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Abstract

The purpose of these lectures to report on the recent solution of a 50 years old
problem of describing the set of the eigenvalues of a sum of two hermitian matrices
with prescribed eigenvalues

1 Statement of the problem

For a field F denote by Fn the vector space of column vectors f = (f1, ..., fn)T with entries
in F. We will mostly assume that F is either the field of reals R or complexes C. We view
Rn and Cn as inner product spaces with the inner product (x, y) equal to either yT x or y∗x
respectively. Set

Rn
≥ := {x = (x1, ..., xn)T ∈ Rn : x1 ≥ x2 ≥ · · · ≥ xn}.

Let Sn ⊂ Hn be the real vector spaces of n × n real symmetric and hermitain matrices
respectively. Note that Sn and Hn describe the space of selfadjoint operators in Rn and Cn

respectively, with respect to the standard inner product (·, ·). Let A ∈ Hn. It is well known
that Cn has an orthonormal basis consisting entirely of the eigenvectors of A:

Aui = λiui, λi ∈ R, ui ∈ Cn, i = 1, ..., n,

(ui, uj) = δij , i, j = 1, ..., n,

λ1 ≥ λ2 ≥ · · · ≥ λn (λ := (λ1, ..., λn)T ∈ Rn
≥).

If A ∈ Sn we assume that u1, ..., un ∈ Rn. Sometimes we will emphasize the dependence on
A:

λ(A) = (λ1(A), ..., λn(A)) := λ,

ui(A) := ui, i = 1, ..., n.
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For α, β ∈ Rn
≥ let

K(α, β) := {γ ∈ Rn
≥ : γ = λ(C), C = A+B, for all A,B ∈ Hn with λ(A) = α, λ(B) = β}.

The trace equality

n∑

i=1

λi(A + B) =
n∑

i=1

λi(A) +
n∑

i=1

λi(B), A, B ∈ Hn (1.1)

implies that K(α, β) lies in the hyperplane

n∑

i=1

γi =
n∑

i=1

αi +
n∑

i=1

βi, γ = (γ1, ..., γn)T ∈ Rn
≥. (1.2)

The problem of describing K(α, β) was raised in the late 40’s in Gelfand’s seminar in Moscow
[BG]. The aim of these lectures to report the solution of this problem, primary by A.
Klyachko [Kly] and A. Knutson and T. Tao [KT]. Consult with [Fu1]. We will also describe
the characterization of the set

K≤(α, β) := {γ ∈ Rn
≥ : γ = λ(C), for all A,B, C ∈ Hn with C ≤ A+B, λ(A) = α, λ(B) = β},

due to Friedland [Fr2] and Fulton [Fu2], which enables to generalize these results to non-
negative selfadjoint compact operators.

2 Minimax characterizations of eigenvalues

The maximal and minimal characterizations of the first and the last eigenvalue of A ∈ Hn,
which go back to J.W. Rayleigh in 19th century, are

λ1(A) = max
0 6=x∈Cn

(Ax, x)
(x, x)

= max
(x,x)=1

(Ax, x),

λn(A) = min
0 6=x∈Cn

(Ax, x)
(x, x)

= min
(x,x)=1

(Ax, x).

(2.1)

They follow easily if we choose to present the Rayleigh quotient (Ax,x)
(x,x) in the o.n. eigenbasis

of A. Since the Rayleigh quotient (or (Ax, x)) is a linear function(al) on Hn for a fixed
x, (2.1) yields that the function λ1(·) : Hn → R (λn(·) : Hn → R) is a convex (concave)
function. Clearly, each λi(A) is a homogeneous function of degree 1:

λi(tA) = tλi(A), t ∈ R+, A ∈ Hn, i = 1, ..., .

Hence
λ1(A + B) ≤ λ1(A) + λ1(B), A,B ∈ Hn. (2.2)
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The characterization of any other eigenvalue of A ∈ Hn is either minmax or maxmin char-
acterization. Let

< n >:= {1, 2, ..., n}.
The following characterization is widely known as Courant-Fischer characterization [Gan].
Let Gr(k,Fn) be the collection of all k-dimensional subspaces of Cn. For L ∈ Gr(k,Fn),
where F = R,C, let L⊥ be the orthogonal complement of L in Fn with respect to (·, ·). Then

λi(A) = min
L∈G(i−1,Cn)

max
x∈L⊥,(x,x)=1

(Ax, x), i ∈< n > . (2.3)

The following inequalities are due to Weyl [Wey]:

Corollary 2.1 Let A,B ∈ Hn and assume that i, j, i + j − 1 ∈< n >. Then

λi+j−1(A + B) ≤ λi(A) + λj(B).

Proof. Let

λi(A) = max
x∈Li−1(A)⊥

(Ax, x), Li−1(A) = span (u1(A), ..., ui−1(A)),

λi(B) = max
x∈Li−1(B)⊥

(Bx, x), Li−1(B) = span (u1(B), ..., ui−1(B)).

Let L = Li−1(A) + Lj−1(B) ∈ Gr(k,Cn) where k ≤ i + j − 2. Clearly

λi+j−1(A + B) ≤ λk+1(A + B) ≤ max
x∈L⊥, (x,x)=1

((A + B)x, x)) ≤ λi(A) + λj(B).

2

Remark 2.2 To prove (2.3) one notes that for any L ∈ Gr(i − 1,Cn) L⊥ ∩ Li(A) ∈
G(m,Cn) for some m ≥ 1. Hence λi(A) ≤ maxx∈L⊥,(x,x)=1(Ax, x). Clearly λi(A) =
maxx∈Li−1(A)⊥,(x,x)=1(Ax, x).

Let L ∈ Gr(m,Cn). Fix an o.n. basis x1, ..., xm in L. Let A ∈ Hn and denote by
A(x) = A(x1, ..., xm) := ((Axi, xj))m

1 ∈ Hm. Choose another o.n. basis y1, ..., ym in L. Then
A(y) = A(y1, ..., ym) is unitary similar to A(x). Let λ(A|L) = (λ1(A|L), ..., λm(A|L))T ∈ Rm

≥
be the eigenvalues of A(x). The following result was called by Polya and Schiffer [PS] the
convoy principle and is attributed to Poincaré. See [Fr1] for its uses for matrices and
selfadjoint compact nonnegative operators.

λi(A) = max
L∈Gr(m,Cn)

λi(A|L), i = 1, ..., m, m = 1, ..., n. (2.4)

Corollary 2.3 (Ky Fan 1949 [Fan]) Let A ∈ Hn and m ∈< n >. Then
m∑

i=1

λi(A) = max
x1,...,xm∈Cn, (xi,xj)=δij

m∑

i=1

(Axi, xi).

In particular for any A, B ∈ Hn and m ∈< n >

m∑

i=1

λi(A + B) ≤
m∑

i=1

λi(A) +
m∑

i=1

λi(B). (2.5)
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Proof. Clearly, for any o.n. basis x1, ..., xm of L we have the equality

trace(A|L) :=
m∑

i=1

(Axi, xi) =
m∑

i=1

λi(A|L).

Use the convoy principle to deduce the maximum characterization of
∑m

i=1 λi(A). 2

3 Results of Lidskii and Wielandt

In [L1] V.B. Lidskii announced the following result. Let Πn be the group of all n × n
permutation matrices. For x ∈ Rn let Γ(x) be the convex hull spanned by the vectors
Px, P ∈ Πn. Then

K(α, β) ⊂ α + Γ(β), for all α, β ∈ Rn
≥. (3.1)

Wielandt was not able to reconstruct the outline of Lidskii’s proof in [L1]. To prove (3.1)
Wielandt gave a characterization of any sum of the eigenvalues of A ∈ Hn, which generalizes
all the above characterizations. A (complete) flag F∗ on Cn is a strictly increasing sequence
of subspaces

[0] = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cn.

That is dim Fi = i, i = 0, ..., n. Let I ⊂< n > of cardinality k = |I|. Then

I = {i1, ..., ik}, 1 ≤ i1 < i2 < · · · < ik ≤ n.

A partial flag FI (associated with I) is a a strictly increasing sequence of subspaces

Fi1 ⊂ Fi2 ⊂ · · · ⊂ Fik
, dim Fij = ij , j = 1, ..., k.

Any partial flag FI can be completed to a complete flag F∗ in many ways unless I =< n >.
We shall view FI as a partial flag of some F∗. Let

x[I] :=
∑

i∈I

xi for any x = (x1, ..., xn)T ∈ Rn.

Theorem 3.1 (Wielandt [Wie]) Let I ⊂< n >, |I| = m ∈< n >. Then for any A ∈ Hn

λ(A)[I] = max
FI

min
xi∈Fi, (xi,xj)=δij , i,j∈I

∑

i∈I

(Axi, xi). (3.2)

Proof. The proof is by the induction on n. Assume that the Theorem holds for n ≤ N .
Let n = N + 1. One needs to show first that for I = {1 ≤ i1 < · · · < im ≤ N + 1}

λ(A)[I] ≥ min
xi∈Fi, (xi,xj)=δij , i,j∈I

∑

i∈I

(Axi, xi). (3.3)

Suppose first that im < N + 1. Idenitify Fim with Cim . Then the induction hypothesis
implies that

λ(A|Fim)[I] ≥ min
xi∈Fi, (xi,xj)=δij , i,j∈I

∑

i∈I

(Axi, xi).
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Use the convoy principle λ(A)[I] ≥ λ(A|Fim)[I] to deduce (3.3). Assume now that im =
N + 1. If I =< N + 1 > then (3.3) holds, since for any full flag F∗ equality holds in
(3.3). Assume that |I| < N + 1. Then there exits a unique g ∈< N > such that g 6∈ I
and {g + 1, ..., N + 1} ⊂ I. Let f be the biggest element in I\{g + 1, ..., N + 1}. (If
I = {g + 1, ..., N} then f = 0.) Let

L = Ff + span (ug+1(A), ..., uN+1(A)), dim L ≤ f + N + 1− g ≤ N.

Hence there exists L̃ ∈ Gr(N,CN+1) such that L ⊂ L̃. Note that

Ff ⊂ Fg+1 ∩ L̃ ⊂ · · · ⊂ FN+1 ∩ L̃,

g + i− 1 ≤ dim Fg+i ∩ L̃ ≤ g + i, i = 1, ...N − g,

dim FN+1 ∩ L̃ = N.

Let Ĩ = I\{N + 1} ∪ {g}. Hence there exists a flag F̃Ĩ such that

Fi = F̃i, i ∈ I\{g + 1, ..., N + 1} = Ĩ\{g, ..., N},
Fg+i ⊃ F̃g+i−1 i = 1, ..., N + 1,

F̃N = L̃.

By construction

min
xi∈Fi, (xi,xj)=δij , i,j∈I

∑

i∈I

(Axi, xi) ≤ min
xi∈F̃i, (xi,xj)=δij , i,j∈Ĩ

∑

i∈Ĩ

(Axi, xi).

Use the induction hypothesis to obtain that

λ(A|F̃N )[Ĩ] ≥ min
xi∈F̃i, (xi,xj)=δij , i,j∈Ĩ

∑

i∈Ĩ

(Axi, xi).

Since F̃N ⊃ span (ug+1(A), ..., uN+1(A)) it follows that the eigenvalues of A|F̃N are the
N coordinates of the vectors λ(A|L′) and (λg+1(A), ..., λN+1(A)), where L′ ⊂ F̃N is the
orthogonal complement of span (ug+1(A), ..., uN+1(A)) in F̃N . Use the convoy principle for
λ(A|L′) to deduce λ(A)[I] ≥ λ(A|F̃N )[Ĩ]. Hence (3.3) holds. Let LI(A) be the partial
flag corresponding to the complete flag L∗(A), where Li(A) = span (u1(A), ..., ui(A)), i =
1, ..., n. It is straightforward to show that

λ(A)[I] = min
xi∈Li(A), (xi,xj)=δij , i,j∈I

∑

i∈I

(Axi, xi).

2

Corollary 3.2 Let A,B ∈ Hn and I ⊂< n >. Then

λ(A + B)[I] ≤ λ(A)[I] + λ(B)[< |I| >].
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Proof. Consider Wielandt’s characterization for λ(A + B)[I]. Ky Fan characterization
yields

∑
i∈I(Bxi, xi) ≤ λ(B)[< |I| >] for any orthonormal set xi, i ∈ I. Use Wielandt’s

chracterization for λ(A)[I] to deduce the above inequality. 2

Proof of Lidskii’s theorem It is well known [HLP] that x = (x1, ..., xn)T ∈ Γ(β) iff
x[I] ≤ β[< |I| >] for all I ⊂< n >. Corollary 3.2 shows that λ(A + B) − λ(A) ∈ Γ(λ(B)).
2

See Bhatia [Bha] for a detailed proof of Wielandt’s and Lidskii’s inequalities.

4 Horn’s results and conjectures

In [Hor] Horn studied in detail the structure of K(α, β). Let Un be the unitary group n×n
complex valued matrices. Then

K(λ(A), λ(B)) = {λ(A + UBU∗) : U ∈ Un}, for any A, B ∈ Hn. (4.1)

Horn showed that a boundary point η ∈ K(α, β) corresponds to C = A + B, where A,B
(and hence C) have a nontrivial common invariant subspace L ∈ Gr(m,Cn), 1 ≤ m < n.
Clearly L⊥ is also a nontrivial subspace of A,B, C. Hence

trace(C|L) = trace(A|L)+ trace(B|L), trace(C|L⊥) = trace(A|L⊥)+ trace(B|L⊥). (4.2)

One of these equalities induces the inequality of the type

λ(A + B)[K] ≤ λ(A)[I] + λ(B)[J ], I, J,K ⊂< n >, 1 ≤ |I| = |J | = |K| < n. (4.3)

Horn conjectured the form of the sets (I, J,K) which satisfy (4.3). They are defined recur-
sively as follows. Let

Un
r := {(I, J,K) : I, J,K ⊂< n >, |I| = |J | = |K| = r < n,

∑

i∈I

i+
∑

j∈J

j =
r(r + 1)

2
+

∑

k∈K

k}.

(4.4)
Horn showed that if η is a boundary point certain quadratic form has to be nonnegative
definite. Hence any (I, J,K) coming from (4.2) has to be in Un

r for some r ∈< n−1 >. Define
Tn

1 := Un
1 . The inequalities (4.3) corresponding to (I, J,K) ∈ Tn

1 are Weyl’s inequalities.
For 1 < r ≤ n− 1 let

Tn
r := {(I, J,K) ∈ Un

r : for all (U, V, W ) ∈ T r
p , p ∈< 1, r − 1 >

∑
u∈U iu +

∑
v∈V jv ≤ p(p+1)

2 +
∑

w∈W kw}.
(4.5)

Conjecture 4.1 (Horn [Hor]). γ ∈ K(α, β) iff (1.2) holds and

γ[K] ≤ α[I] + β[J ], for all (I, J,K) ∈ Tn
r , r ∈< 1, n− 1 > . (4.6)
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Horn proved the validity (4.6) for triples (I, J,K) belonging to the sets Tn
1 , Tn

2 , Tn
3 . He

showed that his conjecture holds for n = 2, 3, 4. For n = 2 it is straightforward to show that

K((α1, α2), (β1, β2)) = {(γ1, γ2) ∈ R2
≥

γ1 + γ2 = α1 + α2 + β1 + β2,

γ1 ≤ α1 + β1,

γ2 ≤ min(α1 + β2, α2 + β1).

The above 3 inequalities are Weyl’s inequalities. For n = 3 Horn’s result claims

K((α1, α2, α3), (β1, β2, β3)) = {(γ1, γ2, γ3) ∈ R3
≥

γ1 + γ2 + γ3 = α1 + α2 + α3 + β1 + β2 + β3,

γ1 ≤ α1 + β1,

γ2 ≤ min(α1 + β2, α2 + β1),
γ3 ≤ min(α1 + β3, α2 + β2, α3 + β1),
γ1 + γ2 ≤ α1 + α2 + β1 + β2,

γ1 + γ3 ≤ min(α1 + α3 + β1 + β2, α1 + α2 + β1 + β3),
γ2 + γ3 ≤ min(α2 + α3 + β1 + β2, α1 + α2 + β2 + β3, α1 + α3 + β1 + β3).}

Note that out of 12 inequalities (the first) 6 inequalites are due to Weyl, 1 is due to Ky Fan,
4 due to Wielandt and 1 is due to Horn:

γ2 + γ3 ≤ α1 + α3 + β1 + β3. (4.7)

Indeed, note that the inequalities (4.6) for (I, J,K) ∈ Tn
1 is the set of Weyl’s inequalities.

Next

Tn
2 := {(I, J,K) ⊂< n >: I = (1 ≤ i1 < i2 ≤ n), J = (1 ≤ j1 < j2 ≤ n),

K = (1 ≤ k1 < k2 ≤ n),
i1 + i2 + j1 + j2 = k1 + k2 + 3, i1 + j1 ≤ k1 + 1, max(i1 + j2, i2 + j1) ≤ k2 + 1.}

(4.8)

Hence (4.7) are the inequalities for I = J = {1, 3}, K = {2, 3} which are in T 3
2 . The

cardinalities of |Tn
r | grows very fast. For example:

|T 7
1 | = |T 7

6 | = 28, |T 7
2 | = |T 7

5 | = 252, |T 7
3 | = |T 7

4 | = 751.

See [DST]. It is now known that Horn’s inequalities are not minimal for n ≥ 6. For example

(I, J,K) = ({1, 3, 5}, {1, 3, 5}, {2, 4, 6} ∈ Tn
3 , n ≥ 6.

Hence for any γ ∈ K(α, β) ⊂ Rn
≥, n ≥ 6 we have

γ2 + γ4 + γ6 ≤ α1 + α3 + α5 + β1 + β3 + β5. (4.9)

7



For n = 6 the above inequality follows from the trace equality. Indeed, for n = 2m and
α ∈ R2m let αodd, αeven be the sum of odd and even coordinates of α = (α1, ..., α2m). Then

2γeven ≤ γodd + γeven = αodd + αeven + βodd + βeven ≤ 2(αodd + βodd).

In [L2] the son Lidskii claimed to prove Horn’s conjecture by listing 5 lemmas (without
proofs), which imply Horn’s conjecture. Day, So and Thompson [DST] were able to prove
the first 3 lemmas of B.V. Lidskii.

5 Flags and Schubert varieties

Let V (= Fn) be an n-dimensional vector space over F. Let F∗ be a complete flag on V (see
§3). Assume that F = R,C and V is an inner product space with the inner product (·, ·).
Then F∗ induces an orthonormal basis in V :

Fi = span(f1, .., fi), i = 1, ..., n, (fi, fj) = δij , i, j = 1, ..., n. (5.1)

In what follows we restrict ourselves to the complex case F = C. The orthonormal basis
{f1, ..., fn} induced by F∗ is defined up to the action of U1 (the group of complex numbers
of modulus 1). That is, ζ1f1, ...ζnfn, ζ1, ..., ζn ∈ U1 is the set of all possible o.n. bases in
Cn induced by F∗. Let Dn < Un be the subgroup of all unitary diagonal matrices.

Lemma 5.1 Let Fn be the space of all flags in Cn. Then Fn is isomorphic to the
homogeneous space Un/Dn of real dimension n(n− 1). Fn is a fibre bundle over Pn−1 with
the fiber Fn−1. Furthermore Fn is a smooth complex projective variety of complex dimension
n(n−1)

2 .

Proof. Let U = (u1, ..., un) ∈ Un. Then the n columns of U give an o.n. basis of Cn. A
flag F∗ induces a unique left coset UDn. Hence Fn ∼ Un/Dn. Clearly

dimRUn/Dn = n2 − n = n(n− 1).

Observe next that a choice of one dimensional subspace F1 is the definition of a point
z ∈ Pn−1. Fix z ∈ Pn−1. By choosing an o.n. basis in Cn we may assume that z is
presented by u1 = en = (0, ..., 0, 1)T . That is, u2, .., un ∈ Cn−1. Hence Fn is a fibre bundle
with a basis Pn−1 and a fibre Fn−1. For a set T ⊂ F let

Mnm(T ) := {A : A = (aij)
i=n,j=m
i=j=1 , aij ∈ T , i = 1, ..., n, j = 1, ...,m},

Mo
nm(T ) := {A ∈ Mnm(T ) : rank A = min(m, n)},

Mn(T ) := Mnn(T ), Mo
n(T ) := Mo

nn(T ),
GL(n,F) := Mo

n(F),
UT(n,F) := {A = (aij)n

1 ∈ GL(n,F) : aij = 0, for 1 ≤ j < i ≤ n}.
(5.2)
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Let A = (a1, ..., an) ∈ GL(n,C) be the n columns of A. Then A induces the complete flag

Fi = span (a1, ..., ai), i = 1, ..., n. (5.3)

Vice versa, a complete flag F∗ induces a unique left coset AUT(n,C) in GL(n,C). Hence
Fn ∼ GL(n,C)/UT(n,C). As GL(n,C) and UT(n,C) are algebraic groups it follows that
Fn is a smooth projective variety of complex dimension n(n−1)

2 . 2

Let I = {1 ≤ i1 < i2 < · · · < im ≤ n} ⊂< n >. Then F∗(I) is the partial flag

Fi1 ⊂ · · · ⊂ Fim
⊂ Cn, dim Fi = i, i ∈ I.

We view F∗(I) as a partial flag of some complete flag F∗.

Lemma 5.2 Let I = {1 ≤ i1 < i2 < · · · < im ≤ n} ⊂< n >. Denote by F(I) the set of
all partial flags F∗(I) in Cn. Then F(I) is a smooth projective variety of dimension

dim F(I) =
m∑

k=1

(ik − ik−1)(n− ik), i0 = 0. (5.4)

Proof. Let I = {l}. Then F({l}) = Gr(l,Cn). Any F∗({l}) is spanned by the columns
of A ∈ Mo

nl(C). Hence F∗({l}) determines a unique coset AGL(l,C) in the quotient space
Mo

nl(C)/GL(l,C). Hence F({l}) is a smooth projective variety of dimension

dim F({l}) = dim Gr(l,Cn) = dim Mo
nl(C)/GL(l,C) = l(n− l).

To prove (5.4) for m > 1, let ñ = n− i1 and Ĩ = {i2 − i1, i2 − i1, ..., im − i1} ⊂< ñ >. Then
the above arguments show that F(I) is a fibre bundle with a basis Gr(i1,Cn) and the fibre
F(Ĩ). Hence

dim F(I) = dim Gr(i1,Cn) + dim F(Ĩ).

Use induction to show (5.4). A straightforward argument shows that F(I) is given as a
quotient of Mo

mim
by a corresponding subgroup of block upper triangular matrices GL(I) <

GL(im,C). Hence F(I) is a smooth projective variety. 2

Fix a flag F∗ in Cn. Let L ∈ Gr(m,Cn). Then

[0] = L ∩ F0 ⊂ L ∩ F1 ⊂ · · · ⊂ L ∩ Fn = L,

dim L ∩ Fi ≤ dim L ∩ Fi−1 + 1, i = 1, ..., n.

(5.5)

Let

I(L,F∗) := {I = {1 ≤ i1 < · · · < im ≤ n} : dim L ∩ Fij = j, j = 1, ...,m,

dim L ∩ Fk < j, for all k < ij}, L ∈ Gr(m,Cn).
(5.6)
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For I = {1 ≤ i1 < · · · im ≤ n} let

Ωo
I(F∗) := {L ∈ Gr(m,Cn) : I(L,F∗) = I},

ΩI(F∗) := {L ∈ Gr(m,Cn) : dim L ∩ Fij ≥ j, j = 1, ..., m},
(5.7)

the Schubert cell and the Schubert variety corresponding to I.

Lemma 5.3 Let I = {1 ≤ i1 < · · · im ≤ n}. Then Ωo
I(F∗) ⊂ Gr(m,Cn) is a quasipro-

jective variety. ΩI(F∗) ⊂ Gr(m,Cn) is a projective variety, which is the closure of Ωo
I(F∗)

in Gr(m,Cn). Furthermore

dim ΩI(F∗) = dim Ωo
I(F∗) =

m∑

j=1

ij − j. (5.8)

Proof. Without loss of generality we may assume that F∗ is the standard flag

Fi = span (e1, ..., ei), ei = (δ1i, ..., δni)T , i = 1, ..., n. (5.9)

Then L is spanned by the columns of a matrix A = (a1, ..., am) ∈ Mo
nm(C) such that

aj = (a1j , ..., anj)T , aijj 6= 0, aij = 0, i = ij + 1, ..., n, j = 1, ..., m.

Clearly the set of all such A is a quasivariety in QV (I) ⊂ Mo
nm(C). Each L ∈ Ωo

I(F∗) induces
a unique coset AUT(m,C), where A ∈ QV (I). Hence Ωo

I(F ) ∼ QV (I)/UT(m,C). This
shows that Ωo

I(F∗) is a quasivariety in Gr(m,Cn) of dimension
∑m

j=1 ij − m(m+1)
2 . Hence

ΩI(F∗) is a closed variety in Gr(m,Cn), which is the topological (Zariski) closure of Ωo
I(F∗).

In particular (5.8) holds. 2

Lemma 5.4 There is one to one correspondance between the Schubert cells in Gr(m,Cn)
and the set of all m × n matrices of rank m in its reduced row echelon form: Each L ∈
Gr(m,Cn) ∼ Mo

nm(C)/GL(m,C) induces a unique matrix A(L) in the left coset of Mo
nm/GL(m,C),

whose columns span L, such A(L)T is in its reduced row echelon form. Assume that the first
nonzero entry of A(L)T in the row j, which is equal to 1, is in the column ĩj for j = 1, ..., m.
Let ij = n − ĩm−j+1 + 1, j = 1, ...,m and set I = {1 ≤ i1 < · · · < im ≤ n}. Let F∗ be the
reversed standard flag

Fi = span (en, ..., en−i+1), i = 1, ..., n.

Then I(L,F∗) = I.

The proof of the lemma is straightforward and is left to the reader. One can use Lemma
5.4 to find the dimension of the Schubert cell Ωo

I(F∗).
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6 Hersch-Zwahlen characterization

Lemma 6.1 ([HZ]) Let A ∈ Hn and denote by F∗(A) the flag induced by the eigenvectors
of A: Fi(A) = span (u1(A), ..., ui(A)), i = 1, ..., n. Let I = {1 ≤ i1 < i2 < · · · < im ≤ n}.
Then

λ(A)[I] = min
L∈ΩI(F∗(A))

trace(A|L). (6.1)

Proof. Let L ∈ ΩI(F∗(A)). Then L has an orthonormal basis x1, ..., xm such that
xj ∈ Fij

(A), j = 1, ..., m. Hence (Axj , xj) ≥ λij
(A) and

λ(A)[I] ≤ trace(A|L).

For L = span (ui1(A), ui2(A), ..., uim
(A)) ∈ ΩI(F∗(A)) equality holds in the above inequal-

ity. 2

Corollary 6.2 ([HZ]) Let A,B,C ∈ Hn, C = A + B. Let

I = {1 ≤ i1 < i2 < · · · < im ≤ n},
J = {1 ≤ j1 < j2 < · · · < jm ≤ n},
K = {1 ≤ k1 < k2 < · · · < km ≤ n}.

Set

I ′ = {n− im + 1 < · · · < n− i1 + 1}, J ′ = {n− jm + 1 < · · · < n− j1 + 1}.

Suppose that
ΩI′(F∗(−A))) ∩ ΩJ′(F∗(−B))) ∩ ΩK(F∗(C)) 6= ∅.

Then (4.3) holds.

Proof. Let L ∈ ΩI′(F∗(−A))) ∩ ΩJ ′(F∗(−B))) ∩ ΩK(F∗(C)). Apply Lemma 6.1 to
−A,−B, C respectively and use the equality −A−B + C = 0 to deduce

λ(−A)[I ′] + λ(−B)[J ′] + λ(C)[K] ≤ 0.

2

Corollary 6.3 ([HZ]) Let I, J,K, I ′, J ′ ⊂< n > be defined as in Corollary 6.2. Suppose
that for any three complete flags F∗(1), F∗(2), F∗(3) in Cn the following condition holds

ΩI′(F∗(1))) ∩ ΩJ′(F∗(2))) ∩ ΩK(F∗(3)) 6= ∅. (6.2)

Then for any A,B ∈ Hn (4.3) holds.

Proof of (4.7). Let
I = J = {1, 3}, K = {2, 3}.

11



Assume first that n = 3. Then I ′ = J ′ = I = J . We claim that for any three flags in C3 (6.2)
holds. Indeed, choose L ∈ Gr(2,C3) such that L ⊃ F1(1) + F1(2). As any two dimensional
subspaces in C3 have a common one dimensional subspace L ∈ ΩI′(F∗(1))) ∩ΩJ ′(F∗(2))) ∩
ΩK(F∗(3)). Hence (4.7) holds for any A, B ∈ H3. Let n > 3 and A,B, C ∈ Hn, C = A+B.
Let L = F3(C). Then

λ2(C) + λ3(C) = λ2(C|L) + λ3(C|L) ≤ λ1(A|L) + λ3(A|L) + λ1(B|L) + λ3(B|L) ≤
λ1(A) + λ3(A) + λ1(B) + λ3(B).

7 Schubert calculus

Let I ⊂< n > be defined as in Corolary 6.2. Set

ωj := im−j+1 − (m− j + 1), αj = n− ij −m + j, j = 1, ..., n,

ω(I) := ω = (ω1, ..., ωm), α(I) := α = (α1, ..., αm) ∈ Rm
≥ ∩ Zm

+ ,

||ω||1 =
m∑

i=1

ωi, ||α||1 =
m∑

i=1

αi.

(7.1)

Note that ω(I ′) = α(I), and α(I) (ω(I)) is with 1 − 1 correspondence with I ⊂< n >.
Moreover ||α(I)||1 (||ω(I)||1) gives the dimension of ΩI′(F∗) (ΩI(F∗)) in Gr(m,Cn), which
is equal to the codimension of ΩI(F∗) (ΩI′(F∗)).

Lemma 7.1 Let I, J,K ∈ Un
m. Suppose that for any three flags F∗(1), F∗(2), F∗(3) the

condition (6.2) holds. Then ΩI′(F∗(1)))∩ΩJ′(F∗(2)))∩ΩK(F∗(3)) consists of a finite number
of points if the flags F∗(1), F∗(2), F∗(3) are in general position.

Proof. Observe that

I, J,K ∈ Un
m ⇐⇒ I, J,K ⊂< n >, |I| = |J | = |K| = m, ||ω(I)||1 + ||ω(J)||1 = ||ω(K)||1.

(7.2)
As the codimension of ΩI′(F∗(1)) (ΩJ′(F∗(2))) is ||ω(I)||1 (||ω(J)||1) we view the variety
ΩI′(F∗(1)) (ΩJ ′(F∗(2))) given by ||ω(I)||1 (||ω(J)||1) algebraically independent conditions.
Hence ΩI′(F∗(1))) ∩ ΩJ ′(F∗(2))) ∩ ΩK(F∗(3)) is the solution of ||ω(I)||1 + ||ω(J)||1 alge-
braic conditions restricted to ΩK(F∗(3)), which is of dimension ||ω(I)||1 + ||ω(J)||1. If
F∗(1), F∗(2), F∗(3) are in general positions, these algebraic conditions restricted to ΩK(F∗(3))
can give only a finite number of solutions. 2

Sn
m := {(I, J,K) ∈ Un

m : such that for any three flags (6.2) holds}. (7.3)

For I, J ⊂< n > satisfying the condition of Corollary 6.2 define

I ≤ J ⇐⇒ ip ≤ jp, p = 1, ..., m.

The following result was known for sometime [Fu1]:
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Lemma 7.2 Let I, J,K ⊂< n >, |I| = |J | = |K| = m < n. Assume that the condition
(6.2) is satisfied for any three flags F∗(1), F∗(2), F∗(3). Then there exists I1, J1,K1 ∈ Sn

m

satisfying I1 ≥ I, J1 ≥ J, K1 ≤ K.

The basis of the integer homology of Gr(m,Cn) is determined by the cycles σI , represent-
ing the Schubert varieties ΩI(F∗), I ⊂< n >. For I ⊂< n > let σα ∈ H||α||1(Gr(m,Cn),Z)
be the dual cycle to σI . That is, the cup product of σI and σα is the generator of the top
homology Hm(n−m)(Gr(m,Cn),Z). Equivalently

σI · σα = σα · σI = σpoint,

where σpoint represents the homology element of the point in H0(Gr(m,Cn),Z). We view
σα as an element in cohomology H ||α||1(Gr(m,Cn),Z) given by a corresponding differential
form of degree ||α||1. Then for any α, β ∈ Rm

≥ ∩Zm
+ with ||α||1 + ||β||1 ≤ m(n−m) we have

the formula
σα · σβ =

∑

γ∈Rm
≥∩Zm

+ , ||γ||1=||α||1+||β||1
cγ
αβσγ . (7.4)

Here cγ
αβ are nonnegative integers. These integers give the precise version of Lemma 7.1:

Lemma 7.3 Let I, J,K ∈ Un
m. Then

ΩI′(F∗(1))) ∩ ΩJ ′(F∗(2))) ∩ ΩK(F∗(3)) = c
ω(K)
ω(I),ω(J)σpoint.

That is, if c
ω(K)
ω(I),ω(J) = 0 then the condition (6.2) does not hold for ”most” of three flags

F∗(1), F∗(2), F∗(3). If c
ω(K)
ω(I),ω(J) 6= 0 then the condition (6.2) does holds for any three flags

F∗(1), F∗(2), F∗(3). Furthermore for ”most” of three flags F∗(1), F∗(2), F∗(3), i.e. three
flags in general position, ΩI′(F∗(1)))∩ΩJ ′(F∗(2)))∩ΩK(F∗(3)) consits of c

ω(K)
ω(I),ω(J) distinct

points.

The coeffients cγ
αβ appear naturally in representation theory, as well as in invariant

factors [Fu1]. With each vector α ∈ Rm
≥ ∩ Zm

+ one associates the Young diagram, whose
row i has length αi. (We allow here trivial rows with 0 length.) Then Vα corresponds to
the irreducible representation of GL(m,C) or the symmetric group Sm. The weight of Vα

is ||α||1. Consider the tensor product of such two irreducible presentation Vα ⊗ Vβ . It is
known that such a product is a direct sum of irreducible representations Vγ of the weight
||γ||1 = ||α||1 + ||β||1 of multiplicity cγ

αβ . That is

Vα ⊗ Vβ =
∑

γ∈Rm
≥∩Zm

+ , ||γ||1=||α||1+||β||1
⊕cγ

αβVγ . (7.5)

Theorem 7.4 ([KT]-The saturation conjecture) Let α, β, γ ∈ Rm
≥ ∩Zm

+ , ||γ||1 = ||α||1 +
||β||1. Then for any integer N > 1

cγ
αβ 6= 0 ⇐⇒ cNγ

(Nα)(Nβ) 6= 0.
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Theorem 7.4 is instrumental in proving Tn
m = Sn

m, m = 1, ..., n − 1 [Fu1]. In what follows
we need the following lemma.

Lemma 7.5 Let I, J,K ⊂< n >, |I| = |J | = |K| = m < n and assume that there exists
(I1, J1,K1) ∈ Sn

m such that I ≤ I1, J ≤ J1, K ≥ K1 Then for any triple

A1, A3, A3 ∈ Hn, A1 + A2 + A3 = rEn, (7.6)

where En is the n× n identity matrix, the following inequalities hold:

λ(A1)[I ′] + λ(A2)[J ′] + λ(A3)[K] ≤ λ(A1)[I ′1] + λ(A2)[J ′1] + λ(A3)[K1] ≤ mr. (7.7)

Proof. As I ′ ≥ I ′1, J ′ ≥ J ′1, K ≥ K1 and the eigenvalues of hermitian matrices are
arranged in a decreasing order we deduce the left hand side of (7.7). To prove the right
hand side of (7.7) choose L ∈ ΩI′1(F∗(A1)) ∩ΩJ′1(F∗(A2)) ∩ΩK(F∗(A3)) and apply (6.1) to
(7.6). 2

Corollary 7.6 Let A,B ∈ Hn. Then any inequality induced by the triples I, J,K ⊂<
n > given by Corollary 6.3 follows from the inequality corresponding to some (I1, J1,K1) ∈
Sn

m.

8 Stable filtrations

A filtration U∗ of subspaces in Cn is an infinite sequence of decreasing subspaces where only
a finite number of subspaces are different from the trivial subspace [0]:

Cn = U0 ⊃ U1 ⊃ · · ·Uk ⊃ · · · , dim Ui = 0 for i > N. (8.1)

Each filtration of subspaces defines a unique partial flag F∗(I), where Uk = Fij(k) for some
ij(k) ∈ I for each k ≥ 1 such that dim Uk ≥ 1. Furthermore, for each i ∈ I Fi appears in
the above filtration. Let

αi := #{Uj : dim Uj ≥ i}, i = 1, ..., n, α := (α1, ..., αn) ∈ Rn
≥ ∩ Zn

+. (8.2)

Then F∗(I) is a complete flag iff α > 0 and the coordinates of α are pairwise distinct. Vice
versa:

Lemma 8.1 Let F∗ be a given complete flag in Cn. Assume that α ∈ Rn
≥ ∩ Zn

+. Then
there exists a unique filtration (8.1) such that (8.2) holds and U∗ induces a partial flag F∗(I).

Proof. First Ui = [0] for i > α1. If α1 = 0 then U∗ is a trivial fibration. Assume
that α1 > 0 and α1 = · · · = αk−1 > αk, 1 < k ≤ n + 1. (Here αn+1 = 0.) Then
Uα1 = · · · = Uαk+1 = Fk−1. Other Ui are determined similarly. 2

Lemma 8.2 Let (8.1) be a given filtration in Cn with the corresponding α given by (8.2).
Let < ·, · > be any inner product on Cn. Denote by P (Uk) the orthonormal projection on
Uk for k = 1, .... Then the operator A =

∑∞
k=1 P (Uk) is a selfadjoint operator with respect

to < ·, · > with the eigenvalue vector α.
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Proof. Let F∗(I) be the partial flag induced by the filtration (8.1). Complete F∗(I) to
a full flag. Then F∗ together with < ·, · > induces an orthonormal basis f1, ..., fn in Cn

such that Fi = span (f1, ..., fi), i = 1, ..., n. In this o.n. basis each P (Ui) is represented by
a diagonal matrix, whose first dim Ui diagonal entries are equal to 1 and all other diagonal
entries are equal to zero. In this basis A is represented by a diagonal matrix whose i − th
diagonal entry is equal to αi for i = 1, ..., n. 2

Lemma 8.3 Assume that the filtration (8.1) induces a complete flag F∗. Let α be given
by (8.2). Let L ∈ Gr(m,Cn) and assume that I(L,F∗) is given by (5.6). Then

∞∑

k=1

dim (L ∩ Uk) =
∑

i∈I(L,F∗)

αi. (8.3)

Proof. Let I(L,F∗) = {1 ≤ i1 < i2 < · · · < im ≤ n}. Let a and b be the values of the
left hand side and the right hand side of (8.3) respectively. If dim L ∩ Uk = j ≥ 1 then the
contribution of Uk to a is j. Uk contributes 1 to αil

for l = 1, ..., j. That is Uk contributes
j to b. 2

Definition 8.4 l-filtration U∗(1), ..., U∗(l) of Cn is called stable if for any subspace [0] 6=
L 6= Cn

µ(L) :=
1

dim L

l∑

i=1

∞∑

j=1

dim L ∩ Uj(i) < µ(Cn) :=
1
n

l∑

i=1

∞∑

j=1

dim Uj(i).

The characterization of K(α, β) is deduced from the following theorem.

Theorem 8.5 ([Tot],[Kly]) Let U∗(1), ..., U∗(l) be an l-filtration of Cn which induces l
complete flags F∗(1), ..., F∗(l) in general position. Then U∗(1), ..., U∗(l) is stable iff there
exists an inner product < ·, · > on Cn such that

l∑

i=1

∞∑

j=1

P (Uj(i)) = µ(Cn)Id. (8.4)

To prove this theorem Totaro uses geometric invariant theory. Klyachko uses Donaldson’s
theory for bundles over P2.

Theorem 8.6 ([Kly]) Let α, β ∈ Rn
≥. Then K(α, β) is a polyhedron in Rn

≥ which is
given by the trace equality (1.2) and the inequalites

γ[K] ≤ α[I] + β[J ], for all (I, J,K) ∈ Sn
r , r ∈< 1, n− 1 > . (8.5)

Proof. Since K(α, β) is a continuous in the parameters α, β it is enough to prove the
theorem for α, β ∈ Qn such that the coordinates of α, β are pairwise distinct. Fix such a
pair α, β. As K(α, β) is a closed set, it is enough to show that if γ ∈ Qn, all the coordinates
of γ are pairwise distinct, (1.2) holds, and

γ[K] < α[I] + β[J ], for all (I, J,K) ∈ Sn
r , r ∈< 1, n− 1 >, (8.6)
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then γ ∈ K(α, β). Since for any t > 0 K(tα, tβ) = tK(α, β) it is enough to show that
tγ ∈ K(tα, tβ). Hence we can choose t to be a big positive integer so that

α̂ = (α̂1, ..., α̂n) := tα, β̂ = (β̂1, ..., β̂n) := tβ, γ̂ = (γ̂1, ..., γ̂n) := tγ ∈ Zn.

Choose N a big enough positive integer so that the coordinates of α(i), i = 1, 2, 3 are
positive distinct integers:

α(i) := (α1(i), ..., αn(i)), i = 1, 2, 3,

αj(1) = N − α̂n−j+1, αj(2) = N − β̂n−j+1, αj(3) = N + γ̂j , j = 1, ..., n.

Then γ̂ ∈ K(α̂, β̂) iff there exists A1, A2, A3 ∈ Hn satisfying (7.6) with r = 3N such that
λ(Ai) = α(i), i = 1, 2, 3. The definition of α(i), i = 1, 2, 3 and the assumption (8.6) yields

∑

i=1

n∑

j=1

αj(i) = 3Nn,

α(1)[I ′] + α(2)[J ′] + α(3)[K] < 3Nm, (I, J,K) ∈ Sn
m, m ∈< 1, n− 1 > .

(8.7)

Let F∗(i), i = 1, 2, 3 be three complete flags in general position. Let U∗(i) be the filtration
defined by α(i) and F∗(i) for i=1,2,3. We claim that the 3 filtration U∗(i), i = 1, 2, 3 is
stable. Let L ∈ Gr(m,Cn), m ∈< 1, n− 1 >. Let

I ′1 = I(L,F∗(1)), J ′1 = I(L,F∗(2)), K1 = I(L,F∗(3).

Then
L ∈ ΩI′1(F∗(1)) ∩ ΩJ ′1(F∗(2)) ∩ ΩK1(F∗(3)).

Since the three flags F∗(i), i = 1, 2, 3 are in general position the Schubert calculus implies
the existence of (I, J,K) ∈ Sn

m such that I ′1 ≥ I ′, J ′1 ≥ J ′, K1 ≥ K. (8.7) yields

1
m

(α(1)[I ′1] + α(2)[J ′1] + α(3)[K1]) ≤ 1
m

(α(1)[I ′] + α(2)[J ′] + α(3)[K]) < 3N (8.8)

Lemma 8.3 yields that the left hand side the right hand side of (8.8) is µ(L) and µ(Cn) re-
spectively. Hence 3 filtration U∗(1), U∗(2), U∗(3). is stable. Theorem 8.5 yields the existence
of a hermitian inner product < ·, · > on Cn such that (8.4) holds. Let

Bi :=
∞∑

j=1

P (Ui(j)), i = 1, 2, 3.

Pick an orthonormal basis e1, ..., en in Cn with respect to the < ·, · >. Let Ai ∈ Hn represent
Bi for i = 1, 2, 3. Then A1 + A2 + A3 = 3NEn. Lemma 8.2 implies that α(i) = λ(Ai), i =
1, 2, 3. 2
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9 Majorizing sums

For α, β ∈ Rn
≥ let

aK(α, β) := min
I,J, (I,J,K)∈Sn

|K|

∑

i∈I

αi +
∑

j∈J

βj , K ⊂< n >, 1 ≤ |K| < n,

a<n>(α, β) :=
n∑

i=1

αi + βi.

(9.1)

Then K(α, β) is characterized by the following set of inequalities:

−xi + xi+1 ≤ 0, i = 1, ..., n− 1,

x[K] ≤ aK , K ⊂< n >,

(9.2)

−x[< n >] ≤ −a<n>, (9.3)

where x = (x1, ..., xn) ∈ Rn and

aK = aK(α, β), K ⊂< n > . (9.4)

Proposition 9.1 Let α, β ∈ Rn
≥. Then y ∈ K≤(α, β) if and only if the system (??),

(??), (??) and
−xi ≤ −yi, i = 1, ..., n, (9.5)

is solvable.

Proof. Let
diag (x) := diag (x1, ..., xn), x = (x1, ..., xn) ∈ Fn. (9.6)

Assume first that the system of equations (??), (??), (??) and (??) is solvable. Then

diag (y) ≤ diag(x) = A + B, for some A,B ∈ Hn, λ(A) = α, λ(B) = β.

Hence y ∈ K≤(α, β). Vise versa, if y ∈ K≤(α, β) then y = λ(F ), and F ≤ C = A +
B, λ(A) = α, λ(B) = β. Then x = λ(C) satisfies (??) and (??), where (??) holds. As
F ≤ C and (??) holds. 2

Definition 9.2 Let a := (aI)∅6=I⊂<n> be a given real vector with 2n − 1 coordinates.
Let

K(a) := {x ∈ Rn
≥ : x[I] ≤ aI , I ⊂< n >, |I| < n, and x[< n >] = a<n>},

K̂(a) := {x ∈ Rn
≥ : x[I] ≤ aI , I ⊂< n >},

K ′(a) := {y ∈ Rn
≥ : ∃x ∈ K(a), y ≤ x}.

(9.7)
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Clearly
K(a) ⊂ K ′(a) ⊂ K̂(a). (9.8)

Lemma 9.3 Let n > 1 and assume that a = (aI)I⊂<n> is a given vector. Suppose
that K(a) is a nonempty set. Then K ′(a) is a polyhedral set in Rn given by (??) and the
inequalities

n∑

i=1

wl
i(n)xi ≤ −a<n> +

∑

I⊂<n>, 0<|I|<n

ul
I(n)aI , l = 1, ...,M(n), (9.9)

for some fixed vectors (wl
i(n))n

i=1, (ul
I(n))I⊂<n>, 0<|I|<n, l = 1, ..., M(n) independent of a.

Proof. The system (??) can be stated as Ux ≤ b, where bT = (0T , aT ), 0 ∈ Rn−1. The
system of equations (??), (??) and (??) can be written in matrix form as

V x ≤ c,

V T = (UT ,−e,−En), cT = (bT ,−a<n>,−yT ), e := (1, ..., 1)T ∈ Rn.

(9.10)

Proof. A variant of Farkas lemma [?] (§7.3) yields that the solvability of (??) is equiv-
lalent to the implication

z ≥ 0, zT V = 0 ⇒ zT c ≥ 0. (9.11)

Here zT = (tT , uT , v, wT ) is a row vector partitioned as cT :

t = (t1, ..., tn−1)T , u = (uI)I⊂<n>, v ∈ R, w = (w1, ..., wn)T ∈ Rn.

It is straightforward to show that any solution z of zT V = 0 is equivalent to the validity of
the following identity in n variables in x ∈ Rn:

∑

I⊂<n>

uIx[I] =
n−1∑

i=1

ti(xi − xi+1) +
n∑

i=1

(wi + v)xi. (9.12)

The Farkas-Minkowski-Weyl theorem [?] (§7.2) yields that the cone zV = 0, z ≥ 0 is finitely
generated. First we divide the extremal vectors z = (t, u, v, w) to two sets: v = 0 and v 6= 0.
The subset with v = 0 corresponds to the set

zl,1(n) := (tl,1(n), ul,1(n), 0, wl,1(n)), l = 1, ..., M1(n).

We normalize the second set of extremal vectors by letting v = 1. We divide the second set
to the subsets determined by w = 0:

zl,2(n) := (tl,2(n), ul,2(n), 1, 0), l = 1, ...,M2(n),

and w 6= 0:

zl,3(n) := (tl(n), ul(n), 1, wl(n)), ul
<n>(n) = 0, wl(n) 6= 0, l = 1, ...,M(n).
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Note that the set zl,2(n), l = 1, ..., M2(n) contains an extremal vector ζ = (0, u, 1, 0), where
u<n> = 1 and all other coordinates of u are equal to zero. Hence the extremal vector zl,3(n)
satisfies the condition ul

<n> = 0 for l = 1, ..., M(n).
We claim that the number of nonzero coordinates in any extremal vector z is at most

n + 1. Let z be an extremal ray of the cone zV = 0, z ≥ 0. Assume that z has exactly p
nonvanishing coordinates. Let V̂ be a p × n submatrix of V corresponding to the nonzero
elements of z. Let wV = 0 and assume that wi = 0 if zi = 0. Then the nonzero coordinates
of w satisfy n equations. As z is an extremal ray it follows that w = αz for some α ∈ R.
Hence the n columns of V̂ span p− 1 dimensional subspace, i.e. rank V̂ = p− 1 ≤ n.

We claim that the set zl,3(2) is empty. Consider an extremal vector zl,3(n). By the
definition vl(n) = 1, wl(n) 6= 0 and ul

<n>(n) = 0. Use (??) to deduce that ul(n) 6= 0.
Assume now that n = 2. Since zl,3(2) has at most 3 nonzero coordinates, we deduce that
each vector ul(2), vl(2) = 1, wl has exactly one nonzero coordinate and tl(2) = 0. As
ul

<2>(2) = 0 (??) can not hold.
The system zV = 0 is equivalent to (tT , uT )U = veT + w, where U is the matrix

representing the system (??). Hence

zT c = (tT , uT )b− va<n> − wT y =
(tT , uT )b− va<n> − ((tT , uT )U − veT )y = (tT , uT )(b− Uy) + v(eT y − a<n>),
zcT = uaT − va<n> − wyT .

(9.13)

The inequality (??) and the definition of zl,1(n) yield that zl,1(n)T c ≥ 0. The inequality
(??), (??) and the definition of zl,2(n) yield that zl,2(n)T c ≥ 0 if y ∈ K(a). The last part of
(??) yields the validity of zl,2(n)T c ≥ 0 in general. Hence y ∈ K ′(a) iff zl,3(n)T c ≥ 0, l =
1, ..., M(n), which are equivalent to (??). 2

As the set of vectors of the form zl,3(2) is empty we deduce:

Corollary 9.4 For n = 2 K ′(a) = K̂(a).

In [Fr2] we showed that for n = 3 K ′(a(α, β)) = K̂(a(α, β)). That is, for n = 2, 3 any
y ∈ K̂(a(α, β)) satisfies (??). In [Fr2] we posed the problem if this statement holds for any
n > 3. This problem was answered positively by Fulton in [Fu2].

10 Characterization of K≤(α, β)

Theorem 10.1 ([Fu2]) Let α, β ∈ Rn
≥. Then the set K≤(α, β) is given by the inequalities

(??), where a = a(α, β) is given by (??). That is, γ ∈ K≤(α, β) iff γ satisfies Horn’s
inequalities (4.6) and the trace inequality

n∑

i=1

γi ≤
n∑

i=1

αi + βi. (10.1)

To prove the above theorem we need a few lemmas [Fu2].
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Lemma 10.2 Let F∗ be a complete flag in V = Cn. Let U ∈ Gr(r,Cn). Set I = I(U,F∗)
and let Ic be the complement of I in < n >. Then F∗ induces the flags F̃∗, F̂∗ in U and
V/U repectively:

F̃∗ : F̃j = Fij
∩ U, j = 1, ..., r, I = {1 ≤ i1 < i2 < · · · < ir ≤ n},

F̂∗ : F̂j = (Fic
j
+ U)/U, j = 1, ..., n− r, Ic = {1 ≤ ic1 < ic2 < · · · < icn−r ≤ n}.

(10.2)

Proof. Clearly Fi ∩ U, (Fi + U)/U, i = 1, ..., n induce filtrations in U and V/U respec-
tively. The definition of I(U,F∗) (5.6) yields that dim F̃j = j, j = 1, ..., r. Furthermore,
as

dim (Fi + U)/U = dim Fi/Fi ∩ U = i− dim Fi ∩ U, i = 1, ..., n,

we easily deduce that dim F̂j = j for j ∈ Ic. 2

The proof of the following lemma is straightforward and is left to the reader:

Lemma 10.3 Let Z, U, T be three subspaces in V = Cn. Assume that Z ⊃ U . Then

dim (Z ∩ T ) = dim U ∩ T + dim Z/U ∩ (T + U/U).

Let I and Ic be two complementary sets in < n > of cardinality r and n− r respectively
given as in (??). Let P = {1 ≤ p1 < p2 < · · · < pl}. Let

IP := {ip1 , ..., ipl
}, for P ⊂< r >,

I+
P := I ∪ {icp1

, ..., icpl
}, for P ⊂< n− r > .

Lemma 10.4 Let F∗ be a complete flag in V = Cn. Let I ⊂< n >, |I| = r and assume
that U ∈ ΩI(F∗) ⊂ Gr(r, V ). Let F̃∗ and F̂∗ be the induced flags in U and V/U respectively.
(i) If X is a subspace of U of dimension x, with X ∈ ΩP (F̃∗) for some P ⊂< r >, |P | = x
then X ∈ ΩIP (F∗).
(ii) If Y = Z/U is a subspace of V/U of dimension y, with Y ∈ ΩP (F̂∗) for some P ⊂<
n− r >, |P | = y then Z ∈ ΩI+

P
(F∗).

Proof. Let X satisfy the assumptions of (i). Then

s ≤ dim X ∩ F̃ps = dim X ∩ (U ∩ Fips
) = dim X ∩ Fips

, s = 1, ..., x.

Hence X ∈ ΩIP
(F∗).

Assume that Y satisfies the assumptions of (ii). Observe that the function dim Z ∩ Fi

on the interval [0, n]∩Z+ strictly increases (by 1) exactly at the integers in the set I(Z, F∗).
Lemma ?? yields that

dim Z ∩ Fi = dim U ∩ Fi + dim Y ∩ (Fi + U)/U, i = 1, ..., n.

As dim Z ∩ Fi can jump only by one, we deduce that the jumps of dim Z ∩ Fi are at the
jumps of dim U ∩ Fi and at the the jumps of dim Y ∩ (Fi + U)/U , which are at I(U,F∗)
and (I(U,F ∗)c)I(Y,F̂∗). Hence

I(Z,F∗) = I(U,F∗) ∪ (I(U,F ∗)c)I(Y,F̂∗) ≤ I+
P ⇒ Z ∈ ΩI(Z,F∗)(F∗) ⊂ ΩI+

P
(F∗).
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2

Proof of Theorem ??. We prove the theorem by induction on n. Let

α̃ = (α̃1, ..., α̃n) = (−αn, ...,−α1), β̃ = (β̃1, ..., β̃n) = (−βn, ...,−β1).

As in §7, it is equivalent to show the existence of A1, A2, A3 ∈ Hn with eigenvalue vectors
α̃, β̃, γ such that A1 + A2 + A3 ≤ 0. For n = 1 the theorem clearly holds. Assume that
the theorem holds for any n < N . Let n = N . Assume that γ satisfies all the inequalities
(4.6) and the trace inequality holds (??). Suppose that at least one inequality is an equality.
Assume first the trace equality (1.2) holds. Then γ ∈ K(α, β) ⇒ γ ∈ K≤(α, β). Assume
now that we have an equality

α̃[I] + β̃[J ] + γ[K] = 0 for some (I ′, J ′,K) ∈ Sn
r , r ∈< 1, n− 1 > . (10.3)

(We assumed here that Sn
r = Tn

r , r ∈< 1, n− 1 >.) Let

α′ := (α̃i)i∈I , β′ := (β̃j)j∈J , γ′ := (γk)k∈K ∈ Rr
≥,

α′′ := (α̃i)i∈Ic , β′′ := (β̃j)j∈Jc , γ′′ := (γk)k∈Kc ∈ Rn−r
≥ .

We claim:
(a) there exist B1, B2, B3 ∈ Hr with the eigenvalue vector α′, β′, γ′ respectively such that
B1 + B2 + B3 = 0;
(b) there exist C1, C2, C3 ∈ Hn−r with the eigenvalue vector α′′, β′′, γ′′ respectively such
that C1 + C2 + C3 ≤ 0.

Assume that (a) and (b) holds. Then Ai := Bi ⊕Ci, i = 1, 2, 3 yield the theorem in this
case. Theorem 8.6 yields that (a) is equivalent to the inequalities

α′[P ] + β′[Q] + γ′[R] ≤ 0, for all (P ′, Q′, R) ∈ Sr
l , l ∈< 1, r − 1 > . (10.4)

Note that
α′[P ] = α̃[IP ], β′[Q] = β̃[JQ], γ′[R] = γ[KR].

We claim that for any three flags F∗(1), F∗(2), F∗(3)

ΩIP
(F∗(1)) ∩ ΩJQ

(F∗(2)) ∩ ΩKR
(F∗(3)) 6= ∅. (10.5)

As (I ′, J ′,K) ∈ Sn
r pick U ∈ ΩI(F∗(1)) ∩ΩJ (F∗(2)) ∩ΩK(F∗(3)) ⊂ Gr(r,Cn). Let F̃∗(i) be

the induced complete flag in U for i = 1, 2, 3. Let (P ′, Q′, R) ∈ Sr
l . Pick X ∈ ΩP (F̃∗(1)) ∩

ΩQ(F̃∗(2))∩ΩR(F̃∗(3)) ⊂ Gr(l, U). Part (i) of Lemma ?? yields that X is in the intersection
of the three sets given in (??). Combine (??) with Lemma ??, the left hand side of (7.7)
and (4.6) to deduce (??).

To prove (b) we the induction hypothesis that it is ehough to show

α′′[P ] + β′′[Q] + γ′′[R] ≤ 0,

for all (P ′, Q′, R) ∈ Sn−r
l , l ∈< 1, n− r − 1 >, and P = Q = R =< n− r > .

(10.6)
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In view of (??) each of the above inequalities is equivalent to

α̃[I+
P ] + β̃[J+

Q ] + γ[K+
R ] ≤ 0.

This inequality follows from part (ii) of Lemma ?? and the arguments as above.
Assume finally that γ satisfies all strict inequalities (4.6) and the strict trace inequality

holds (??). Then there exists γ ∈ Rn
≥ such that γ ≤ γ, γ satisfies all the inequalities

(4.6) and (??) where at least one inequality is an equality. We showed that γ ∈ K≤(α, β).
Trivially γ ∈ K≤(α, β). 2

11 Selfadjoint operators in a separable Hilbert space

Let H be a separable infinite dimensional Hilbert space with an inner product (u, v) ∈ C for
u, v ∈ H. (H has a countable orthonormal basis {ei}∞1 .) Denote by H the set of all linear,
bounded, selfadjoint operators A : H → H. That is (Ax, y) = (x,Ay) for all x, y ∈ H and
||A|| := sup0 6=x∈H

|(Ax,x)|
(x,x) < ∞. Recall the well known spectral properties of A ∈ H [?] or

[?]. Denote by spec(A) the spectrum of A, i.e. all z ∈ C such that (zI − A)−1 does not
exist. Then spec(A) is a compact set located in the closed interval [−||A||, ||A||]. Recall the
spectral decomposition of A:

A =
∫

[−||A||−1,||A||+1]

xdE(x).

Here E(x), x ∈ R, 0 ≤ E(x) ≤ I is the resolution of the identity of commuting increasing
family of orthogonal projections induced by A, which is continuous from the right. Further-
more E(−||A|| − 0) = 0 and E(||A||+ 0) = I. Note that

I =
∫

[−||A||−1,||A||+1]

dE(x)

For an open or a closed (Borel) set T ⊂ R denote by P (A, T ) the spectral projection of A
on T :

P (A, T ) :=
∫

T

dE(x).

We let dim P (A, T ) be the dimension of the subspace P (A, T )H. Note that 0 ≤ dim
P (A, T ) ≤ ∞. Observe that dim P (A, (a, b)) is finite and positive iff spec(A)∩(a, b) consists
of a finite number of eigenvalues of A, each one with a finite dimensional eigenspace. We
say that µ(A) is the first accumulation point of the spectrum of A if

dim P (A, (µ(A) + ε,∞)) < ∞, dim P ((µ(A)− ε,∞)) = ∞

for every positive ε. µ(A) must be either a point of the continuous spectrum or a point
spectrum with an infinite corresponding eigenspace. (It is a maximal point in spec(A)
with this property.) Denote by CH ⊂ H the set of all selfadjoint compact operators in
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H. Then A ∈ CH iff H has an orthonormal basis consisting of the eigenvectors of A and
µ(A) = µ(−A) = 0. Denote by H+, Ho

+ the cone of nonnegative and positive selfadjoint
operators in H respectively. That is A ∈ H+ (Ho

+) if (Ax, x) ≥ 0 (> 0) for any x 6= 0. Let
CH+, CHo

+ the cone of compact nonnegative and compact positive selfadjoint operators in
H respectively. For A,B ∈ H let A ≤ B (A < B) iff B−A ∈ H+ (B−A ∈ Ho

+), i.e. B−A
is nonnegative (respectively positive). Then A ∈ CHo

+ iff H has an orthonormal basis {ei}∞1
such that

Aei = λiei, λi > 0, i = 1, ...,

λ1 ≥ λ2 ≥ · · · ≥ λn · · · ,
lim

n→∞
λi = 0.

(11.1)

We say that {λi}∞i=1 is the eigenvalue sequence of A. If A ∈ CH+ then (??) holds with the
following modifications. First λi ≥ 0. Second {ei}∞1 is an orthonormal sequence which is a
basis for a closed subspace H1. Third AH⊥

1 = 0, where H⊥
1 is the orthogonal complement

of H1. In this case {λi}∞i=1 is called the eigenvalue sequence of A. Note that if {λi}∞i=1 has
only finite number of positive numbers then we can (and will) assume that H1 = H. If
{λi}∞i=1 is a sequence of positive numbers then A ∈ CHo

+ iff {ei}∞1 is an orthonormal basis
of H. A ∈ CH+ is said to be in the trace class if

∑∞
i=1 λi < ∞. Then trace A :=

∑∞
i=1 λi.

Let V ⊂ H be an n-dimensional subspace. Pick an orthonormal basis f1, ..., fn ∈ V . For
A ∈ H denote by A(f1, ..., fn) = A|V ∈ Hn the n× n matrix whose (i, j) entry is (Afi, fj).
Let

λ1(A, V ) ≥ λ2(A, V ) ≥ · · · ≥ λn(A, V )

be the n eigenvalues of the Hermitian matrix A|V . As in the finite dimensional case the
above eigenvalues do not depend on a particular choice of an orthonormal basis f1, ..., fn of
V . Clearly |λi(A, V )| ≤ ||A||, i = 1, ..., n.

We now recall the convoy principle [Fr1].

Lemma 11.1 Let A ∈ CH+ have the eigenvalue sequence {λi}∞i=1. Let n ≥ k ≥ 1 be
any integers. Assume that V ⊂ H is any n-dimensional subspace. Then λk(A, V ) ≤ λk and
this inequality is sharp.

Proof. For simplicity of exposition assume in addition that A > 0. Choose an orthonor-
mal basis f1, ..., fn of V so that A|V is the diagonal matrix diag (λ1(A, V ), ..., λn(A, V )). Let
f =

∑k
i=1 αifi 6= 0 be such that (f, ei) = 0, i = 1, ..., k − 1, where {ei}∞1 is an orthonormal

basis of H given in (??). Deduce from (??) and from the choice of f1, ..., fn that

λk(A, V ) ≤ (Af, f)
(f, f)

≤ λk.

For V =span(e1, ..., en) we obtain that λk(A, V ) = λk. 2

For A ∈ H let

λk(A,H) := sup
V⊂H,dimV =k

λk(A, V ), k = 1, ..., .
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For A ∈ CH+ Lemma ?? yields that

λk(A,H) = λk, k = 1, ..., .

Lemma 11.2 Let A ∈ H. Then the sequence {λi(A,H)}∞1 is a nonincreasing sequence
which lies in [−||A||, ||A||]. Let {fi}∞1 be any orthonormal basis in H. Set Vn =span(f1, ..., fn)
for n = 1, ...,. Then the sequence {λk(A, Vn)}∞n=k is an increasing sequence which converges
to λk(A,H) for each k = 1, 2, ...,.

Proof. . Fix a complete flag

W1 ⊂ W2 ⊂ · · · ⊂ Wi · · · , dim Wi = i, i = 1, ...,

of subspaces in H. Then the convoy principle for matrices yields that

λi(A,Wi+1) ≥ λi(A,Wi) ≥ λi+1(A,Wi+1), i = 1, 2, ..., .

(These inequalities are natural extensions of the Cauchy interlacing inequalites for matrices.)
Hence the sequence {λi(A,H)}∞1 is a nonincreasing sequence which lies in [−||A||, ||A||]. Fur-
thermore we obtain that {λk(A, Vn)}∞n=k is a nondecreasing sequence. From the definition
of λk(A,H) we immediately deduce that

λk(A, Vn) ≤ λk(A,H), n = k, k + 1, ..., .

Let
λ̃k := lim

n→∞
λk(A, Vn), k = 1, ..., .

Hence λ̃k ≤ λk(A,H), k = 1, ...,. We claim that for any k-dimensional subspace W ⊂ H

λ̃k ≥ λk(A,W ).

Assume that g1, ..., gk is an orthonormal basis in W so that the matrix ((Agi, gj))k
1 is the di-

agonal matrix diag(λ1(A, W ), ..., λk(A,W )). Let Pn : H → Vn be the orthogonal projection
on Vn. That is

Pnx =
n∑

i=1

(x, fi)fi.

Then limn→∞ Pnx = x for every x ∈ H, i.e. Pn converges to I in the strong topology.
Hence, for n > N , say, Png1, ..., Pngk are linearly independent. Let g1,n, ....gk,n ∈ Vn be
the k orthonormal vectors obtained from Png1, ...., Pngn using the Gram-Schmidt process.
Then

lim
n→∞

gi,n = gi, i = 1, ..., k.

Hence the matrix ((Agi,n, gj,n))k
i,j=1 converges to diag (λ1(A,W ), ..., λk(A,W )). Let Wn =

span (g1,n, ..., gk,n). Then
lim

n→∞
λk(A,Wn) = λk(A,W ).
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As Wn ⊂ Vn the convoy principle implies

λk(A,Wn) ≤ λk(A, Vn) ≤ λ̃k.

Hence
λk(A,W ) ≤ λ̃k ⇒ λk(A,H) ≤ λ̃k ⇒ λk(A,H) = λ̃k.

2

Lemma 11.3 Let A ∈ H. Then the nonincreasing sequence {λi(A,H)}∞1 converges to
µ(A).

Proof. Suppose first that dim P (A, (a, b)) > 0. Let

A(a, b) :=
∫

(a,b)

xdE(x).

Then

a ≤ (Ax, x)
(x, x)

≤ b, 0 6= x ∈ P (A, (a, b))H.

Let ε > 0. Let f1, ..., fk−1 be an orthonormal basis of V = P (A, (µ(A) + ε,∞))H. (If
k = 1 then V = 0.) Hence V ⊥ = P (A, (−∞, µ(A) + ε])H. Let W ⊂ H be any subspace of
dimension k. Then V ⊥ ∩ W contains a nonzero vector x ∈ P (A, (−∞, µ(A) + ε])H. The
convoy principle and the above observation yield that

λk(A,W ) ≤ µ(A) + ε.

Hence
λk(A,H) ≤ µ(A) + ε.

Recall that U := P (A, (µ(A) − ε,∞))H is infinite dimensional. Let W ⊂ U , dim W = l.
Then the convoy principle and the above observation yield that

λl(A,W ) ≥ µ(A)− ε.

Hence λl(A,H) ≥ µ(A)− ε. This inequality holds for any l. Hence

lim
l→∞

λl(A,H) ≥ µ(A)− ε.

Since ε was an arbitrary positive number we deduce the lemma. 2

Corollary 11.4 Let A ∈ H+. The following are equivalent:
(a) A ∈ CH+ and A is in the trace class.
(b) For a given orthonormal basis {fi}∞1 of H the nonnegative series

∑∞
i=1(Afi, fi) con-

verges.
Furthermore under the assumption (a)

trace A =
∞∑

i=1

(Afi, fi) (11.2)

for any orthonormal basis {fi}∞1 .
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Proof. (a) ⇒ (b): Let Vn = span (f1, ..., fn). Then

trace A ≥
n∑

i=1

λi(A) ≥ trace A|Vn =
n∑

i=1

(Afi, fi). (11.3)

(b) ⇒ (a): Fix k ≥ 1 and let n ≥ k. Then

∞∑

i=1

(Afi, fi) ≥
n∑

i=1

(Afi, fi) = trace (A|Vn) ≥
k∑

i=1

λi(A, Vn).

Let n → ∞. Use Lemma ?? to deduce that
∑∞

i=1(Afi, fi) ≥
∑k

i=1 λi(A,H). Clearly each
λk(A,H) ≥ 0. Hence

∞∑

i=1

(Afi, fi) ≥
∞∑

i=1

λi(A,H). (11.4)

Thus limk→∞ λk(A,H) = 0. Hence A ∈ CH+ and λk(A,H) = λk(A), k = 1, ..., n. Use (??)
and (??) to deduce (??). 2

12 Characterization of K≤(α, β) for operators in CH+

Let
Γ := {γ = {γi}∞1 : γi ∈ R, γi ≥ γi+1 ≥ 0, i = 1, ..., lim

i→∞
γi = 0.} (12.1)

Thus Γ is the set of all eigensequences λ(A) = {λi(A)}∞1 for A ∈ CH+. The following
theorem follows from [Fr2] and [Fu2]:

Theorem 12.1 Let H be a separable Hilbert space. Assume that α, β, γ ∈ Γ. Then the
following are equivalent:
(a) There exist A,B, C ∈ CH+ with C ≤ A + B and α = λ(A), β = λ(B), γ = γ(C).
(b) For each n = 1, ..., the vectors αn := (α1, ..., αn), βn := (β1, ..., βn), γn := (γ1, ..., γn)
satisfy the Horn inequalities (4.6) and (??), i.e. γn ∈ K≤(αn, βn).

Proof. (a) ⇒ (b): Let {fi}∞1 be the orthonormal sequence in H corresponding to
λ(C): Cfi = γifi, i = 1, ... Let Vn := span (f1, ..., fn). Then C|Vn = diag (γ1, ..., γn) and
λ(C|Vn) = γn. Let α(Vn) := λ(A|Vn), β(Vn) := λ(B|Vn). Clearly C|Vn ≤ A|Vn + B|Vn.
Hence γn ∈ K≤(α(Vn), β(Vn)). The convoy principle implies that αn ≥ α(Vn), βn ≥ β(Vn).
Use Theorem ?? to deduce that γn ∈ K≤(αn, βn).
(b) ⇒ (a): Let Cn = diag (γ1, ..., γn) ∈ Hn. Then there exist An = (aij,n)n

i=j=1, Bn =
(bij,n)n

i=j=1 ∈ Hn such that λ(An) = αn, λ(Bn) = βn and Cn ≤ An + Bn. Clearly

|aij,n| ≤ α1, |bij,n| ≤ β1, i, j = 1, ..., n.

Hence there exists a subsequence 1 ≤ n1 < n2 < . . . such that

lim
l→∞

aij,nl
= aij , lim

l→∞
bij,nl

= bij , i, j = 1, ...
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Let Ã := (aij)∞i=j=1, B̃ := (bij)∞i=j=1, C̃ := diag (γ1, γ2, ...) = (cij)∞i=j=1 be three infinite
hermitian matrices. Fix an orthonormal basis f := {fi}∞1 in H. Clearly C̃ represents an
operator C ∈ CH+ in the basis f . We claim that Ã, B̃ represent A, B ∈ CH+ in the basis f ,
such that λ(A) ≤ α, λ(B) ≤ β. It is enough to prove this claim for A.

Fix a positive integer k. Then for n ≥ k Ak,n := (aij,n)k
i=j=1 is a nonnegative (definite)

matrix, whose norm (its first eigenvalue) is bounded by α1. Let n = nl and l → ∞.
Then Ãk := (aij)k

i=j=1 is a nonnegative matrix, whose norm is bounded by α1. Since k

was arbitrary §26 of [?] implies that Ã represents a linear bounded selfadjoint nonnegative
operator in l2. Hence A ∈ H+. The convoy principle yields that

λj(Ak,n) ≤ λj(An) = αj , j = 1, ..., k.

Let n = nl and l →∞. Then

λj(Ãk) ≤ αj , j = 1, ..., k.

Let Vk = span (f1, ..., fk). Fix m. Hence for k ≥ m λm(A, Vk) = λm(Ãk) ≤ αm. Use
Lemma ?? to deduce 0 ≤ λm(A,H) ≤ αm. As the sequence {αi}∞1 converges to 0 it follows
that the sequence {λi(A,H)}∞1 converges to 0. Lemma ?? implies that A ∈ CH+. Hence
λm(A,H) = λm(A). Thus λ(A) ≤ α.

We claim that C ≤ A + B. Clearly Ck ≤ (aij,n)k
i=j=1 + (bij,n)k

i=j=1. Let n = nl and
l → ∞. Then Ck ≤ Ãk + B̃k. As k was arbitrary we deduce that C ≤ A + B. Let {ei}∞1
and {gi}∞1 be two orthonormal systems in H spanning the closed subspaces H1 and H2

respectively such that

Aei = λi(A)ei, Bgi = λi(B)gi, i = 1, ...,

AH⊥
1 = BH⊥

2 = 0.

Let Â, B̂ ∈ CH+ be given by

Âei = αiei, B̂gi = βigi, i = 1, ...,

ÂH⊥
1 = B̂H⊥

2 = 0.

Then A ≤ Â, B ≤ B̂ and λ(Â) = α, λ(B̂) = β. 2

As in the finite dimensional case for α, β ∈ Γ let

K≤(α, β) := {γ ∈ Γ : ∃A,B,C ∈ CH+, where C ≤ A + B and λ(A) = α, λ(B) = β, λ(C) = γ},
K(α, β) := {γ ∈ Γ : ∃A,B, C ∈ CH+, where C = A + B and λ(A) = α, λ(B) = β, λ(C) = γ}.

(12.2)

Theorem ?? characterizes the set K≤(α, β). It is an infinite polyhedral set given by a
countable number of inequalities, where each inequality is in a finite number of variables.
Let

Γ1 := {{γi}∞1 ∈ Γ :
∞∑

i=1

γi < ∞}.
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That is γ ∈ Γ1 iff there exists C ∈ CH+ in the trace class such that γ = λ(C). The following
theorem follows from [Fr2] and [Fu2]:

Theorem 12.2 Let α, β ∈ Γ1. Then

K(α, β) = {{γi}∞1 ∈ K≤(α, β) :
∞∑

i=1

γi =
∞∑

i=1

αi + βi}.

Proof. Suppose that A,B, C ∈ CH+ and C = A + B. Then λ(C) ∈ K≤(λ(A), λ(B)).
Furthermore for any orthonormal basis {fi}∞1

∞∑

i=1

(Cfi, fi) =
∞∑

i=1

(Afi, fi) + (Bfi, fi). (12.3)

Hence if λ(A) = α, λ(B) = β, λ(C) = γ then (??) and Corollary ?? yield that C is in the
trace class and ∞∑

i=1

γi = trace C = trace A + trace B =
∞∑

i=1

αi + βi.

Assume now that γ ∈ K≤(α, β). Hence there exists A,B, C ∈ CH+, where C ≤ A + B and
λ(A) = α, λ(B) = β, λ(C) = γ. Thus

∞∑

i=1

(Cfi, fi) ≤
∞∑

i=1

(Afi, fi) + (Bfi, fi) = trace A + trace B,

and C is in the trace class. Suppose that
∑∞

i=1 γi =
∑∞

i=1 αi+βi. Let Vn = span (f1, ...fn), n =
1, ... As A + B − C ≥ 0 we deduce that A + B − C|Vn ≥ 0 for each n ≥ 1. Hence

trace A + B − C|Vn =
n∑

i=1

((A + B − C)fi, fi) ≥ 0

and each summand is nonnegative. The equality trace C = trace A + trace B yields that
((A+B−C)fi, fi) = 0, i = 1, .... Therefore A+B−C|Vn = 0, n = 1, ... and A+B−C = 0.
2

It is left to characterize K(α, β) where α, β ∈ Γ and α + β 6∈ Γ1. The arguments of the
proof of Theorem ?? shows that K(α, β) ⊂ K≤(α, β)\Γ1.

Conjecture 12.3 Let α, β ∈ Γ and assume that α+β 6∈ Γ1. Then K(α, β) = K≤(α, β)\Γ1.
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