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Abstract
The purpose of these lectures to report on the recent solution of a 50 years old
problem of describing the set of the eigenvalues of a sum of two hermitian matrices
with prescribed eigenvalues

1 Statement of the problem

For a field F denote by F" the vector space of column vectors f = (f1,..., fn)? with entries
in F. We will mostly assume that F is either the field of reals R or complexes C. We view
R"™ and C" as inner product spaces with the inner product (z,y) equal to either y”z or y*z
respectively. Set

RY = {r = (21, zn)T €ER™: 2y > 29> >2,}.

Let S, C H, be the real vector spaces of n x n real symmetric and hermitain matrices
respectively. Note that S,, and H,, describe the space of selfadjoint operators in R™ and C™
respectively, with respect to the standard inner product (-,-). Let A € H,,. It is well known
that C™ has an orthonormal basis consisting entirely of the eigenvectors of A:
Au; = Nu;, MNER, uw;€C" i=1,..,n,
(uiauj):§ija ,7=1,...,n,
M>A > > A (A= (A AT €RL).
If A € S,, we assume that uq, ..., u, € R". Sometimes we will emphasize the dependence on
A:
AA) = (M(A), .., \(4)) = A,
ui(A):=u;, i=1,...,n.



For a, 3 € RY let

K(a,8):={yeRL: y=XC), C=A+B, forall A,B € H, with \(A) = a, \(B) = §}.

The trace equality

n n n

S X(A+B)=> XN(A)+> X(B), ABeMH, (1.1)

i=1 =1

implies that K(a, ) lies in the hyperplane

Z%‘:ZO&HFZ@, ’Y:(’Yl;---a%)T€R>~ (1.2)
i=1 i=1 i=1

The problem of describing K («, 3) was raised in the late 40’s in Gelfand’s seminar in Moscow
[BG]. The aim of these lectures to report the solution of this problem, primary by A.
Klyachko [Kly] and A. Knutson and T. Tao [KT]. Consult with [Ful]. We will also describe
the characterization of the set

K<(a,p):={y€eRL: ~v=AC), forall A, B,C € H, with C < A+B, \(A) = o, A\(B) = 3},
due to Friedland [Fr2] and Fulton [Fu2], which enables to generalize these results to non-
negative selfadjoint compact operators.

2 Minimax characterizations of eigenvalues

The maximal and minimal characterizations of the first and the last eigenvalue of A € H,,,
which go back to J.W. Rayleigh in 19th century, are

A (A4) = max Az, 7) = max (Az,z),
0#zeCr (z,2)  (za)=1
An(4) = min (Az,7) _ min (Az, ).

0#£zeCn (x, ) (z,2)=1
(2.1)

They follow easily if we choose to present the Rayleigh quotient (é‘rg) in the o.n. eigenbasis

of A. Since the Rayleigh quotient (or (Az,z)) is a linear function(al) on H,, for a fixed
z, (2.1) yields that the function A (-) : H, — R (A,() : Hp — R) is a convex (concave)
function. Clearly, each \;(A) is a homogeneous function of degree 1:

Ai(tA) =tNi(4), teRy, AeHy, i=1,..,.

Hence
M(A+B)<M(A)+XM(B), A BEeH,. (2.2)



The characterization of any other eigenvalue of A € H,, is either minmax or maxmin char-
acterization. Let
<n>=1{1,2,..,n}

The following characterization is widely known as Courant-Fischer characterization [Gan)].
Let Gr(k,F™) be the collection of all k-dimensional subspaces of C". For L € Gr(k,F"),
where F = R, C, let L* be the orthogonal complement of L in F” with respect to (-, -). Then

Ai(A) = min max (Az,z), i€<n>. (2.3)
LeG(i—1,C"?) zeL+ (z,2)=1

The following inequalities are due to Weyl [Wey]:
Corollary 2.1 Let A, B € H,, and assume that i,j,i+j—1 €< n >. Then
Aitj-1(A+ B) < Xi(A) + A;(B).

Proof. Let
Ai(A)=  max (Az,z), L;—1(A) =span (ui(A4),...,u;—1(A4)),
z€L;_1(A)+
Ai(B) = IGLT??B)L(B%JJ)’ L;—1(B) = span (u1(B), ..., ui—1(B)).

Let L =L;_1(A)+ L;_1(B) € Gr(k,C") where k < i+ j — 2. Clearly

Ai+j_1(A+ B) S >\k+1(A+B) S Lm?x ) 1((A+B)£L’,’I’)) § /\l(A) + )\](B)
zelt, (z,x)=

Remark 2.2 To prove (2.3) one notes that for any L € Gr(i — 1,C") L+ N L;(A) €
G(m,C") for some m > 1. Hence \;(A) < maxyept (55)=1(Az,z). Clearly \;(A) =
maxxeLi,l(A)L7(z,m):1(A377$)~

Let L € Gr(m,C"). Fix an o.n. basis x1,...,&,, in L. Let A € H,, and denote by
A(x) = A(z1, ..., zm) = ((Azi, x;))7" € Hin. Choose another o.n. basis y1, ..., Ym in L. Then
A(y) = A(y1, ..., Ym ) is unitary similar to A(z). Let A(A|L) = (A (A|L), ..., \m(A|L))T € RT
be the eigenvalues of A(x). The following result was called by Polya and Schiffer [PS] the
convoy principle and is attributed to Poincaré. See [Frl] for its uses for matrices and
selfadjoint compact nonnegative operators.

Ai(A) = LEGIrIrl(%ri(,C”) XN(AIL), i=1,..,m, m=1.,n. (2.4)

Corollary 2.3 (Ky Fan 1949 [Fan|) Let A € H,, and m €<n >. Then

m m
Ai(A) = max Ax;, x;).
Z z( ) Z1,..,xm €CT, (x4,25)=04; Z( " l)
=1 i=1
In particular for any A, B € H,, and m €<n >

Zm:)\i(A+B) < i)\i(A) +§:Ai(3). (2.5)

i=1



Proof. Clearly, for any o.n. basis 1, ..., z,, of L we have the equality

m m

trace(A|L) := Z(Axi,xi) = Z Xi(A|L).

i=1 i=1

Use the convoy principle to deduce the maximum characterization of Y., A;(A). O

3 Results of Lidskii and Wielandt

In [L1] V.B. Lidskii announced the following result. Let II,, be the group of all n x n
permutation matrices. For z € R™ let I'(z) be the convex hull spanned by the vectors
Pz, P €1l,. Then

K(a,B) Ca+T(5), foralla,feRE. (3.1

Wielandt was not able to reconstruct the outline of Lidskii’s proof in [L1]. To prove (3.1)
Wielandt gave a characterization of any sum of the eigenvalues of A € H,,, which generalizes
all the above characterizations. A (complete) flag Fi on C™ is a strictly increasing sequence
of subspaces

[O]:FOCFl c.--Cc F,=C".

That is dim F; =4, i =0, ...,n. Let I C< n > of cardinality k = |I|. Then
I={i1,.ig}, 1<ip<ig<--<ip<n.
A partial flag Fr (associated with I) is a a strictly increasing sequence of subspaces
F, CF,C--CFk,, dimkF;, =15 j=1,..,k

Any partial flag F; can be completed to a complete flag F, in many ways unless [ =< n >.
We shall view F as a partial flag of some F. Let

z[I] == sz for any 2 = (z1,...,2,)" € R™.
iel

Theorem 3.1 (Wielandt [Wie]) Let I C<n >, |I| =m €< n >. Then for any A € H,

A(A)[I] = max min Z(Axi,xi). (3.2)

Fr zi€F;, (xi,x5)=045, i,j€I el

Proof. The proof is by the induction on n. Assume that the Theorem holds for n < N.
Let n = N + 1. One needs to show first that for I = {1 <4y <+ <4y, < N 41}

A > min Axi, x;). 3.3

SRS - T 3 LS (33)
Suppose first that i,, < N + 1. Idenitify F;  with C'». Then the induction hypothesis
implies that

MA|F;, )] > min Z(sz,xz)

x€Fy, (xi,25)=0:5, 1,5€1 el



Use the convoy principle A(A)[I] > A(A|F;,,)[I] to deduce (3.3). Assume now that i, =
N+ 1. If I =< N + 1 > then (3.3) holds, since for any full flag F. equality holds in
(3.3). Assume that |[I| < N + 1. Then there exits a unique g €< N > such that g ¢ I
and {g+1,...,N + 1} C I. Let f be the biggest element in I\{g + 1,...,N + 1}. (If
I={g+1,..,N} then f =0.) Let

L = Fy + span (ug+1(4), .., un41(4)), dimL<f+N+1-g<N.
Hence there exists L € Gr(N,CN*1) such that L C L. Note that

FfCFg+1ﬂ[~/C"'CFN+1mI~J,
g+i—1<dimF,,NL<g+i, i=1,..N—g,
dim Fy.1NL=N.

Let I = I\{N + 1} U {g}. Hence there exists a flag F; such that

Fi=F, iel\{g+1,.,N+1}=1\{g,..,N},
Fg+7; DFg+i,1 = 1,...,N+1,
Fy=L.

By construction

min Z(Azi, x;) < min Z(A:Ei, x;).

z,€F;, (z4,25)=0:j5, 1,j€1 el z,€Fy, (x4,25)=084, 4,5€T el

Use the induction hypothesis to obtain that

z €F;, (wi,2)=0i5, i,j€1 il

MA|EN)[T] > min > (Azj, ;).

Since Fiy O span (ug11(A),...,un+1(A)) it follows that the eigenvalues of A|Fy are the
N coordinates of the vectors A(A|L') and (Ag41(A), ..., An41(A)), where L' C Fy is the
orthogonal complement of span (ug11(A),...,un+1(A4)) in F. Use the convoy principle for

MAIL') to deduce M(A)[I] > A(A|Ey)[I]. Hence (3.3) holds. Let L;(A) be the partial
flag corresponding to the complete flag L.(A), where L;(A) = span (u1(A),...,u;(A)), i =
1,...,n. It is straightforward to show that

MA)I] = min > (Awj, ;).

;€L (A), (zi,25)=0:j5, 1,5€1 Py

Corollary 3.2 Let A,B € H,, and I C<n >. Then

MA+ B)[I] < XA+ XB)< || >]



Proof. Consider Wielandt’s characterization for A(A + B)[I]. Ky Fan characterization
yields >, (Bz,z;) < A(B)[< |I| >] for any orthonormal set z;,7 € I. Use Wielandt’s
chracterization for A(A)[I] to deduce the above inequality. O

Proof of Lidskii’s theorem It is well known [HLP] that = = (x1,...,z,)T € T(8) iff
z[I] < Bl< |I| >] for all I C< n >. Corollary 3.2 shows that A(A + B) — A(4) € T'(A(B)).
0O

See Bhatia [Bha] for a detailed proof of Wielandt’s and Lidskii’s inequalities.

4 Horn’s results and conjectures

In [Hor] Horn studied in detail the structure of K(«, 3). Let U,, be the unitary group n x n
complex valued matrices. Then

K(A),\B)) = {NA+UBU*): U€U,)}, forany A, B¢cH,. (4.1)

Horn showed that a boundary point € K(a, 3) corresponds to C = A + B, where A, B
(and hence C) have a nontrivial common invariant subspace L € Gr(m,C"), 1 < m < n.
Clearly L+ is also a nontrivial subspace of A, B, C. Hence

trace(C|L) = trace(A|L) +trace(B|L), trace(C|L') = trace(A|L*) 4 trace(B|L*). (4.2)
One of these equalities induces the inequality of the type
AMA+ B)[K] < XA+ XB)J], [,JJKCc<n> 1<|[I|=|J|=|K|<n. (4.3)

Horn conjectured the form of the sets (I, J, K) which satisfy (4.3). They are defined recur-
sively as follows. Let

1
Ur = {(LLLE): LLKC<n>, [I|=|J]=|K|=r<n Y i+ j= r(r; >+Z k).
el jeJ kEK

(4.4)
Horn showed that if 1 is a boundary point certain quadratic form has to be nonnegative
definite. Hence any (I, J, K') coming from (4.2) has to be in U for some r €< n—1 >. Define
TP := U7. The inequalities (4.3) corresponding to (I, J, K) € T{* are Weyl’s inequalities.
Forl<r<n-—1let

" ={I,J,K)eU": for all (U,V,W) €T}, pe<l,r—1>
Yuev tu + Loey do < B+ 3oy ko)
(4.5)
Conjecture 4.1 (Horn [Hor]). v € K(a, ) iff (1.2) holds and
VK] <all]+ B[], forall(I,J,K)eT! re<ln—1>. (4.6)



Horn proved the validity (4.6) for triples (I, J, K) belonging to the sets 77", 75", T3". He
showed that his conjecture holds for n = 2,3,4. For n = 2 it is straightforward to show that

K((ou, az), (81, 2)) = {(11,72) € RS
M +72 =01 +az+ B + B,

7 < ai+ B,

72 < min(ay + f2, a2 + fr).

The above 3 inequalities are Weyl’s inequalities. For n = 3 Horn’s result claims

K((on, a2, a3), (B1, B2, 83)) = {(71,72,73) € R

7+t =a+ax+az+ B+ B2+ G,

7 < a1+ B,

v2 < min(ay + F2, a2 + f1),

73 < min(ay + B3, 0 + B, az + B1),

T+ <o+ az+ B+ B,

7 + 3 <min(og 4+ az + B + B2, a1 + s + 1 + B3),

Y2 + 3 <min(ag + az + B1 + f2, a1 + o + f2 + B3, a1 + a3 + B1 + f3).}

Note that out of 12 inequalities (the first) 6 inequalites are due to Weyl, 1 is due to Ky Fan,
4 due to Wielandt and 1 is due to Horn:

Yo+ 73 < aq + as + P+ Bs. (4.7)

Indeed, note that the inequalities (4.6) for (I,J, K) € T7" is the set of Weyl’s inequalities.
Next

0 ={({,J,JK)C<n> I=(1<i<ix<n), J=(1<ji <js<n),

K:(1§k1<k2§n),

ih+is+j1+je=ki +ka+3, iy +j1 < ki + 1, max(iy + jo,i0+J1) < ko + 1.}
(4.8)

Hence (4.7) are the inequalities for I = J = {1,3}, K = {2,3} which are in 75. The
cardinalities of |T}*| grows very fast. For example:

IT7| = 7| = 28, |T§| = 12| = 252, |T]| = |T]| = 751,
See [DST]. It is now known that Horn’s inequalities are not minimal for n > 6. For example
(I,J,K)=({1,3,5},{1,3,5},{2,4,6} € T5", n > 6.
Hence for any v € K(«, 3) C RY, n > 6 we have

Yo+ 4+ < a1 + a3+ as+ B+ Bz + Bs. (4.9)



For n = 6 the above inequality follows from the trace equality. Indeed, for n = 2m and
a € R?™ let cioqd, Qeven b€ the sum of odd and even coordinates of o = (a1, ...y a2py). Then

2%even < Yodd + Yeven = Qodd + Qeven + Bodd + Beven < 2(Ofodd + ﬂodd)-

In [L2] the son Lidskii claimed to prove Horn’s conjecture by listing 5 lemmas (without
proofs), which imply Horn’s conjecture. Day, So and Thompson [DST] were able to prove
the first 3 lemmas of B.V. Lidskii.

5 Flags and Schubert varieties

Let V(= F™) be an n-dimensional vector space over F. Let F, be a complete flag on V' (see
83). Assume that F = R, C and V is an inner product space with the inner product (-, -).
Then F, induces an orthonormal basis in V:

Fi = Span(f17"afi)7 1= 1a —eey 1, (fl7f]) = 6lja l)j = 17"'7n- (51)

In what follows we restrict ourselves to the complex case F = C. The orthonormal basis
{f1, - fn} induced by F, is defined up to the action of U; (the group of complex numbers
of modulus 1). That is, (1 f1,.--Cufn, €1, -, G € Uy is the set of all possible o.n. bases in
C™ induced by Fy. Let D, < U, be the subgroup of all unitary diagonal matrices.

Lemma 5.1 Let F,, be the space of all flags in C*. Then F, is isomorphic to the
homogeneous space U, /Dy, of real dimension n(n —1). F, is a fibre bundle over P~ with
the fiber F,,_1. Furthermore JF,, is a smooth complex projective variety of complex dimension

(n—1)

Proof. Let U = (uq, ..., u,) € U,. Then the n columns of U give an o.n. basis of C". A

flag F induces a unique left coset UD,,. Hence F,, ~ U, /D,,. Clearly

dimgly, /D, = n? —n =n(n —1).

Observe next that a choice of one dimensional subspace F} is the definition of a point
z € P»71. Fix z € P*~!. By choosing an o.n. basis in C" we may assume that z is
presented by u; = e, = (0,...,0,1)T. That is, us, .., u, € C*~!. Hence F, is a fibre bundle
with a basis P*~! and a fibre F,,_;. For aset 7 C F let

Mnm(T) = {A . A= (a”):z'jn,:]l:m7 ai; € T,i=1,...,n, 7 =1, ...,m}7
M, (T):={A €M, (T): rank A= min(m,n)},

M, (7T) :==Mu,(7T), M(T):=M;, (T),

nn

g Q
=
S
=
[
—
h
I
52
m
Q
iy
S
=

a;; =0, forl1 <j<i<n}.
(5.2)



Let A = (ai,...,a,) € GL(n,C) be the n columns of A. Then A induces the complete flag
F; =span (a,...,a;), i=1,...,n. (5.3)
Vice versa, a complete flag F, induces a unique left coset AUT(n,C) in GL(n,C). Hence

Fn ~ GL(n,C)/UT(n,C). As GL(n,C) and UT(n,C) are algebraic groups it follows that
Fn is a smooth projective variety of complex dimension w O

Let I ={1<i; <ig<-- <ip <n}C<n> Then F.(I) is the partial flag
F,Cc---CcF,, cC" dimF;,=1i i€l
We view F,(I) as a partial flag of some complete flag F.

Lemma 5.2 Let I = {1 < i3 <ig < -+ <imym <n} C<n>. Denote by F(I) the set of
all partial flags F(I) in C™. Then F(I) is a smooth projective variety of dimension

dim F(I) = (ix —ix-1)(n —ix), io = 0. (5.4)
k=1

Proof. Let I = {l}. Then F({l}) = Gr(I,C"). Any F.({l}) is spanned by the columns
of A € M?,(C). Hence F,({l}) determines a unique coset AGL(l,C) in the quotient space
M?,(C)/GL(I,C). Hence F({l}) is a smooth projective variety of dimension

dim F({1}) = dim Gr(I,C") = dim M?,(C)/GL(l,C) = (n — I).

To prove (5.4) for m > 1, let 7 = n —i; and I= {ia —i1,42 — @1, ..., bn — i1} C< 7 >. Then
the above arguments show that F(I) is a fibre bundle with a basis Gr(i;, C™) and the fibre

F(I). Hence }
dim F(I) = dim Gr(i1,C") + dim F(I).

Use induction to show (5.4). A straightforward argument shows that F(I) is given as a
quotient of My . by a corresponding subgroup of block upper triangular matrices GL(I) <
GL(i,C). Hence F(I) is a smooth projective variety. O

Fix a flag F, in C". Let L € Gr(m,C"). Then

Ol=LNnFycLNnF C---CLNF,=1,
dm LNF,<dmLNnF,_1+1, i=1,..,n.
(5.5)

Let

ILF)={I={1<iy<-<ip<n}: dmLNF, =j j=1,...,m,
dim LN Fy < j, forall k <i;}, L e Gr(m,C").
(5.6)



For I ={1 <iy < iy <n}let

QY(F,) :={L € Gr(m,C"): I(L,F.)=1},
Q(F.) :={LeGr(m,C"): dimLNF;>j j=1,..,m},
(5.7)

the Schubert cell and the Schubert variety corresponding to I.

Lemma 5.3 Let I = {1 < iy < ---ip, < n}. Then QY(F,) C Gr(m,C") is a quasipro-
jective variety. Qp(Fy) C Gr(m,C"™) is a projective variety, which is the closure of Q9(F})
in Gr(m,C"). Furthermore

dim Q;(F,) = dim Q§(F.) = > i; — j. (5.8)
j=1

Proof. Without loss of generality we may assume that Fy is the standard flag
F; =span (e1,...,e;), € = (014,...,0n))7, i=1,..,n. (5.9)
Then L is spanned by the columns of a matrix A = (a1, ..., ay) € M2, (C) such that
a; = (a1, ...,anj)T, ai;; 70, a;5 =0, i=1;+1,...,n, j=1,....,m.

Clearly the set of all such A is a quasivariety in QV (I) C M?2,,(C). Each L € Q$(F) induces
a unique coset AUT(m,C), where A € QV(I). Hence Q9(F) ~ QV(I)/UT(m,C). This
shows that QF(F,) is a quasivariety in Gr(m,C") of dimension > 7", i; — m(mTH) Hence
Q;(Fy) is a closed variety in Gr(m, C™), which is the topological (Zariski) closure of Q9(F%).
In particular (5.8) holds. O

Lemma 5.4 There is one to one correspondance between the Schubert cells in Gr(m, C™)
and the set of all m x n matrices of rank m in its reduced row echelon form: Fach L €
Gr(m,C") ~ M?  (C)/GL(m,C) induces a unique matriz A(L) in the left coset of M2, /GL(m,C),
whose columns span L, such A(L)T is in its reduced row echelon form. Assume that the first
nonzero entry of A(L)T in the row j, which is equal to 1, is in the column fj forj=1,...m.
Let i, :n—zm_ﬁl +1,j=1,....mand set I = {1 <i3 < -+ <y <n}. Let Fy be the
reversed standard flag

F; =span (e, ...,epn—it1), t=1,..,n.
Then I(L,F,) = 1.

The proof of the lemma is straightforward and is left to the reader. One can use Lemma
5.4 to find the dimension of the Schubert cell Q9(F}).

10



6 Hersch-Zwahlen characterization

Lemma 6.1 ([HZ]) Let A € H,, and denote by F,.(A) the flag induced by the eigenvectors

of A: F;(A) = span (u1(A),...,u;(A), i=1,...,n. Let I = {1 < iy <ig < -+ < iy < n}.
Then

A = i t AlL). 6.1

(A1 e s race(A|L) (6.1)

Proof. Let L € Q;(F«(A)). Then L has an orthonormal basis 1, ..., 2, such that
r; € Fy;(A), j=1,...,m. Hence (Azj,z;) > A\;;(A) and

AMA)[I] < trace(A|L).

For L = span (u;, (A), ui, (A4), ..., u;,, (A)) € Qr(Fi(A)) equality holds in the above inequal-
ity. O

Corollary 6.2 ([HZ]) Let A,B,C € H,,, C = A+ B. Let

I:{1§11<12<<Zm§n}7
J={1<j1<j2 < <jm<n},
K={1<ki <ky<--<km<n}

Set
I'={n—ip+1<---<n—i+1}, J={n—jm+l<---<n-—j+1}

Suppose that
Qp(Fi(—A)) NQy (Fi(=B))) N Uk (Fi(C)) # 0.

Then (4.3) holds.

Proof. Let L € Qp(Fu(—A))) N Qy(Fu(—B))) N Qi (Fi(C)). Apply Lemma 6.1 to
—A, =B, C respectively and use the equality —A — B + C' = 0 to deduce

A=A '+ X=B)[J ]+ NCO)K] <0.

Corollary 6.3 ([HZ]) Let I, J, K,I',J' C<n > be defined as in Corollary 6.2. Suppose
that for any three complete flags Fi.(1), Fi(2), Fi(3) in C™ the following condition holds

Qp (Fu(1)) N2y (Fi(2) N QK (Fi(3)) # 0. (6.2)
Then for any A, B € H,, (4.3) holds.

Proof of (4.7). Let
I=J={1,3}, K={2,3}

11



Assume first that n = 3. Then I’ = J' = I = J. We claim that for any three flags in C? (6.2)
holds. Indeed, choose L € Gr(2,C?) such that L D Fy(1) + F1(2). As any two dimensional
subspaces in C? have a common one dimensional subspace L € Qy/(F.(1))) N Q. (Fx(2))) N
Qk (Fi(3)). Hence (4.7) holds for any A, B € Hs. Let n >3 and A,B,C € H,,, C = A+ B.
Let L = F5(C). Then

A2(C) + A3(C) = X2(CIL) + A3(C|L) < A (A|L) + X3(A|L) + A1 (B|L) + A3(B|L) <
AL(A) + A3(A) + A1 (B) + As(B).

7 Schubert calculus
Let I C< n > be defined as in Corolary 6.2. Set

Wj i =lmejp1 —(m—3j+1), aoj=n—i;—m+j, j=1,.,n,
w) =w=(w1,ywm), a(l) = a = (a1,...,an) € RINZY,

lolli =D wi, el =)
i=1 i=1
(7.1)

Note that w(I') = «a(I), and a(I) (w(I)) is with 1 — 1 correspondence with I C< n >.
Moreover ||a(I)||1 (||w(I)||1) gives the dimension of Q (F.) (Q7(Fy)) in Gr(m,C"), which
is equal to the codimension of Q;(Fy) (5 (Fy)).

Lemma 7.1 Let I,J, K € U. Suppose that for any three flags Fi(1), Fy(2), Fi(3) the
condition (6.2) holds. Then Qp (F.(1)))NQ (Fi(2)))NQk (Fi(3)) consists of a finite number
of points if the flags Fi.(1), Fy(2), Fi(3) are in general position.

Proof. Observe that

LJLKeUn <= LLKC<n>, |[|=|J = K| =m, Dl + ()l = ).

(7.2)
As the codimension of Qy/(Fi(1)) (s (Fi(2))) is ||w(D]l1 (Jlw(J)|]1) we view the variety
Qp(Fe(1)) (Q4(Fi(2))) given by ||w(D)||1 (|lw(J)||1) algebraically independent conditions.
Hence Qp/(F.(1))) N Q2 (Fi(2))) N Qg (Fi(3)) is the solution of |[w(I)||1 + ||w(J)||1 alge-
braic conditions restricted to Qg (Fi(3)), which is of dimension ||w(I)||1 + ||w(J)|]1. If
F,(1), F.(2), F(3) are in general positions, these algebraic conditions restricted to Qg (Fi(3))
can give only a finite number of solutions. O

Sy ={(,J,K) €U : suchthat for any three flags (6.2) holds}. (7.3)
For I,J C< n > satisfying the condition of Corollary 6.2 define
I1<J = i, <jp, p=1..m

The following result was known for sometime [Ful]:
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Lemma 7.2 Let I,J,K C<n >, |I| =|J| = |K| =m < n. Assume that the condition
(6.2) is satisfied for any three flags Fi(1), Fi.(2), F\.(3). Then there exists Iy, J;, Ky € S,
satisfying I > I, J, > J, K1 < K.

The basis of the integer homology of Gr(m, C™) is determined by the cycles oy, represent-
ing the Schubert varieties Q;(F.), I C<n >. For I C<n > let 0, € H||o),(Gr(m,C"),Z)
be the dual cycle to o;. That is, the cup product of ¢; and o, is the generator of the top
homology Hp,(n—m)(Gr(m,C"),Z). Equivalently

O] *Oq = Oq " O] = Opoint;

where oppint represents the homology element of the point in Hy(Gr(m,C"),Z). We view
04 as an element in cohomology H!I*!I* (Gr(m,C"),Z) given by a corresponding differential
form of degree |||[1. Then for any a, 8 € RZ NZ with |[a[|; +||B]l1 < m(n —m) we have

the formula
Oq 03 = Z CopTn (7.4)
YERTNZY, [[vIlr=llall1+I8]]x
Here clﬂ are nonnegative integers. These integers give the precise version of Lemma 7.1:

Lemma 7.3 Let I,J,K € U]'. Then

w(K
Qp (Fu(1))) N Q0 (Fu(2))) N Qk (Fa(3)) = €5y Opoint-
That is, if c:g())wu) = 0 then the condition (6.2) does not hold for "most” of three flags

F.(1),F.(2),F.(3). If c:g())wu) # 0 then the condition (6.2) does holds for any three flags

F.(1),F.(2),Fy(3). Furthermore for "most” of three flags Fy(1), Fy(2), Fx(3), i.e. three
flags in general position, Qp (Fi(1))) N Qs (Fi(2))) NQg (Fi(3)) consits ofczgg)wu) distinct
points.

The coeffients cgﬁ appear naturally in representation theory, as well as in invariant
factors [Ful]. With each vector a € RZ NZ one associates the Young diagram, whose
row ¢ has length a;. (We allow here trivial rows with 0 length.) Then V,, corresponds to
the irreducible representation of GL(m,C) or the symmetric group S,,. The weight of V,
is ||at|]1. Consider the tensor product of such two irreducible presentation V, ® Vg. It is
known that such a product is a direct sum of irreducible representations V., of the weight
[[7[l1 = llells + |81 of multiplicity ¢} 5. That is

Vo ® V5 = > @c) Vs (7.5)
yeRZAZT, 1711 =l el +IB]]:

Theorem 7.4 ([KT]-The saturation conjecture) Let v, 8,y € RZNZT, [|y][1 = ||e][1 +
[I1Bll1. Then for any integer N > 1

N
Cop 0 = c(NVa)(NB) # 0.
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Theorem 7.4 is instrumental in proving 77 = S, m = 1,...,n — 1 [Ful]. In what follows
we need the following lemma.

Lemma 7.5 Let I,J, K C<n >, |I| = |J| =|K| =m < n and assume that there exists
(I, J1, K1) € 8% such that I < I, J < J;, K > K1 Then for any triple

A1, Az, A3 € Hpy,  Ar+ As+ A3 =1Ey, (7.6)
where F, is the n X n identity matriz, the following inequalities hold:
A(AL) [I'] 4+ M A2)[J'] + A(A3) [K] < AAD[IT] + A(A2)[J1] + AM(A3)[Ka] < mr (T.7)

Proof. As I’ > I{, J' > J;, K > K; and the eigenvalues of hermitian matrices are
arranged in a decreasing order we deduce the left hand side of (7.7). To prove the right
hand side of (7.7) choose L € Qp (Fi(A1)) N Q; (Fi(A2)) N Qk (Fi(A3)) and apply (6.1) to
(7.6). O

Corollary 7.6 Let A,B € H,. Then any inequality induced by the triples I,J, K C<
n > given by Corollary 6.3 follows from the inequality corresponding to some (I1,J1, K1) €
Sh.

8 Stable filtrations

A filtration U, of subspaces in C™ is an infinite sequence of decreasing subspaces where only
a finite number of subspaces are different from the trivial subspace [0]:

CnZUoDUlD"-UkD'-~7 dim U; = 0 for 7 > N. (81)

Each filtration of subspaces defines a unique partial flag F,(I), where U = F;. ., for some

ijky € I for each k > 1 such that dim Uy > 1. Furthermore, for each ¢ € I F; appears in
the above filtration. Let

a;=#{U;: dimU; > i}, i=1,..,n, a:=(ay,..,a,) € RENZY. (8.2)

Then F,(I) is a complete flag iff & > 0 and the coordinates of « are pairwise distinct. Vice
versa:

Lemma 8.1 Let F. be a given complete flag in C". Assume that o € RE NZY. Then
there exists a unique filtration (8.1) such that (8.2) holds and U, induces a partial flag Fy(I).

Proof. First U; = [0] for i« > ay. If oy = 0 then U, is a trivial fibration. Assume
that @y > 0 and a1 = -+ = ap—1 > ag, 1 < k < n+ 1. (Here apy1 = 0.) Then
Uag, = =Uqs, 41 = Fr—1. Other U; are determined similarly. O

Lemma 8.2 Let (8.1) be a given filtration in C™ with the corresponding o given by (8.2).
Let < -,- > be any inner product on C™. Denote by P(Uy) the orthonormal projection on
Uy for k =1,.... Then the operator A =357~ P(Uy) is a selfadjoint operator with respect
to < -,- > with the eigenvalue vector c.
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Proof. Let F,(I) be the partial flag induced by the filtration (8.1). Complete F,(I) to
a full flag. Then F, together with < -,- > induces an orthonormal basis fi,..., f, in C"
such that F; = span (f1,..., fi), ¢ = 1,...,n. In this o.n. basis each P(U;) is represented by
a diagonal matrix, whose first dim U; diagonal entries are equal to 1 and all other diagonal
entries are equal to zero. In this basis A is represented by a diagonal matrix whose i — th
diagonal entry is equal to o; for: =1,...,n. O

Lemma 8.3 Assume that the filtration (8.1) induces a complete flag F.. Let o be given
by (8.2). Let L € Gr(m,C"™) and assume that I(L, F,) is given by (5.6). Then

d dim (LNUy) = Y o (8.3)

k=1 i€I(L,F.)

Proof. Let I(L,F,) ={1 <41 <is < -+ < ip < n}. Let a and b be the values of the
left hand side and the right hand side of (8.3) respectively. If dim L N U, = j > 1 then the
contribution of Uy to a is j. Uy contributes 1 to oy, for I =1,...,j. That is Uy contributes
jtob. O

Definition 8.4 [-filtration U.(1),...,U.(l) of C™ is called stable if for any subspace [0] #
L#C"

n(L)

3

I oo I oo
:diriLZZdimLﬂUj( ) < p(C") '—lz:z_;dimUj(i)

i=1 j=1
The characterization of K (c«, 3) is deduced from the following theorem.

Theorem 8.5 ([Tot],[Kly]) Let U.(1),...,U.(l) be an l-filtration of C™ which induces |
complete flags Fi(1),..., Fi(l) in general position. Then U.(1),...,U.(l) is stable iff there
exists an inner product < -,- > on C™ such that

I o
Z Z P(U 1(C™)Id (8.4)

To prove this theorem Totaro uses geometric invariant theory. Klyachko uses Donaldson’s
theory for bundles over P2.

Theorem 8.6 ([Kly]) Let o, 3 € RL. Then K(a,3) is a polyhedron in RY which is
given by the trace equality (1.2) and the inequalites

VK] < a[I] 4+ B[J], forall (I,J,K)e S re<ln—1>. (8.5)

Proof. Since K(«, ) is a continuous in the parameters a, 3 it is enough to prove the
theorem for «, 8 € Q" such that the coordinates of «, 3 are pairwise distinct. Fix such a
pair a, 8. As K(«, 3) is a closed set, it is enough to show that if v € Q™, all the coordinates
of v are pairwise distinct, (1.2) holds, and

VK] < o[I] + BJ), forall(I,J,K) €S’ re<ln—1>, (8.6)
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then v € K(«, ). Since for any ¢ > 0 K(ta,t8) = tK(a,) it is enough to show that
ty € K(ta,tf3). Hence we can choose t to be a big positive integer so that

&= (dh 76577,) = taa B = (Blv 7Bn) = tﬁ? ﬁ/ = (’?lu aﬁ/’n) = t/y SWAS

Choose N a big enough positive integer so that the coordinates of «(i), i = 1,2,3 are
positive distinct integers:

a(i) = (a1(i), ..., (7)), 1=1,2,3,
aj(l) =N-— &n—j—‘rla aj<2) =N - Bn—j—l—la aj(g) = N+;Yj7 .7 = 13 ey T

Then 4 € K(&,3) iff there exists Ay, Ay, A3 € H, satisfying (7.6) with r = 3N such that
AMA;) = ali), i = 1,2,3. The definition of a(i), ¢ = 1,2,3 and the assumption (8.6) yields

ZZaj(i) = 3Nn,

i=1 j=1

a(V)[I'] + a(2)[J] + aB3)[K] < 3Nm, (I,J,K) € 5"

m>

me<l,n—1>.
(8.7)
Let F.(i), i = 1,2,3 be three complete flags in general position. Let U, (¢) be the filtration

defined by «(i) and F, (i) for i=1,2,3. We claim that the 3 filtration U, (i), ¢ = 1,2,3 is
stable. Let L € Gr(m,C™), m €< 1,n—1>. Let

Then

Since the three flags F. (i), ¢ = 1,2,3 are in general position the Schubert calculus implies
the existence of (I, J, K) € S such that I > I', J| > J', K1 > K. (8.7) yields

%(a(l)[fi] +a@2)Ji] + aB)[Ki]) < %(a(l)[f’] +a@)]+a@)K]) <3N (88)

Lemma 8.3 yields that the left hand side the right hand side of (8.8) is p(L) and u(C") re-
spectively. Hence 3 filtration U, (1), U.(2), U.(3). is stable. Theorem 8.5 yields the existence
of a hermitian inner product < -,- > on C™ such that (8.4) holds. Let

B; ==Y _P(U(j)), i=12.3
j=1

Pick an orthonormal basis e, ..., e, in C™ with respect to the < -,- >. Let A; € H.,, represent
B; for i = 1,2,3. Then A; + Ay + A3 = 3NE,,. Lemma 8.2 implies that a(:) = A(4;), i =
1,2,3. 0
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9 Majorizing sums

For a, 3 € RY let

ar (o = min o; + o KCc<n> 1<|K|<n
K( aﬂ) I, (1)]71 )ESFK\Z-EZI i j;]ﬁ]a s _| ‘ s

a<n>(a, B) 1= Zai + i
i=1

(9.1
Then K (a, 3) is characterized by the following set of inequalities:
—l’i+$i+1 SO, izl,...,n—l,
z[K]<ag, K C<n>,
(9.2)
—z[<n>] < —acp>, (9.3)
where x = (21, ..., x,) € R™ and
ag =ag(a, ), KC<n>. (9.4)

Proposition 9.1 Let o, 3 € RY. Then y € K<(a,3) if and only if the system (77),
(?7), (??) and
—x; < —y;, i=1,...,n, (9.5)

1is solvable.

Proof. Let
diag (x) := diag (21, ...,2n), == (T1,...,2,) € F". (9.6)

Assume first that the system of equations (??), (??), (??) and (??) is solvable. Then
diag (y) < diag(x) = A+ B, for some A, B € H,,, AM(4) = a, A(B) = 0.

Hence y € K<(a, ). Vise versa, if y € K<(«a,3) then y = A(F), and FF < C = A+
B, MA) = o, A(B) = . Then z = A\(C) satisfies (??) and (??), where (?7?) holds. As
F < C and (??) holds. O

Definition 9.2 Let a := (ar)p£rc<n> be a given real vector with 2" — 1 coordinates.
Let

K(a):={zeRY: z[l]<ar, I C<n>, |[I|<n, and z[<n >] =acn>},
K(a) := {reRY: z[I]<ar, IC<n>},
K'(a):={yeRY: 3weK(a), y<z}

(9.7)
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Clearl
' K(a) C K'(a) C K(a). (9.8)

Lemma 9.3 Let n > 1 and assume that a = (ar)ic<n> 18 a given vector. Suppose
that K(a) is a nonempty set. Then K'(a) is a polyhedral set in R™ given by (??) and the
inequalities

Zwi(n)xl < —aeps + Z ub(n)ar, 1=1,...,M(n), (9.9)

i=1 IC<n>, 0<|I|<n

for some fized vectors (w'(n))™_y, (uf(n))ic<n>, o<|1j<n: | =1, ..., M(n) independent of a.

Proof. The system (??) can be stated as Uz < b, where b7 = (07, a”), 0 € R*~1. The
system of equations (?7?), (??) and (??) can be written in matrix form as

Vz <ec,
VI = (UT, —e,~E,), =07 ~-acps,—y"), e:=(1,..,1)T ¢ R™
(9.10)

Proof. A variant of Farkas lemma [?] (§7.3) yields that the solvability of (??) is equiv-
lalent to the implication
2>0, 27V =0=z2Tc>0. (9.11)
Here 27 = (t7,u”,v,w”) is a row vector partitioned as ¢’
t= (tla “~atn71)Ta U = (uI)IC<n>7 v e Rv w = (wla mawn)T € R™

It is straightforward to show that any solution z of 27V = 0 is equivalent to the validity of
the following identity in n variables in x € R™:

n—1 n
Z urz[l] = Z ti(x; —xiq1) + Z(wl +v)z;. (9.12)
IC<n> i=1 i=1

The Farkas-Minkowski-Weyl theorem [?] (§7.2) yields that the cone 2V = 0,z > 0 is finitely
generated. First we divide the extremal vectors z = (¢, u, v, w) to two sets: v =0 and v # 0.
The subset with v = 0 corresponds to the set

2n) = (M (n), ub (n),0,wbt (n), 1=1,..., Mi(n).

We normalize the second set of extremal vectors by letting v = 1. We divide the second set
to the subsets determined by w = 0:

21’2(71) = (tl’Q(n),ul’Q(n), 1,0), 1=1,...,Ms(n),
and w # 0O:

zl’g(n) = (tl(n),ul(n), l,wl(n))7 ul<n>(n) =0, wl(n) #0, l=1,...,M(n).
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Note that the set z52(n),l = 1,..., Ma(n) contains an extremal vector ( = (0,u, 1,0), where
U<ns = 1 and all other coordinates of u are equal to zero. Hence the extremal vector z'3(n)
satisfies the condition ul,. =0 for [ = 1,..., M(n).

We claim that the number of nonzero coordinates in any extremal vector z is at most
n + 1. Let z be an extremal ray of the cone zV = 0,z > 0. Assume that z has exactly p
nonvanishing coordinates. Let V be a p x n submatrix of V corresponding to the nonzero
elements of z. Let wV = 0 and assume that w; = 0 if z; = 0. Then the nonzero coordinates
of w satisfy n equations. As z is an extremal ray it follows that w = az for some o € R.
Hence the n columns of V span p — 1 dimensional subspace, i.e. rank V= p—1<n.

We claim that the set z!3(2) is empty. Consider an extremal vector z/3(n). By the
definition v!(n) = 1, w'(n) # 0 and uL,.(n) = 0. Use (??) to deduce that u'(n) # 0.
Assume now that n = 2. Since 2/:3(2) has at most 3 nonzero coordinates, we deduce that
each vector u!(2),v!(2) = 1,w' has exactly one nonzero coordinate and t(2) = 0. As
ul 5. (2) =0 (??) can not hold.

The system zV = 0 is equivalent to (t7,u”)U = wvel + w, where U is the matrix
representing the system (?7?). Hence

2Te= " u")b —vacy,s —wly =

(tT T)b — Vacp> — ((tT, uT)U - veT)y = (tT, uT)(b —Uy) + v(eTy — A<ns)s
zeT = ual —vac,s —wy?.

(9.13)

The inequality (??) and the definition of 2!'!(n) yield that z!(n)Tc > 0. The inequality
(?7), (?7) and the definition of 2!?(n) yield that 25?(n)Tc > 0 if y € K(a). The last part of
(??) yields the validity of 252(n)Tc > 0 in general. Hence y € K'(a) iff 2'3(n)Tc >0, | =
1,...,M(n), which are equivalent to (??). O

As the set of vectors of the form 2::3(2) is empty we deduce:

Corollary 9.4 Forn =2 K'(a) = K(a).

In [Fr2] we showed that for n = 3 K'(a(a, 3)) = R(a(a,ﬁ)). That is, for n = 2,3 any
y € K(a(a, B)) satisfies (??). In [Fr2] we posed the problem if this statement holds for any
n > 3. This problem was answered positively by Fulton in [Fu2].

10 Characterization of K-(«a, ()

Theorem 10.1 ([Fu2]) Leta, 3 € RL. Then the set K<(a, 3) is given by the inequalities
(7?), where a = a(a, B) is given by (7). That is, v € K<(a, ) iff v satisfies Horn’s
inequalities (4.6) and the trace inequality

S <Y i+ 6 (10.1)
i=1 i=1
To prove the above theorem we need a few lemmas [Fu2].
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Lemma 10.2 Let I be a complete flagin V = C". LetU € Gr(r,C"). Set ]
and let I¢ be the complement of I in < n >. Then F, induces the flags Fy, Fi 1
V/U repectively:

Fo: Fj=F,NU, j=1,.,r, I={1<i;<iy<--<i,<n},
Eo: Fy=(Fe+U)/U, j=1,on—r, I°={1<if <i§<-- <if_. <n}.
(10.2)

Proof. Clearly F; NU, (F; +U)/U, i = 1,...,n induce filtrations in U and V/U respec-
tively. The definition of I(U, Fy) (5.6) yields that dim F; = j, j = 1,...,7. Furthermore,
as

dim (F; +U)/U =dim F;/F;NU =i—dim F;NU, i=1,..,n,
we easily deduce that dim Fj =jforjelc. O
The proof of the following lemma is straightforward and is left to the reader:

Lemma 10.3 Let Z,U, T be three subspaces in V.= C™. Assume that Z D U. Then
dim (ZNT)=dimUNT+dim Z/UN (T +U/U).

Let I and I¢ be two complementary sets in < n > of cardinality r and n — r respectively
given as in (?7?). Let P={1<p; <p2 <---<p;}. Let

Ip:={ip,,....,ip}, for PC<r>,
I;::IU{i;l,...,i;l}, forPC<n—r>.

Lemma 10.4 Let F, be a complete flag in V. =C". Let I C<n >, |I| =r and assume
that U € Q;(F,) C Gr(r,V). Let F, and F, be the induced flags in U and V/U respectively.
(i) If X is a subspace of U of dimension z, with X € QP(F*) for some P C<r >, |Pl==x
then X € Qp, (Fy).

(ii) If Y = Z/U is a subspace of V/U of dimension y, with Y € Qp(F.,) for some P C<
n—r>, |Pl=y then Z € QI;(F*).

Proof. Let X satisfy the assumptions of (i). Then

s<dmXNE, =dmXNUNE, )=dmXnE s=1,..,2.

ps’

Hence X € Q. (Fy).

Assume that Y satisfies the assumptions of (ii). Observe that the function dim Z N F;
on the interval [0, n] NZ strictly increases (by 1) exactly at the integers in the set I(Z, Fy.).
Lemma 77 yields that

dm ZNFE,=dmUNF,+dimY N (F+U)/U, i=1,..,n.

As dim Z N F; can jump only by one, we deduce that the jumps of dim Z N F; are at the
jumps of dim U N F; and at the the jumps of dim Y N (F; + U)/U, which are at I(U, F})
and (I(U, F*))y - Hence

I(Z, F*) = I(U,F*) U (I(U, F*)C)I(Y,ﬁ‘*) < I; e AS QI(Z,F*)(F*) C QI;(F*)
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O
Proof of Theorem ?7?. We prove the theorem by induction on n. Let

= (=any =)y, B= (81,0 Bn) = (=Bry oy —31).

As in §7, it is equivalent to show the existence of Ay, Az, A3 € H,, with eigenvalue vectors
@, 3,7 such that A; + As + A3 < 0. For n = 1 the theorem clearly holds. Assume that
the theorem holds for any n < N. Let n = N. Assume that v satisfies all the inequalities
(4.6) and the trace inequality holds (??). Suppose that at least one inequality is an equality.
Assume first the trace equality (1.2) holds. Then v € K(a, ) = v € K<(a,3). Assume
now that we have an equality

jo)
=
T
°
2

alIl + B[J) +~[K] =0 for some (I',J',K) € S®

o

re<ln—1>. (10.3)

(We assumed here that S =T, r €< 1,n —1>.) Let
o = (&i)ier, B = (Bj)jes, ¥ = (w)rex €RL,
o = (@)iere, B = (By)jeses 7= (W)rere €RYT
We claim:
(a) there exist By, B2, Bs € H, with the eigenvalue vector o/, 5, respectively such that
By + Bs + B3 = 0;
(b) there exist Cy,Co,C3 € H,—, with the eigenvalue vector o', 3”,~" respectively such
that Cq + Cy + C35 < 0.

Assume that (a) and (b) holds. Then A; := B; & C;,i = 1,2, 3 yield the theorem in this
case. Theorem 8.6 yields that (a) is equivalent to the inequalities

[P+ 3[Q] ++'[R] <0, forall (P,Q,R)eS/,le<l,r—1>. (10.4)
Note that ~
o'[P] = allp], B'(Q) = B[Jq], ¥'[R] = ~[Kkg].
We claim that for any three flags F, (1), Fi(2), Fx(3)
Qp (Fe(1)) N Qg (Fi(2)) N Qi (Fi(3)) # 0. (10.5)

As (I',J,K) € SP pick U € Qr(F(1)) N Qs (Fi(2)) N Qx (Fi(3)) € Gr(r,C™). Let F (i) be
the induced complete flag in U for ¢ = 1,2,3. Let (P',Q’,R) € S]. Pick X € Qp(Fi(1))N
Qo (F.(2))NQR(F.(3)) € Gr(l,U). Part (i) of Lemma ?? yields that X is in the intersection
of the three sets given in (?7). Combine (??) with Lemma ?7, the left hand side of (7.7)
and (4.6) to deduce (?7?).

To prove (b) we the induction hypothesis that it is ehough to show

a//[P] + B//[Q] _"_,y//[R] S O’
forall (P,Q,R)e S ", le<ln—r—-1> andP=Q=R=<n-—1>.
(10.6)
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In view of (?7?) each of the above inequalities is equivalent to
alIf) + BlIS] + 4K L] <0.

This inequality follows from part (ii) of Lemma ?? and the arguments as above.

Assume finally that v satisfies all strict inequalities (4.6) and the strict trace inequality
holds (??). Then there exists 7 € RZ such that v < 7, 7 satisfies all the inequalities
(4.6) and (?7) where at least one inequality is an equality. We showed that 7 € K< («, 3).
Trivially v € K<(«,3). O

11 Selfadjoint operators in a separable Hilbert space

Let H be a separable infinite dimensional Hilbert space with an inner product (u,v) € C for
u,v € H. (H has a countable orthonormal basis {e;}7°.) Denote by H the set of all linear,
bounded, selfadjoint operators A : H — H. That is (Az,y) = (z, Ay) for all z,y € H and

[|A]] := supgrpen I(éﬁ;)l < 0o. Recall the well known spectral properties of A € H [?] or

[?]. Denote by spec(A) the spectrum of A, i.e. all z € C such that (21 — A)~! does not
exist. Then spec(A) is a compact set located in the closed interval [—||A||, ||A||]. Recall the
spectral decomposition of A:

A= / xdE(z).
(=IIAll-1,]1All+1]

Here E(z),z € R,0 < E(x) < I is the resolution of the identity of commuting increasing
family of orthogonal projections induced by A, which is continuous from the right. Further-
more E(—||A|| —0) =0 and E(]|A]| + 0) = I. Note that

I= / dE(x)
[~ I1All=1,]1All+1]

For an open or a closed (Borel) set T'C R denote by P(A,T) the spectral projection of A
on T
P(AT) = / dE(x).

T
We let dim P(A,T) be the dimension of the subspace P(A,T)H. Note that 0 < dim
P(A,T) < co. Observe that dim P(A, (a,b)) is finite and positive iff spec(A)N(a, b) consists
of a finite number of eigenvalues of A, each one with a finite dimensional eigenspace. We
say that p(A) is the first accumulation point of the spectrum of A if

dim P(A, (u(A) +€,00)) < oo, dim P((u(A) —€,00)) =0

for every positive €. u(A) must be either a point of the continuous spectrum or a point
spectrum with an infinite corresponding eigenspace. (It is a maximal point in spec(A)
with this property.) Denote by CH C H the set of all selfadjoint compact operators in
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H. Then A € CH iff H has an orthonormal basis consisting of the eigenvectors of A and
p(A) = p(—A) = 0. Denote by H,, HS the cone of nonnegative and positive selfadjoint
operators in H respectively. That is A € Hy (HS) if (Az,z) > 0 (> 0) for any = # 0. Let
CHy, CHS the cone of compact nonnegative and compact positive selfadjoint operators in
H respectively. For A, Be Hlet ASB(A<B)if B-AcH, (B-AcH}) ie. B-A
is nonnegative (respectively positive). Then A € CHS iff H has an orthonormal basis {e;}$°
such that

Ae; = Niey, N >0, i=1,...,
)\12)\222)\n’

n—oo

(11.1)

We say that {\;}52, is the eigenvalue sequence of A. If A € CH then (??) holds with the
following modifications. First A; > 0. Second {e;}$° is an orthonormal sequence which is a
basis for a closed subspace H;. Third AH;{ = 0, where Hj is the orthogonal complement
of Hy. In this case {A;}52, is called the eigenvalue sequence of A. Note that if {X;}52; has
only finite number of positive numbers then we can (and will) assume that H; = H. If
{Ai}2, is a sequence of positive numbers then A € CHS iff {e;}° is an orthonormal basis
of H. A € CHy is said to be in the trace class if > ;- A; < oco. Then trace A :=> 2 ;.

Let V' C H be an n-dimensional subspace. Pick an orthonormal basis fi, ..., f, € V. For
A € H denote by A(f1,..., fn) = A|V € H,, the n x n matrix whose (4, j) entry is (Af;, f;)-
Let

MA V) > XA, V) > - > A, (4,V)

be the n eigenvalues of the Hermitian matrix A|V. As in the finite dimensional case the
above eigenvalues do not depend on a particular choice of an orthonormal basis fi, ..., f,, of
V. Clearly |N(A, V)| < ||A||, i =1,...,n.

We now recall the convoy principle [Frl].

Lemma 11.1 Let A € CHy have the eigenvalue sequence {\;}52,. Let n >k > 1 be
any integers. Assume that V. C H is any n-dimensional subspace. Then \(A, V) < A\ and
this inequality is sharp.

Proof. For simplicity of exposition assume in addition that A > 0. Choose an orthonor-
mal basis fi, ..., fn, of V so that A|V is the diagonal matrix diag (A1 (A, V), ..., A\n(A, V). Let
f= Zle a; fi # 0 be such that (f,e;) =0,i=1,...,k — 1, where {e;}$° is an orthonormal
basis of H given in (??). Deduce from (??) and from the choice of fi, ..., f,, that

aavy < WL

(f,.f)
For V =span(ey, ..., e, ) we obtain that Ay(A4,V) = A\, O
For A € H let
(A H) = sup M(AV), k=1, ...

VCH,dimV=k
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For A € CH+ Lemma ?7? yields that
(A H) =N, k=1,..,.

Lemma 11.2 Let A € H. Then the sequence {\;(A, H)}{° is a nonincreasing sequence
which lies in [—||A||, ||A||]. Let {f:}5° be any orthonormal basis in H. SetV,, =span(f1, ..., fn)
forn=1,...,. Then the sequence {\(A,V,)}2, is an increasing sequence which converges
to \p(A,H) for each k =1,2,...,.

Proof. . Fix a complete flag
wicwy,c---cW;---, dmW, =14, i=1,..,
of subspaces in ‘H. Then the convoy principle for matrices yields that
XNi(A,Wig1) > M(AW;) > N1 (A, Wigq), i=1,2,..,.

(These inequalities are natural extensions of the Cauchy interlacing inequalites for matrices.)
Hence the sequence {\;(A, H)}?° is a nonincreasing sequence which lies in [—||4]], ||A]|]. Fur-
thermore we obtain that {A\x(A,V,)}22, is a nondecreasing sequence. From the definition

of \p(4,H) we immediately deduce that
Ak(A,V”) SAk(A7H)7 n:k7k+17"'7'

Let ~
)\k = lim /\k(A,Vn), k= 1, ceey e

n—oo

Hence Ay < A\p(A,H), k = 1,..... We claim that for any k-dimensional subspace W C ‘H
5\k: > A (Aa W)

Assume that g1, ..., gx is an orthonormal basis in W so that the matrix ((Ag;, g;))} is the di-
agonal matrix diag(A1 (A, W), ..., \x(A, W)). Let P, : H — V,, be the orthogonal projection
on V,,. That is

n
Pyx = Z(xvfi)fi-
i=1
Then lim, .o P,z = x for every x € H, i.e. P, converges to I in the strong topology.
Hence, for n > N, say, P,gi, ..., P,g; are linearly independent. Let g1 p,....95n € Vi be
the k£ orthonormal vectors obtained from P, g1, ...., P,g, using the Gram-Schmidt process.
Then
lim gipn=gi;, t=1,.. k.
n—oo
Hence the matrix ((Agi,mgj,n))ﬁj:l converges to diag (A1 (A, W), ..., \x(4,W)). Let W,, =

span (g1,n,-.-; Gk,n)- Then
lim )\k(A, Wn) = )\k(A, W)

n—oo
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As W,, C V,, the convoy principle implies
M (A, W) < Me(A, V) < g

Hence ~ ~ ~

Lemma 11.3 Let A € H. Then the nonincreasing sequence {\;(A, H)}{° converges to
1(A).
Proof. Suppose first that dim P(A4, (a,b)) > 0. Let

A(a,b) ::/( ) zdE(x).

Then

(Az, x)
(z,z)
Let € > 0. Let f1,..., fr—1 be an orthonormal basis of V = P(A, (u(A4) + ¢,00))H. (If
k=1 then V = 0.) Hence V1 = P(A, (o0, u(A) + ¢])H. Let W C H be any subspace of
dimension k. Then V+ N W contains a nonzero vector x € P(A, (—oo, u(A) + ¢])H. The
convoy principle and the above observation yield that

(A, W) < u(A) + €.

a< <b, 0#xe€ P(A (a,b))H.

Hence
Ae(A4,H) < p(A) + e

Recall that U := P(A, (u(A) — €,00))H is infinite dimensional. Let W C U, dim W = [.
Then the convoy principle and the above observation yield that

MN(A, W) > pu(A) —e.
Hence \;(A,H) > p(A) — e. This inequality holds for any I. Hence
llim M(AH) > p(A) —e

Since € was an arbitrary positive number we deduce the lemma. O

Corollary 11.4 Let A € Hy. The following are equivalent:
(a) A€ CHy and A is in the trace class.
(b) For a given orthonormal basis {f;}3° of H the nonnegative series y .- (Afi, fi) con-
verges.

Furthermore under the assumption (a)

trace A = i(Afi, 1) (11.2)

i=1

for any orthonormal basis {f;}3°.
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Proof. (a) = (b): Let V,, = span (f1, ..., fn). Then

trace A > z": Ai(A) > trace A|V,, = zn:(Afi, 1) (11.3)

i=1 i=1
(b) = (a): Fix k > 1 and let n > k. Then

oo k

Z(Af“fl >2Afz,fl ) = trace (A|V,,) > Z

i=1 i1

Let n — oo. Use Lemma ?7 to deduce that > =, (Af;, fi) > Z
A (A, H) > 0. Hence

1 Mi(AH). Clearly each

o0

> (Afi fi) = Z (11.4)
i=1

Thus limg_,00 Ak (A, H) = 0. Hence A € CHy and A\ (A, H) = A\, (A4), k=1,...,n. Use (??)
and (?77?) to deduce (?7). O

12 Characterization of K-(«, ) for operators in CH

Let
Fi={v={}: %eR %>2%412>0,i=1,..., lim~ =0.} (12.1)

Thus T is the set of all eigensequences A(A) = {\;(A)}$° for A € CH,. The following
theorem follows from [Fr2] and [Fu2]:

Theorem 12.1 Let H be a separable Hilbert space. Assume that o, 3,y € I'. Then the
following are equivalent:
(a) There exist A,B,C € CHy with C < A+ B and o = A(A), 8 = A(B), v=~(C).
(b) For each n = 1,..., the vectors a™ := (a1, ..., ), B™ := (B1,-sBn)y ¥ = (Y15 o0y Yn)
satisfy the Horn inequalities (4.6) and (77), i.e. y* € K<(a™, 3").

Proof. (a) = (b): Let {f;}{® be the orthonormal sequence in H corresponding to
MNC): Cf; =~ifi, 1 =1,... Let V,, := span (f1, ..., fn). Then C|V,, = diag (y1,...,7n) and
AC|V,) =A™ Let a(V,,) = AMA|V,), B(Vh) = A(B|V4). Clearly C|V,, < A|V,, + B|V,,.
Hence 7" € K<(a(Vy,), 8(V4,)). The convoy principle implies that a™ > «(V,,), 5" > B(V,,).
Use Theorem ?7? to deduce that v € K<(a™, 3").

(b) = (a): Let C,, = diag (y1,...,7%) € Hn. Then there exist A, = (aijn)p

1=j=
(bij,n)?:jzl € H,, such that AM(4,,) = o™, \(By,) = " and C,, < A,, + B,,. Clearly

1> Bn:

|aijn| < a1, bijnl <P, 4,5=1,..,n
Hence there exists a subsequence 1 < nj; < ny < ... such that

lim Aij.n; = Qij, lim bijfﬂl = bij7 1,] = 1,
l—o0 l—o0
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Let A := (@ij)i =1 B = (big)i2 =1, C = diag (71,72, ...) = (cij)72;—1 be three infinite
hermitian matrices. Fix an orthonormal basis £ := {f;}3° in H. Clearly C represents an
operator C' € CH in the basis f. We claim that A, B represent A, B € CH in the basis f,
such that A(A) < «, A(B) < 8. Tt is enough to prove this claim for A.

Fix a positive integer k. Then for n > k Ay, = (aijm)f:j:l is a nonnegative (definite)

matrix, whose norm (its first eigenvalue) is bounded by a;. Let n = n; and | — oc.
Then Ay := (aij)f:jzl is a nonnegative matrix, whose norm is bounded by «a;. Since k

was arbitrary §26 of [?] implies that A represents a linear bounded selfadjoint nonnegative
operator in lo. Hence A € H,. The convoy principle yields that

Nj(Akn) S N(An) =, j=1,.k
Let n = n; and | — oco. Then

Ni(Ap) <aj, j=1,..k

Let Vi, = span (f1,..., fx). Fix m. Hence for k > m A\, (A4, V%) = Am(AR) < ay,. Use
Lemma ?? to deduce 0 < A\, (4, H) < vy, As the sequence {; }5° converges to 0 it follows
that the sequence {\;(A4,H)}$° converges to 0. Lemma ?? implies that A € CH. Hence
Am (A, H) = A\, (A). Thus A(4) < a.

We claim that C < A+ B. Clearly C} < (aij,n)fzjzl + (bij,n)fzjzl. Let n = n; and
| — oo. Then Cj, < Ay + By. As k was arbitrary we deduce that C' < A + B. Let {e;}°
and {g;}3° be two orthonormal systems in H spanning the closed subspaces H; and Hy
respectively such that

Aei:)\i(A)ei, Bgi:Ai(B)gi7 1= 1,...,
AH{ = BHy = 0.

Let A, B € CH be given by

Aei = ;€4 Bgz :61'91'7 1= 1,...,
AH{ = BH} = 0.

Then A< A, B< Band AM(A) =a, A(B)=4. O

As in the finite dimensional case for «a, 3 € T let

K<(a,8) ={yeTl: 3FA,B,CeCH4, whereC < A+ Band AM(4A) =, A(B) =0, A\(C) =~},
K(a,8):={yeT: 3FA,B,C €CHy, whereC = A+ Band A\(A) = a, A(B) =0, \(C) =~}.

Theorem ?? characterizes the set K<(a, ). It is an infinite polyhedral set given by a
countable number of inequalities, where each inequality is in a finite number of variables.
Let

D= {{n}"el: > v <oo}
=1
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That is v € T'y iff there exists C' € CH in the trace class such that v = A(C). The following
theorem follows from [Fr2] and [Fu2]:

Theorem 12.2 Let o, € I'y. Then
K(a,p) ={{n}F € K<(o,B8): D vi=> ai+fi}
i=1 i=1

Proof. Suppose that A, B,C € CH4 and C = A+ B. Then A(C) € K<(A(A4), A(B)).
Furthermore for any orthonormal basis {f;}$°

> (Cfis fi) =Y (Afi, f:) + (Bfis fi)- (12.3)
i=1 i=1
Hence if A(A) = a, A(B) = 3, M(C) =+ then (??) and Corollary ?? yield that C' is in the
trace class and - -
Z% = trace C' = trace A + trace B = ZO” + G;.
i=1 i=1
Assume now that v € K<(a, 3). Hence there exists A, B,C € CH4, where C < A+ B and
AMA) = a, AM(B) =0, A(C) =~. Thus

o0

Z(Cfi,fz‘) < . (Afi, f;) + (Bfi, f;) = trace A + trace B,

1

8

i=1 i

and C is in the trace class. Suppose that > .=, v; = > oo a;+3;. Let V,, = span (f1,...fn), n =
1,... As A+ B — C > 0 we deduce that A+ B — C|V,, > 0 for each n > 1. Hence

trace A+ B — C|V,, = Z((/H—B -CO)fi, fi) >0

i=1

and each summand is nonnegative. The equality trace C' = trace A + trace B yields that
((A+B-C)fi, fi) =0, i =1, .... Therefore A+B—-C|V,, =0, n=1,...and A+ B—-C =0.
O

It is left to characterize K(«, 8) where a, 8 € ' and o + 3 ¢ I'y. The arguments of the
proof of Theorem ?? shows that K(a, 5) C K<(a, 5)\I'1.

Conjecture 12.3 Let o, § € I' and assume that a+5 ¢ T'1. Then K(o, 8) = K< (o, B)\I'1.
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