problem 3.5: Start with a maximum flow x given as in solution of Problem 3.6.
Then construct the graph G(x). Then the set of all vertices that are reachable from
r in G(x) is a minimum cut R = {r, q, a}. By Problem 3.6 x is unique. Suppose
that there was another minimal cut R′. By Problem 3.7: δ(R ∩ R′) and δ(R ∪ R′)
are minimal cuts. Suppose that R′ is a strict subset of R. Then the reachable set
from r is contained in R′, which is false. So R′ strictly contains R. Suppose that
also b ∈ R′. Then as and bs are in this cut, but the sum of these two capacities is
already 5, which is not minimal. So the only left possibility is R′ = R ∪ {p}. But
the value of the maximal flow xpb =< 3 = upb so this R′ is a minimum cut either.
Problem 3.8: We assume that we are given a fixed digraph G = (V,E) with given
capacities and the maximum flows x1 and x2. Suppose that v 6= r, s and there is
an incrementing path from r to v. Let us consider a new digraph Ĝ by adding
an additional edge sv with capacity fx(s). Now define a new flow from r to v
corresponding to x1, x2 denoted by x̃1, x̃2 by letting x̃isv = fxi(s) for i = 1, 2, and
on the other arcs having gthe same values as the flows x1, x2 respectively. The new
flows x̃i have values fxi(s), i.e. the maximum flow value in G. Observe nex that
an x1 incrementing path in G(x1) from r to v is an augmenting path in Ĝ(x̂1). So
x̂1 is not a maximal flow in Ĝ. Therefore x̂2 is not a maximum flow in. Hence,
there exists an augmented r − v dipath from r v. This augmented r − v path is an
incrementing r − v path in G(x2).
Problem 3.9 For each vertex v ∈ V let

gu(v) = (
∑
vw∈E

uvw)− (
∑
w′v∈E

uw′v).

7

Note that for subset T ⊆ V we have that
∑

v∈T gu(v) = u(δ(T)) − u(δ(T̄)). Note

that R = {r} ∪ T , where T ⊆ V \ {r, s}. Let T̃ be the set of all v ∈ V \ {r, s} such
that gu(v) < 0. Then an optimal R is {r} ∪ T̃ .

3.2 §3.3: Application of maximum flow and minimum cut

Problem 3.17: We assume that each cv > 0. As on page 48, we add a vertex r
which is connected to each v ∈ P , and the capacity of rv is sv. We add vertex s so
that for each q ∈ Q we have a diedge qs with capacity yq. We orient all edges of the
bipartite graph from p to q and the capacity of pq in∞. As u(δ({r}) =

∑
p∈P yp <∞

we have a maximum flow with is equal to the minimum capacity. Let us take a
minimum (r, s) cut. It will be of the form δ({r} ∪ A) where A ⊆ V . Its capacity is∑

p∈P\A yp +
∑

q∈Q∩A yv, where we assume that there are no edges from A ∩ P to
Q \ A. So all edges in the bipartite graph are from A ∩ P to Q ∩ A and P \ A to
Q. Thus (P \ A) ∪ (A ∩ Q) is a cover with capacity

∑
p∈P\A yv +

∑
q∈Q∩A yv. So

minimum cover weight is found by maximum flow, and the corresponding minimum
cut.
Problem 3.18: As in problem 3.17 we add a vertex r which is connected to each
p ∈ P , and the capacity of rp is hp. We connect each q ∈ Q to s and the capacity
of the diedge qs is dq. Each diedge pq has capacity 1. The such a subdigraph exists
if and only there is a maximum flow of capacity

∑
p∈P dp =

∑
q∈Q dq. So any (r, s)

cut is δ({r} ∪A) where A ⊆ V . Then the capacity of this cut is∑
p∈P\A

dp +
∑

q∈Q∩A
dq +

∑
p∈P∩A

(number of edges from p to Q \A).

This should be alway greater or equal to
∑

p∈P dp. This is equivalent to the inequal-
ity ∑

q∈Q∩A
dq +

∑
p∈P∩A

(number of edges in G from p to Q \A) ≥
∑

p∈P∩A
dp,

for any subset A ⊂ V .
Problem 3.21: This is a special case of flow feasibility problem discussed on pages
53-54, with reversing the sets P and Q. We set ap = 1 for each p ∈ P and bq = 1
and each q ∈ Q. To satisfy the demand we need to match each q in Q with some
p ∈ P . This is possible if and only if a(N(C)) ≥ b(C) for each subset C ⊆ Q. (Top
of page 54.) This condition is a(C) = |N(C)| ≥ |C| = b(C).
Problem 3.23: Assume that we have a bipartite simple undirected graph G =
(V,E), where V = P ∪ Q. Assume that G is k − regular, i.e., the degree of each
vertex is k ≥ 1. First we claim that |P | = |Q|. Since each vertex p ∈ P has degree
k |E| = k|P |. Similarly, |E| = k|Q|. Hence |P | = |Q|. Next we claim that G has
a perfect match. We use Problem 3.21. We need to show that for each subset A
of P we have |N(A)| ≥ |A|. Let consider the subgraph G′ = (A ∪ N(A), E′) of G
on the vertices A ∪ N(A). As before the number of edges in G′ is the number of
edges coming out A, which is k|A = |E′|. Now let us count the edges in G′ coming
out of N(A). Since some edges from N(A) can go to P \ A, the number of edges
|E′| ≤ k|N(A)|. Hence |A| ≤ |N(A)|. By Problem 3.21 there is match M in G that
matched all vertices in P . As |P | = |Q| this match also matches all vertices in Q.

8

So M ⊂ E is a perfect match, i.e. |M | = |P | = |Q|. Consider Ĝ = (V,E \M).
This is a bipartite graph where the degree of each bertex is k− 1. Repeat the above
arguments to deduce that G has k disjoint perfect matchings.
Problem 3.24: If G = (V,E) is a simple undirected bipartite graph such that each
vertex has degree at least k does not insure that G has a perfect matching. Indeed,
assume that P = {v1, . . . , vm}, Q = {w1, . . . , wn} where m,n > 2k. Connect each
vi to w1, . . . , wk and each wj to v1, . . . , vk for each j > k. Then the degree of each
vertex of G is at least k, but obviously, a maximum match can be at most of size
2k.
Problem 3.26: For a family of (S1, . . . , Sk) of subsets of Q a system of different
representatives (SDR) is a set {q1, . . . , qk} distinct elements of Q such that qi ∈ Si
for i = 1, . . . , k. Assume that (T1, . . . , Tk) is another family of subsets of Q. Then
{q1, . . . , qk} is a common SDR if it is is an SDR for the two families.

Assume [k] = {1, . . . , k}. To find if a common SDR exists we construct a follow-
ing digraph G = (V,E) where the vertices of V are r, s, s1, . . . , sk, t1, . . . , tk and the
sets of vertices Q,Q′ where Q′ is another copy of Q. Then we have the following
diedges with the following capacities. The diedges rsi, tis have capacity 1. We have
a diedge siq for q ∈ Q if and on if q ∈ Si for each i ∈ [1, k] and q ∈ Q. The capacity
of the siq is infinity. Each q ∈ Q is connected to one q′ ∈ Q′, the copy of q in Q′

the capacity of such diedge qq′ is 1. One has edge q′tj if q ∈ Q, the copy of q′ is in
Tj . The capacity of q′tj is infinity. We now claim that there exists a common SDR
if and only if there is a maximum integer flow of value k.

Indeed, assume that we have a common SDR. After renaming the sets T1, . . . , Tk
we have that qi ∈ Si∩Ti for i = 1, . . . , k. Then xrsi = xsiqi = xqiq′i = xqiti = xtis = 1
for i = 1, . . . , k. This gives a flow of value k.

Vice versa, assume that x is an integer flow of value k. Then xrsi = xsiqi =
xqiq′i = xq′iti = xtis = 1 for all i = 1, . . . , k. This is an (r, s)-flow of value k. Vice
versa, suppose we have an integer flow of value k. So xrsi = xtis = 1 for i = 1, . . . , k.
At vertex si we have only one xsiqj(i) = 1. Since the capacity of qj(i)q

′
j(i) is 1, the

value of all other xspqj(i) = 0 if qj(i) ∈ Sp. Also xqj(i)q′j(i)
= 1. So xq′

j(i)
t` = 1 for some

` ∈ [k]. This means that xq′at` = 0 for a 6= j(i). Hence qj(i) represents both Si and
T`. It follows now that {qj(1), . . . , qj(k)} represents the two sets.

It is left to show that all (r, s)-cuts have capacity at least k. Let us take an (r, s)
cut which has a finite capacity. It will have contain si for i ∈ I and tj for j ∈ J1,
where I, J1 are subsets of [k]. So first r is connected to all si, where i 6∈ I. The
capacity of all these diedges from r is k − |I|. Next let us consider all element in
∪i∈ISi. This is the set of all points in Q that are connected to vertices si, i ∈ I.
Hence these vertices must be also in this cut, as the capacity of the edge siq where
q ∈ Si is infinite. Similarly, all vertices in Q′ which are equivalent to ∪j∈J1Tj must
be also in the cut. Now each tj for j ∈ J1 is connected to s. So the capacities of these
diedges is |J1|. So now we need to find the minimum capacities of all diedges from
the points q ∈ ∪i∈ISi that are not connected to vertices in Q′ which are equivalent
to ∪j∈J1Tj . By letting J = J̄1 we will get that we have at least the number of edges
as in (∪i∈ISi) ∩ (∪j∈JTj) which yields the inequality

|(∪i∈ISi) ∩ (∪j∈JTj)| ≥ |I|+ |J | − k.

Problem 3.31: How can we decide if it is possible for Buzzards to finish first or

9

second? First, we see if Buzzards can win the series. This is discussed in subsection
“Elimination of Sports Teams” pages 50 - 53. If yes, we are done. Suppose not.

Let T ′ be the set of all other players than Buzzards. Again, we assume that
Buzzards won all other teams that it is left to play with. The number of wins for
Buzzards is M . Let t ∈ T ′, and assume that t is the winner of all other games that
it is left to play in T ′. Then t won M ′ games. If M ′ ≤ M then we do not consider
this t. So assume that M ′ > M . Now set T = T ′ \ {t} and use the construction
of the flow on page 52. If such flow exists, Buzzards is the winner in T , which is a
second in all the teams. We need to check all possible suitable t ∈ T ′ to see if at
least in one case Buzzards can come second.
Problem 3.35: In a round robbin tournament each player plays one again other
opponents once. There are no ties. Assume that there are n players, labeled as
1, . . . , n. Let wi is the number of wins of player i. Suppose that a vector w =
(w1, . . . , wn) is given. How can we determine if w arises from a such a tournament.
Give a good algorithm and an good characterization.

Clearly, wi is an integer satisfying 0 ≤ wi ≤ n − 1.. Since the number of
playes is n(n−1)

2 we have the condition that
∑n

i=1wi = n(n−1)
2 . We now constract a

digraph with vertices r, s v1, . . . , vn and n(n−1)
2 pairs {vi, vj} for 1 ≤ i < j ≤ n. r

is connected to each vi with diedge rvi with capacity wi. Each vp is connected to
{vi, vj} by diedge vp{vi, vj} if p = i or p = j. The capacity of such diedge is ∞.
Each {vi, vj} is connected to s by diedge {vi,vj}s with capacity 1. Then w arises

from a tournament if and only if there is a maximum integral flow with value n(n−1)
2 .

Note that xvp{vi,vj} = 1 if p ∈ {i, j} wins the play between vi and vj . Otherwise
xvp{vi,vj} = 0.

A necessary and sufficient condition is given by mincut. Let us take a cut with
r, A1 ⊂ V and A2 subset of pairs. In order that this cut has finite value we must
assume that A2 has all pairs such that at least on of the players is in A1. The value
of the cut is∑

i∈V \A1

wi + (number of pairs that either i or j ∈ A1) ≥ n(n− 1)

2
.

Note that the number of pairs that eitheri or j in A1 is: the number of pairs that
both i and j are in A1 is |A1|(|A1|−1)

2 and teh number of pairs that i ∈ A1 and j 6∈ A1

is |A1|(n− |A1|). Hence the above inequality is equivalent to

|A1|(|A1| − 1)

2
+ |A1|(n− |A1|) ≥

∑
i∈A1

wi,

for each subset A1 of V . (Note that if |A1| = 1 then the above inequality is n−1 ≥ wi.
In general, the above inequality means that the number of wins of a group of A1

players of cardinality k = |A1| is at most k(k−1)
2 + k(n− k) for the following reason.

The number of wins when the players in A1 play against themselves is k(k−1)
2 . When

the players in A1 play against the players in V \A1 they can always win. Each player
can in A1 can win (n−k) games. Hence the total maximal number of wins of players

in A1 is k(k−1)
2 + k(n− k)!

10

3.3 §3.5: Minimum Cuts in Undirected Graphs

Problem 3.52: Minimum cut is the set of vertices S = {h, g, f}. (That is the
correct answer!) The corresponding edge-cut is {ch, dh, dg, ef}. Hence the value
(capacity) of the mincut is 7.
Problem 3.53: Legal ordering has the same complexity as Prim’s algorithm.
Choosing root in Prim’s algo is equivalent to choose any vertex and call it v1. In
step i− 1 in Prim’s algorithm we have a subtree on Vi−1 vertices. In legal ordering
we have also Vi−1. In Prim’s algo we choose vi to be the vertex vi as follows: First
for each vj , j ∈ {1, . . . , i− 1}. we choose v(vj) outside of Vi−1 connected to vj with
minimum cost edge. Then we choose v(vj) with the minimum cost edge (vj , v(vj)).
In legal ordering for each v not in Vi−1 we have the positive cost of the capacities
of all edges from v to Vi−1 and v, which have to be computed. Then we choose the
maximum one as vi. So it is as similar to the case of the complete graph.
Problem 3.54: Note that we have three points {p, q, r} and we choose all possible
three pairs {p, q}, {p, r}, {q, r} out of them. Hence by renaming p, q, r we can assume
that λ(G; p, q) ≥ λ(G; p, r) ≥ λ(G; q, r). Now λ(G; q, r) ≥ min(λ(G; p, r), λ(G(p, q)).
Our assumption yields that min(λ(G; p, r), λ(G(p, q)) = λ(G; p, r). Furthermore, we
also assumed that λ(G; p, r) ≥ λ(G; q, r). Hence λ(G; p, r) = λ(G; q, r).
Problem 3.56: In this book a minimum cut corresponds to a subset of V . However
a minimal cut is ment to be a minimal cut-edge. (Indeed, it can not by a set, since
if S is a cut set, it corresponds to the partition of V , the sed of vertices to two
complementary subsets: S, S̄. So is S1 is a strict subset of S then S̄ is a strict
subset of S̄1. Hence, one can not talk about minimal cut as a subset of V .) So
minimal cut here is a minimal subset of edges!

One needs to analyze a minimal cut. Let E′ ⊂ E(G). Then E′ is an cut-edge
set if the graph G \E′ is disconnected. Note that the weight of these edges if u(E′).
E′ is minimal if for each e ∈ E′ the set E′ \ {e} is not a cut- edge set. So if E′

is not a minimal edge-cut set then there exists e ∈ E′ the set E′ \ {e} is a cut-
edge set. As ue > 0 it follows u(E′) > u(E′ \ {e}). Thus a minimal cost cut-edge
set is a minimal cut. Assume that E′ is a minimal cost cut-edge. We claim that
G \ E′ contains exactly two connected components S, a nonempty strict subset of
V (G) and V (G) \S. Otherwise, there would be exactly k-connected components on
mutually disjoint nonempty strict subsets S1, . . . , Sk for k > 2. So E′ must contain
some edges form each Si to some other Sj . Suppose first that S1 is not connected
to S2, . . . , Sk by edges in E′. Let E′′ be the set of all edges in E′ that connect S1

to all S2, . . . , Sk. So E′′ is a strict subset of E′. Clearly E′′ is a cut-edge set. So
E′ is not a minimal cut edge set, contrary to our assumption. Assume that S1 is
connected to all S2, . . . , Sk by edges in E′. Now let Ê ⊂ E′ to be the set of all edges
in E′ such that Sk is connected to S1, . . . , Sk−1. Then Ê is a cut-edge and E′ is
not a minimal cut-edge, contrary to our assumption. Thus minimal cost cut-edge
is a minimum cut-edge set of the form δ(S), where S and V (G) \ S are connected.
Hence the minimum contraction algorithm would return only a minimal cut (when
the algorithm succeeds).
Problem 3.60: Assume that there are exactly E1, . . . , Ek ⊂ E(G) distinct mini-
mum cost cut-edges. (See Problem 3.56) Each has probability at least 2

n(n−1) . So the

sample space consists of k-elements and 1 =
∑k

i=1 Pr(X = Ei). Hence 1 ≥ k 2
n(n−1)

11

which yields that k ≤ n(n−1)
2 .

Problem 3.66: Discussed the following fact in class. Let A,B ⊆ V . Consider all
the edges in δ(A) and δ(B). Note the edges in δ(A)∩δ(B) appear twice in δ(A) and
δ(B). Now consider the edges in δ(A ∪ B) and δ(A ∩ B). I showed that the edges
that appear twice in δ(A∪B) and δ(A∩B) appear twice in δ(A∪B) and δ(A∩B).
The the edges that appear once in δ(A ∪ B) and δ(A ∩ B) appear at least once in
δ(A∪B) and δ(A∩B). But some edges in δ(A) and δ(B) may not appear at all in
δ(A ∪B) and δ(A ∩B). This yields the inequality

u(δ(A)) + u(δ(B)) ≥ u(δ(A ∪B)) + u(δ(A ∩B)).

Problem 3.68: Suppose that S and T cross. Observe that the four sets A1 =
S ∩ T,A2 = S ∩ T̄ , A3 = S̄ ∩ T,A4 = S̄ ∩ T̄ are nonempty disjoint sets whose union
is the whole space. Note that

S = A1 ∪A2, S̄ = A3 ∪A4, T = A1 ∪A3, T̄ = A2 ∪A4.

By interchanging S and T we can assume: u(δ(S)) ≥ u(δ(T). Also we can assume
that r ∈ S and v ∈ T . Observe that u(S) = u(S̄), u(T) = u(T̄) Recall Problem 3.36.
Hence we have four inequalities

u(δ(S)) + u(δ(T)) ≥ u(δ(S ∪ T)) + u(δ(S ∩ T)) = u(A1 ∪A2 ∪A3) + u(δ(A1)),

u(δ(S)) + u(δ(T̄)) ≥ u(δ(S ∪ T̄)) + u(δ(S ∩ T̄)) = u(δ(A1 ∪A2 ∪A4)) + u(δ(A2)),

u(δ(S̄)) + u(δ(T)) ≥ u(δ(S̄ ∪ T)) + u(δ(S̄ ∩ T)) = u(δ(A1 ∪A3 ∪A4)) + u(δ(A3)),

u(δ(S̄)) + u(δ(T̄)) ≥ u(δ(S̄ ∪ T̄)) + u(δ(S̄ ∩ T̄)) = u(δ(A2 ∪A3 ∪A4)) + u(δ(A4)).

Now let us introduce a symmetric matrix aij that is the capacities of the edges
from Ai to Aj for i 6= j (aii = 0). We can translate the above inequalities, say the
first one to:

a13 + a14 + a23 + a24 + a12 + a14 + a32 + a34 ≥ a14 + a24 + a34 + a12 + a13 + a14.

which are obvious, since aij ≥ 0.
So we have 8 possibilities by choosing S or S̄ and T or T̄ . For a choice S, T we

have two possibilities: (a) u(δ(S ∪ T)) ≥ u(δ(S ∩ T)).
(b) u(δ(S ∪ T)) < u(δ(S ∩ T)).

Possibility (a) yields that u(δ(S)) ≥ u(δ(S ∩ T)) = δ(B).
First possibility that each of the four sets contains exactly one of the vertices in

{r, s, v, w}. Say r ∈ A,w ∈ B, v ∈ C, s ∈ D. It seems too tedious for me to analyze
the cases, without some trick!

4 Chapter 4

4.1 §4.1: Minimum-Cost Flow Problems

Problem 4.3: We have V = P ∪ Q. we direct the edged in the biparttite graph
G = (V,E) from P to Q. So bv = −1 for each v ∈ P and bv = 1 for each v ∈ Q.
Thus we are looking at the equations fx(v) = bv where 0 ≤ xe ≤ 1 and integer flow.
We are looking of the minimum of c>x.

12

Problem 4.4: It is better to prove slightly general theorem. Assume that for each
digraph G = (V,E) with satisfying |δ(v)| = |δ(v̄)| we have the following. The set
V decomposes to a finite number of pairwise disjoint nonemty sets: V = ∪ki=1Vi,
such that each induced subraph Gi = (Vi, E(Vi)) is strongly connected, has directed
Euler tour, and E = ∪ki=1E(Vi). That is, there is no diedges in E between Vi and Vj
for i 6= j. The proof is by induction on number of edges in G. (If |δ(v)| = |δ(v̄)| = 0,
we assume that the Euler tour exists and is empty tour. Assume true where no
diedges. True when the number of diedges ≤ m, and supose that teh number of
diedges is m+ 1. Take a vertex with v1 with δ(v) ≥ 1. So follows from v1 to v2 by
diedge v1v2. As |δ(v2)| = |δ(v̄2)| it follws there is a diedge from v2 to v3 and cetera.
Hence we have a dicircuit C: vivi+1 · · · vjvi. Delete these diedges. The new digraph
has less diedges so we can apply the induction to G′ = (V,E \ E(C)) . Start the
Euler tour from vi using the above dicycle. Now conitnue if possible with Euler tour
in G′. This will prove the claim.
Problem 4.5: (My solution.) First, there is an Euler tour: Since the digraph
is weakly connected, i.e. connected as undirected graph, each degree is even we
have an undirected Euler tour, and by reversing the directions if needed we have a
directed Euler tour. Consider the system fx(v) = 0 for all v ∈ V . (So if xe = 1 then
we leave the edge as is, and if xe = −1 we reversing the edge. Then fx(v) = 0 is
the condition |δ(v)| = |δ(v̄)|. So we give the bounds: −1 ≤ xe ≤ 1 for each e ∈ E.
Find min{

∑
e∈E −cexe}. First note that the minimum problems is equivalent to

min{
∑

e∈E −ce(xe − 1)}. So if xe = 1 we do not have any contribution to the cost.
But if xe = −1, which means we change the direction then we pay 2ce. It is left to
show that the minimum solution satisfies xe ∈ {−1, 1}. (But why?) What happens
if xe = 0?

(Solution suggested by David Wang). Let bv = |δ((̄v)|−|δ(v)
2 . Note that since

|δ((̄v)| + |δ(v)| was even it follows that bv is an integer. Also
∑

v∈V bv = 0 as each
diedge is counted once as exiting and one as entering. Now we look for the solution
of the flow problem fy(v) = bv for 0 ≤ ye ≤ 1. We calim that there exists a soltuion
ye ∈ {0, 1} if and only if we can reverse some diedges to get Eulerian condition: the
number of edges in is the same as the number of edges out. So ye = 0 no reversal
and ye = 1 reversal. How it is related to my solution. We let ye = 1−xe

2 . Note that
it follows that fy(v) = bv. SAssume that ze = 1 on all diidges. Then fz(v) = 2bv!.
So since we have a solution ye ∈ {0.1} corresponding to reversal of edges we see that
the system is solvable. However, as in my suggested solution how do we know that
the minimum solution is also integer valued?

Theorem 3.19 gives the answer for the a flow which satisfies xe ≥ le, see page
56 (3.9). On page 98, it gives the reduction procedure which makes any problem
le ≤ xe ≤ ue to a problem ye ≥ l′e on a bigger graph.

In summary, both solutions are correct!
Problem 4.6: We consider again the system fx(v) = 0 for all v ∈ V . Now the
condition is xe ≥ 1. Assuming that xe integer then xe−1 is the number of duplicated
edges. So the cost of dulicating is

∑
e∈E ce(xe − 1) = (

∑
e∈E cexe)−

∑
e∈E ce. The

second term is a fixed constant. We we minimize
∑

e∈E cexe.
Problem 4.10: If y ∈ RV and it is feasible, it means that whenever uvw =∞ then
we must have (4.3) which is −yv + yw ≤ cvw. Otherwise if −yv + yw ≤ cvw. We set
zvw = 0. If −yv + yw > cvw we set zvw = −yv + yw − cvw. Now continue as in the

13

book: Set c̄vw = cvw + yv − yw. Now we have Theorem 4.2. (Perhaps I am missing
here something?)
Problem 4.11: Suppose we have a minimal solution and the corresponding maximal
dual solution. We continue as [1, page 95]. Given dual variables yv and zvw for uvw <
∞ we can express zvw by the formula max(0,−c̄vw), where c̄vw = cvw+yv−yw. Then
we let xe = 0 if c̄e > 0 and xe = ue if c̄e < 0. Let E′ ⊆ E be all set of diedges where
c̄e = 0. Let us denote by G′ = (V,E′) and by G′′ = (V,E\E′). Then x′′e = 0 if c̄e > 0
and x′′e = ue if c̄e < 0. Denote by b′′v = fx′′(v). So we are left with a new system
with variables x′e where e ∈ E′. Clearly fx(v) = fx′(v) + fx′′(v) = fx′(v) + b′′v = bv.
The system of equations are fx′(v) = b′v where b′v = bv − b′′v . We now need to find
condition where the system fx′(v) = b′v, v ∈ V is solvable for 0 ≤ x′e ≤ K. The
solubility of such a system is given by [1, Theorem 3.15]: K|δ(Ā)| ≥ b′(A). The
minimum of the left hand side is K, i.e., |δ(Ā)| = 1. How big can be the right
hand side? Note that b′(A) = b(A)− b′′(A). b(A) ≤

∑
v∈V,bv>0 bv. How big −b′′(A)

can be? Remember that for e ∈ E \ E′ xe ∈ {0, ue}. So the worst case is that
the contribution of xe to −b′′(A) is ue. (Only once!) Hence −b′′(A) ≤

∑
e,ue<∞ ue.

Therefore it is enough to choose

K =
∑

v∈V,bv>0

+
∑

e,ue<∞
ue.

5 Homework 5

5.1 Aliabadi’s problems for the week 10-31 – 11-2

Problem 1 Assume that there is a matching that saturates X. Take S ⊆ X. Each
vertex s ∈ S is matched with y(s) ∈ Y and y(s1) 6= y(s2) for s1 6= s2. Hence
N(S) ⊇ ∪s∈S{y(s)}. Therefore

|N(S)| ≥ |S| for each S ⊆ X. (5.1)

Vice versa, suppose that (5.1) holds. We show by induction on |X| that there is a
match that saturates X. For |X| = 1, |N(X)| ≥ |X| = 1, so there is an edge xy
from the only vertex x ∈ X that connects to Y . This is our match. Suppose that
the claim is true for each bipartite graph satisfying the condition (5.1) if |X| ≤M .
Assume that |X| = M + 1. Let a ∈ X. As |N({a})| ≥ |{a}| = 1, there is an edge
ab ∈ V (G). Consider the subgraph G′ = G \ {a, b}. It is a bipartite graph with
bipartition X ′ = X\{a}, Y ′ = Y \{b}. If G′ satisfies the condition (5.1) we are done:
Let M ′ be a matching that saturates X ′ in G′. Then M = M ′ ∪ {ab}. So suppose
that (5.1) is not satisfied in G′. So there exists A ⊆ X ′ so that |NG′(A)| < |A|. But
|NG(A) ≥ |A|. So NG(A) = NG′(A) ∪ {b} and |NG(A)| = |A|. Hence the subgraph
G(A ∪N(A)) is a bipartite subgraph satisfying the condition (5.1). As |A| ≤ M it
has a perfect match M1 by the induction hypothesis. Now, consider the subgraph
G2 = G((X ∪ Y) \ (A ∪ N(A)). It is straightforward to show that the condition
(5.1) on G yields that G2 satisfies (5.1). By induction, there is a match in M2 which
saturates X \A. So M1 ∪M2 is a match that saturates X.

Problem 2: Every tree has at most one perfect matching. Clearly, it is enough to
assume that the tree has an even number of vertices T = (V,E). By induction on

14

n′ = |V |
2 . For n′ = 1 exactly one perfect match. Suppose this is true for n′ ≤ N .

Suppose that n′ = N + 1. Recall that every tree has at least two leaves. Assume
that v ∈ V is a leaf. So every perfect match has to have the unique edge vw, where
w ∈ V . Consider T \{v, w}. It decomposes to a finite number of trees. By induction
each such tree has at most one perfect matching. Hence T can have at most one
perfect matching.

Problem 3: Let µn be the size of the minimum maximal matching in the cycle
Cn = (V,E), V = {v1, . . . , vn}, where E has edges vivi+1 for i = 1, . . . , n. Here
vn+1 = v0 = v1. Clearly: µ3 = 1, µ4 = 2, µ5 = 2. Now µ6 = 2. To obtain µn
we should ”pad” each edge of matching vivi+1 with two exposed vertices vi−1 and
vi+1, as much as possible. So in C6 we have a maximal matching v1v2, v4v5. Hence
µ6k = 2k: v1v2, v4v5, v7v8, . . . , v6k−2v6k−1. Therefore µ6k+1 = 2k+1, µ6k+2 = 2k+1.
Thus the answer is µn = dn3 e.

Problem 4: Recall Birkhoff’s theorem that each doubly stochastic n × n matrix
A is of the form

∑
σ∈Sn

θ(σ)Pσ. Here σ : [n] → [n] is a permutation (bijection) on
[n] = {1, . . . , n}. Sn is the symmetric group of all permutations. (The cardinality
of Sn is n!.) Pσ is the permutation matrix corresponding to σ. (So the (i, j)
entry of Pσ is δσ(i)j .) θ(σ) ≥ 0 for each σ ∈ Sn, and

∑
σ∈Sn

θ(σ) = 1. Clearly,

A> =
∑

σ∈Sn
θ(σ)P>σ If A is symmetric then A = A> = 1

2(A + A>). Hence a
symmetric doubly stochastic matrix is

A =
∑
σ∈Sn

θ(σ)
1

2
(Pσ + P>σ).

It is not hard to show that each 1
2(Pσ + P>σ) is an extreme points in the convex set

of all n× n symmetric doubly stochastic matrices.

Problem 5: Suppose first G = (X ∪ Y,E is a bipartite graph. with a partition
X,Y of vertices that has a perfect matching. So each x ∈ X is matched wit y ∈
Y . Hence |X| = |Y |. Let A ⊆ X,B ⊆ Y . So N(A) ⊆ Y,N(B) ⊆ X.Then
N(A ∪ B) = N(A) ∪ N(B). By Hall’s theorem |N(A)| ≥ |A|, |N(B)| ≥ |B|. Then
|N(A ∪ B)| ≥ |N(A)| + |N(B)| ≥ |A| + |B|. As S = (S ∩X) ∪ (S ∩ Y) we deduce
the result that |N(S)| ≥ |S|.

Assume now that |N(S)| ≥ |S|. So |Y | ≥ |N(X)| ≥ |X| and |X| ≥ |N(Y)| ≥ |Y |.
Hence |X| = |Y |. Clearly, for each S ⊆ X we have that |N(S)| ≥ |S|. Hence by
Hall’s theorem there is a matching that saturates X. This matching is perfect
matching.

Take a complete graph Kn = ([n], E), where n is odd. For each A ⊆ [n]
|N({v}| = n − 1, and |N(A)| = n if |A| ≥ 2. So for n ≥ 3 we have the condi-
tion that |N(A) ≥ |A|. As n is odd there is no perfect matching.

5.2 §5.1

Problem 5.1: We assume that G = (P ∪ Q,E) a bipartite graph. We orient all
edges P → Q. We can assume that the capacities of edges pq ∈ E, p ∈ P, q ∈ Q are
∞. We add a source r and connect it with with diedges rp with capacity 1 for each

15

p ∈ P . We connect each q ∈ Q with s with diedge qs with capacity 1. This gives
rise to the digraph G′. Suppose we have a match M ⊂ E that we augment by an
M -augmenting path. We can assume without loss of generality that an augmenting
path startet at P and ended in Q: p0q1p1 · · · qkpkqk+1. So M1 composed of edges
q1p1, . . . , qkpk was in the given match M while p0 and qk+1 where M exposed. So
the augmentation is to replace M1 by k + 1 edges p0q1, p1q2, . . . , pkqk+1.

Now let us see the flow x corresponding to the match M : For pq ∈ M we have
xpq = 1. Also xrp = 1, xqs = 1. If p is M exposed then xrp = xpq = 0 for all pq ∈ E.
If q in M exposed then xqs = xpq = 0 for all pq ∈ E.

So the dipath rp0q1p1 · · · qkpkqk+1s is an x-augmenting in G′(x). Indeed rp0,
p0q1 are in G′ and G′(x) since p0 is M -exposed. Next, q1p1 is in G′(x) but not in G′,
since the orientation in G′ is p1q1 but xp1q1 = 1 > 0. (As up1q1 =∞ if follows that
diedge p1q1 is also in G′(x).) Next p1q2 is in G′ and G′(x). Next q2p2 is in G′(x)
but not in G′. Continuing in this manner we deduce that rp0q1p1 · · · qkpkqk+1s is an
x-incrementing path. Hence we can augment the flow by 1.

Vice versa, suppose that rp0q1p1 · · · qkpkqk+1s is an x-incrementing path. First,
p0 is was M -exposed, since the integer flow in direction rp0 was zero in x. (Oth-
erwise, as urp0 = 1 there would be only a diedge p0r in G′(x). Since there is a
diedge p0q1 it means that there was an edge p0q1 in E. Since there is an edge q1p1

in G′(x) it means that xp1q1 = 1 so p1q1 where in the original M and cetera. So
p0q1p1 · · · qkpkqk+1 is an M-augmented path.

Now each M -alternating path again, can be viewed as p0q1p1 · · · qkpk where p0

is M -exposed and M1 composed of edges q1p1, . . . , qkpk. Hence rp0q1p1 · · · qkpk is
an x-incrementing path.

Problem 5.2: Let M be a match and M ′ is a maximum matching of cardinality p.
We consider the symmetric difference M∆M ′. It consists of paths and even cycles.
The number of edges is |M |+ |M ′| − 2|M ∩M ′|. In each even cycle the number of
edges in M and in M ′ is the same. In each M -augmenting path the number of edges
in M ′ is greater by 1 then the number of edges in M . Since M ′ is maximum match-
ing each path can not be M ′-augmenting. So each path is either M -augmenting,
or it has an even number of edges:a half in M and a half in M ′. Hence we must
have exactly p−|M |M -augmenting paths. They are all node disjoint, because each
vertex of degree 2 is in M and M ′ and teh vertices on the end of M -augmenting
paths are only on M ′ but not on M .

Problem 5.3: Let M ′ be a matching of cardinality 5, 000. Suppose that all aug-
menting paths are longer than 9. Since every augmenting path has an odd length
each path is of length 11. From the arguments of the proof of Problem 5.2 we de-
duce we have at least 5, 000− 4, 000 = 1, 000 M -augmenting paths. (Note that the
maximum matching may have more than 5, 000 edges.) Hence we would have at
least 1, 000 M -augmenting paths in M∆M ′. All these paths are node-disjoint, and
hence edge disjoint. So the total number of edges in these paths is at least 11, 000.
But the |M | + |M ′| = 9, 000 which contradicts that |M∆M ′| ≥ 11, 000. Hence at
least one of the M -augmenting paths has at most length 9.

Problem 5.4: Suppose |M | ≤ p − √p, where p = |N |, and N is a maximum
matching. Exercise 5.2 yields that M∆N has at least p−|M |M -augmenting paths.

16

Suppose that each at least
√
p+ ε edges from M , for some ε > 0. Hence M wil have

at least
(p− |M)(

√
p+ ε) ≥ √p(√p+ ε) = p+ ε

√
p > p−√p,

contrary to our assumptions. Hence M∆N has at least one augmenting path of
lenght at most

√
p.

Problem 5.7: First we show that if |C| is odd then |δ(C)| ≥ 3. If C = {v} then
|δ(v)| = 3, the degree of each vertex. Consider G′ = G(C). The degree of each
vertex in G′ is at most 3. If there is an isolated vertex in v G(C) then δ(v) ⊆ δ(C)
so |δ(C)| ≥ |δ(v)| = 3, and we are done. So the degree of each vertex in G(C) is at
least one. It is impossible to have all vertices in G(C) to be of degree 3, since the
number of vertices of odd degree must be even. (The sum of degrees is twice the
number of edges, hence even.) So suppose that |δ(C)| = 1. This means that the
only edge in δ(C) is e and G \ {e} is disconnected to C and other components. (C
may connect several connected components.) This contradicts teh assumptions of
Petersen’s theorem. Hence |δ(C)| ≥ 2. Suppose that |δ(C)| = 2. So either exactly
one vertex in G(C) has degree 1 and all other degree 3 or exactly two vertices have
degree 2 in G(C) and all other vertices have degree 3. This will be a contradiction,
since the number of vertices of odd degree is odd in both cases. Hence ‖δ(C)| ≥ 3.

Using Tutte’s theorem, it is now left to show that we have the inequality |A| ≥
oc(G \ A). Each odd component in C in G \ A is connected to A. The number of
edges coming out of each C is at least 3. So the number of edges coming to A from
all the odd components is at least 3oc(G \ A). But the degree of each vertex in A
in G is 3. So 3|A| ≥ 3oc(G \A), i.e. |A| ≥ oc(G \A).

Problem 5.8: Let M be a maximum matching in bipartite graph G = (P ∪Q,E).
Assume that vw ∈ E. According to Lemma 5.5 if both vw are not essential then
G has an odd cycle. But G does not have an odd cycle! So either u is essential
or v is essential. By changing the names we can assume that u is essential. So
every maximum matching covers u. Then we put u in C. Suppose that u and v are
essential. So we get that either uv is in the maximum matching, or we have two
edges uv′ and u′v in maximum matchings. We can not have these two possibilities
be together otherwise, u′vuv′ would be an augmenting path for a maximum match
that has the match uv. In the case that uv appears in each maximum matching we
choose either u or v in C. In the other case we choose u and v in C. It now follows
that C is a covering set.

Problem 5.9: Assume that G = (V,E). I had difficulty in following the hint in the
book. If v, w are inessential and vw ∈ E, then there exists a tight odd cycle C such
that vw is in this cycle. We can shrink this cycle to obtain new graph G′ = G×C.
As G was connected so is G′. Note that the vertex C an inessential node in G′. If
we can show that every other node in G′ is inessential, we are done by induction on
the number of vertices. So we need to show that every node in G′ which is not C
is inessential. This node is w and w is not the node on the cycle C. Let us take a
maximum match M in G that omits w. Some of the edges of in M connect to the
vertices on the cycle C. If we shrink C we lose all these matchings except one.

As v ∈ V is inessential, there is a maximum matching where v is exposed. Hence

17

ν(G) ≤ |V |−1
2 . Suppose that ν(G) < |V |−1

2 . So for each maximum match M there
exist at least two M -exposed vertices v and w. So fix a maximum match M and v, w
two uncovered by M . So assume that As V connected there exists a path connecting
these two vertices, call it P = u0u1 · · ·uk, where u0 = v, uk = w. Note that this
path has length 2 at least, i.e. k ≥ 2. (If v, w are M -exposed and vw ∈ E then M is
not maximum.) Take a maximum match on P . Call it N = {u0u1, u2u3, . . . , }. So v

is covered by N . If N is maximum then ν(G) ≥ |V |−1
2 contrary to our assumption.

So |N | < |M |. Consider M∆N . According to the proof of Exercise 5.2 it must
have |M | − |N | augmenting paths. So taking away the common edges in M and
N from P we get l subpaths of P , P1, . . . , Pl. Then the matches in N sub-paths
are extended to sub-paths in M∆N . The path starting from u0 = v must be of
even length, otherwise M is not maximum. It now follows that by augmenting each
M -augmenting path in M∆N , and leaving all other edges in N as is, we obtain
a match M ′ that covers all get to covers at least by one more vertices than M .
Contradiction?

5.3 §5.2

Problem 5.13: Let ν(G) be the cardinality of a maximum match M ⊆ E. So
M covers V1 vertices of cardinality 2|M |. If V = V1 then M is an edge cover of

G = (V,E) of cardinality |V |2 = |V | − ν(G). Suppose that V1 is a strict subset of V .
Let V2 = V \V1. As G has isolarted vertez, for each v ∈ V2 chose and edge e(v) that
covers v. Let E1 = M∪) ∪v∈V2 e(v). Then E1 is an edge cover and

|E1| = ν(G) + |V2| = ν(G) + (|V | − 2ν(G)) = |V | − ν(G).

It is left to show that each edge cover is of cardinality at least |V | − ν(G). As-
sume that D is a minimal edge cover. So if e ∈ D, then D \ e is not an edge cover.
So u(e) ∈ V is not in D \ e. We have two possilities: First e = uv and D \ e does
not cover u and v. The set of such edges in D corresponds to a match M . M ⊂ D.
So |M | ≤ ν(G). For each e ∈ D \M there is exaclty one vertex that is only covered
by e. Hence |D| = |M |+ (|V | − 2|M |) = |V | − |M | ≥ |V | − ν(G).

Problem 5.18: Suppose M is a perfect match in G. First player choose e1 = v1v2 ∈
M . If the degree of v1 and v2 is 1 the second player lost. Otherwise, my renaming
v1, v3 the second player chose an edge v2v3. Then the first player choses e2 ∈ M
such that e2 = v3v4. Continuing in this matter the second palyer must lose, since
there is no augmenting path for M as it is maximum!

6 Homework 6

Problem 1: Problem 5.9 yields that |V | is odd and ν(G) = |V |−1
2 . That is, for each

node v ∈ V the is a match M ⊂ E such that M covers all vertices in V except v.
So suppose the first player chose an edge v0v1. As v0 is not essential, then there
exist a perfect match in G1 = G \ {v0}. The second player chooses an edge in M
that covers v1. It must be of the form v1v2, where v2 6= v0. Now we continue as in
Problem 5.18, where the Second player has the role of the First player on the graph
G1.

18

Problem 5.22: Let A(G) = [aij]
n
i,j=1. Here A(G) has entries 0 or 1,as aij = 1

if vivJ ∈ E and otherwise aij = 0. Also A(G) is symmetric and the diagonal
entries aii = 0. The system (5.8) is equivalent to the statement that there exists a
symmetric matrix X = [xij] such that xij = 0 if vivj 6∈ E and xij = xji = x(e) ≥ 0,
where e = vivj such that x(δ(v)) = 1 for each v ∈ V . This condition is equivalent
to: X is a doubly stochastic matrix.

Suppose first that G = (V,E) contains a subgraph H = (V,E′) where the degree
of each vertex is 1 or 2. This is equivalent to the statement H consists of a match
M and a union of cycles C1, . . . , Ck, which are vertex disjoint. Let us construct
X(H), a symmetric doubly stochastic matrix with zero diagonal corresponding to
H. If e ∈ M then let x(e) = 1. If e ∈ E(Ci) then x(e) = 1

2 . All other entries of
X are zero. We claim that X is doubly stochastic. If v is covered by M then the
corresponding row and column of X to v contains only one nonzero entry equal to
1. Hence x(δ(v)) = 1. If v ∈ V (Ci) then the corresponding row and column of X to
v has two nonzero entries, corresponding to two neighbors of v in V (Ci). The value
of each entry is 1

2 . Again x(δ(v)) = 1. Therefore (5.8) is solvable.
Assume now that (5.8) is solvable. Hence there exists a symmetric doubly

stochastic matrix X = [xij] such that xij = 0 if vivj 6∈ E. Recall the solution
of Problem 4 in HW 5. X is a convex combination of matrices 1

2(P + P>, where P
is a permutation matrix. So there exists a permutation matrix P = [pij] such that
the nonzero entry of P +P> are located on the edges of G. Consider the multigraph
G′ = (V,E′) corresponding to P + P>. Since G has no self loops, G′ does not have
self loops. As each row and column of P + P> sums to 2 each vertex has degree 2.
So G′ consists of a match M where each edge appears twice and a union of cycles
C1, . . . , Ck. Hence G contains a subgraph H as above.
Problem 5.40: Take E(P). Suppose that E(P) 6= E. Then there is a vertex
v ∈ V (E(P)) such that its degree in G is greater than the degree of v the subgraph
induced by E(P). If not E(P) is a connected component of G. Since G is connected
this is a contradiction to E(P) 6= E. Note that G′ = G \ E(P) has all vertices of
even degree. Take this v and consider an edge disjoint path in G′ starting form v.
This path must end in v for the reason that this path is in a connected component
of G′. Call this path E(P1). Now join E(P1) to E(P) to get a bigger closed edge
disjoint path in G. If G = E(P) we are done. Otherwise repeat.
Problem 5.43: Suppose first that all ce ≤ 0. Then this problem is equivalent to
find the minimum cut with nonnegative cost edges −ce. Make a directed graph
G′ from G be making each undirected edge to two directed edges in two different
directions. Fix r ∈ V . Choose s ∈ V \ {r}. Now find the minimum edge cut finding
the maximum flow from r to s using −ce as the capacity of the directed edges. This
minimum edge cut in G′ correspond to an edge cut in G with the corresponding
cost. Now vary s ∈ V \ {r} to find the minimum edge cut.

Assume now that exactly one cf > 0. Let f = vw, G1 = G \ {f} and G′ be
the oriented G1. Assume the cost of edges is −ce for e 6= f . Suppose first that the
maximum cut contains f . Then we need to find the minimum cut in G′ where r = v
and s = w.

Suppose that f is not in the maximum cut. Then we find the minimum cut in
G′ with r = v and s varies in V \ {v}. From all these we consider all minimum
cuts of the above form. If f connects the two connected components in some choice
then we have the maximum cut with cf and we are done. Suppose that f connects

19

two vertices in the same connected component for each minimal cut if G′. Now
choose the maximum between the maximum cut conatinaing cf and the maximum
cut where cf in one of the connected components.
Problem 5.45: Assume that J ⊂ V is set of odd vertices in G = (V,E). Clearly, if
J = ∅ then c(J) = 0 and 1

3C(E) ≥ c(J). Next observe that the assumption that the
graph with edge connectivity two means that first the degree of each vertex is two
at least. As the degree of each vertex v ∈ J is odd the degree of each vertex in J is
at least 3. We now claim that if we give a weight 1

3 to each e ∈ E we are going to
satisfy the condition in (5.33) that x(D) ≥ 1 for each D ⊂ E, D = δ(S), and S∩J is
odd. So first |δ(S)| ≥ 2 since G is two connected. It is left to show that |δ(S)| > 2.
We claim that the condition |δ(S)| = 2 would violate that the subgraph G(S) has
an even number of vertices of odd degrees. (Consider a number of possibilities to
which vertices these two edges are connected!)

References

[1] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A.Schrijver, Combina-
torial Optimization, Wiley, 1998.

20

