Tensors: theory and applications

Shmuel Friedland
Univ. Illinois at Chicago

TTI-C, March 2, 2009

Overview

Ranks of 3-tensors

Overview

Ranks of 3-tensors

(1) Basic facts.

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.

Overview

Ranks of 3-tensors

(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication

Overview

Ranks of 3-tensors

(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication

4 Results and conjectures

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication

4 Results and conjectures
Approximations of tensors

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication

4 Results and conjectures
Approximations of tensors
(1) Rank one approximation.

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication

4 Results and conjectures
Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication
4. Results and conjectures

Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem
(3) Rank $\left(R_{1}, R_{2}, R_{3}\right)$ approximations

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication
(4) Results and conjectures

Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem
(3) Rank $\left(R_{1}, R_{2}, R_{3}\right)$ approximations
(4) CUR approximations

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication

4 Results and conjectures
Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem
(3) Rank $\left(R_{1}, R_{2}, R_{3}\right)$ approximations
(4) CUR approximations

List of applications

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}}, \ldots, i_{p}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
basis of $\mathbb{U}_{j}: \quad\left[\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right] j=1,2,3$
basis of $\mathbb{U}: \quad \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$,

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
basis of $\mathbb{U}_{j}: \quad\left[\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right] j=1,2,3$
basis of \mathbb{U} : $\quad \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$,
$\tau=\sum_{i_{1}=i_{2}=i_{3}=1}^{m_{1}, m_{2}, m_{3}} t_{i_{1}, i_{2}, i_{2}} \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}$

Ranks of tensors

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2, 3

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2,3
$\operatorname{rank} \mathcal{T}$ minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2,3
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
(CANDEC, PARFAC)

Basic facts

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

COR $\operatorname{rank} \mathcal{T} \leq \min (m n, m l, n l)$

Complexity of rank of 3-tensor

Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field and NP-hard for rational numbers

Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field and NP-hard for rational numbers

PRF: 3-sat with n variables m clauses
satisfiable iff rank $\left.\mathcal{T}=4 n+2 m, \mathcal{T} \in \mathbb{F}^{(2 n+3 m) \times(3 n) \times(3 n+m)}\right)$ otherwise rank is larger

Generic rank

Generic rank

$$
\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I} \text { all tensors of rank } \leq r
$$

Generic rank

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, I)$ not closed variety for $r \geq 2$

Generic rank

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$ generic rank=border rank=typical rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times 1}$

Generic rank

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, I)$ not closed variety for $r \geq 2$
generic rank=border rank=typical rank: $\operatorname{grank}_{\mathbb{F}}(m, n, I)$ the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times 1}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1) \leq I$.

Generic rank

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, I)$ not closed variety for $r \geq 2$
generic rank=border rank=typical rank: $\operatorname{grank}_{\mathbb{F}}(m, n, I)$ the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times 1}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1) \leq I$. COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$

Generic rank

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
generic rank=border rank=typical rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times 1}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, l)=\min (I, m n)$ for $(m-1)(n-1) \leq I$. COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$

Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I<(m-1)(n-1)$:

Generic rank

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
generic rank=border rank=typical rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times 1}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, l)=\min (I, m n)$ for $(m-1)(n-1) \leq I$. COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$

Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I<(m-1)(n-1)$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times 1}, \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=(a \mathbf{x}) \otimes(b \mathbf{y}) \otimes\left((a b)^{-1} \mathbf{z}\right)$

Generic rank

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
generic rank=border rank=typical rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times 1}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1) \leq I$. COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$

Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I<(m-1)(n-1)$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times 1}, \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=(a \mathbf{x}) \otimes(b \mathbf{y}) \otimes\left((a b)^{-1} \mathbf{z}\right)$
$\operatorname{grank}_{\mathbb{C}}(m, n, l)(m+n+I-2) \geq m n I \Rightarrow \operatorname{grank}_{\mathbb{C}}(m, n, I) \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$

Generic rank

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
generic rank=border rank=typical rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times 1}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, l)=\min (I, m n)$ for $(m-1)(n-1) \leq I$. COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$

Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I<(m-1)(n-1)$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times 1}, \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=(a \mathbf{x}) \otimes(b \mathbf{y}) \otimes\left((a b)^{-1} \mathbf{z}\right)$
$\operatorname{grank}_{\mathbb{C}}(m, n, l)(m+n+I-2) \geq m n l \Rightarrow \operatorname{grank}_{\mathbb{C}}(m, n, I) \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$
Conjecture grank $_{\mathbb{C}}(m, n, I)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$

Generic rank

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
generic rank=border rank=typical rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times 1}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1) \leq I$. COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$

Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I<(m-1)(n-1)$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times 1}, \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=(a \mathbf{x}) \otimes(b \mathbf{y}) \otimes\left((a b)^{-1} \mathbf{z}\right)$
$\operatorname{grank}_{\mathbb{C}}(m, n, l)(m+n+I-2) \geq m n l \Rightarrow \operatorname{grank}_{\mathbb{C}}(m, n, I) \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$
Conjecture grank $_{\mathbb{C}}(m, n, I)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$
Fact: grank $_{\mathbb{C}}(3,2 p+1,2 p+1)=\left\lceil\frac{3(2 p+1)^{2}}{4 p+3}\right\rceil+1$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{1}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{1}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{1}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{]}\right]$bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{1}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$
Complexity: r-products

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$
Complexity: r-products
Matrix product $\tau: \mathbb{F}^{M \times N} \times \mathbb{F}^{N \times L} \rightarrow \mathbb{F}^{M \times L},(A, B) \mapsto A B$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{]}\right]$bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{\mathrm{a}}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$
Complexity: r-products
Matrix product $\tau: \mathbb{F}^{M \times N} \times \mathbb{F}^{N \times L} \rightarrow \mathbb{F}^{M \times L},(A, B) \mapsto A B$
$M=N=L=2, \operatorname{grank}_{\mathbb{C}}(4,4,4)=\left\lceil\frac{4 \times 4 \times 4}{4+4+4-2}\right\rceil=\lceil 6.4\rceil=7$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{]}\right]$bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$
Complexity: r-products
Matrix product $\tau: \mathbb{F}^{M \times N} \times \mathbb{F}^{N \times L} \rightarrow \mathbb{F}^{M \times L},(A, B) \mapsto A B$
$M=N=L=2, \operatorname{grank}_{\mathbb{C}}(4,4,4)=\left\lceil\frac{4 \times 4 \times 4}{4+4+4-2}\right\rceil=\lceil 6.4\rceil=7$
Product of two 2×2 matrices is done by 7 multiplications

Known cases of rank conjecture

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$ $(n, n, n+2)$ if $n \neq 2(\bmod 3)$,

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 l p}{l+2 p+2 q-2}$ is integer

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{1+2 p+2 q-2}$ is integer
Easy to compute $\operatorname{grank}_{\mathbb{C}}(m, n, I)$:

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{1+2 p+2 q-2}$ is integer
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{I+2 p+2 q-2}$ is integer
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$ The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, I)$ (Terracini Lemma 1915)

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{I+2 p+2 q-2}$ is integer
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$
The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, I)$ (Terracini Lemma 1915)

Avoid round-off error:

$\mathbf{w}_{r} \in\left(\mathbb{Z}^{m} \times \mathbb{Z}^{n} \times \mathbb{Z}^{\prime}\right)^{r}$ find rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)$ exact arithmetic

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{I+2 p+2 q-2}$ is integer
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$
The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, I)$ (Terracini Lemma 1915)

Avoid round-off error:

$\mathbf{w}_{r} \in\left(\mathbb{Z}^{m} \times \mathbb{Z}^{n} \times \mathbb{Z}^{\prime}\right)^{r}$ find rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)$ exact arithmetic
I checked the conjecture up to $m, n, I \leq 14$

Generic rank III - the real case

Generic rank III - the real case

For $m n \leq I \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.

Generic rank III - the real case

For $m n \leq l \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Generic rank III - the real case

For $m n \leq l \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.
$\operatorname{Closure}\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$

Generic rank III - the real case

For $m n \leq l \operatorname{grank}_{\mathbb{R}}(m, n, l)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times l}$ rank $\mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$

Generic rank III - the real case

For $m n \leq l \operatorname{grank}_{\mathbb{R}}(m, n, l)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$
rank $\mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
$\operatorname{rank} \mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$

Generic rank III - the real case

For $m n \leq I \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times l}$
rank $\mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
rank $\mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$
$\rho_{i} \geq \operatorname{grank}_{\mathbb{C}}(m, n, I)$ for $i=2, \ldots, c(m, n, l)$

Generic rank III - the real case

For $m n \leq l \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times l}$
$\operatorname{rank} \mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
rank $\mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$
$\rho_{i} \geq \operatorname{grank}_{\mathbb{C}}(m, n, I)$ for $i=2, \ldots, c(m, n, l)$
For $I=(m-1)(n-1) \exists m, n$:
$c(m, n, l)>1, \rho_{c(m, n, l)} \geq \operatorname{grank}_{\mathbb{C}}(m, n, l)+1$

Generic rank III - the real case

For $m n \leq I \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$
rank $\mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
rank $\mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$
$\rho_{i} \geq \operatorname{grank}_{\mathbb{C}}(m, n, I)$ for $i=2, \ldots, c(m, n, l)$
For $I=(m-1)(n-1) \exists m, n$:
$c(m, n, l)>1, \rho_{c(m, n, l)} \geq \operatorname{grank}_{\mathbb{C}}(m, n, l)+1$
Examples [1]
$m=n \geq 2, I=(m-1)(n-1)+1$.
$m=n=4, l=11,12$

Rank one approximations

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$

Rank one approximations

$$
\begin{aligned}
& \mathbb{R}^{m \times n \times I} \text { IPS: }\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, I} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle} \\
& \langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)
\end{aligned}
$$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\operatorname{Px}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{Px}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\|\operatorname{Px}(\mathcal{T})\|^{2}+\left\|\mathcal{T}-\operatorname{Pr}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\|\operatorname{Px}(\mathcal{T})\|^{2}+\left\|\mathcal{T}-\operatorname{Pr}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} :

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$ $\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$

Best rank one approximation of \mathcal{T} :
$\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$ $\|\mathcal{T}\|^{2}=\|\operatorname{Px}(\mathcal{T})\|^{2}+\left\|\mathcal{T}-\operatorname{Pr}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$

Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-a \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$ $\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{X}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$ $\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$
λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{X}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\left\|\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} :
$\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$
Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$
λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors
How many distinct singular values are for a generic tensor?

ℓ_{p} maximal problem and Perron-Frobenius

ℓ_{p} maximal problem and Perron-Frobenius

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{\rho}\right)^{\frac{1}{\rho}}
$$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{\theta}}$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
Problem: $\max _{\|\mathbf{x}\|_{\rho}=\|\mathbf{y}\|_{\rho}=\|\mathbf{z}\|_{\rho}=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity
Assume that $\mathcal{T} \geq 0$. Then $\mathbf{x}, \mathbf{y}, \mathbf{z} \geq 0$

For which values of p we have an analog of Perron-Frobenius theorem?

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{Z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity
Assume that $\mathcal{T} \geq 0$. Then $\mathbf{x}, \mathbf{y}, \mathbf{z} \geq 0$

For which values of p we have an analog of Perron-Frobenius theorem?

Yes, for $p=3$, and probably for $p>3$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{Z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity
Assume that $\mathcal{T} \geq 0$. Then $\mathbf{x}, \mathbf{y}, \mathbf{z} \geq 0$

For which values of p we have an analog of Perron-Frobenius theorem?

Yes, for $p=3$, and probably for $p>3$
No, for $p=2$, and probably for $p<3$

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3-tensor.

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal $\left\|P_{\mathrm{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathrm{U}_{3}}(\mathcal{T})\right\|$.

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal
$\left\|P_{\mathbb{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathbb{U}_{3}}(\mathcal{T})\right\|$.
Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal
$\left\|P_{\mathrm{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathrm{U}_{3}}(\mathcal{T})\right\|$.
Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time
This amounts to SVD (Singular Value Decomposition) of matrices:

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal
$\left\|P_{\mathbb{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathbb{U}_{3}}(\mathcal{T})\right\|$.
Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time
This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbb{U}_{2}, \mathbb{U}_{3}$. Then $\mathbb{V}=\mathbb{U}_{1} \otimes\left(\mathbb{U}_{2} \otimes \mathbb{U}_{3}\right) \subset \mathbb{R}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal
$\left\|P_{\mathrm{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathrm{U}_{3}}(\mathcal{T})\right\|$.
Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time
This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbb{U}_{2}, \mathbb{U}_{3}$. Then $\mathbb{V}=\mathbb{U}_{1} \otimes\left(\mathbb{U}_{2} \otimes \mathbb{U}_{3}\right) \subset \mathbb{R}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbb{U}_{1}}\left\|P_{\mathrm{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices

Fast low rank approximation I:

Fast low rank approximations II:

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C} P \times a}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C} P \times a}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, ~ J]^{\dagger}$

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)
For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{1 \times r}$,

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)
For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{I \times r}$, where $\langle p\rangle \subset\langle n\rangle \times\langle I\rangle,\langle q\rangle \subset\langle m\rangle \times\langle I\rangle,\langle r\rangle \subset\langle m\rangle \times\langle I\rangle$

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)
For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{1 \times r}$, where $\langle p\rangle \subset\langle n\rangle \times\langle I\rangle,\langle q\rangle \subset\langle m\rangle \times\langle I\rangle,\langle r\rangle \subset\langle m\rangle \times\langle I\rangle$
$\min _{\mathcal{U} \in \mathbb{C}^{p \times q \times r}}\|\mathcal{A}-\mathcal{U} \times F \times E \times G\|_{F}$ achieved for $\mathcal{U}=\mathcal{A} \times E^{\dagger} \times F^{\dagger} \times G^{\dagger}$

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)
For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{1 \times r}$, where $\langle p\rangle \subset\langle n\rangle \times\langle I\rangle,\langle q\rangle \subset\langle m\rangle \times\langle I\rangle,\langle r\rangle \subset\langle m\rangle \times\langle I\rangle$
$\min _{\mathcal{U} \in \mathbb{C}^{p \times q \times r}}\|\mathcal{A}-\mathcal{U} \times F \times E \times G\|_{F}$ achieved for $\mathcal{U}=\mathcal{A} \times E^{\dagger} \times F^{\dagger} \times G^{\dagger}$
CUR approximation of \mathcal{A} obtained by choosing E, F, G submatrices of unfolded \mathcal{A} in the mode $1,2,3$.

List of applications

List of applications

Face recognition

List of applications

Face recognition

Video tracking

List of applications

Face recognition

Video tracking

Factor analysis

References I

S. Friedland, On the generic rank of 3-tensors, arXiv: 0805.3777v2.
S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla, Fast low rank approximations of matrices and tensors, submitted, www.matheon.de/preprints/4903.
S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zmarashkin, Pseudo-skeleton approximations of matrices, Reports of the Russian Academy of Sciences 343(2) (1995), 151-152.
S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zmarashkin, A theory of pseudo-skeleton approximations of matrices, Linear Algebra Appl. 261 (1997), 1-21.
R.H. Lim, Singular values and eigenvalues of tensors: a variational approach, CAMSAP 05, 1 (2005), 129-132.

References II

M.W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, PNAS 106, (2009), 697-702.

