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1 Outline of the talk

1. Estimation of missing values in given matrix data using

the inverse eigenvalue problems techniques, and their

applications to DNA microarrays and image processing.

2. A joint SVD decomposition of two or more matrices to

compare several biological processes.

Most of the results can be found in the following recent

papers, which are available at

http://www.math.uic.edu/∼friedlan/research.html
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Singular Value Decomposition

G(n×m) = U (n×n)Σ(m×m)V (m×n)T
, n À m

Σ = DIAG(σ1, σ2, . . . , σm)

σi =
√

λi eigenvalues of GGT or GT G

Columns of U , eigenvectors of GGT .

Columns of V , eigenvectors of GT G.

Let rank(G) = r. Then

• σ1 > σ2 > · · · σr > σr+1 = · · · σm = 0

• N(G) = span{vr+1, . . . , vn} and

R(G) = span{u1, . . . , ur}
• G = Σr

i=1uiviv
T
i

• Norms: ‖G‖2
F = σ2

1 + · · · + σ2
r , and

‖G‖2
2 = σ1
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Principal Component Analysis (PCA)

• Let G = (g1, . . . , gn)T , genes through different

experiments. Let µG = E(G) be the mean and

CG = (G − µG)(G − µG)T be the covariance

matrix.

• Then compute the eigenvalues λi and

corresponding eigenvector vi, i = 1 . . . n.

• Sort the eigenvalues and corresponding

eigenvectors in descending order.

• Construct orthogonal basis, by having the first

eigenvector the direction of the largest variance.

• Represent the data with the few basis vector

(corresponding to the largest eigen value).

• Let Ek be the matrix having the first k eigenvectors.

• Project the original data on the axis in dimension k.

This way we could minimize MSE, by this

representation of data. This way we lose a little bit

of information.
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Low Rank Approximation

Let R(n, m, k) denote the set of n × m matrices of

at most rank k (m ≥ k). Then for each k, k ≤ r, the

SVD of E gives the solution to the following

approximation problem:

min
E∈R(n,m,k)

||G − E||F ||G −
k∑

q=1

σquqvT
q ||F

=

√√√√
r∑

q=k+1

σ2
q

Transcriptional Response:

gi =
r∑

k=1

uikσkvk

Array expression profile:

cj =
r∑

k=1

vjkσkuk
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Computing Eigen-genes

Gene matrix Gn×m, # of significant σi 6
m

2
u1, . . . , un eigenarrays, v1, . . . , vn eigengenes,

σ1 . . . , σl eigenexpressions.

• Hous(G) = (I − 2hht)G = A.‖h‖2 = 1

• Compute AT A

• QR(AT A) → Q


R

0


 →

positive σ2
1, . . . , σ2

l and u1, . . . , un
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2 SVD in inner product spaces

Ui is mi-dimensional IPS over C, with 〈·, ·〉i, i = 1, 2.

T : U1 → U2 linear operator. T ∗ : U2 → U1 the

adjoint operator: 〈Tx, y〉2 = 〈x, T ∗y〉1.

S1 := T ∗T : U1 → U1,

S2 := TT ∗ : U2 → U2.

S1, S2 self-adjoint: S∗
1 = S1, S∗

2 = S2 and

nonnegative definite: 〈Sixi, xi〉i ≥ 0.

σ2
1 ≥ ... ≥ σ2

r > 0 positive eigenvalues of S1 and S2

and r = rank T = rank T ∗. Let

S1vi = σ2
i vi, 〈vi, vj〉1 = δij, i, j =, 1, ..., r.

Define ui := σ−1
i Tvi, i = 1, ..., r. Then

〈ui, uj〉2 = δij, i, j = 1, . . . , r.

Complete {v1, ..., vr} and {u1, ..., ur} to orthonormal

bases [v1, ..., vm1 ] and [u1, ..., um2 ] in U1 and U2.
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3 Matrix SVD

Let A ∈ Cm×n. Then A : Cn → Cm. Assume

Cn,Cm equipped with standard inner product

〈x, y〉 := y∗x.

Then A = UΣV ∗, where U ∈ U(m), V ∈ U(n),

Σ = diag(σ1, . . . , σmin(m,n)) ∈ Rm×n
+ .

U, V transition matrices from [u1, ..., um], [v1, ..., vn]
to the standard bases in Cm,Cn respectively.

For k ≤ r let Σk = diag(σ1, . . . , σk) ∈ Rk×k,

and Uk ∈ U(m, k), Vk ∈ U(n, k) having the first k

columns of U, V respectively. Then Ak := UkΣkV ∗
k

the best rank k approximation in Frobenius and operator

norm of A:

minB∈R(m,n,k) ||A − B|| = ||A − Ak||.
A = UrΣrV ∗

r is Reduced SVD

(r ≥) ν numerical rank of A if
σν+1

σν
≈ 0.

Aν is a noise reduction of A.

Noise reduction has many applications in image processing,

DNA-Microarrays analysis, data compression.
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4 MISSING ENTRIES PROBLEM

In DNA Microarrays experiments one measure thousands of

genes i = 1, . . . , m in n different conditions, typically

n ∈ [3, 20].

0 ≤ aij measures the intensity of gene i in j − th

experiment. The results are recorded in the matrix

A = (aij) ∈ Rm×n.

Sometimes the entries aij are missing (corrupted, up to

20%).

Let T ⊂ {1, . . . , n} × {1, . . . , m} missing entries

set.

Set aij = 0 if (i, j) ∈ T .

Let X be all X = (xij) ∈ Rm×n where xij = 0 if

(i, j) 6∈ T .

Assume that the completed matrix of the experiment should

have the numerical rank ν . Then we complete the entries by

solving the problem:

(1) minX∈X
∑n

i=ν+1 σ2
i (A + X) =

minX∈X
∑n

i=ν+1 λi((A + X)T(A + X))

9



5 FRAA

Fixed Rank Approximation Algorithm: [8]

Let Gp ∈ X be the pth approximation to a solution of

optimization problem (1). Let

Bp := (A + Gp)T(A + Gp) and find an orthonormal

set of eigenvectors for Bp, vp,1, ..., vp,m. Then Gp+1

is a solution to the following minimum of a convex

nonnegative quadratic function minX∈X
∑m

q=l+1

((A + X)vp,q)T((A + X)vp,q).

Flow chart of the algorithm:

Fixed Rank Approximation Algorithm (FRAA)

Input: integers m, n, L, iter, the locations of non-

missing entries S , initial approximation G0 of n × m

matrix G.

Output: an approximation Giter of G.

for p = 0 to iter − 1
- Compute Bp := (A + Gp)T(A + Gp) and find an

orthonormal set of eigenvectors for Bp, vp,1, ..., vp,m.

- Gp+1 is a solution to the minimum problem (1) with

ν = L − 1 = l.

10



Let fl(X) :=
∑n

i=ν+1 σ2
i (A + X). In each step of

the algorithm fl(Gp) ≥ fl(Gp+1). Gp, p = 1, . . .

converges to a critical point G̃. FRAA gives a good

approximation of G̃. In many simulations G̃ = G∗.

FRAA is an adaptation of an algo for IEP:

Inverse Eigenvalue Problem: Find the values of the missing

entries of G such that the nonnegative definite matrix

GTG will have m − l smallest eigenvalues equal to zero.

IEP appear often in engineering. See [9] for examples of IEP

and a number of good algorithms to solve these problems.

FRAA is a robust algorithm which performs good, but not as

well as KNNimpute, BPCA and LSSimpute.

All other algo reconstruct the missing values of each gene

from similar genes.
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More about FRAA

Proposition

Let G′ be the n′ × m′ be the matrix constructed by

deleting i and j columns, the σq(G) ≥ σq(G′) for

q = 1 . . . m.

Ky-Fan Characterization

m∑

q=l

λq(A) =
m∑

q=l

zT
q Azq

= min
{yl,...,ym}∈Ωm−l+1

m∑

q=l

yT
q Ayq
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Computational Aspect of (FRAA)

The algorithm tries to minimize
∑M

l=L σ2
l+1(G), where

G ranges over all the completion of the missing data. We

assume that the ideal completed gene matrix should have

rank (k).

• We start with G0 using SVD. Suppose we have Gp .

Gp is the missing reconstruction data.

• Then algorithm for constructing Gp+1,

Ap := GT
p Gp an n × m matrix.
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• We use MatLab to find

λ1(Gp) ≥ · · · ≥ λm(Gp),

and their corresponding eigenvector up,1 . . . up,m.

G = Gp + X .

X has all zero entries for the non missing data. Now we

consider the quadratic form,

∑M
i=l ||(Gp + X)up,i||2 =

∑M
i=l u

T
p,i(Gp + X)T (Gp + X)up,i

xT Bpx + 2wT
p x +

∑M
i=1 σ2

i (Gp) = f(x)

and we want to minimize f(x).
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Algorithm for Gp

• In the original matrix we substitute 0 for missing value or

write down the row average

• Compute the singular value of GT
p Gp.

• Construct Bp, with entries bp(s, t), in (s, t) places.

bp(s, t) =
1

2

m∑

i=l

vT
p,i(F (is, js)T F (it, jt)

+F (it, jt)T F (is, js))vp,i.

• The matrix Bp gives the exact solution of Gp+1.

• Solve for x in Bp · xp+1 = −wp.

Gp+1 := Gp + Xp+1 untilPM
i=L σ2

i (Gp+1)PM
i=1 σ2

i (Gp+1)
is very small (L = ` + 1).
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6 IMPROVED FRAA (IFRAA)

Improved Fixed Rank Approximation Algorithm [7].

First use FRAA to find a completion G.

Then use a cluster algorithm,

(We used K-means repeating & refining cluster size),

to find a reasonable number of clusters of similar genes,

each cluster is a relatively smaller matrix having an effective

low rank.

For each cluster of genes apply FRAA separately to recover

the missing entries in this cluster.

These results suggest that IFRAA has a potential for being

an effective algorithm to recover blurred spots in digital

images.
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7 Clustering

Given a metric space X, d : X × X → R+ and

X := {x1, . . . , xn} ⊂ X are n distinct points,

associate M := (d(xi, xj))n
i,j=1 ∈ Rn×n

+ .

Problem: Partition X to clusters X = ∪m
j=1Xj using M .

There are many different approaches to solve this problem.
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K-Means Clustering

• Divide genes randomly in K-clusters

• Compute centroid

• Compute genes distance to clusters

• Pick closest cluster

• Recompute new centroid

• Repeat until convergence
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IFRAA(FRAA +K-Means Clustering)

• Impute G via FRAA

• Find clusters ci using K-means.

• Compare ci with G, remove data points

corresponding to missing data.

• Impute applying FRAA to ci.
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8 SIMULATIONS 1
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Figure 1: Comparison of NRMSE against percent of missing

entries for three methods: IFRAA, BPCA and LLS. Cdc15

data set in [17] with 24 samples.
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9 SIMULATIONS 2
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Figure 2: Comparison of NRMSE against percent of missing

entries for three methods: IFRAA, BPCA and LLS. Data set

was a 2000 × 20 randomly generated matrix of rank 2.
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Bayesian principal component analysis-BPCA [15]: A global

method consisting of three components. First, principal

component regression, which is basically a low rank

approximation of the data set is performed. Second,

Bayesian estimation, which assumes that the residual error

and the projection of each gene on principal components

behave as normal independent random variables with

unknown parameters, is carried out. Third, Bayesian

estimation follows by iterations based on the

expectation-maximization (EM) of the unknown Bayesian

parameters.

Local least squares imputation method LLS [14]: A local

methods, which use similarity structure of the data to impute

the missing values. LLS has two versions to find similar

genes whose expressions are not corrupted: the L2-norm

and the Pearson’s correlation coefficients. After a group of

similar genes C are identified, the missing values of the

gene are obtained using least squares applied to the group

C . The recovery of missing data is done independently, i.e.

the estimation of each missing entry does not influence the

estimation of the other missing entries.
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10 TABLE

The performance of the BCPA, IFRAA and LLS algorithms

depends on the unknown distribution of missing position of

the entries.

Table 1: Comparison of NRMSE for three methods: IFRAA,

LLS and BPCA for actual missing values distribution for three

gene expression data sets with different percentage of miss-

ing values.

Data sets IFRAA LLS BPCA

Cdc15 data set %0.81 missing 0.0175 0.0200 0.0216

Evolution data set %9.16 0.0703 0.0969 0.1247

Calcineurin data set %3.68 0.0421 0.0445 0.0453
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11 Generalized SVD

Let A ∈ Cm×n, B ∈ Cl×n. Then Van Loan 70s:

A = FΓR, B = G∆R,

F ∈ U(m), G ∈ U(l), R ∈ GL(n,C),

Γ ∈ Rm×n
+ , ∆ ∈ Rl×n

+ diagonal matrices.

Numerical computations of GSVD are very unstable.

Thm ([5]). Let P := A∗A + B∗B and r := rank P .

Then A = UΦV ∗, U ∈ U(m, r), V ∈ Cn×r ,

B = WΨV ∗, W ∈ U(l, r),

Φ = diag(φ1, . . . , φr),

Ψ = diag(ψ1, . . . , ψr) ∈ Rr×r
+ and

Φ2 + Ψ2 = Ir .

Hence P = V V ∗ and the columns of V form an

orthonormal basis of the subspace X, spanned by the

columns of A∗, B∗ with respect to the inner product

〈x, y〉 := y∗Px on V.

Reason: T ∗
ATA + T ∗

BTB = I|X ⇒
(T ∗

ATA)(T ∗
BTB) = (T ∗

BTB)(T ∗
ATA)
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