Methods of algebraic geometry in matrix theory

SHMUEL FRIEDLAND
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago Chicago, Illinois 60607-7045, USA
email: friedlan@uic.edu
Lady Davis Visiting Professor in Technion, Fall 2000
technion email: friedls@tx

December 15, 2002

Abstract

The purpose of these lectures to report on the recent solution of a 50 years old problem of describing the set of the eigenvalues of a sum of two hermitian matrices with prescribed eigenvalues

1 Statement of the problem

For a field \mathbb{F} denote by \mathbb{F}^{n} the vector space of column vectors $f=\left(f_{1}, \ldots, f_{n}\right)^{T}$ with entries in \mathbb{F}. We will mostly assume that \mathbb{F} is either the field of reals \mathbb{R} or complexes \mathbb{C}. We view \mathbb{R}^{n} and \mathbb{C}^{n} as inner product spaces with the inner product (x, y) equal to either $y^{T} x$ or $y^{*} x$ respectively. Set

$$
\mathbb{R}_{\geq}^{n}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}: \quad x_{1} \geq x_{2} \geq \cdots \geq x_{n}\right\}
$$

Let $\mathcal{S}_{n} \subset \mathcal{H}_{n}$ be the real vector spaces of $n \times n$ real symmetric and hermitain matrices respectively. Note that \mathcal{S}_{n} and \mathcal{H}_{n} describe the space of selfadjoint operators in \mathbb{R}^{n} and \mathbb{C}^{n} respectively, with respect to the standard inner product (\cdot, \cdot). Let $A \in \mathcal{H}_{n}$. It is well known that \mathbb{C}^{n} has an orthonormal basis consisting entirely of the eigenvectors of A :

$$
\begin{aligned}
& A u_{i}=\lambda_{i} u_{i}, \quad \lambda_{i} \in \mathbb{R}, \quad u_{i} \in \mathbb{C}^{n}, \quad i=1, \ldots, n \\
& \left(u_{i}, u_{j}\right)=\delta_{i j}, \quad i, j=1, \ldots, n \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \quad\left(\lambda:=\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{T} \in \mathbb{R}_{\geq}^{n}\right)
\end{aligned}
$$

If $A \in \mathcal{S}_{n}$ we assume that $u_{1}, \ldots, u_{n} \in \mathbb{R}^{n}$. Sometimes we will emphasize the dependence on A :

$$
\begin{aligned}
& \lambda(A)=\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right):=\lambda, \\
& u_{i}(A):=u_{i}, \quad i=1, \ldots, n .
\end{aligned}
$$

For $\alpha, \beta \in \mathbb{R}_{\geq}^{n}$ let
$K(\alpha, \beta):=\left\{\gamma \in \mathbb{R}_{\geq}^{n}: \quad \gamma=\lambda(C), C=A+B\right.$, for all $A, B \in \mathcal{H}_{n}$ with $\left.\lambda(A)=\alpha, \lambda(B)=\beta\right\}$.
The trace equality

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}(A+B)=\sum_{i=1}^{n} \lambda_{i}(A)+\sum_{i=1}^{n} \lambda_{i}(B), \quad A, B \in \mathcal{H}_{n} \tag{1.1}
\end{equation*}
$$

implies that $K(\alpha, \beta)$ lies in the hyperplane

$$
\begin{equation*}
\sum_{i=1}^{n} \gamma_{i}=\sum_{i=1}^{n} \alpha_{i}+\sum_{i=1}^{n} \beta_{i}, \quad \gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)^{T} \in \mathbb{R}_{\geq}^{n} \tag{1.2}
\end{equation*}
$$

The problem of describing $K(\alpha, \beta)$ was raised in the late 40 's in Gelfand's seminar in Moscow [BG]. The aim of these lectures to report the solution of this problem, primary by A. Klyachko [Kly] and A. Knutson and T. Tao [KT]. Consult with [Fu1]. We will also describe the characterization of the set
$K_{\leq}(\alpha, \beta):=\left\{\gamma \in \mathbb{R}_{\geq}^{n}: \quad \gamma=\lambda(C)\right.$, for all $A, B, C \in \mathcal{H}_{n}$ with $\left.C \leq A+B, \lambda(A)=\alpha, \lambda(B)=\beta\right\}$,
due to Friedland [Fr2] and Fulton [Fu2], which enables to generalize these results to nonnegative selfadjoint compact operators.

2 Minimax characterizations of eigenvalues

The maximal and minimal characterizations of the first and the last eigenvalue of $A \in \mathcal{H}_{n}$, which go back to J.W. Rayleigh in 19th century, are

$$
\begin{align*}
& \lambda_{1}(A)=\max _{0 \neq x \in \mathbb{C}^{n}} \frac{(A x, x)}{(x, x)}=\max _{(x, x)=1}(A x, x), \\
& \lambda_{n}(A)=\min _{0 \neq x \in \mathbb{C}^{n}} \frac{(A x, x)}{(x, x)}=\min _{(x, x)=1}(A x, x) . \tag{2.1}
\end{align*}
$$

They follow easily if we choose to present the Rayleigh quotient $\frac{(A x, x)}{(x, x)}$ in the o.n. eigenbasis of A. Since the Rayleigh quotient (or $(A x, x)$) is a linear function(al) on \mathcal{H}_{n} for a fixed x, (2.1) yields that the function $\lambda_{1}(\cdot): \mathcal{H}_{n} \rightarrow \mathbb{R}\left(\lambda_{n}(\cdot): \mathcal{H}_{n} \rightarrow \mathbb{R}\right)$ is a convex (concave) function. Clearly, each $\lambda_{i}(A)$ is a homogeneous function of degree 1 :

$$
\lambda_{i}(t A)=t \lambda_{i}(A), \quad t \in \mathbb{R}_{+}, \quad A \in \mathcal{H}_{n}, i=1, \ldots,
$$

Hence

$$
\begin{equation*}
\lambda_{1}(A+B) \leq \lambda_{1}(A)+\lambda_{1}(B), \quad A, B \in \mathcal{H}_{n} \tag{2.2}
\end{equation*}
$$

The characterization of any other eigenvalue of $A \in \mathcal{H}_{n}$ is either minmax or maxmin characterization. Let

$$
<n>:=\{1,2, \ldots, n\} .
$$

The following characterization is widely known as Courant-Fischer characterization [Gan]. Let $\operatorname{Gr}\left(k, \mathbb{F}^{n}\right)$ be the collection of all k-dimensional subspaces of \mathbb{C}^{n}. For $L \in \operatorname{Gr}\left(\mathrm{k}, \mathbb{F}^{\mathrm{n}}\right)$, where $\mathbb{F}=\mathbb{R}, \mathbb{C}$, let L^{\perp} be the orthogonal complement of L in \mathbb{F}^{n} with respect to (\cdot, \cdot). Then

$$
\begin{equation*}
\lambda_{i}(A)=\min _{L \in \mathrm{G}\left(i-1, \mathbb{C}^{n}\right)} \max _{x \in L^{ \pm},(x, x)=1}(A x, x), \quad i \in<n> \tag{2.3}
\end{equation*}
$$

The following inequalities are due to Weyl [Wey]:
Corollary 2.1 Let $A, B \in \mathcal{H}_{n}$ and assume that $i, j, i+j-1 \in<n>$. Then

$$
\lambda_{i+j-1}(A+B) \leq \lambda_{i}(A)+\lambda_{j}(B)
$$

Proof. Let

$$
\begin{array}{ll}
\lambda_{i}(A)=\max _{x \in L_{i-1}(A)^{\perp}}(A x, x), \quad L_{i-1}(A)=\operatorname{span}\left(u_{1}(A), \ldots, u_{i-1}(A)\right), \\
\lambda_{i}(B)=\max _{x \in L_{i-1}(B)^{\perp}}(B x, x), \quad L_{i-1}(B)=\operatorname{span}\left(u_{1}(B), \ldots, u_{i-1}(B)\right) .
\end{array}
$$

Let $L=L_{i-1}(A)+L_{j-1}(B) \in \operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ where $k \leq i+j-2$. Clearly

$$
\left.\lambda_{i+j-1}(A+B) \leq \lambda_{k+1}(A+B) \leq \max _{x \in L^{\perp},(x, x)=1}((A+B) x, x)\right) \leq \lambda_{i}(A)+\lambda_{j}(B)
$$

Remark 2.2 To prove (2.3) one notes that for any $L \in \operatorname{Gr}\left(i-1, \mathbb{C}^{n}\right) L^{\perp} \cap L_{i}(A) \in$ $\mathrm{G}\left(m, \mathbb{C}^{n}\right)$ for some $m \geq 1$. Hence $\lambda_{i}(A) \leq \max _{x \in L^{\perp},(x, x)=1}(A x, x)$. Clearly $\lambda_{i}(A)=$ $\max _{x \in L_{i-1}(A)^{\perp},(x, x)=1}(A x, x)$.

Let $L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$. Fix an o.n. basis x_{1}, \ldots, x_{m} in L. Let $A \in \mathcal{H}_{n}$ and denote by $A(x)=A\left(x_{1}, \ldots, x_{m}\right):=\left(\left(A x_{i}, x_{j}\right)\right)_{1}^{m} \in \mathcal{H}_{m}$. Choose another o.n. basis y_{1}, \ldots, y_{m} in L. Then $A(y)=A\left(y_{1}, \ldots, y_{m}\right)$ is unitary similar to $A(x)$. Let $\lambda(A \mid L)=\left(\lambda_{1}(A \mid L), \ldots, \lambda_{m}(A \mid L)\right)^{T} \in \mathbb{R}_{\geq}^{m}$ be the eigenvalues of $A(x)$. The following result was called by Polya and Schiffer [PS] the convoy principle and is attributed to Poincaré. See [Fr1] for its uses for matrices and selfadjoint compact nonnegative operators.

$$
\begin{equation*}
\lambda_{i}(A)=\max _{L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right)} \lambda_{i}(A \mid L), \quad i=1, \ldots, m, \quad m=1, \ldots, n \tag{2.4}
\end{equation*}
$$

Corollary 2.3 (Ky Fan 1949 [Fan]) Let $A \in \mathcal{H}_{n}$ and $m \in<n>$. Then

$$
\sum_{i=1}^{m} \lambda_{i}(A)=\max _{x_{1}, \ldots, x_{m} \in \mathbb{C}^{n},\left(x_{i}, x_{j}\right)=\delta_{i j}} \sum_{i=1}^{m}\left(A x_{i}, x_{i}\right)
$$

In particular for any $A, B \in \mathcal{H}_{n}$ and $m \in<n>$

$$
\begin{equation*}
\sum_{i=1}^{m} \lambda_{i}(A+B) \leq \sum_{i=1}^{m} \lambda_{i}(A)+\sum_{i=1}^{m} \lambda_{i}(B) . \tag{2.5}
\end{equation*}
$$

Proof. Clearly, for any o.n. basis x_{1}, \ldots, x_{m} of L we have the equality

$$
\operatorname{trace}(A \mid L):=\sum_{i=1}^{m}\left(A x_{i}, x_{i}\right)=\sum_{i=1}^{m} \lambda_{i}(A \mid L)
$$

Use the convoy principle to deduce the maximum characterization of $\sum_{i=1}^{m} \lambda_{i}(A)$.

3 Results of Lidskii and Wielandt

In [L1] V.B. Lidskii announced the following result. Let Π_{n} be the group of all $n \times n$ permutation matrices. For $x \in \mathbb{R}^{n}$ let $\Gamma(x)$ be the convex hull spanned by the vectors $P x, P \in \Pi_{n}$. Then

$$
\begin{equation*}
K(\alpha, \beta) \subset \alpha+\Gamma(\beta), \quad \text { for all } \alpha, \beta \in \mathbb{R}_{\geq}^{n} \tag{3.1}
\end{equation*}
$$

Wielandt was not able to reconstruct the outline of Lidskii's proof in [L1]. To prove (3.1) Wielandt gave a characterization of any sum of the eigenvalues of $A \in \mathcal{H}_{n}$, which generalizes all the above characterizations. A (complete) flag F_{*} on \mathbb{C}^{n} is a strictly increasing sequence of subspaces

$$
[0]=F_{0} \subset F_{1} \subset \cdots \subset F_{n}=\mathbb{C}^{n}
$$

That is $\operatorname{dim} F_{i}=i, i=0, \ldots, n$. Let $I \subset<n>$ of cardinality $k=|I|$. Then

$$
I=\left\{i_{1}, \ldots, i_{k}\right\}, \quad 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n
$$

A partial flag F_{I} (associated with I) is a a strictly increasing sequence of subspaces

$$
F_{i_{1}} \subset F_{i_{2}} \subset \cdots \subset F_{i_{k}}, \quad \operatorname{dim} F_{i_{j}}=i_{j}, \quad j=1, \ldots, k .
$$

Any partial flag F_{I} can be completed to a complete flag F_{*} in many ways unless $I=<n>$. We shall view F_{I} as a partial flag of some F_{*}. Let

$$
x[I]:=\sum_{i \in I} x_{i} \quad \text { for any } x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}
$$

Theorem 3.1 (Wielandt [Wie]) Let $I \subset<n>,|I|=m \in<n>$. Then for any $A \in \mathcal{H}_{n}$

$$
\begin{equation*}
\lambda(A)[I]=\max _{F_{I}} \min _{x_{i} \in F_{i},\left(x_{i}, x_{j}\right)=\delta_{i j}, i, j \in I} \sum_{i \in I}\left(A x_{i}, x_{i}\right) . \tag{3.2}
\end{equation*}
$$

Proof. The proof is by the induction on n. Assume that the Theorem holds for $n \leq N$. Let $n=N+1$. One needs to show first that for $I=\left\{1 \leq i_{1}<\cdots<i_{m} \leq N+1\right\}$

$$
\begin{equation*}
\lambda(A)[I] \geq \min _{x_{i} \in F_{i},\left(x_{i}, x_{j}\right)=\delta_{i j}, i, j \in I} \sum_{i \in I}\left(A x_{i}, x_{i}\right) . \tag{3.3}
\end{equation*}
$$

Suppose first that $i_{m}<N+1$. Idenitify $F_{i_{m}}$ with $\mathbb{C}^{i_{m}}$. Then the induction hypothesis implies that

$$
\lambda\left(A \mid F_{i_{m}}\right)[I] \geq \min _{x_{i} \in F_{i},\left(x_{i}, x_{j}\right)=\delta_{i j}, i, j \in I} \sum_{i \in I}\left(A x_{i}, x_{i}\right) .
$$

Use the convoy principle $\lambda(A)[I] \geq \lambda\left(A \mid F_{i_{m}}\right)[I]$ to deduce (3.3). Assume now that $i_{m}=$ $N+1$. If $I=<N+1>$ then (3.3) holds, since for any full flag F_{*} equality holds in (3.3). Assume that $|I|<N+1$. Then there exits a unique $g \in<N>$ such that $g \notin I$ and $\{g+1, \ldots, N+1\} \subset I$. Let f be the biggest element in $I \backslash\{g+1, \ldots, N+1\}$. (If $I=\{g+1, \ldots, N\}$ then $f=0$.) Let

$$
L=F_{f}+\operatorname{span}\left(u_{g+1}(A), \ldots, u_{N+1}(A)\right), \quad \operatorname{dim} L \leq f+N+1-g \leq N
$$

Hence there exists $\tilde{L} \in \operatorname{Gr}\left(N, \mathbb{C}^{N+1}\right)$ such that $L \subset \tilde{L}$. Note that

$$
\begin{aligned}
& F_{f} \subset F_{g+1} \cap \tilde{L} \subset \cdots \subset F_{N+1} \cap \tilde{L} \\
& g+i-1 \leq \operatorname{dim} F_{g+i} \cap \tilde{L} \leq g+i, \quad i=1, \ldots N-g \\
& \operatorname{dim} F_{N+1} \cap \tilde{L}=N
\end{aligned}
$$

Let $\tilde{I}=I \backslash\{N+1\} \cup\{g\}$. Hence there exists a flag $\tilde{F}_{\tilde{I}}$ such that

$$
\begin{aligned}
& F_{i}=\tilde{F}_{i}, \quad i \in I \backslash\{g+1, \ldots, N+1\}=\tilde{I} \backslash\{g, \ldots, N\} \\
& F_{g+i} \supset \tilde{F}_{g+i-1} \quad i=1, \ldots, N+1 \\
& \tilde{F}_{N}=\tilde{L}
\end{aligned}
$$

By construction

$$
\min _{x_{i} \in F_{i},\left(x_{i}, x_{j}\right)=\delta_{i j}, i, j \in I} \sum_{i \in I}\left(A x_{i}, x_{i}\right) \leq \min _{x_{i} \in \tilde{F}_{i},\left(x_{i}, x_{j}\right)=\delta_{i j}, i, j \in \tilde{I}} \sum_{i \in \tilde{I}}\left(A x_{i}, x_{i}\right) .
$$

Use the induction hypothesis to obtain that

$$
\lambda\left(A \mid \tilde{F}_{N}\right)[\tilde{I}] \geq \min _{x_{i} \in \tilde{F}_{i},\left(x_{i}, x_{j}\right)=\delta_{i j}, i, j \in \tilde{I}} \sum_{i \in \tilde{I}}\left(A x_{i}, x_{i}\right)
$$

Since $\tilde{F}_{N} \supset \operatorname{span}\left(u_{g+1}(A), \ldots, u_{N+1}(A)\right)$ it follows that the eigenvalues of $A \mid \tilde{F}_{N}$ are the N coordinates of the vectors $\lambda\left(A \mid L^{\prime}\right)$ and $\left(\lambda_{g+1}(A), \ldots, \lambda_{N+1}(A)\right)$, where $L^{\prime} \subset \tilde{F}_{N}$ is the orthogonal complement of span $\left(u_{g+1}(A), \ldots, u_{N+1}(A)\right)$ in \tilde{F}_{N}. Use the convoy principle for $\lambda\left(A \mid L^{\prime}\right)$ to deduce $\lambda(A)[I] \geq \lambda\left(A \mid \tilde{F}_{N}\right)[\tilde{I}]$. Hence (3.3) holds. Let $L_{I}(A)$ be the partial flag corresponding to the complete flag $L_{*}(A)$, where $L_{i}(A)=\operatorname{span}\left(u_{1}(A), \ldots, u_{i}(A)\right), i=$ $1, \ldots, n$. It is straightforward to show that

$$
\lambda(A)[I]=\min _{x_{i} \in L_{i}(A),\left(x_{i}, x_{j}\right)=\delta_{i j}, i, j \in I} \sum_{i \in I}\left(A x_{i}, x_{i}\right) .
$$

Corollary 3.2 Let $A, B \in \mathcal{H}_{n}$ and $I \subset<n>$. Then

$$
\lambda(A+B)[I] \leq \lambda(A)[I]+\lambda(B)[<|I|>]
$$

Proof. Consider Wielandt's characterization for $\lambda(A+B)[I]$. Ky Fan characterization yields $\sum_{i \in I}\left(B x_{i}, x_{i}\right) \leq \lambda(B)[<|I|>]$ for any orthonormal set $x_{i}, i \in I$. Use Wielandt's chracterization for $\lambda(A)[I]$ to deduce the above inequality.

Proof of Lidskii's theorem It is well known [HLP] that $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \Gamma(\beta)$ iff $x[I] \leq \beta[<|I|>]$ for all $I \subset<n>$. Corollary 3.2 shows that $\lambda(A+B)-\lambda(A) \in \Gamma(\lambda(B))$.

See Bhatia [Bha] for a detailed proof of Wielandt's and Lidskii's inequalities.

4 Horn's results and conjectures

In [Hor] Horn studied in detail the structure of $K(\alpha, \beta)$. Let \mathcal{U}_{n} be the unitary group $n \times n$ complex valued matrices. Then

$$
\begin{equation*}
K(\lambda(A), \lambda(B))=\left\{\lambda\left(A+U B U^{*}\right): \quad U \in \mathcal{U}_{n}\right\}, \quad \text { for any } A, B \in \mathcal{H}_{n} \tag{4.1}
\end{equation*}
$$

Horn showed that a boundary point $\eta \in K(\alpha, \beta)$ corresponds to $C=A+B$, where A, B (and hence C) have a nontrivial common invariant subspace $L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right), 1 \leq m<n$. Clearly L^{\perp} is also a nontrivial subspace of A, B, C. Hence

$$
\begin{equation*}
\operatorname{trace}(C \mid L)=\operatorname{trace}(A \mid L)+\operatorname{trace}(B \mid L), \quad \operatorname{trace}\left(C \mid L^{\perp}\right)=\operatorname{trace}\left(A \mid L^{\perp}\right)+\operatorname{trace}\left(B \mid L^{\perp}\right) \tag{4.2}
\end{equation*}
$$

One of these equalities induces the inequality of the type

$$
\begin{equation*}
\lambda(A+B)[K] \leq \lambda(A)[I]+\lambda(B)[J], \quad I, J, K \subset<n>, \quad 1 \leq|I|=|J|=|K|<n \tag{4.3}
\end{equation*}
$$

Horn conjectured the form of the sets (I, J, K) which satisfy (4.3). They are defined recursively as follows. Let
$U_{r}^{n}:=\left\{(I, J, K): I, J, K \subset<n>,|I|=|J|=|K|=r<n, \sum_{i \in I} i+\sum_{j \in J} j=\frac{r(r+1)}{2}+\sum_{k \in K} k\right\}$.
Horn showed that if η is a boundary point certain quadratic form has to be nonnegative definite. Hence any (I, J, K) coming from (4.2) has to be in U_{r}^{n} for some $r \in<n-1>$. Define $T_{1}^{n}:=U_{1}^{n}$. The inequalities (4.3) corresponding to $(I, J, K) \in T_{1}^{n}$ are Weyl's inequalities. For $1<r \leq n-1$ let

$$
\begin{align*}
& T_{r}^{n}:=\left\{(I, J, K) \in U_{r}^{n}: \quad \text { for all }(U, V, W) \in T_{p}^{r}, p \in<1, r-1>\right. \\
&\left.\sum_{u \in U} i_{u}+\sum_{v \in V} j_{v} \leq \frac{p(p+1)}{2}+\sum_{w \in W} k_{w}\right\} . \tag{4.5}
\end{align*}
$$

Conjecture 4.1 (Horn [Hor]). $\gamma \in K(\alpha, \beta)$ iff (1.2) holds and

$$
\begin{equation*}
\gamma[K] \leq \alpha[I]+\beta[J], \quad \text { for all }(I, J, K) \in T_{r}^{n}, r \in<1, n-1> \tag{4.6}
\end{equation*}
$$

Horn proved the validity (4.6) for triples (I, J, K) belonging to the sets $T_{1}^{n}, T_{2}^{n}, T_{3}^{n}$. He showed that his conjecture holds for $n=2,3,4$. For $n=2$ it is straightforward to show that

$$
\begin{aligned}
& K\left(\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right)\right)=\left\{\left(\gamma_{1}, \gamma_{2}\right) \in \mathbb{R}_{\geq}^{2}\right. \\
& \gamma_{1}+\gamma_{2}=\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2} \\
& \gamma_{1} \leq \alpha_{1}+\beta_{1} \\
& \gamma_{2} \leq \min \left(\alpha_{1}+\beta_{2}, \alpha_{2}+\beta_{1}\right)
\end{aligned}
$$

The above 3 inequalities are Weyl's inequalities. For $n=3$ Horn's result claims

$$
\begin{aligned}
& K\left(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right),\left(\beta_{1}, \beta_{2}, \beta_{3}\right)\right)=\left\{\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathbb{R}_{\geq}^{3}\right. \\
& \gamma_{1}+\gamma_{2}+\gamma_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\beta_{1}+\beta_{2}+\beta_{3} \\
& \gamma_{1} \leq \alpha_{1}+\beta_{1} \\
& \gamma_{2} \leq \min \left(\alpha_{1}+\beta_{2}, \alpha_{2}+\beta_{1}\right) \\
& \gamma_{3} \leq \min \left(\alpha_{1}+\beta_{3}, \alpha_{2}+\beta_{2}, \alpha_{3}+\beta_{1}\right) \\
& \gamma_{1}+\gamma_{2} \leq \alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2} \\
& \gamma_{1}+\gamma_{3} \leq \min \left(\alpha_{1}+\alpha_{3}+\beta_{1}+\beta_{2}, \alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{3}\right) \\
& \left.\gamma_{2}+\gamma_{3} \leq \min \left(\alpha_{2}+\alpha_{3}+\beta_{1}+\beta_{2}, \alpha_{1}+\alpha_{2}+\beta_{2}+\beta_{3}, \alpha_{1}+\alpha_{3}+\beta_{1}+\beta_{3}\right) .\right\}
\end{aligned}
$$

Note that out of 12 inequalities (the first) 6 inequalites are due to Weyl, 1 is due to Ky Fan, 4 due to Wielandt and 1 is due to Horn:

$$
\begin{equation*}
\gamma_{2}+\gamma_{3} \leq \alpha_{1}+\alpha_{3}+\beta_{1}+\beta_{3} \tag{4.7}
\end{equation*}
$$

Indeed, note that the inequalities (4.6) for $(I, J, K) \in T_{1}^{n}$ is the set of Weyl's inequalities. Next

$$
\begin{align*}
& T_{2}^{n}:=\left\{(I, J, K) \subset<n>: \quad I=\left(1 \leq i_{1}<i_{2} \leq n\right), J=\left(1 \leq j_{1}<j_{2} \leq n\right)\right. \\
& K=\left(1 \leq k_{1}<k_{2} \leq n\right) \\
& \left.i_{1}+i_{2}+j_{1}+j_{2}=k_{1}+k_{2}+3, i_{1}+j_{1} \leq k_{1}+1, \max \left(i_{1}+j_{2}, i_{2}+j_{1}\right) \leq k_{2}+1 .\right\} \tag{4.8}
\end{align*}
$$

Hence (4.7) are the inequalities for $I=J=\{1,3\}, K=\{2,3\}$ which are in T_{2}^{3}. The cardinalities of $\left|T_{r}^{n}\right|$ grows very fast. For example:

$$
\left|T_{1}^{7}\right|=\left|T_{6}^{7}\right|=28,\left|T_{2}^{7}\right|=\left|T_{5}^{7}\right|=252,\left|T_{3}^{7}\right|=\left|T_{4}^{7}\right|=751
$$

See [DST]. It is now known that Horn's inequalities are not minimal for $n \geq 6$. For example

$$
(I, J, K)=\left(\{1,3,5\},\{1,3,5\},\{2,4,6\} \in T_{3}^{n}, \quad n \geq 6\right.
$$

Hence for any $\gamma \in K(\alpha, \beta) \subset \mathbb{R}_{\geq}^{n}, n \geq 6$ we have

$$
\begin{equation*}
\gamma_{2}+\gamma_{4}+\gamma_{6} \leq \alpha_{1}+\alpha_{3}+\alpha_{5}+\beta_{1}+\beta_{3}+\beta_{5} \tag{4.9}
\end{equation*}
$$

For $n=6$ the above inequality follows from the trace equality. Indeed, for $n=2 m$ and $\alpha \in \mathbb{R}^{2 m}$ let $\alpha_{\text {odd }}, \alpha_{\text {even }}$ be the sum of odd and even coordinates of $\alpha=\left(\alpha_{1}, \ldots, \alpha_{2 m}\right)$. Then

$$
2 \gamma_{\text {even }} \leq \gamma_{\mathrm{odd}}+\gamma_{\mathrm{even}}=\alpha_{\mathrm{odd}}+\alpha_{\mathrm{even}}+\beta_{\mathrm{odd}}+\beta_{\mathrm{even}} \leq 2\left(\alpha_{\mathrm{odd}}+\beta_{\mathrm{odd}}\right)
$$

In [L2] the son Lidskii claimed to prove Horn's conjecture by listing 5 lemmas (without proofs), which imply Horn's conjecture. Day, So and Thompson [DST] were able to prove the first 3 lemmas of B.V. Lidskii.

5 Flags and Schubert varieties

Let $V\left(=\mathbb{F}^{n}\right)$ be an n-dimensional vector space over \mathbb{F}. Let F_{*} be a complete flag on V (see $\S 3)$. Assume that $\mathbb{F}=\mathbb{R}, \mathbb{C}$ and V is an inner product space with the inner product (\cdot, \cdot). Then F_{*} induces an orthonormal basis in V :

$$
\begin{equation*}
F_{i}=\operatorname{span}\left(f_{1}, . ., f_{i}\right), i=1, \ldots, n, \quad\left(f_{i}, f_{j}\right)=\delta_{i j}, i, j=1, \ldots, n \tag{5.1}
\end{equation*}
$$

In what follows we restrict ourselves to the complex case $\mathbb{F}=\mathbb{C}$. The orthonormal basis $\left\{f_{1}, \ldots, f_{n}\right\}$ induced by F_{*} is defined up to the action of \mathcal{U}_{1} (the group of complex numbers of modulus 1). That is, $\zeta_{1} f_{1}, \ldots \zeta_{n} f_{n}, \zeta_{1}, \ldots, \zeta_{n} \in \mathcal{U}_{1}$ is the set of all possible o.n. bases in \mathbb{C}^{n} induced by F_{*}. Let $\mathcal{D}_{n}<\mathcal{U}_{n}$ be the subgroup of all unitary diagonal matrices.

Lemma 5.1 Let \mathcal{F}_{n} be the space of all flags in \mathbb{C}^{n}. Then \mathcal{F}_{n} is isomorphic to the homogeneous space $\mathcal{U}_{n} / \mathcal{D}_{n}$ of real dimension $n(n-1)$. \mathcal{F}_{n} is a fibre bundle over \mathbb{P}^{n-1} with the fiber \mathcal{F}_{n-1}. Furthermore \mathcal{F}_{n} is a smooth complex projective variety of complex dimension $\frac{n(n-1)}{2}$.

Proof. Let $U=\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{U}_{n}$. Then the n columns of U give an o.n. basis of \mathbb{C}^{n}. A flag F_{*} induces a unique left coset $U \mathcal{D}_{n}$. Hence $\mathcal{F}_{n} \sim \mathcal{U}_{n} / \mathcal{D}_{n}$. Clearly

$$
\operatorname{dim}_{\mathbb{R}} \mathcal{U}_{n} / \mathcal{D}_{n}=n^{2}-n=n(n-1)
$$

Observe next that a choice of one dimensional subspace F_{1} is the definition of a point $z \in \mathbb{P}^{n-1}$. Fix $z \in \mathbb{P}^{n-1}$. By choosing an o.n. basis in \mathbb{C}^{n} we may assume that z is presented by $u_{1}=e_{n}=(0, \ldots, 0,1)^{T}$. That is, $u_{2}, . ., u_{n} \in \mathbb{C}^{n-1}$. Hence \mathcal{F}_{n} is a fibre bundle with a basis \mathbb{P}^{n-1} and a fibre \mathcal{F}_{n-1}. For a set $\mathcal{T} \subset \mathbb{F}$ let

$$
\begin{align*}
& \mathbf{M}_{n m}(\mathcal{T}):=\left\{A: \quad A=\left(a_{i j}\right)_{i=n=1}^{i=n, j=m}, a_{i j} \in \mathcal{T}, i=1, \ldots, n, j=1, \ldots, m\right\} \\
& \mathbf{M}_{n m}^{o}(\mathcal{T}):=\left\{A \in \mathbf{M}_{n m}(\mathcal{T}): \quad \operatorname{rank} A=\min (m, n)\right\}, \\
& \mathbf{M}_{n}(\mathcal{T}):=\mathbf{M}_{n n}(\mathcal{T}), \quad \mathbf{M}_{n}^{o}(\mathcal{T}):=\mathbf{M}_{n n}^{o}(\mathcal{T}), \\
& \mathbf{G L}(n, \mathbb{F}):=\mathbf{M}_{n}^{o}(\mathbb{F}), \\
& \mathbf{U T}(n, \mathbb{F}):=\left\{A=\left(a_{i j}\right)_{1}^{n} \in \mathbf{G L}(n, \mathbb{F}): \quad a_{i j}=0, \text { for } 1 \leq j<i \leq n\right\} . \tag{5.2}
\end{align*}
$$

Let $A=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{G L}(n, \mathbb{C})$ be the n columns of A. Then A induces the complete flag

$$
\begin{equation*}
F_{i}=\operatorname{span}\left(a_{1}, \ldots, a_{i}\right), \quad i=1, \ldots, n \tag{5.3}
\end{equation*}
$$

Vice versa, a complete flag F_{*} induces a unique left coset $A \mathbf{U T}(n, \mathbb{C})$ in $\mathbf{G L}(n, \mathbb{C})$. Hence $\mathcal{F}_{n} \sim \mathbf{G L}(n, \mathbb{C}) / \mathbf{U T}(n, \mathbb{C})$. As $\mathbf{G L}(n, \mathbb{C})$ and $\mathbf{U T}(n, \mathbb{C})$ are algebraic groups it follows that \mathcal{F}_{n} is a smooth projective variety of complex dimension $\frac{n(n-1)}{2}$.

Let $I=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n\right\} \subset<n>$. Then $F_{*}(I)$ is the partial flag

$$
F_{i_{1}} \subset \cdots \subset F_{i_{m}} \subset \mathbb{C}^{n}, \quad \operatorname{dim} F_{i}=i, i \in I
$$

We view $F_{*}(I)$ as a partial flag of some complete flag F_{*}.
Lemma 5.2 Let $I=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n\right\} \subset<n>$. Denote by $\mathcal{F}(I)$ the set of all partial flags $F_{*}(I)$ in \mathbb{C}^{n}. Then $\mathcal{F}(I)$ is a smooth projective variety of dimension

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}(I)=\sum_{k=1}^{m}\left(i_{k}-i_{k-1}\right)\left(n-i_{k}\right), \quad i_{0}=0 \tag{5.4}
\end{equation*}
$$

Proof. Let $I=\{l\}$. Then $\mathcal{F}(\{l\})=\operatorname{Gr}\left(l, \mathbb{C}^{n}\right)$. Any $F_{*}(\{l\})$ is spanned by the columns of $A \in \mathbf{M}_{n l}^{o}(\mathbb{C})$. Hence $F_{*}(\{l\})$ determines a unique coset $A \mathbf{G L}(l, \mathbb{C})$ in the quotient space $\mathbf{M}_{n l}^{o}(\mathbb{C}) / \mathbf{G L}(l, \mathbb{C})$. Hence $\mathcal{F}(\{l\})$ is a smooth projective variety of dimension

$$
\operatorname{dim} \mathcal{F}(\{l\})=\operatorname{dim} \operatorname{Gr}\left(l, \mathbb{C}^{n}\right)=\operatorname{dim} \mathbf{M}_{n l}^{o}(\mathbb{C}) / \mathbf{G L}(l, \mathbb{C})=l(n-l)
$$

To prove (5.4) for $m>1$, let $\tilde{n}=n-i_{1}$ and $\tilde{I}=\left\{i_{2}-i_{1}, i_{2}-i_{1}, \ldots, i_{m}-i_{1}\right\} \subset<\tilde{n}>$. Then the above arguments show that $\mathcal{F}(I)$ is a fibre bundle with a basis $\operatorname{Gr}\left(i_{1}, \mathbb{C}^{n}\right)$ and the fibre $\mathcal{F}(\tilde{I})$. Hence

$$
\operatorname{dim} \mathcal{F}(I)=\operatorname{dim} \operatorname{Gr}\left(i_{1}, \mathbb{C}^{n}\right)+\operatorname{dim} \mathcal{F}(\tilde{I})
$$

Use induction to show (5.4). A straightforward argument shows that $\mathcal{F}(I)$ is given as a quotient of $\mathbf{M}_{m i_{m}}^{o}$ by a corresponding subgroup of block upper triangular matrices $G L(I)<$ $\mathbf{G L}\left(i_{m}, \mathbb{C}\right)$. Hence $\mathcal{F}(I)$ is a smooth projective variety.

Fix a flag F_{*} in \mathbb{C}^{n}. Let $L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$. Then

$$
\begin{align*}
& {[0]=L \cap F_{0} \subset L \cap F_{1} \subset \cdots \subset L \cap F_{n}=L} \\
& \operatorname{dim} L \cap F_{i} \leq \operatorname{dim} L \cap F_{i-1}+1, \quad i=1, \ldots, n \tag{5.5}
\end{align*}
$$

Let

$$
I\left(L, F_{*}\right):=\left\{I=\left\{1 \leq i_{1}<\cdots<i_{m} \leq n\right\}: \quad \operatorname{dim} L \cap F_{i_{j}}=j, j=1, \ldots, m\right.
$$

$$
\begin{equation*}
\left.\operatorname{dim} L \cap F_{k}<j, \text { for all } k<i_{j}\right\}, \quad L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right) \tag{5.6}
\end{equation*}
$$

For $I=\left\{1 \leq i_{1}<\cdots i_{m} \leq n\right\}$ let

$$
\begin{array}{ll}
\Omega_{I}^{o}\left(F_{*}\right):=\left\{L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right):\right. & \left.I\left(L, F_{*}\right)=I\right\} \\
\Omega_{I}\left(F_{*}\right):=\left\{L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right):\right. & \left.\operatorname{dim} L \cap F_{i_{j}} \geq j, j=1, \ldots, m\right\} \tag{5.7}
\end{array}
$$

the Schubert cell and the Schubert variety corresponding to I.
Lemma 5.3 Let $I=\left\{1 \leq i_{1}<\cdots i_{m} \leq n\right\}$. Then $\Omega_{I}^{o}\left(F_{*}\right) \subset \operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$ is a quasiprojective variety. $\Omega_{I}\left(F_{*}\right) \subset \operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$ is a projective variety, which is the closure of $\Omega_{I}^{o}\left(F_{*}\right)$ in $\operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$. Furthermore

$$
\begin{equation*}
\operatorname{dim} \Omega_{I}\left(F_{*}\right)=\operatorname{dim} \Omega_{I}^{o}\left(F_{*}\right)=\sum_{j=1}^{m} i_{j}-j . \tag{5.8}
\end{equation*}
$$

Proof. Without loss of generality we may assume that F_{*} is the standard flag

$$
\begin{equation*}
F_{i}=\operatorname{span}\left(e_{1}, \ldots, e_{i}\right), \quad e_{i}=\left(\delta_{1 i}, \ldots, \delta_{n i}\right)^{T}, \quad i=1, \ldots, n \tag{5.9}
\end{equation*}
$$

Then L is spanned by the columns of a matrix $A=\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{M}_{n m}^{o}(\mathbb{C})$ such that

$$
a_{j}=\left(a_{1 j}, \ldots, a_{n j}\right)^{T}, \quad a_{i_{j} j} \neq 0, a_{i j}=0, i=i_{j}+1, \ldots, n, j=1, \ldots, m
$$

Clearly the set of all such A is a quasivariety in $Q V(I) \subset M_{n m}^{o}(\mathbb{C})$. Each $L \in \Omega_{I}^{o}\left(F_{*}\right)$ induces a unique coset $A \mathbf{U T}(m, \mathbb{C})$, where $A \in Q V(I)$. Hence $\Omega_{I}^{o}(F) \sim Q V(I) / \mathbf{U T}(m, \mathbb{C})$. This shows that $\Omega_{I}^{o}\left(F_{*}\right)$ is a quasivariety in $\operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$ of dimension $\sum_{j=1}^{m} i_{j}-\frac{m(m+1)}{2}$. Hence $\Omega_{I}\left(F_{*}\right)$ is a closed variety in $\operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$, which is the topological (Zariski) closure of $\Omega_{I}^{o}\left(F_{*}\right)$. In particular (5.8) holds.

Lemma 5.4 There is one to one correspondance between the Schubert cells in $\operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$ and the set of all $m \times n$ matrices of rank m in its reduced row echelon form: Each $L \in$ $\operatorname{Gr}\left(m, \mathbb{C}^{n}\right) \sim \mathbf{M}_{n m}^{o}(\mathbb{C}) / \mathbf{G L}(m, \mathbb{C})$ induces a unique matrix $A(L)$ in the left coset of $\mathbf{M}_{n m}^{o} / \mathbf{G L}(m, \mathbb{C})$, whose columns span L, such $A(L)^{T}$ is in its reduced row echelon form. Assume that the first nonzero entry of $A(L)^{T}$ in the row j, which is equal to 1 , is in the column \tilde{i}_{j} for $j=1, \ldots, m$. Let $i_{j}=n-\tilde{i}_{m-j+1}+1, j=1, \ldots, m$ and set $I=\left\{1 \leq i_{1}<\cdots<i_{m} \leq n\right\}$. Let F_{*} be the reversed standard flag

$$
F_{i}=\operatorname{span}\left(e_{n}, \ldots, e_{n-i+1}\right), \quad i=1, \ldots, n
$$

Then $I\left(L, F_{*}\right)=I$.
The proof of the lemma is straightforward and is left to the reader. One can use Lemma 5.4 to find the dimension of the Schubert cell $\Omega_{I}^{o}\left(F_{*}\right)$.

6 Hersch-Zwahlen characterization

Lemma 6.1 ($[\mathrm{HZ}])$ Let $A \in \mathcal{H}_{n}$ and denote by $F_{*}(A)$ the flag induced by the eigenvectors of A : $F_{i}(A)=\operatorname{span}\left(u_{1}(A), \ldots, u_{i}(A)\right), i=1, \ldots, n$. Let $I=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n\right\}$. Then

$$
\begin{equation*}
\lambda(A)[I]=\min _{L \in \Omega_{I}\left(F_{*}(A)\right)} \operatorname{trace}(A \mid L) . \tag{6.1}
\end{equation*}
$$

Proof. Let $L \in \Omega_{I}\left(F_{*}(A)\right)$. Then L has an orthonormal basis x_{1}, \ldots, x_{m} such that $x_{j} \in F_{i_{j}}(A), j=1, \ldots, m$. Hence $\left(A x_{j}, x_{j}\right) \geq \lambda_{i_{j}}(A)$ and

$$
\lambda(A)[I] \leq \operatorname{trace}(A \mid L)
$$

For $L=\operatorname{span}\left(u_{i_{1}}(A), u_{i_{2}}(A), \ldots, u_{i_{m}}(A)\right) \in \Omega_{I}\left(F_{*}(A)\right)$ equality holds in the above inequality.

Corollary 6.2 ([HZ]) Let $A, B, C \in \mathcal{H}_{n}, C=A+B$. Let

$$
\begin{aligned}
& I=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n\right\} \\
& J=\left\{1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n\right\} \\
& K=\left\{1 \leq k_{1}<k_{2}<\cdots<k_{m} \leq n\right\} .
\end{aligned}
$$

Set

$$
I^{\prime}=\left\{n-i_{m}+1<\cdots<n-i_{1}+1\right\}, \quad J^{\prime}=\left\{n-j_{m}+1<\cdots<n-j_{1}+1\right\} .
$$

Suppose that

$$
\left.\left.\Omega_{I^{\prime}}\left(F_{*}(-A)\right)\right) \cap \Omega_{J^{\prime}}\left(F_{*}(-B)\right)\right) \cap \Omega_{K}\left(F_{*}(C)\right) \neq \emptyset .
$$

Then (4.3) holds.
Proof. Let $\left.\left.L \in \Omega_{I^{\prime}}\left(F_{*}(-A)\right)\right) \cap \Omega_{J^{\prime}}\left(F_{*}(-B)\right)\right) \cap \Omega_{K}\left(F_{*}(C)\right)$. Apply Lemma 6.1 to $-A,-B, C$ respectively and use the equality $-A-B+C=0$ to deduce

$$
\lambda(-A)\left[I^{\prime}\right]+\lambda(-B)\left[J^{\prime}\right]+\lambda(C)[K] \leq 0
$$

Corollary 6.3 ([HZ]) Let $I, J, K, I^{\prime}, J^{\prime} \subset<n>$ be defined as in Corollary 6.2. Suppose that for any three complete flags $F_{*}(1), F_{*}(2), F_{*}(3)$ in \mathbb{C}^{n} the following condition holds

$$
\begin{equation*}
\left.\left.\Omega_{I^{\prime}}\left(F_{*}(1)\right)\right) \cap \Omega_{J^{\prime}}\left(F_{*}(2)\right)\right) \cap \Omega_{K}\left(F_{*}(3)\right) \neq \emptyset \tag{6.2}
\end{equation*}
$$

Then for any $A, B \in \mathcal{H}_{n}$ (4.3) holds.
Proof of (4.7). Let

$$
I=J=\{1,3\}, \quad K=\{2,3\} .
$$

Assume first that $n=3$. Then $I^{\prime}=J^{\prime}=I=J$. We claim that for any three flags in $\mathbb{C}^{3}(6.2)$ holds. Indeed, choose $L \in \operatorname{Gr}\left(2, \mathbb{C}^{3}\right)$ such that $L \supset F_{1}(1)+F_{1}(2)$. As any two dimensional subspaces in \mathbb{C}^{3} have a common one dimensional subspace $\left.\left.L \in \Omega_{I^{\prime}}\left(F_{*}(1)\right)\right) \cap \Omega_{J^{\prime}}\left(F_{*}(2)\right)\right) \cap$ $\Omega_{K}\left(F_{*}(3)\right)$. Hence (4.7) holds for any $A, B \in \mathcal{H}_{3}$. Let $n>3$ and $A, B, C \in \mathcal{H}_{n}, C=A+B$. Let $L=F_{3}(C)$. Then

$$
\begin{aligned}
& \lambda_{2}(C)+\lambda_{3}(C)=\lambda_{2}(C \mid L)+\lambda_{3}(C \mid L) \leq \lambda_{1}(A \mid L)+\lambda_{3}(A \mid L)+\lambda_{1}(B \mid L)+\lambda_{3}(B \mid L) \leq \\
& \lambda_{1}(A)+\lambda_{3}(A)+\lambda_{1}(B)+\lambda_{3}(B)
\end{aligned}
$$

$7 \quad$ Schubert calculus

Let $I \subset<n>$ be defined as in Corolary 6.2. Set

$$
\begin{align*}
& \omega_{j}:=i_{m-j+1}-(m-j+1), \quad \alpha_{j}=n-i_{j}-m+j, \quad j=1, \ldots, n \\
& \omega(I):=\omega=\left(\omega_{1}, \ldots, \omega_{m}\right), \alpha(I):=\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}_{\geq}^{m} \cap \mathbb{Z}_{+}^{m} \\
& \|\omega\|_{1}=\sum_{i=1}^{m} \omega_{i}, \quad\|\alpha\|_{1}=\sum_{i=1}^{m} \alpha_{i} \tag{7.1}
\end{align*}
$$

Note that $\omega\left(I^{\prime}\right)=\alpha(I)$, and $\alpha(I)(\omega(I))$ is with $1-1$ correspondence with $I \subset<n>$. Moreover $\|\alpha(I)\|_{1}\left(\|\omega(I)\|_{1}\right)$ gives the dimension of $\Omega_{I^{\prime}}\left(F_{*}\right)\left(\Omega_{I}\left(F_{*}\right)\right)$ in $\operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$, which is equal to the codimension of $\Omega_{I}\left(F_{*}\right)\left(\Omega_{I^{\prime}}\left(F_{*}\right)\right)$.

Lemma 7.1 Let $I, J, K \in U_{m}^{n}$. Suppose that for any three flags $F_{*}(1), F_{*}(2), F_{*}(3)$ the condition (6.2) holds. Then $\left.\left.\Omega_{I^{\prime}}\left(F_{*}(1)\right)\right) \cap \Omega_{J^{\prime}}\left(F_{*}(2)\right)\right) \cap \Omega_{K}\left(F_{*}(3)\right)$ consists of a finite number of points if the flags $F_{*}(1), F_{*}(2), F_{*}(3)$ are in general position.

Proof. Observe that

$$
\begin{equation*}
I, J, K \in U_{m}^{n} \Longleftrightarrow I, J, K \subset<n>,|I|=|J|=|K|=m,\|\omega(I)\|_{1}+\|\omega(J)\|_{1}=\|\omega(K)\|_{1} \tag{7.2}
\end{equation*}
$$

As the codimension of $\Omega_{I^{\prime}}\left(F_{*}(1)\right)\left(\Omega_{J^{\prime}}\left(F_{*}(2)\right)\right)$ is $\|\omega(I)\|_{1}\left(\|\omega(J)\|_{1}\right)$ we view the variety $\Omega_{I^{\prime}}\left(F_{*}(1)\right)\left(\Omega_{J^{\prime}}\left(F_{*}(2)\right)\right)$ given by $\|\omega(I)\|_{1}\left(\|\omega(J)\|_{1}\right)$ algebraically independent conditions. Hence $\left.\left.\Omega_{I^{\prime}}\left(F_{*}(1)\right)\right) \cap \Omega_{J^{\prime}}\left(F_{*}(2)\right)\right) \cap \Omega_{K}\left(F_{*}(3)\right)$ is the solution of $\|\omega(I)\|_{1}+\|\omega(J)\|_{1}$ algebraic conditions restricted to $\Omega_{K}\left(F_{*}(3)\right)$, which is of dimension $\|\omega(I)\|_{1}+\|\omega(J)\|_{1}$. If $F_{*}(1), F_{*}(2), F_{*}(3)$ are in general positions, these algebraic conditions restricted to $\Omega_{K}\left(F_{*}(3)\right)$ can give only a finite number of solutions.

$$
\begin{equation*}
S_{m}^{n}:=\left\{(I, J, K) \in U_{m}^{n}: \quad \text { such that for any three flags (6.2) holds }\right\} \tag{7.3}
\end{equation*}
$$

For $I, J \subset<n>$ satisfying the condition of Corollary 6.2 define

$$
I \leq J \Longleftrightarrow i_{p} \leq j_{p}, \quad p=1, \ldots, m
$$

The following result was known for sometime [Fu1]:

Lemma 7.2 Let $I, J, K \subset<n>,|I|=|J|=|K|=m<n$. Assume that the condition (6.2) is satisfied for any three flags $F_{*}(1), F_{*}(2), F_{*}(3)$. Then there exists $I_{1}, J_{1}, K_{1} \in S_{m}^{n}$ satisfying $I_{1} \geq I, J_{1} \geq J, K_{1} \leq K$.

The basis of the integer homology of $\operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$ is determined by the cycles σ_{I}, representing the Schubert varieties $\Omega_{I}\left(F_{*}\right), I \subset<n>$. For $I \subset<n>$ let $\sigma_{\alpha} \in H_{\|\alpha\|_{1}}\left(\operatorname{Gr}\left(m, \mathbb{C}^{n}\right), \mathbb{Z}\right)$ be the dual cycle to σ_{I}. That is, the cup product of σ_{I} and σ_{α} is the generator of the top homology $H_{m(n-m)}\left(\operatorname{Gr}\left(m, \mathbb{C}^{n}\right), \mathbb{Z}\right)$. Equivalently

$$
\sigma_{I} \cdot \sigma_{\alpha}=\sigma_{\alpha} \cdot \sigma_{I}=\sigma_{p o i n t}
$$

where $\sigma_{\text {point }}$ represents the homology element of the point in $H_{0}\left(\operatorname{Gr}\left(m, \mathbb{C}^{n}\right), \mathbb{Z}\right)$. We view σ_{α} as an element in cohomology $H^{\|\alpha\|_{1}}\left(\operatorname{Gr}\left(m, \mathbb{C}^{n}\right), \mathbb{Z}\right)$ given by a corresponding differential form of degree $\|\alpha\|_{1}$. Then for any $\alpha, \beta \in \mathbb{R}_{\geq}^{m} \cap \mathbb{Z}_{+}^{m}$ with $\|\alpha\|_{1}+\|\beta\|_{1} \leq m(n-m)$ we have the formula

$$
\begin{equation*}
\sigma_{\alpha} \cdot \sigma_{\beta}=\sum_{\gamma \in \mathbb{R}_{\geq}^{m} \cap \mathbb{Z}_{+}^{m},\|\gamma\|_{1}=\|\alpha\|_{1}+\|\beta\|_{1}} c_{\alpha \beta}^{\gamma} \sigma_{\gamma} . \tag{7.4}
\end{equation*}
$$

Here $c_{\alpha \beta}^{\gamma}$ are nonnegative integers. These integers give the precise version of Lemma 7.1:
Lemma 7.3 Let $I, J, K \in U_{m}^{n}$. Then

$$
\left.\left.\Omega_{I^{\prime}}\left(F_{*}(1)\right)\right) \cap \Omega_{J^{\prime}}\left(F_{*}(2)\right)\right) \cap \Omega_{K}\left(F_{*}(3)\right)=c_{\omega(I), \omega(J)}^{\omega(K)} \sigma_{\text {point }} .
$$

That is, if $c_{\omega(I), \omega(J)}^{\omega(K)}=0$ then the condition (6.2) does not hold for "most" of three flags $F_{*}(1), F_{*}(2), F_{*}(3)$. If $c_{\omega(I), \omega(J)}^{\omega(K)} \neq 0$ then the condition (6.2) does holds for any three flags $F_{*}(1), F_{*}(2), F_{*}(3)$. Furthermore for "most" of three flags $F_{*}(1), F_{*}(2), F_{*}(3)$, i.e. three flags in general position, $\left.\left.\Omega_{I^{\prime}}\left(F_{*}(1)\right)\right) \cap \Omega_{J^{\prime}}\left(F_{*}(2)\right)\right) \cap \Omega_{K}\left(F_{*}(3)\right)$ consits of $c_{\omega(I), \omega(J)}^{\omega(K)}$ distinct points.

The coeffients $c_{\alpha \beta}^{\gamma}$ appear naturally in representation theory, as well as in invariant factors [Fu1]. With each vector $\alpha \in \mathbb{R}_{\geq}^{m} \cap \mathbb{Z}_{+}^{m}$ one associates the Young diagram, whose row i has length α_{i}. (We allow here trivial rows with 0 length.) Then V_{α} corresponds to the irreducible representation of $\mathbf{G L}(m, \mathbb{C})$ or the symmetric group \mathbf{S}_{m}. The weight of V_{α} is $\|\alpha\|_{1}$. Consider the tensor product of such two irreducible presentation $V_{\alpha} \otimes V_{\beta}$. It is known that such a product is a direct sum of irreducible representations V_{γ} of the weight $\|\gamma\|_{1}=\|\alpha\|_{1}+\|\beta\|_{1}$ of multiplicity $c_{\alpha \beta}^{\gamma}$. That is

$$
\begin{equation*}
V_{\alpha} \otimes V_{\beta}=\sum_{\gamma \in \mathbb{R}_{\geq}^{m} \cap \mathbb{Z}_{+}^{m},\|\gamma\|_{1}=\|\alpha\|_{1}+\|\beta\|_{1}} \oplus c_{\alpha \beta}^{\gamma} V_{\gamma} \tag{7.5}
\end{equation*}
$$

Theorem 7.4 ([KT]-The saturation conjecture) Let $\alpha, \beta, \gamma \in \mathbb{R}_{\geq}^{m} \cap \mathbb{Z}_{+}^{m},\|\gamma\|_{1}=\|\alpha\|_{1}+$ $\|\beta\|_{1}$. Then for any integer $N>1$

$$
c_{\alpha \beta}^{\gamma} \neq 0 \Longleftrightarrow c_{(N \alpha)(N \beta)}^{N \gamma} \neq 0 .
$$

Theorem 7.4 is instrumental in proving $T_{m}^{n}=S_{m}^{n}, m=1, \ldots, n-1$ [Fu1]. In what follows we need the following lemma.

Lemma 7.5 Let $I, J, K \subset<n>,|I|=|J|=|K|=m<n$ and assume that there exists $\left(I_{1}, J_{1}, K_{1}\right) \in S_{m}^{n}$ such that $I \leq I_{1}, J \leq J_{1}, K \geq K_{1}$ Then for any triple

$$
\begin{equation*}
A_{1}, A_{3}, A_{3} \in \mathcal{H}_{n}, \quad A_{1}+A_{2}+A_{3}=r E_{n} \tag{7.6}
\end{equation*}
$$

where E_{n} is the $n \times n$ identity matrix, the following inequalities hold:

$$
\begin{equation*}
\lambda\left(A_{1}\right)\left[I^{\prime}\right]+\lambda\left(A_{2}\right)\left[J^{\prime}\right]+\lambda\left(A_{3}\right)[K] \leq \lambda\left(A_{1}\right)\left[I_{1}^{\prime}\right]+\lambda\left(A_{2}\right)\left[J_{1}^{\prime}\right]+\lambda\left(A_{3}\right)\left[K_{1}\right] \leq m r \tag{7.7}
\end{equation*}
$$

Proof. As $I^{\prime} \geq I_{1}^{\prime}, J^{\prime} \geq J_{1}^{\prime}, K \geq K_{1}$ and the eigenvalues of hermitian matrices are arranged in a decreasing order we deduce the left hand side of (7.7). To prove the right hand side of (7.7) choose $L \in \Omega_{I_{1}^{\prime}}\left(F_{*}\left(A_{1}\right)\right) \cap \Omega_{J_{1}^{\prime}}\left(F_{*}\left(A_{2}\right)\right) \cap \Omega_{K}\left(F_{*}\left(A_{3}\right)\right)$ and apply (6.1) to (7.6).

Corollary 7.6 Let $A, B \in \mathcal{H}_{n}$. Then any inequality induced by the triples $I, J, K \subset<$ $n>$ given by Corollary 6.3 follows from the inequality corresponding to some $\left(I_{1}, J_{1}, K_{1}\right) \in$ S_{m}^{n}.

8 Stable filtrations

A filtration U_{*} of subspaces in \mathbb{C}^{n} is an infinite sequence of decreasing subspaces where only a finite number of subspaces are different from the trivial subspace [0]:

$$
\begin{equation*}
C^{n}=U_{0} \supset U_{1} \supset \cdots U_{k} \supset \cdots, \quad \operatorname{dim} U_{i}=0 \text { for } i>N \tag{8.1}
\end{equation*}
$$

Each filtration of subspaces defines a unique partial flag $F_{*}(I)$, where $U_{k}=F_{i_{j(k)}}$ for some $i_{j(k)} \in I$ for each $k \geq 1$ such that $\operatorname{dim} U_{k} \geq 1$. Furthermore, for each $i \in I F_{i}$ appears in the above filtration. Let

$$
\begin{equation*}
\alpha_{i}:=\#\left\{U_{j}: \quad \operatorname{dim} U_{j} \geq i\right\}, i=1, \ldots, n, \quad \alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{R}_{\geq}^{n} \cap \mathbb{Z}_{+}^{n} \tag{8.2}
\end{equation*}
$$

Then $F_{*}(I)$ is a complete flag iff $\alpha>0$ and the coordinates of α are pairwise distinct. Vice versa:

Lemma 8.1 Let F_{*} be a given complete flag in \mathbb{C}^{n}. Assume that $\alpha \in \mathbf{R}_{\geq}^{n} \cap \mathbb{Z}_{+}^{n}$. Then there exists a unique filtration (8.1) such that (8.2) holds and U_{*} induces a partial flag $F_{*}(I)$.

Proof. First $U_{i}=[0]$ for $i>\alpha_{1}$. If $\alpha_{1}=0$ then U_{*} is a trivial fibration. Assume that $\alpha_{1}>0$ and $\alpha_{1}=\cdots=\alpha_{k-1}>\alpha_{k}, 1<k \leq n+1$. (Here $\alpha_{n+1}=0$.) Then $U_{\alpha_{1}}=\cdots=U_{\alpha_{k}+1}=F_{k-1}$. Other U_{i} are determined similarly.

Lemma 8.2 Let (8.1) be a given filtration in \mathbb{C}^{n} with the corresponding a given by (8.2). Let $\left\langle\cdot, \cdot>\right.$ be any inner product on \mathbb{C}^{n}. Denote by $P\left(U_{k}\right)$ the orthonormal projection on U_{k} for $k=1, \ldots$. Then the operator $A=\sum_{k=1}^{\infty} P\left(U_{k}\right)$ is a selfadjoint operator with respect to $\langle\cdot, \cdot\rangle$ with the eigenvalue vector α.

Proof. Let $F_{*}(I)$ be the partial flag induced by the filtration (8.1). Complete $F_{*}(I)$ to a full flag. Then F_{*} together with $\left\langle\cdot, \cdot>\right.$ induces an orthonormal basis f_{1}, \ldots, f_{n} in \mathbb{C}^{n} such that $F_{i}=\operatorname{span}\left(f_{1}, \ldots, f_{i}\right), i=1, \ldots, n$. In this o.n. basis each $P\left(U_{i}\right)$ is represented by a diagonal matrix, whose first $\operatorname{dim} U_{i}$ diagonal entries are equal to 1 and all other diagonal entries are equal to zero. In this basis A is represented by a diagonal matrix whose $i-t h$ diagonal entry is equal to α_{i} for $i=1, \ldots, n$.

Lemma 8.3 Assume that the filtration (8.1) induces a complete flag F_{*}. Let α be given by (8.2). Let $L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right)$ and assume that $I\left(L, F_{*}\right)$ is given by (5.6). Then

$$
\begin{equation*}
\sum_{k=1}^{\infty} \operatorname{dim}\left(L \cap U_{k}\right)=\sum_{i \in I\left(L, F_{*}\right)} \alpha_{i} \tag{8.3}
\end{equation*}
$$

Proof. Let $I\left(L, F_{*}\right)=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n\right\}$. Let a and b be the values of the left hand side and the right hand side of (8.3) respectively. If $\operatorname{dim} L \cap U_{k}=j \geq 1$ then the contribution of U_{k} to a is j . U_{k} contributes 1 to $\alpha_{i_{l}}$ for $l=1, \ldots, j$. That is U_{k} contributes j to b.

Definition 8.4 l-filtration $U_{*}(1), \ldots, U_{*}(l)$ of \mathbb{C}^{n} is called stable if for any subspace $[0] \neq$ $L \neq \mathbb{C}^{n}$

$$
\mu(L):=\frac{1}{\operatorname{dim} L} \sum_{i=1}^{l} \sum_{j=1}^{\infty} \operatorname{dim} L \cap U_{j}(i)<\mu\left(\mathbb{C}^{n}\right):=\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{\infty} \operatorname{dim} U_{j}(i) .
$$

The characterization of $K(\alpha, \beta)$ is deduced from the following theorem.
Theorem $8.5([\mathrm{Tot}],[\mathrm{Kly}])$ Let $U_{*}(1), \ldots, U_{*}(l)$ be an l-filtration of \mathbb{C}^{n} which induces l complete flags $F_{*}(1), \ldots, F_{*}(l)$ in general position. Then $U_{*}(1), \ldots, U_{*}(l)$ is stable iff there exists an inner product $\langle\cdot, \cdot\rangle$ on \mathbb{C}^{n} such that

$$
\begin{equation*}
\sum_{i=1}^{l} \sum_{j=1}^{\infty} P\left(U_{j}(i)\right)=\mu\left(\mathbb{C}^{n}\right) \mathrm{Id} \tag{8.4}
\end{equation*}
$$

To prove this theorem Totaro uses geometric invariant theory. Klyachko uses Donaldson's theory for bundles over \mathbb{P}^{2}.

Theorem 8.6 ([Kly]) Let $\alpha, \beta \in \mathbf{R}_{\geq}^{n}$. Then $K(\alpha, \beta)$ is a polyhedron in \mathbb{R}_{\geq}^{n} which is given by the trace equality (1.2) and the inequalites

$$
\begin{equation*}
\gamma[K] \leq \alpha[I]+\beta[J], \quad \text { for all }(I, J, K) \in S_{r}^{n}, r \in<1, n-1> \tag{8.5}
\end{equation*}
$$

Proof. Since $K(\alpha, \beta)$ is a continuous in the parameters α, β it is enough to prove the theorem for $\alpha, \beta \in \mathbb{Q}^{n}$ such that the coordinates of α, β are pairwise distinct. Fix such a pair α, β. As $K(\alpha, \beta)$ is a closed set, it is enough to show that if $\gamma \in \mathbb{Q}^{n}$, all the coordinates of γ are pairwise distinct, (1.2) holds, and

$$
\begin{equation*}
\gamma[K]<\alpha[I]+\beta[J], \quad \text { for all }(I, J, K) \in S_{r}^{n}, r \in<1, n-1>, \tag{8.6}
\end{equation*}
$$

then $\gamma \in K(\alpha, \beta)$. Since for any $t>0 K(t \alpha, t \beta)=t K(\alpha, \beta)$ it is enough to show that $t \gamma \in K(t \alpha, t \beta)$. Hence we can choose t to be a big positive integer so that

$$
\hat{\alpha}=\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{n}\right):=t \alpha, \hat{\beta}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{n}\right):=t \beta, \hat{\gamma}=\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{n}\right):=t \gamma \in \mathbb{Z}^{n}
$$

Choose N a big enough positive integer so that the coordinates of $\alpha(i), i=1,2,3$ are positive distinct integers:

$$
\begin{aligned}
& \alpha(i):=\left(\alpha_{1}(i), \ldots, \alpha_{n}(i)\right), \quad i=1,2,3 \\
& \alpha_{j}(1)=N-\hat{\alpha}_{n-j+1}, \alpha_{j}(2)=N-\hat{\beta}_{n-j+1}, \alpha_{j}(3)=N+\hat{\gamma}_{j}, j=1, \ldots, n .
\end{aligned}
$$

Then $\hat{\gamma} \in K(\hat{\alpha}, \hat{\beta})$ iff there exists $A_{1}, A_{2}, A_{3} \in \mathcal{H}_{n}$ satisfying (7.6) with $r=3 N$ such that $\lambda\left(A_{i}\right)=\alpha(i), i=1,2,3$. The definition of $\alpha(i), i=1,2,3$ and the assumption (8.6) yields

$$
\begin{align*}
& \sum_{i=1} \sum_{j=1}^{n} \alpha_{j}(i)=3 N n, \\
& \alpha(1)\left[I^{\prime}\right]+\alpha(2)\left[J^{\prime}\right]+\alpha(3)[K]<3 N m, \quad(I, J, K) \in S_{m}^{n}, m \in<1, n-1> \tag{8.7}
\end{align*}
$$

Let $F_{*}(i), i=1,2,3$ be three complete flags in general position. Let $U_{*}(i)$ be the filtration defined by $\alpha(i)$ and $F_{*}(i)$ for $\mathrm{i}=1,2,3$. We claim that the 3 filtration $U_{*}(i), i=1,2,3$ is stable. Let $L \in \operatorname{Gr}\left(m, \mathbb{C}^{n}\right), m \in<1, n-1>$. Let

$$
I_{1}^{\prime}=I\left(L, F_{*}(1)\right), \quad J_{1}^{\prime}=I\left(L, F_{*}(2)\right), \quad K_{1}=I\left(L, F_{*}(3)\right.
$$

Then

$$
L \in \Omega_{I_{1}^{\prime}}\left(F_{*}(1)\right) \cap \Omega_{J_{1}^{\prime}}\left(F_{*}(2)\right) \cap \Omega_{K_{1}}\left(F_{*}(3)\right) .
$$

Since the three flags $F_{*}(i), i=1,2,3$ are in general position the Schubert calculus implies the existence of $(I, J, K) \in S_{m}^{n}$ such that $I_{1}^{\prime} \geq I^{\prime}, J_{1}^{\prime} \geq J^{\prime}, K_{1} \geq K$. (8.7) yields

$$
\begin{equation*}
\frac{1}{m}\left(\alpha(1)\left[I_{1}^{\prime}\right]+\alpha(2)\left[J_{1}^{\prime}\right]+\alpha(3)\left[K_{1}\right]\right) \leq \frac{1}{m}\left(\alpha(1)\left[I^{\prime}\right]+\alpha(2)\left[J^{\prime}\right]+\alpha(3)[K]\right)<3 N \tag{8.8}
\end{equation*}
$$

Lemma 8.3 yields that the left hand side the right hand side of (8.8) is $\mu(L)$ and $\mu\left(\mathbb{C}^{n}\right)$ respectively. Hence 3 filtration $U_{*}(1), U_{*}(2), U_{*}(3)$. is stable. Theorem 8.5 yields the existence of a hermitian inner product $\langle\cdot, \cdot\rangle$ on \mathbb{C}^{n} such that (8.4) holds. Let

$$
B_{i}:=\sum_{j=1}^{\infty} P\left(U_{i}(j)\right), \quad i=1,2,3
$$

Pick an orthonormal basis e_{1}, \ldots, e_{n} in \mathbb{C}^{n} with respect to the $<\cdot, \cdot>$. Let $A_{i} \in \mathcal{H}_{n}$ represent B_{i} for $i=1,2,3$. Then $A_{1}+A_{2}+A_{3}=3 N E_{n}$. Lemma 8.2 implies that $\alpha(i)=\lambda\left(A_{i}\right), i=$ $1,2,3$.

9 Majorizing sums

For $\alpha, \beta \in \mathbb{R}_{\geq}^{n}$ let

$$
\begin{align*}
& a_{K}(\alpha, \beta):=\min _{I, J,(I, J, K) \in S_{|K|}^{n}} \sum_{i \in I} \alpha_{i}+\sum_{j \in J} \beta_{j}, \quad K \subset<n>, 1 \leq|K|<n, \\
& a_{<n>}(\alpha, \beta):=\sum_{i=1}^{n} \alpha_{i}+\beta_{i} . \tag{9.1}
\end{align*}
$$

Then $K(\alpha, \beta)$ is characterized by the following set of inequalities:

$$
\begin{align*}
& -x_{i}+x_{i+1} \leq 0, \quad i=1, \ldots, n-1, \\
& x[K] \leq a_{K}, \quad K \subset<n> \tag{9.2}\\
& \quad-x[<n>] \leq-a_{<n>}, \tag{9.3}
\end{align*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and

$$
\begin{equation*}
a_{K}=a_{K}(\alpha, \beta), \quad K \subset<n> \tag{9.4}
\end{equation*}
$$

Proposition 9.1 Let $\alpha, \beta \in \mathbb{R}_{\geq}^{n}$. Then $y \in K_{\leq}(\alpha, \beta)$ if and only if the system (??), (??), (??) and

$$
\begin{equation*}
-x_{i} \leq-y_{i}, \quad i=1, \ldots, n \tag{9.5}
\end{equation*}
$$

is solvable.
Proof. Let

$$
\begin{equation*}
\operatorname{diag}(x):=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n} \tag{9.6}
\end{equation*}
$$

Assume first that the system of equations (??), (??), (??) and (??) is solvable. Then

$$
\operatorname{diag}(y) \leq \operatorname{diag}(x)=A+B, \quad \text { for some } A, B \in \mathcal{H}_{n}, \lambda(A)=\alpha, \lambda(B)=\beta
$$

Hence $y \in K_{\leq}(\alpha, \beta)$. Vise versa, if $y \in K_{\leq}(\alpha, \beta)$ then $y=\lambda(F)$, and $F \leq C=A+$ $B, \lambda(A)=\alpha, \lambda(B)=\beta$. Then $x=\lambda(C)$ satisfies (??) and (??), where (??) holds. As $F \leq C$ and (??) holds.

Definition 9.2 Let $a:=\left(a_{I}\right)_{\emptyset \neq I \subset<n>}$ be a given real vector with $2^{n}-1$ coordinates. Let

$$
\begin{align*}
K(a):=\left\{x \in \mathbb{R}_{\geq}^{n}:\right. & \left.x[I] \leq a_{I}, I \subset<n>,|I|<n, \text { and } x[<n>]=a_{<n>}\right\}, \\
\hat{K}(a):=\left\{x \in \mathbb{R}_{\geq}^{n}:\right. & \left.x[I] \leq a_{I}, I \subset<n>\right\}, \\
K^{\prime}(a):=\left\{y \in \mathbb{R}_{\geq}^{n}:\right. & \exists x \in K(a), y \leq x\} . \tag{9.7}
\end{align*}
$$

Clearly

$$
\begin{equation*}
K(a) \subset K^{\prime}(a) \subset \hat{K}(a) \tag{9.8}
\end{equation*}
$$

Lemma 9.3 Let $n>1$ and assume that $a=\left(a_{I}\right)_{I \subset<n>}$ is a given vector. Suppose that $K(a)$ is a nonempty set. Then $K^{\prime}(a)$ is a polyhedral set in \mathbb{R}^{n} given by (??) and the inequalities

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i}^{l}(n) x_{i} \leq-a_{<n>}+\sum_{I \subset<n>, 0<|I|<n} u_{I}^{l}(n) a_{I}, \quad l=1, \ldots, M(n) \tag{9.9}
\end{equation*}
$$

for some fixed vectors $\left(w_{i}^{l}(n)\right)_{i=1}^{n},\left(u_{I}^{l}(n)\right)_{I \subset<n>, 0<|I|<n}, l=1, \ldots, M(n)$ independent of a.
Proof. The system (??) can be stated as $U x \leq b$, where $b^{T}=\left(0^{T}, a^{T}\right), 0 \in \mathbb{R}^{n-1}$. The system of equations (??), (??) and (??) can be written in matrix form as

$$
\begin{align*}
& V x \leq c \\
& V^{T}=\left(U^{T},-e,-E_{n}\right), \quad c^{T}=\left(b^{T},-a_{<n>},-y^{T}\right), e:=(1, \ldots, 1)^{T} \in \mathbb{R}^{n} . \tag{9.10}
\end{align*}
$$

Proof. A variant of Farkas lemma [?] (§7.3) yields that the solvability of (??) is equivlalent to the implication

$$
\begin{equation*}
z \geq 0, z^{T} V=0 \Rightarrow z^{T} c \geq 0 \tag{9.11}
\end{equation*}
$$

Here $z^{T}=\left(t^{T}, u^{T}, v, w^{T}\right)$ is a row vector partitioned as c^{T} :

$$
t=\left(t_{1}, \ldots, t_{n-1}\right)^{T}, u=\left(u_{I}\right)_{I \subset<n>}, v \in \mathbb{R}, w=\left(w_{1}, \ldots, w_{n}\right)^{T} \in \mathbb{R}^{n}
$$

It is straightforward to show that any solution z of $z^{T} V=0$ is equivalent to the validity of the following identity in n variables in $x \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\sum_{I \subset<n>} u_{I} x[I]=\sum_{i=1}^{n-1} t_{i}\left(x_{i}-x_{i+1}\right)+\sum_{i=1}^{n}\left(w_{i}+v\right) x_{i} \tag{9.12}
\end{equation*}
$$

The Farkas-Minkowski-Weyl theorem [?] (§7.2) yields that the cone $z V=0, z \geq 0$ is finitely generated. First we divide the extremal vectors $z=(t, u, v, w)$ to two sets: $v=0$ and $v \neq 0$. The subset with $v=0$ corresponds to the set

$$
z^{l, 1}(n):=\left(t^{l, 1}(n), u^{l, 1}(n), 0, w^{l, 1}(n)\right), \quad l=1, \ldots, M_{1}(n)
$$

We normalize the second set of extremal vectors by letting $v=1$. We divide the second set to the subsets determined by $w=0$:

$$
z^{l, 2}(n):=\left(t^{l, 2}(n), u^{l, 2}(n), 1,0\right), \quad l=1, \ldots, M_{2}(n)
$$

and $w \neq 0$:

$$
z^{l, 3}(n):=\left(t^{l}(n), u^{l}(n), 1, w^{l}(n)\right), \quad u_{<n>}^{l}(n)=0, \quad w^{l}(n) \neq 0, \quad l=1, \ldots, M(n) .
$$

Note that the set $z^{l, 2}(n), l=1, \ldots, M_{2}(n)$ contains an extremal vector $\zeta=(0, u, 1,0)$, where $u_{<n>}=1$ and all other coordinates of u are equal to zero. Hence the extremal vector $z^{l, 3}(n)$ satisfies the condition $u_{<n>}^{l}=0$ for $l=1, \ldots, M(n)$.

We claim that the number of nonzero coordinates in any extremal vector z is at most $n+1$. Let z be an extremal ray of the cone $z V=0, z \geq 0$. Assume that z has exactly p nonvanishing coordinates. Let \hat{V} be a $p \times n$ submatrix of V corresponding to the nonzero elements of z. Let $w V=0$ and assume that $w_{i}=0$ if $z_{i}=0$. Then the nonzero coordinates of w satisfy n equations. As z is an extremal ray it follows that $w=\alpha z$ for some $\alpha \in \mathbf{R}$. Hence the n columns of \hat{V} span $p-1$ dimensional subspace, i.e. rank $\hat{V}=p-1 \leq n$.

We claim that the set $z^{l, 3}(2)$ is empty. Consider an extremal vector $z^{l, 3}(n)$. By the definition $v^{l}(n)=1, w^{l}(n) \neq 0$ and $u_{<n>}^{l}(n)=0$. Use (??) to deduce that $u^{l}(n) \neq 0$. Assume now that $n=2$. Since $z^{l, 3}(2)$ has at most 3 nonzero coordinates, we deduce that each vector $u^{l}(2), v^{l}(2)=1, w^{l}$ has exactly one nonzero coordinate and $t^{l}(2)=0$. As $u_{<2>}^{l}(2)=0(? ?)$ can not hold.

The system $z V=0$ is equivalent to $\left(t^{T}, u^{T}\right) U=v e^{T}+w$, where U is the matrix representing the system (??). Hence

$$
\begin{align*}
& z^{T} c=\left(t^{T}, u^{T}\right) b-v a_{<n>}-w^{T} y= \\
& \left(t^{T}, u^{T}\right) b-v a_{<n>}-\left(\left(t^{T}, u^{T}\right) U-v e^{T}\right) y=\left(t^{T}, u^{T}\right)(b-U y)+v\left(e^{T} y-a_{<n>}\right), \\
& z c^{T}=u a^{T}-v a_{<n>}-w y^{T} . \tag{9.13}
\end{align*}
$$

The inequality (??) and the definition of $z^{l, 1}(n)$ yield that $z^{l, 1}(n)^{T} c \geq 0$. The inequality (??), (??) and the definition of $z^{l, 2}(n)$ yield that $z^{l, 2}(n)^{T} c \geq 0$ if $y \in K(a)$. The last part of (??) yields the validity of $z^{l, 2}(n)^{T} c \geq 0$ in general. Hence $y \in K^{\prime}(a)$ iff $z^{l, 3}(n)^{T} c \geq 0, l=$ $1, \ldots, M(n)$, which are equivalent to (??).

As the set of vectors of the form $z^{l, 3}(2)$ is empty we deduce:
Corollary 9.4 For $n=2 K^{\prime}(a)=\hat{K}(a)$.
In [Fr2] we showed that for $n=3 K^{\prime}(a(\alpha, \beta))=\hat{K}(a(\alpha, \beta))$. That is, for $n=2,3$ any $y \in \hat{K}(a(\alpha, \beta))$ satisfies (??). In [Fr2] we posed the problem if this statement holds for any $n>3$. This problem was answered positively by Fulton in [Fu2].

10 Characterization of $K_{\leq}(\alpha, \beta)$

Theorem 10.1 ([Fu2]) Let $\alpha, \beta \in \mathbb{R}_{>}^{n}$. Then the set $K_{\leq}(\alpha, \beta)$ is given by the inequalities (??), where $a=a(\alpha, \beta)$ is given by (??). That is, $\gamma \in K_{\leq}(\alpha, \beta)$ iff γ satisfies Horn's inequalities (4.6) and the trace inequality

$$
\begin{equation*}
\sum_{i=1}^{n} \gamma_{i} \leq \sum_{i=1}^{n} \alpha_{i}+\beta_{i} \tag{10.1}
\end{equation*}
$$

To prove the above theorem we need a few lemmas [Fu2].

Lemma 10.2 Let F_{*} be a complete flag in $V=\mathbb{C}^{n}$. Let $U \in \operatorname{Gr}\left(r, \mathbb{C}^{n}\right)$. ${ }_{\tilde{F}}$ et $I=I\left(U, F_{*}\right)$ and let I^{c} be the complement of I in $\langle n\rangle$. Then F_{*} induces the flags $\tilde{F}_{*}, \hat{F}_{*}$ in U and V/U repectively:

$$
\begin{align*}
& \tilde{F}_{*}: \tilde{F}_{j}=F_{i_{j}} \cap U, j=1, \ldots, r, \quad I=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\} \\
& \hat{F}_{*}: \quad \hat{F}_{j}=\left(F_{i_{j}^{c}}+U\right) / U, j=1, \ldots, n-r, \quad I^{c}=\left\{1 \leq i_{1}^{c}<i_{2}^{c}<\cdots<i_{n-r}^{c} \leq n\right\} \tag{10.2}
\end{align*}
$$

Proof. Clearly $F_{i} \cap U,\left(F_{i}+U\right) / U, i=1, \ldots, n$ induce filtrations in U and V / U respectively. The definition of $I\left(U, F_{*}\right)(5.6)$ yields that $\operatorname{dim} \tilde{F}_{j}=j, j=1, \ldots, r$. Furthermore, as

$$
\operatorname{dim}\left(F_{i}+U\right) / U=\operatorname{dim} F_{i} / F_{i} \cap U=i-\operatorname{dim} F_{i} \cap U, \quad i=1, \ldots, n
$$

we easily deduce that $\operatorname{dim} \hat{F}_{j}=j$ for $j \in I^{c}$.
The proof of the following lemma is straightforward and is left to the reader:
Lemma 10.3 Let Z, U, T be three subspaces in $V=\mathbb{C}^{n}$. Assume that $Z \supset U$. Then

$$
\operatorname{dim}(Z \cap T)=\operatorname{dim} U \cap T+\operatorname{dim} Z / U \cap(T+U / U)
$$

Let I and I^{c} be two complementary sets in $\langle n\rangle$ of cardinality r and $n-r$ respectively given as in (??). Let $P=\left\{1 \leq p_{1}<p_{2}<\cdots<p_{l}\right\}$. Let

$$
\begin{aligned}
& I_{P}:=\left\{i_{p_{1}}, \ldots, i_{p_{l}}\right\}, \quad \text { for } P \subset<r> \\
& I_{P}^{+}:=I \cup\left\{i_{p_{1}}^{c}, \ldots, i_{p_{l}}^{c}\right\}, \quad \text { for } P \subset<n-r>
\end{aligned}
$$

Lemma 10.4 Let F_{*} be a complete flag in $V=\mathbb{C}^{n}$. Let $I \subset<n>,|I|=r$ and assume that $U \in \Omega_{I}\left(F_{*}\right) \subset \operatorname{Gr}(r, V)$. Let \tilde{F}_{*} and \hat{F}_{*} be the induced flags in U and V / U respectively. (i) If X is a subspace of U of dimension x, with $X \in \Omega_{P}\left(\tilde{F}_{*}\right)$ for some $P \subset<r>,|P|=x$ then $X \in \Omega_{I_{P}}\left(F_{*}\right)$.
(ii) If $Y=Z / U$ is a subspace of V / U of dimension y, with $Y \in \Omega_{P}\left(\hat{F}_{*}\right)$ for some $P \subset<$ $n-r>,|P|=y$ then $Z \in \Omega_{I_{P}^{+}}\left(F_{*}\right)$.

Proof. Let X satisfy the assumptions of (i). Then

$$
s \leq \operatorname{dim} X \cap \tilde{F}_{p_{s}}=\operatorname{dim} X \cap\left(U \cap F_{i_{p_{s}}}\right)=\operatorname{dim} X \cap F_{i_{p_{s}}}, \quad s=1, \ldots, x
$$

Hence $X \in \Omega_{I_{P}}\left(F_{*}\right)$.
Assume that Y satisfies the assumptions of (ii). Observe that the function $\operatorname{dim} Z \cap F_{i}$ on the interval $[0, n] \cap \mathbb{Z}_{+}$strictly increases (by 1) exactly at the integers in the set $I\left(Z, F_{*}\right)$. Lemma ?? yields that

$$
\operatorname{dim} Z \cap F_{i}=\operatorname{dim} U \cap F_{i}+\operatorname{dim} Y \cap\left(F_{i}+U\right) / U, \quad i=1, \ldots, n
$$

As $\operatorname{dim} Z \cap F_{i}$ can jump only by one, we deduce that the jumps of $\operatorname{dim} Z \cap F_{i}$ are at the jumps of $\operatorname{dim} U \cap F_{i}$ and at the the jumps of $\operatorname{dim} Y \cap\left(F_{i}+U\right) / U$, which are at $I\left(U, F_{*}\right)$ and $\left(I\left(U, F^{*}\right)^{c}\right)_{I\left(Y, \hat{F}_{*}\right)}$. Hence

$$
I\left(Z, F_{*}\right)=I\left(U, F_{*}\right) \cup\left(I\left(U, F^{*}\right)^{c}\right)_{I\left(Y, \hat{F}_{*}\right)} \leq I_{P}^{+} \Rightarrow Z \in \Omega_{I\left(Z, F_{*}\right)}\left(F_{*}\right) \subset \Omega_{I_{P}^{+}}\left(F_{*}\right)
$$

Proof of Theorem ??. We prove the theorem by induction on n. Let

$$
\tilde{\alpha}=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right)=\left(-\alpha_{n}, \ldots,-\alpha_{1}\right), \quad \tilde{\beta}=\left(\tilde{\beta}_{1}, \ldots, \tilde{\beta}_{n}\right)=\left(-\beta_{n}, \ldots,-\beta_{1}\right) .
$$

As in $\S 7$, it is equivalent to show the existence of $A_{1}, A_{2}, A_{3} \in \mathcal{H}_{n}$ with eigenvalue vectors $\tilde{\alpha}, \tilde{\beta}, \gamma$ such that $A_{1}+A_{2}+A_{3} \leq 0$. For $n=1$ the theorem clearly holds. Assume that the theorem holds for any $n<N$. Let $n=N$. Assume that γ satisfies all the inequalities (4.6) and the trace inequality holds (??). Suppose that at least one inequality is an equality. Assume first the trace equality (1.2) holds. Then $\gamma \in K(\alpha, \beta) \Rightarrow \gamma \in K_{\leq}(\alpha, \beta)$. Assume now that we have an equality

$$
\begin{equation*}
\tilde{\alpha}[I]+\tilde{\beta}[J]+\gamma[K]=0 \quad \text { for some }\left(I^{\prime}, J^{\prime}, K\right) \in S_{r}^{n}, r \in<1, n-1> \tag{10.3}
\end{equation*}
$$

(We assumed here that $S_{r}^{n}=T_{r}^{n}, r \in<1, n-1>$.) Let

$$
\begin{aligned}
& \alpha^{\prime}:=\left(\tilde{\alpha}_{i}\right)_{i \in I}, \beta^{\prime}:=\left(\tilde{\beta}_{j}\right)_{j \in J}, \gamma^{\prime}:=\left(\gamma_{k}\right)_{k \in K} \in \mathbb{R}_{\geq}^{r} \\
& \alpha^{\prime \prime}:=\left(\tilde{\alpha}_{i}\right)_{i \in I^{c}}, \beta^{\prime \prime}:=\left(\tilde{\beta}_{j}\right)_{j \in J^{c}}, \gamma^{\prime \prime}:=\left(\gamma_{k}\right)_{k \in K^{c}} \in \mathbb{R}_{\geq}^{n-r}
\end{aligned}
$$

We claim:
(a) there exist $B_{1}, B_{2}, B_{3} \in \mathcal{H}_{r}$ with the eigenvalue vector $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ respectively such that $B_{1}+B_{2}+B_{3}=0 ;$
(b) there exist $C_{1}, C_{2}, C_{3} \in \mathcal{H}_{n-r}$ with the eigenvalue vector $\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}$ respectively such that $C_{1}+C_{2}+C_{3} \leq 0$.

Assume that (a) and (b) holds. Then $A_{i}:=B_{i} \oplus C_{i}, i=1,2,3$ yield the theorem in this case. Theorem 8.6 yields that (a) is equivalent to the inequalities

$$
\begin{equation*}
\alpha^{\prime}[P]+\beta^{\prime}[Q]+\gamma^{\prime}[R] \leq 0, \quad \text { for all }\left(P^{\prime}, Q^{\prime}, R\right) \in S_{l}^{r}, l \in<1, r-1> \tag{10.4}
\end{equation*}
$$

Note that

$$
\alpha^{\prime}[P]=\tilde{\alpha}\left[I_{P}\right], \quad \beta^{\prime}[Q]=\tilde{\beta}\left[J_{Q}\right], \gamma^{\prime}[R]=\gamma\left[K_{R}\right]
$$

We claim that for any three flags $F_{*}(1), F_{*}(2), F_{*}(3)$

$$
\begin{equation*}
\Omega_{I_{P}}\left(F_{*}(1)\right) \cap \Omega_{J_{Q}}\left(F_{*}(2)\right) \cap \Omega_{K_{R}}\left(F_{*}(3)\right) \neq \emptyset \tag{10.5}
\end{equation*}
$$

As $\left(I^{\prime}, J^{\prime}, K\right) \in S_{r}^{n}$ pick $U \in \Omega_{I}\left(F_{*}(1)\right) \cap \Omega_{J}\left(F_{*}(2)\right) \cap \Omega_{K}\left(F_{*}(3)\right) \subset \operatorname{Gr}\left(r, \mathbb{C}^{n}\right)$. Let $\tilde{F}_{*}(i)$ be the induced complete flag in U for $i=1,2,3$. Let $\left(P^{\prime}, Q^{\prime}, R\right) \in S_{l}^{r}$. Pick $X \in \Omega_{P}\left(\tilde{F}_{*}(1)\right) \cap$ $\Omega_{Q}\left(\tilde{F}_{*}(2)\right) \cap \Omega_{R}\left(\tilde{F}_{*}(3)\right) \subset \operatorname{Gr}(l, U)$. Part (i) of Lemma ?? yields that X is in the intersection of the three sets given in (??). Combine (??) with Lemma ??, the left hand side of (7.7) and (4.6) to deduce (??).

To prove (b) we the induction hypothesis that it is ehough to show

$$
\begin{align*}
& \alpha^{\prime \prime}[P]+\beta^{\prime \prime}[Q]+\gamma^{\prime \prime}[R] \leq 0 \\
& \text { for all }\left(P^{\prime}, Q^{\prime}, R\right) \in S_{l}^{n-r}, l \in<1, n-r-1>, \quad \text { and } P=Q=R=<n-r> \tag{10.6}
\end{align*}
$$

In view of (??) each of the above inequalities is equivalent to

$$
\tilde{\alpha}\left[I_{P}^{+}\right]+\tilde{\beta}\left[J_{Q}^{+}\right]+\gamma\left[K_{R}^{+}\right] \leq 0
$$

This inequality follows from part (ii) of Lemma ?? and the arguments as above.
Assume finally that γ satisfies all strict inequalities (4.6) and the strict trace inequality holds (??). Then there exists $\bar{\gamma} \in \mathbb{R}_{\geq}^{n}$ such that $\gamma \leq \bar{\gamma}, \bar{\gamma}$ satisfies all the inequalities (4.6) and (??) where at least one inequality is an equality. We showed that $\bar{\gamma} \in K_{\leq}(\alpha, \beta)$. Trivially $\gamma \in K_{\leq}(\alpha, \beta)$.

11 Selfadjoint operators in a separable Hilbert space

Let \mathbf{H} be a separable infinite dimensional Hilbert space with an inner product $(u, v) \in \mathbf{C}$ for $u, v \in \mathbf{H}$. (H has a countable orthonormal basis $\left\{e_{i}\right\}_{1}^{\infty}$.) Denote by \mathcal{H} the set of all linear, bounded, selfadjoint operators $A: \mathbf{H} \rightarrow \mathbf{H}$. That is $(A x, y)=(x, A y)$ for all $x, y \in \mathbf{H}$ and $\|A\|:=\sup _{0 \neq x \in \mathbf{H}} \frac{|(A x, x)|}{(x, x)}<\infty$. Recall the well known spectral properties of $A \in \mathcal{H}[?]$ or [?]. Denote $\operatorname{by} \operatorname{spec}(A)$ the spectrum of A, i.e. all $z \in \mathbb{C}$ such that $(z I-A)^{-1}$ does not exist. Then $\operatorname{spec}(A)$ is a compact set located in the closed interval $[-\|A\|,\|A\|]$. Recall the spectral decomposition of A :

$$
A=\int_{[-\|A\|-1,\|A\|+1]} x d E(x)
$$

Here $E(x), x \in \mathbf{R}, 0 \leq E(x) \leq I$ is the resolution of the identity of commuting increasing family of orthogonal projections induced by A, which is continuous from the right. Furthermore $E(-\|A\|-0)=0$ and $E(\|A\|+0)=I$. Note that

$$
I=\int_{[-| | A\|-1,\| A \|+1]} d E(x)
$$

For an open or a closed (Borel) set $T \subset \mathbf{R}$ denote by $P(A, T)$ the spectral projection of A on T :

$$
P(A, T):=\int_{T} d E(x)
$$

We let $\operatorname{dim} P(A, T)$ be the dimension of the subspace $P(A, T) \mathbf{H}$. Note that $0 \leq \operatorname{dim}$ $P(A, T) \leq \infty$. Observe that $\operatorname{dim} P(A,(a, b))$ is finite and positive iff $\operatorname{spec}(A) \cap(a, b)$ consists of a finite number of eigenvalues of A, each one with a finite dimensional eigenspace. We say that $\mu(A)$ is the first accumulation point of the spectrum of A if

$$
\operatorname{dim} P(A,(\mu(A)+\epsilon, \infty))<\infty, \quad \operatorname{dim} P((\mu(A)-\epsilon, \infty))=\infty
$$

for every positive $\epsilon . \mu(A)$ must be either a point of the continuous spectrum or a point spectrum with an infinite corresponding eigenspace. (It is a maximal point in $\operatorname{spec}(A)$ with this property.) Denote by $\mathcal{C H} \subset \mathcal{H}$ the set of all selfadjoint compact operators in
H. Then $A \in \mathcal{C H}$ iff \mathbf{H} has an orthonormal basis consisting of the eigenvectors of A and $\mu(A)=\mu(-A)=0$. Denote by $\mathcal{H}_{+}, \mathcal{H}_{+}^{o}$ the cone of nonnegative and positive selfadjoint operators in \mathbf{H} respectively. That is $A \in \mathcal{H}_{+}\left(\mathcal{H}_{+}^{o}\right)$ if $(A x, x) \geq 0(>0)$ for any $x \neq 0$. Let $\mathcal{C H}_{+}, \mathcal{C H}_{+}^{o}$ the cone of compact nonnegative and compact positive selfadjoint operators in \mathbf{H} respectively. For $A, B \in \mathcal{H}$ let $A \leq B(A<B)$ iff $B-A \in \mathcal{H}_{+}\left(B-A \in \mathcal{H}_{+}^{o}\right)$, i.e. $B-A$ is nonnegative (respectively positive). Then $A \in \mathcal{C} \mathcal{H}_{+}^{o}$ iff \mathbf{H} has an orthonormal basis $\left\{e_{i}\right\}_{1}^{\infty}$ such that

$$
\begin{align*}
& A e_{i}=\lambda_{i} e_{i}, \quad \lambda_{i}>0, \quad i=1, \ldots \\
& \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \cdots \\
& \lim _{n \rightarrow \infty} \lambda_{i}=0 \tag{11.1}
\end{align*}
$$

We say that $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ is the eigenvalue sequence of A. If $A \in \mathcal{C H}$ then (??) holds with the following modifications. First $\lambda_{i} \geq 0$. Second $\left\{e_{i}\right\}_{1}^{\infty}$ is an orthonormal sequence which is a basis for a closed subspace \mathbf{H}_{1}. Third $A \mathbf{H}_{1}^{\perp}=0$, where \mathbf{H}_{1}^{\perp} is the orthogonal complement of \mathbf{H}_{1}. In this case $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ is called the eigenvalue sequence of A. Note that if $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ has only finite number of positive numbers then we can (and will) assume that $\mathbf{H}_{1}=\mathbf{H}$. If $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ is a sequence of positive numbers then $A \in \mathcal{C} \mathcal{H}_{+}^{o}$ iff $\left\{e_{i}\right\}_{1}^{\infty}$ is an orthonormal basis of $\mathbf{H} . A \in \mathcal{C} \mathcal{H}_{+}$is said to be in the trace class if $\sum_{i=1}^{\infty} \lambda_{i}<\infty$. Then trace $A:=\sum_{i=1}^{\infty} \lambda_{i}$.

Let $V \subset \mathbf{H}$ be an n-dimensional subspace. Pick an orthonormal basis $f_{1}, \ldots, f_{n} \in V$. For $A \in \mathcal{H}$ denote by $A\left(f_{1}, \ldots, f_{n}\right)=A \mid V \in \mathcal{H}_{n}$ the $n \times n$ matrix whose (i, j) entry is $\left(A f_{i}, f_{j}\right)$. Let

$$
\lambda_{1}(A, V) \geq \lambda_{2}(A, V) \geq \cdots \geq \lambda_{n}(A, V)
$$

be the n eigenvalues of the Hermitian matrix $A \mid V$. As in the finite dimensional case the above eigenvalues do not depend on a particular choice of an orthonormal basis f_{1}, \ldots, f_{n} of V. Clearly $\left|\lambda_{i}(A, V)\right| \leq\|A\|, i=1, \ldots, n$.

We now recall the convoy principle [Fr1].
Lemma 11.1 Let $A \in \mathcal{C} \mathcal{H}_{+}$have the eigenvalue sequence $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$. Let $n \geq k \geq 1$ be any integers. Assume that $V \subset \mathcal{H}$ is any n-dimensional subspace. Then $\lambda_{k}(A, V) \leq \lambda_{k}$ and this inequality is sharp.

Proof. For simplicity of exposition assume in addition that $A>0$. Choose an orthonormal basis f_{1}, \ldots, f_{n} of V so that $A \mid V$ is the diagonal matrix $\operatorname{diag}\left(\lambda_{1}(A, V), \ldots, \lambda_{n}(A, V)\right)$. Let $f=\sum_{i=1}^{k} \alpha_{i} f_{i} \neq 0$ be such that $\left(f, e_{i}\right)=0, i=1, \ldots, k-1$, where $\left\{e_{i}\right\}_{1}^{\infty}$ is an orthonormal basis of \mathcal{H} given in (??). Deduce from (??) and from the choice of f_{1}, \ldots, f_{n} that

$$
\lambda_{k}(A, V) \leq \frac{(A f, f)}{(f, f)} \leq \lambda_{k}
$$

For $V=\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$ we obtain that $\lambda_{k}(A, V)=\lambda_{k}$.
For $A \in \mathcal{H}$ let

$$
\lambda_{k}(A, \mathbf{H}):=\sup _{V \subset \mathbf{H}, \operatorname{dim} V=k} \lambda_{k}(A, V), \quad k=1, \ldots,
$$

For $A \in \mathcal{C H}_{+}$Lemma ?? yields that

$$
\lambda_{k}(A, \mathbf{H})=\lambda_{k}, \quad k=1, \ldots,
$$

Lemma 11.2 Let $A \in \mathcal{H}$. Then the sequence $\left\{\lambda_{i}(A, \mathbf{H})\right\}_{1}^{\infty}$ is a nonincreasing sequence which lies in $[-\|A\|,\|A\|]$. Let $\left\{f_{i}\right\}_{1}^{\infty}$ be any orthonormal basis in \mathbf{H}. Set $V_{n}=\operatorname{span}\left(f_{1}, \ldots, f_{n}\right)$ for $n=1, \ldots$, . Then the sequence $\left\{\lambda_{k}\left(A, V_{n}\right)\right\}_{n=k}^{\infty}$ is an increasing sequence which converges to $\lambda_{k}(A, \mathbf{H})$ for each $k=1,2, \ldots$, .

Proof. . Fix a complete flag

$$
W_{1} \subset W_{2} \subset \cdots \subset W_{i} \cdots, \quad \operatorname{dim} W_{i}=i, \quad i=1, \ldots
$$

of subspaces in \mathcal{H}. Then the convoy principle for matrices yields that

$$
\lambda_{i}\left(A, W_{i+1}\right) \geq \lambda_{i}\left(A, W_{i}\right) \geq \lambda_{i+1}\left(A, W_{i+1}\right), \quad i=1,2, \ldots,
$$

(These inequalities are natural extensions of the Cauchy interlacing inequalites for matrices.) Hence the sequence $\left\{\lambda_{i}(A, \mathbf{H})\right\}_{1}^{\infty}$ is a nonincreasing sequence which lies in $[-\|A\|,\|A\|]$. Furthermore we obtain that $\left\{\lambda_{k}\left(A, V_{n}\right)\right\}_{n=k}^{\infty}$ is a nondecreasing sequence. From the definition of $\lambda_{k}(A, \mathbf{H})$ we immediately deduce that

$$
\lambda_{k}\left(A, V_{n}\right) \leq \lambda_{k}(A, \mathbf{H}), \quad n=k, k+1, \ldots,
$$

Let

$$
\tilde{\lambda}_{k}:=\lim _{n \rightarrow \infty} \lambda_{k}\left(A, V_{n}\right), \quad k=1, \ldots,
$$

Hence $\tilde{\lambda}_{k} \leq \lambda_{k}(A, \mathbf{H}), k=1, \ldots$, . We claim that for any k-dimensional subspace $W \subset \mathcal{H}$

$$
\tilde{\lambda}_{k} \geq \lambda_{k}(A, W)
$$

Assume that g_{1}, \ldots, g_{k} is an orthonormal basis in W so that the matrix $\left(\left(A g_{i}, g_{j}\right)\right)_{1}^{k}$ is the diagonal matrix $\operatorname{diag}\left(\lambda_{1}(A, W), \ldots, \lambda_{k}(A, W)\right)$. Let $P_{n}: \mathcal{H} \rightarrow V_{n}$ be the orthogonal projection on V_{n}. That is

$$
P_{n} x=\sum_{i=1}^{n}\left(x, f_{i}\right) f_{i} \text {. }
$$

Then $\lim _{n \rightarrow \infty} P_{n} x=x$ for every $x \in \mathcal{H}$, i.e. P_{n} converges to I in the strong topology. Hence, for $n>N$, say, $P_{n} g_{1}, \ldots, P_{n} g_{k}$ are linearly independent. Let $g_{1, n}, \ldots . g_{k, n} \in V_{n}$ be the k orthonormal vectors obtained from $P_{n} g_{1}, \ldots, P_{n} g_{n}$ using the Gram-Schmidt process. Then

$$
\lim _{n \rightarrow \infty} g_{i, n}=g_{i}, \quad i=1, \ldots, k
$$

Hence the matrix $\left(\left(A g_{i, n}, g_{j, n}\right)\right)_{i, j=1}^{k}$ converges to $\operatorname{diag}\left(\lambda_{1}(A, W), \ldots, \lambda_{k}(A, W)\right)$. Let $W_{n}=$ $\operatorname{span}\left(g_{1, n}, \ldots, g_{k, n}\right)$. Then

$$
\lim _{n \rightarrow \infty} \lambda_{k}\left(A, W_{n}\right)=\lambda_{k}(A, W)
$$

As $W_{n} \subset V_{n}$ the convoy principle implies

$$
\lambda_{k}\left(A, W_{n}\right) \leq \lambda_{k}\left(A, V_{n}\right) \leq \tilde{\lambda}_{k}
$$

Hence

$$
\lambda_{k}(A, W) \leq \tilde{\lambda}_{k} \quad \Rightarrow \quad \lambda_{k}(A, \mathbf{H}) \leq \tilde{\lambda}_{k} \Rightarrow \quad \lambda_{k}(A, \mathbf{H})=\tilde{\lambda}_{k}
$$

Lemma 11.3 Let $A \in \mathcal{H}$. Then the nonincreasing sequence $\left\{\lambda_{i}(A, \mathbf{H})\right\}_{1}^{\infty}$ converges to $\mu(A)$.

Proof. Suppose first that $\operatorname{dim} P(A,(a, b))>0$. Let

$$
A(a, b):=\int_{(a, b)} x d E(x) .
$$

Then

$$
a \leq \frac{(A x, x)}{(x, x)} \leq b, \quad 0 \neq x \in P(A,(a, b)) \mathbf{H} .
$$

Let $\epsilon>0$. Let f_{1}, \ldots, f_{k-1} be an orthonormal basis of $V=P(A,(\mu(A)+\epsilon, \infty)) \mathbf{H}$. (If $k=1$ then $V=0$.) Hence $V^{\perp}=P(A,(-\infty, \mu(A)+\epsilon]) \mathbf{H}$. Let $W \subset \mathbf{H}$ be any subspace of dimension k. Then $V^{\perp} \cap W$ contains a nonzero vector $x \in P(A,(-\infty, \mu(A)+\epsilon]) \mathbf{H}$. The convoy principle and the above observation yield that

$$
\lambda_{k}(A, W) \leq \mu(A)+\epsilon
$$

Hence

$$
\lambda_{k}(A, \mathbf{H}) \leq \mu(A)+\epsilon
$$

Recall that $U:=P(A,(\mu(A)-\epsilon, \infty)) \mathbf{H}$ is infinite dimensional. Let $W \subset U$, $\operatorname{dim} W=l$. Then the convoy principle and the above observation yield that

$$
\lambda_{l}(A, W) \geq \mu(A)-\epsilon
$$

Hence $\lambda_{l}(A, \mathbf{H}) \geq \mu(A)-\epsilon$. This inequality holds for any l. Hence

$$
\lim _{l \rightarrow \infty} \lambda_{l}(A, \mathbf{H}) \geq \mu(A)-\epsilon
$$

Since ϵ was an arbitrary positive number we deduce the lemma.
Corollary 11.4 Let $A \in \mathcal{H}_{+}$. The following are equivalent:
(a) $A \in \mathcal{C H}_{+}$and A is in the trace class.
(b) For a given orthonormal basis $\left\{f_{i}\right\}_{1}^{\infty}$ of \mathbf{H} the nonnegative series $\sum_{i=1}^{\infty}\left(A f_{i}, f_{i}\right)$ converges.

Furthermore under the assumption (a)

$$
\begin{equation*}
\operatorname{trace} A=\sum_{i=1}^{\infty}\left(A f_{i}, f_{i}\right) \tag{11.2}
\end{equation*}
$$

for any orthonormal basis $\left\{f_{i}\right\}_{1}^{\infty}$.

Proof. (a) $\Rightarrow(\mathrm{b})$: Let $V_{n}=\operatorname{span}\left(f_{1}, \ldots, f_{n}\right)$. Then

$$
\begin{equation*}
\operatorname{trace} A \geq \sum_{i=1}^{n} \lambda_{i}(A) \geq \operatorname{trace} A \mid V_{n}=\sum_{i=1}^{n}\left(A f_{i}, f_{i}\right) \tag{11.3}
\end{equation*}
$$

(b) \Rightarrow (a): Fix $k \geq 1$ and let $n \geq k$. Then

$$
\sum_{i=1}^{\infty}\left(A f_{i}, f_{i}\right) \geq \sum_{i=1}^{n}\left(A f_{i}, f_{i}\right)=\operatorname{trace}\left(A \mid V_{n}\right) \geq \sum_{i=1}^{k} \lambda_{i}\left(A, V_{n}\right)
$$

Let $n \rightarrow \infty$. Use Lemma ?? to deduce that $\sum_{i=1}^{\infty}\left(A f_{i}, f_{i}\right) \geq \sum_{i=1}^{k} \lambda_{i}(A, \mathbf{H})$. Clearly each $\lambda_{k}(A, \mathbf{H}) \geq 0$. Hence

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(A f_{i}, f_{i}\right) \geq \sum_{i=1}^{\infty} \lambda_{i}(A, \mathbf{H}) \tag{11.4}
\end{equation*}
$$

Thus $\lim _{k \rightarrow \infty} \lambda_{k}(A, \mathbf{H})=0$. Hence $A \in \mathcal{C H}+$ and $\lambda_{k}(A, \mathbf{H})=\lambda_{k}(A), k=1, \ldots, n$. Use (??) and (??) to deduce (??).

12 Characterization of $K_{\leq}(\alpha, \beta)$ for operators in $\mathcal{C H}_{+}$

Let

$$
\begin{equation*}
\Gamma:=\left\{\gamma=\left\{\gamma_{i}\right\}_{1}^{\infty}: \quad \gamma_{i} \in \mathbb{R}, \gamma_{i} \geq \gamma_{i+1} \geq 0, i=1, \ldots, \lim _{i \rightarrow \infty} \gamma_{i}=0 .\right\} \tag{12.1}
\end{equation*}
$$

Thus Γ is the set of all eigensequences $\lambda(A)=\left\{\lambda_{i}(A)\right\}_{1}^{\infty}$ for $A \in \mathcal{C} \mathcal{H}_{+}$. The following theorem follows from [Fr2] and [Fu2]:

Theorem 12.1 Let \mathbf{H} be a separable Hilbert space. Assume that $\alpha, \beta, \gamma \in \Gamma$. Then the following are equivalent:
(a) There exist $A, B, C \in \mathcal{C H}$ + with $C \leq A+B$ and $\alpha=\lambda(A), \beta=\lambda(B), \gamma=\gamma(C)$.
(b) For each $n=1, \ldots$, the vectors $\alpha^{n}:=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta^{n}:=\left(\beta_{1}, \ldots, \beta_{n}\right), \gamma^{n}:=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ satisfy the Horn inequalities (4.6) and (??), i.e. $\gamma^{n} \in K_{\leq}\left(\alpha^{n}, \beta^{n}\right)$.

Proof. (a) \Rightarrow (b): Let $\left\{f_{i}\right\}_{1}^{\infty}$ be the orthonormal sequence in \mathbf{H} corresponding to $\lambda(C): C f_{i}=\gamma_{i} f_{i}, i=1, \ldots$ Let $V_{n}:=\operatorname{span}\left(f_{1}, \ldots, f_{n}\right)$. Then $C \mid V_{n}=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $\lambda\left(C \mid V_{n}\right)=\gamma^{n}$. Let $\alpha\left(V_{n}\right):=\lambda\left(A \mid V_{n}\right), \beta\left(V_{n}\right):=\lambda\left(B \mid V_{n}\right)$. Clearly $C\left|V_{n} \leq A\right| V_{n}+B \mid V_{n}$. Hence $\gamma^{n} \in K_{\leq}\left(\alpha\left(V_{n}\right), \beta\left(V_{n}\right)\right)$. The convoy principle implies that $\alpha^{n} \geq \alpha\left(V_{n}\right), \beta^{n} \geq \beta\left(V_{n}\right)$. Use Theorem ?? to deduce that $\gamma^{n} \in K_{\leq}\left(\alpha^{n}, \beta^{n}\right)$.
(b) $\Rightarrow(\mathrm{a}):$ Let $C_{n}=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{H}_{n}$. Then there exist $A_{n}=\left(a_{i j, n}\right)_{i=j=1}^{n}, B_{n}=$ $\left(b_{i j, n}\right)_{i=j=1}^{n} \in \mathcal{H}_{n}$ such that $\lambda\left(A_{n}\right)=\alpha^{n}, \lambda\left(B_{n}\right)=\beta^{n}$ and $C_{n} \leq A_{n}+B_{n}$. Clearly

$$
\left|a_{i j, n}\right| \leq \alpha_{1},\left|b_{i j, n}\right| \leq \beta_{1}, \quad i, j=1, \ldots, n
$$

Hence there exists a subsequence $1 \leq n_{1}<n_{2}<\ldots$ such that

$$
\lim _{l \rightarrow \infty} a_{i j, n_{l}}=a_{i j}, \lim _{l \rightarrow \infty} b_{i j, n_{l}}=b_{i j}, \quad i, j=1, \ldots
$$

Let $\tilde{A}:=\left(a_{i j}\right)_{i=j=1}^{\infty}, \quad \tilde{B}:=\left(b_{i j}\right)_{i=j=1}^{\infty}, \tilde{C}:=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots\right)=\left(c_{i j}\right)_{i=j=1}^{\infty}$ be three infinite hermitian matrices. Fix an orthonormal basis $\mathbf{f}:=\left\{f_{i}\right\}_{1}^{\infty}$ in \mathbf{H}. Clearly \tilde{C} represents an operator $C \in \mathcal{C H} H_{+}$in the basis \mathbf{f}. We claim that \tilde{A}, \tilde{B} represent $A, B \in \mathcal{C H _ { + }}$ in the basis \mathbf{f}, such that $\lambda(A) \leq \alpha, \lambda(B) \leq \beta$. It is enough to prove this claim for A.

Fix a positive integer k. Then for $n \geq k A_{k, n}:=\left(a_{i j, n}\right)_{i=j=1}^{k}$ is a nonnegative (definite) matrix, whose norm (its first eigenvalue) is bounded by α_{1}. Let $n=n_{l}$ and $l \rightarrow \infty$. Then $\tilde{A}_{k}:=\left(a_{i j}\right)_{i=j=1}^{k}$ is a nonnegative matrix, whose norm is bounded by α_{1}. Since k was arbitrary $\S 26$ of [?] implies that \tilde{A} represents a linear bounded selfadjoint nonnegative operator in l_{2}. Hence $A \in \mathcal{H}_{+}$. The convoy principle yields that

$$
\lambda_{j}\left(A_{k, n}\right) \leq \lambda_{j}\left(A_{n}\right)=\alpha_{j}, \quad j=1, \ldots, k
$$

Let $n=n_{l}$ and $l \rightarrow \infty$. Then

$$
\lambda_{j}\left(\tilde{A}_{k}\right) \leq \alpha_{j}, \quad j=1, \ldots, k
$$

Let $V_{k}=\operatorname{span}\left(f_{1}, \ldots, f_{k}\right)$. Fix m. Hence for $k \geq m \lambda_{m}\left(A, V_{k}\right)=\lambda_{m}\left(\tilde{A}_{k}\right) \leq \alpha_{m}$. Use Lemma ?? to deduce $0 \leq \lambda_{m}(A, \mathbf{H}) \leq \alpha_{m}$. As the sequence $\left\{\alpha_{i}\right\}_{1}^{\infty}$ converges to 0 it follows that the sequence $\left\{\lambda_{i}(A, \mathbf{H})\right\}_{1}^{\infty}$ converges to 0 . Lemma ?? implies that $A \in \mathcal{C} \mathcal{H}_{+}$. Hence $\lambda_{m}(A, \mathbf{H})=\lambda_{m}(A)$. Thus $\lambda(A) \leq \alpha$.

We claim that $C \leq A+B$. Clearly $C_{k} \leq\left(a_{i j, n}\right)_{i=j=1}^{k}+\left(b_{i j, n}\right)_{i=j=1}^{k}$. Let $n=n_{l}$ and $l \rightarrow \infty$. Then $C_{k} \leq \tilde{A}_{k}+\tilde{B}_{k}$. As k was arbitrary we deduce that $C \leq A+B$. Let $\left\{e_{i}\right\}_{1}^{\infty}$ and $\left\{g_{i}\right\}_{1}^{\infty}$ be two orthonormal systems in \mathbf{H} spanning the closed subspaces \mathbf{H}_{1} and \mathbf{H}_{2} respectively such that

$$
\begin{aligned}
& A e_{i}=\lambda_{i}(A) e_{i}, B g_{i}=\lambda_{i}(B) g_{i}, \quad i=1, \ldots \\
& A \mathbf{H}_{1}^{\perp}=B \mathbf{H}_{2}^{\perp}=0
\end{aligned}
$$

Let $\hat{A}, \hat{B} \in \mathcal{C H} \mathcal{H}_{+}$be given by

$$
\begin{aligned}
& \hat{A} e_{i}=\alpha_{i} e_{i}, \hat{B} g_{i}=\beta_{i} g_{i}, \quad i=1, \ldots \\
& \hat{A} \mathbf{H}_{1}^{\perp}=\hat{B} \mathbf{H}_{2}^{\perp}=0
\end{aligned}
$$

Then $A \leq \hat{A}, B \leq \hat{B}$ and $\lambda(\hat{A})=\alpha, \lambda(\hat{B})=\beta$.
As in the finite dimensional case for $\alpha, \beta \in \Gamma$ let

$$
\begin{align*}
& K_{\leq}(\alpha, \beta):=\left\{\gamma \in \Gamma: \quad \exists A, B, C \in \mathcal{C H}_{+}, \text {where } C \leq A+B \text { and } \lambda(A)=\alpha, \lambda(B)=\beta, \lambda(C)=\gamma\right\} \\
& K(\alpha, \beta):=\left\{\gamma \in \Gamma: \quad \exists A, B, C \in \mathcal{C H}_{+}, \text {where } C=A+B \text { and } \lambda(A)=\alpha, \lambda(B)=\beta, \lambda(C)=\gamma\right\} \tag{12.2}
\end{align*}
$$

Theorem ?? characterizes the set $K_{\leq}(\alpha, \beta)$. It is an infinite polyhedral set given by a countable number of inequalities, where each inequality is in a finite number of variables. Let

$$
\Gamma_{1}:=\left\{\left\{\gamma_{i}\right\}_{1}^{\infty} \in \Gamma: \quad \sum_{i=1}^{\infty} \gamma_{i}<\infty\right\}
$$

That is $\gamma \in \Gamma_{1}$ iff there exists $C \in \mathcal{C} \mathcal{H}_{+}$in the trace class such that $\gamma=\lambda(C)$. The following theorem follows from [Fr2] and [Fu2]:

Theorem 12.2 Let $\alpha, \beta \in \Gamma_{1}$. Then

$$
K(\alpha, \beta)=\left\{\left\{\gamma_{i}\right\}_{1}^{\infty} \in K_{\leq}(\alpha, \beta): \quad \sum_{i=1}^{\infty} \gamma_{i}=\sum_{i=1}^{\infty} \alpha_{i}+\beta_{i}\right\}
$$

Proof. Suppose that $A, B, C \in \mathcal{C} \mathcal{H}_{+}$and $C=A+B$. Then $\lambda(C) \in K_{\leq}(\lambda(A), \lambda(B))$. Furthermore for any orthonormal basis $\left\{f_{i}\right\}_{1}^{\infty}$

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(C f_{i}, f_{i}\right)=\sum_{i=1}^{\infty}\left(A f_{i}, f_{i}\right)+\left(B f_{i}, f_{i}\right) \tag{12.3}
\end{equation*}
$$

Hence if $\lambda(A)=\alpha, \lambda(B)=\beta, \lambda(C)=\gamma$ then (??) and Corollary ?? yield that C is in the trace class and

$$
\sum_{i=1}^{\infty} \gamma_{i}=\operatorname{trace} C=\operatorname{trace} A+\operatorname{trace} B=\sum_{i=1}^{\infty} \alpha_{i}+\beta_{i}
$$

Assume now that $\gamma \in K_{\leq}(\alpha, \beta)$. Hence there exists $A, B, C \in \mathcal{C H} \mathcal{H}_{+}$, where $C \leq A+B$ and $\lambda(A)=\alpha, \lambda(B)=\beta, \lambda(C)=\gamma$. Thus

$$
\sum_{i=1}^{\infty}\left(C f_{i}, f_{i}\right) \leq \sum_{i=1}^{\infty}\left(A f_{i}, f_{i}\right)+\left(B f_{i}, f_{i}\right)=\operatorname{trace} A+\operatorname{trace} B
$$

and C is in the trace class. Suppose that $\sum_{i=1}^{\infty} \gamma_{i}=\sum_{i=1}^{\infty} \alpha_{i}+\beta_{i}$. Let $V_{n}=\operatorname{span}\left(f_{1}, \ldots f_{n}\right), n=$ $1, \ldots$ As $A+B-C \geq 0$ we deduce that $A+B-C \mid V_{n} \geq 0$ for each $n \geq 1$. Hence

$$
\operatorname{trace} A+B-C \mid V_{n}=\sum_{i=1}^{n}\left((A+B-C) f_{i}, f_{i}\right) \geq 0
$$

and each summand is nonnegative. The equality trace $C=$ trace $A+$ trace B yields that $\left((A+B-C) f_{i}, f_{i}\right)=0, i=1, \ldots$. Therefore $A+B-C \mid V_{n}=0, n=1, \ldots$ and $A+B-C=0$.

It is left to characterize $K(\alpha, \beta)$ where $\alpha, \beta \in \Gamma$ and $\alpha+\beta \notin \Gamma_{1}$. The arguments of the proof of Theorem ?? shows that $K(\alpha, \beta) \subset K_{\leq}(\alpha, \beta) \backslash \Gamma_{1}$.

Conjecture 12.3 Let $\alpha, \beta \in \Gamma$ and assume that $\alpha+\beta \notin \Gamma_{1}$. Then $K(\alpha, \beta)=K_{\leq}(\alpha, \beta) \backslash \Gamma_{1}$.

References

[AG] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. I-II, Dover, N.Y., 1993.
[BG] F.A. Berezin and I.M. Gelfand, Some remarks on spherical functions on Symmetric Riemannian manifolds, Amer. Math. Soc. Transl. 21 (1962), 193-238.
[Bha] R. Bhatia, Perturbation bounds for matrix eigenvalues, Pitman Res. Notes 162, 1987.
[DST] J. Day, W. So, R.C. Thompson, The spectrum of Hermitian matrix sum, Lin. Alg. Appl. 280 (1998), 289-332.
[Fan] Ky Fan, On a theorem of Weyl concerning eigenvalues of linear transformations, Proc. Nat. Acad. Sci. USA 35 (1949), 652-655.
[Fr1] S. Friedland, Extremal eigenvalue problems for convex sets of symmetric matrices and operators, Israel J. Math. 15 (1973), 311-331.
[Fr2] S. Friedland, Finite and infinite dimensional generalizations of Klyachko's theorem, Lin. Alg. Appl. 322 (2000), 3-22.
[Fu1] W. Fulton, Eigenvalue, invariant factors, highest weights, and Schubert calculus, Bul. Amer. Math. Soc. 37 (2000), 209-249.
[Fu2] W. Fulton, Eigenvalues of majorized Hermitian matrices and LittlewoodRichardson coefficients, Lin. Alg. Appl. 322 (2000), 23-36.
[Gan] F.R. Gantmacher, The Theory of Matrices, vol. I, Chelsea, New York, 1960.
[HLP] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press 1934.
[HZ] J. Hersch and B. Zwahlen, Évaluations par défault pour une summe quelconque de valeurs propres γ_{k} d'un opérateur $C=A+B$, à l'aide de valeurs propres α_{i} de A et β_{j} de B, C, R. Acad. Sc. Paris 254 (1962), 1559-1561.
[Hor] A. Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241.
[Kly] A.A. Klyachko, Stable bundles, representation theory and Hermitian matrices, $S e$ lecta Math. (N.S.) 4 (1998), 419-445.
[KT] A. Knutson and T. Tao, The honeycomb model of Berenstein-Zelevensky polytope I. Klyachko saturation conjecture, math.RT/9807160, J. Amer. Math. Soc. (to appear).
[L1] V.B. Lidskii, The proper values of sum and product of symmetric matrices, Dokl. Akad. Nauk SSSR 74 (1950), 769-772.
[L2] B.V. Lidskii, Spectral polyhedron of the sum of two hermitian matrices, Funct. Anal. Appl. 16 (1982), 139-140.
[PS] G. Pólya and M. Schiffer, Convexity of functionals by transplantation, J. d'Anal. Math. 3 (1953/4), 245-xxx.
[RS] M. Reed and B. Simon, Functional Analysis, Academic Press, San Diego, 1998.
[Sch] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Tiptree, 1986.
[Tot] B. Totaro, Tensor products of semistable are semistable, Geometry and Analysis on complex Manifolds, World Sci. Publ., 1994, pp. 242-250.
[Wey] H. Weyl, Das asymptotische Verteilungsgesetz der Eigewerte lineare partieller Differentialgleichungen, Math. Ann. 71 (1912), 441-479.
[Wie] H. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106-110.

