Matchings, permanents and their random approximations

Shmuel Friedland
Univ. Illinois at Chicago

Tutte seminar series, U. Waterloo, Nov 20, 2009

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Probabilistic methods
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Asymptotic lower and upper matching conjectures
- Plots and results

Uri N. Peled

Uri was born in Haifa, Israel, in 1944.
Education:
Hebrew University, Mathematics-Physics, B.Sc., 1965.
Weizmann Institute of Science, Physics, M.Sc., 1967
University of Waterloo, Mathematics, Ph.D., 1976
University of Toronto, Postdoc in Mathematics, 1976-78
Appointments:
1978-82, Assistant Professor, Columbia University
1982-91, Associate Professor, University of Illinois at Chicago
1991-2009, Professor, University of Illinois at Chicago
Areas of research: Graphs, combinatorial optimization, boolean functions.
Uri published about 57 paper
Uri died September 6, 2009 after a long battle with brain tumor.

Figure: Matching on the two dimensional grid: Bipartite graph on 60 vertices, 101 edges, 24 dimers, 12 monomers

Matchings

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$ no two edges in M share a common endpoint.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.
- M is perfect matching \Longleftrightarrow no monomers.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.
- M is perfect matching \Longleftrightarrow no monomers.
- M is k-matching $\Longleftrightarrow \# M=k$.

Generating matching polynomial

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Example: $K_{r, r}$ complete bipartite graph on $2 r$ vertices.

$$
\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}
$$

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Example: $K_{r, r}$ complete bipartite graph on $2 r$ vertices.

$$
\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}
$$

$\mathcal{G}(r, 2 n)$ set of r-regular bipartite graphs on $2 n$ vertices

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Example: $K_{r, r}$ complete bipartite graph on $2 r$ vertices.

$$
\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}
$$

$\mathcal{G}(r, 2 n)$ set of r-regular bipartite graphs on $2 n$ vertices
$q K_{r, r} \in \mathcal{G}(r, 2 r q)$ a union of q copies of $K_{r, r}$.

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Example: $K_{r, r}$ complete bipartite graph on $2 r$ vertices.

$$
\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}
$$

$\mathcal{G}(r, 2 n)$ set of r-regular bipartite graphs on $2 n$ vertices
$q K_{r, r} \in \mathcal{G}(r, 2 r q)$ a union of q copies of $K_{r, r}$.

$$
\Phi_{q K_{r, r}}=\Phi_{K_{r, r}}^{q}
$$

Notations and definitions

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if

$$
\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j i}, \quad i=1, \ldots, n
$$

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if

$$
\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j j}, \quad i=1, \ldots, n
$$

- $\Omega_{n} \subset \mathbb{R}_{+}^{n \times n}$ is the set of doubly stochastic matrices

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if $\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j i}, \quad i=1, \ldots, n$
- $\Omega_{n} \subset \mathbb{R}_{+}^{n \times n}$ is the set of doubly stochastic matrices
- $\mathcal{P}_{n} \subset \Omega_{n}$ the set of permutation matrices

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if $\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j i}, \quad i=1, \ldots, n$
- $\Omega_{n} \subset \mathbb{R}_{+}^{n \times n}$ is the set of doubly stochastic matrices
- $\mathcal{P}_{n} \subset \Omega_{n}$ the set of permutation matrices is the set of the extreme points of Ω_{n}

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if $\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j i}, \quad i=1, \ldots, n$
- $\Omega_{n} \subset \mathbb{R}_{+}^{n \times n}$ is the set of doubly stochastic matrices
- $\mathcal{P}_{n} \subset \Omega_{n}$ the set of permutation matrices
is the set of the extreme points of Ω_{n}
Birkhoff-Egerváry-König-Steinitz theorem (1946-1931-1916-1897)

Bipartite graphs

Figure: An example of a bipartite graph

Representation matrix $\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$

Formulas for k-matchings in bipartite graphs

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$,

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Example: Any subgraph of \mathbb{Z}^{d} is bipartite

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.
Prf: Suppose $n=\# V_{1}=\# V_{2}$.
Then permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i \sigma(i)}=1$. The number of perfect matchings in G is $\phi(n, G)=\operatorname{perm} B(G)$.

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.
Prf: Suppose $n=\# V_{1}=\# V_{2}$.
Then permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i \sigma(i)}=1$. The number of perfect matchings in G is $\phi(n, G)=\operatorname{perm} B(G)$.

Computing $\phi(n, G)$ is \#P-complete problem Valiant 1979

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.
Prf: Suppose $n=\# V_{1}=\# V_{2}$.
Then permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i \sigma(i)}=1$. The number of perfect matchings in G is $\phi(n, G)=\operatorname{perm} B(G)$.

Computing $\phi(n, G)$ is \#P-complete problem Valiant 1979 For $\mathcal{G}=(\langle 2 n\rangle, E)$ bipartite $G \in \mathcal{G}(r, 2 n) \Longleftrightarrow \frac{1}{r} B(G) \in \Omega_{n}$ \qquad G is a disjoint (edge) union of r perfect matchings

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.
Prf: Suppose $n=\# V_{1}=\# V_{2}$.
Then permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i \sigma(i)}=1$. The number of perfect matchings in G is $\phi(n, G)=\operatorname{perm} B(G)$.

Computing $\phi(n, G)$ is \#P-complete problem Valiant 1979 For $\mathcal{G}=(\langle 2 n\rangle, E)$ bipartite $G \in \mathcal{G}(r, 2 n) \Longleftrightarrow \frac{1}{r} B(G) \in \Omega_{n}$ \qquad G is a disjoint (edge) union of r perfect matchings
$r^{k} \min _{C \in \Omega_{n}} \operatorname{perm}_{k} C \leq \phi(k, G)$ for any $G \in \mathcal{G}(r, 2 n)$

van der Waerden and Tverberg conjectures

van der Waerden and Tverberg conjectures

$J_{n}=B\left(K_{n, n}\right)=[1]$ the incidence matrix of the complete bipartite graph $K_{n, n}$ on $2 n$ vertices

van der Waerden and Tverberg conjectures

$J_{n}=B\left(K_{n, n}\right)=[1]$ the incidence matrix of the complete bipartite graph $K_{n, n}$ on $2 n$ vertices
van der Waerden permanent conjecture 1926:

$$
\min _{C \in \Omega_{n}} \operatorname{perm} C=\operatorname{perm} \frac{1}{n} J_{n}\left(=\frac{n!}{n^{n}} \approx \sqrt{2 \pi n} e^{-n}\right)
$$

van der Waerden and Tverberg conjectures

$J_{n}=B\left(K_{n, n}\right)=[1]$ the incidence matrix of the complete bipartite graph $K_{n, n}$ on $2 n$ vertices
van der Waerden permanent conjecture 1926:

$$
\min _{C \in \Omega_{n}} \operatorname{perm} C=\operatorname{perm} \frac{1}{n} J_{n}\left(=\frac{n!}{n^{n}} \approx \sqrt{2 \pi n} e^{-n}\right)
$$

Tverberg permanent conjecture 1963:

$$
\min _{C \in \Omega_{n}} \operatorname{perm}_{k} C=\operatorname{perm}_{k} \frac{1}{n} J_{n}\left(=\binom{n}{k}^{2} \frac{k!}{n^{k}}\right)
$$

for all $k=1, \ldots, n$.

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.
This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang
- 81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.
This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang
- 81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix
- 82 proof uses methods of 81 proofs with extra ingredients

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.
This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang
- 81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix
- 82 proof uses methods of 81 proofs with extra ingredients
- There are new simple proofs using nonnegative hyperbolic polynomials e.g. Friedland-Gurvits 2008

Lower matching bounds for $0-1$ matrices

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($r=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($r=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} .
$$

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($r=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\begin{gathered}
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} . \\
\text { Cor : } \phi(n, G) \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n}
\end{gathered}
$$

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($r=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\begin{gathered}
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} . \\
\operatorname{Cor}: \phi(n, G) \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n}
\end{gathered}
$$

Con FKM 2006 : $\phi(k, G) \geq\binom{ n}{k}^{2}\left(\frac{n r-k}{n r}\right)^{n r-k}\left(\frac{k r}{n}\right)^{k}, G \in \mathcal{G}(r, 2 n)$

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($r=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\begin{gathered}
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} . \\
\operatorname{Cor}: \phi(n, G) \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n}
\end{gathered}
$$

Con FKM 2006 : $\phi(k, G) \geq\binom{ n}{k}^{2}\left(\frac{n r-k}{n r}\right)^{n r-k}\left(\frac{k r}{n}\right)^{k}, G \in \mathcal{G}(r, 2 n)$
F-G 2008 showed weaker inequalities

Upper matching bounds for $0-1$ matrices

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{T_{i}}}$

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$
- Con FKM 2006: $\phi(k, G) \leq \phi\left(k, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$ and $k=1, \ldots, q r$

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$
- Con FKM 2006: $\phi(k, G) \leq \phi\left(k, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$ and $k=1, \ldots, q r$
- $c_{4}(G)$ - The number of 4 -cycles in G

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$
- Con FKM 2006: $\phi(k, G) \leq \phi\left(k, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$ and $k=1, \ldots, q r$
- $c_{4}(G)$ - The number of 4-cycles in G
- Thm: For any r-regular graph $G=(V, E)$,

$$
c_{4}(G) \leq \frac{r \# V}{2} \frac{(r-1)^{2}}{4}
$$

Equality iff $G=q K_{r, r}$

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$
- Con FKM 2006: $\phi(k, G) \leq \phi\left(k, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$ and $k=1, \ldots, q r$
- $c_{4}(G)$ - The number of 4-cycles in G
- Thm: For any r-regular graph $G=(V, E)$,

$$
c_{4}(G) \leq \frac{r \# V}{2} \frac{(r-1)^{2}}{4}
$$

Equality iff $G=q K_{r, r}$

- Prf: Any edge in $e \in E$ can be in at most $(r-1)^{2}$ different 4-cycles.

Upper perfect matching bounds for general graphs

$G=(V, E)$ Non-bipartite graph on $2 n$ vertices

$$
\phi(n, G) \leq \prod_{v \in V}((\operatorname{deg} v)!)^{\frac{1}{2 \operatorname{deg} v}}
$$

If deg $v>0, \forall v \in V$ equality holds iff G is a disjoint union of complete balanced bipartite graphs
Kahn-Lóvasz unpublished, Friedland 2008-arXiv, Alon-Friedland 2008-arXiv, Egorichev 2007

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$
(1) $\phi(1, G)=n r$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$

(1) $\phi(1, G)=n r$
(2) $\phi(2, G)=\binom{n r}{2}-2 n\binom{r}{2}=\frac{n r(n r-(2 r-1))}{2}$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$
(1) $\phi(1, G)=n r$
(2) $\phi(2, G)=\binom{n r}{2}-2 n\binom{r}{2}=\frac{n r(n r-(2 r-1))}{2}$
(3) $\phi(3, G)=\binom{n r}{3}-2 n\binom{r}{3}-n r(r-1)^{2}-2 n\binom{r}{2}(n r-2 r-(r-2))$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$
(1) $\phi(1, G)=n r$
(2) $\phi(2, G)=\binom{n r}{2}-2 n\binom{r}{2}=\frac{n r(n r-(2 r-1))}{2}$
(3) $\phi(3, G)=\binom{n r}{3}-2 n\binom{r}{3}-n r(r-1)^{2}-2 n\binom{r}{2}(n r-2 r-(r-2))$
(3) $\phi(4, G)=p_{1}(n, r)+c_{4}(G)$
$p_{1}(n, r)=$
$\frac{n^{4} r^{4}}{24}+\frac{n^{3} r^{3}}{4}(1-2 r)+\frac{n^{2} r^{2}}{24}\left(19-60 r+52 r^{2}\right)+n r\left(\frac{5}{4}-5 r+7 r^{2}-\frac{7 r^{3}}{2}\right)$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$
(1) $\phi(1, G)=n r$
(2) $\phi(2, G)=\binom{n r}{2}-2 n\binom{r}{2}=\frac{n r(n r-(2 r-1))}{2}$
(3) $\phi(3, G)=\binom{n r}{3}-2 n\binom{r}{3}-n r(r-1)^{2}-2 n\binom{r}{2}(n r-2 r-(r-2))$
(4) $\phi(4, G)=p_{1}(n, r)+c_{4}(G)$
$p_{1}(n, r)=$
$\frac{n^{4} r^{4}}{24}+\frac{n^{3} r^{3}}{4}(1-2 r)+\frac{n^{2} r^{2}}{24}\left(19-60 r+52 r^{2}\right)+n r\left(\frac{5}{4}-5 r+7 r^{2}-\frac{7 r^{3}}{2}\right)$
Notation:

$$
\begin{array}{r}
f(x)=\sum_{i=0}^{N} a_{i} x^{i} \preceq g(x)=\sum_{i=0}^{N} b_{i} x^{i} \Longleftrightarrow \\
a_{i} \leq b_{i} \text { for } i=1, \ldots, N
\end{array}
$$

2-regular graphs

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n}{3} K_{3}}(x)=\Phi_{C_{3}}(x)^{\frac{n}{3}}$ if $3 \mid n$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n}{3} K_{3}}(x)=\Phi_{C_{3}}(x)^{\frac{n}{3}}$ if $3 \mid n$
$\Phi_{G}(x) \succeq \Phi_{\frac{n-4}{3} K_{3} \cup C_{4}}(x)=\Phi_{C_{3}}(x)^{\frac{n-4}{3}} \Phi_{C_{4}}(x)$ if $3 \mid n-1$,

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n}{3} K_{3}}(x)=\Phi_{C_{3}}(x)^{\frac{n}{3}}$ if $3 \mid n$
$\Phi_{G}(x) \succeq \Phi_{\frac{n-4}{3} K_{3} \cup C_{4}}(x)=\Phi_{C_{3}}(x)^{\frac{n-4}{3}} \Phi_{C_{4}}(x)$ if $3 \mid n-1$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n-5}{3} K_{3} \cup C_{5}}(x)=\Phi_{C_{3}}(x)^{\frac{n-5}{3}} \Phi_{C_{5}}(x)$ if $3 \mid n-2$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n}{3} K_{3}}(x)=\Phi_{C_{3}}(x)^{\frac{n}{3}}$ if $3 \mid n$
$\Phi_{G}(x) \succeq \Phi_{\frac{n-4}{3} K_{3} \cup C_{4}}(x)=\Phi_{C_{3}}(x)^{\frac{n-4}{3}} \Phi_{C_{4}}(x)$ if $3 \mid n-1$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n-5}{3} K_{3} \cup C_{5}}(x)=\Phi_{C_{3}}(x)^{\frac{n-5}{3}} \Phi_{C_{5}}(x)$ if $3 \mid n-2$
If n even G multi-bipartite 2 -regular graph then $\Phi_{G}(x) \succeq \Phi_{C_{n}}(\underline{x})$.

Probabilistic Methods I

$A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}, X(A):=\left[\sqrt{a_{i j}} x_{i j}\right]$,
x_{j} independent random variables $E\left(x_{i j}\right)=0, E\left(x_{i j}^{2}\right)=1$
$E\left((\operatorname{det} X(A))^{2}\right)=$ perm A. Godsil-Gutman 1981

Probabilistic Methods I

$$
A=\left[a_{i j}\right] \in \mathbb{R}_{1}^{n \times n}, X(A):=\left[\sqrt{a_{i}} \times x_{j}\right],
$$

x_{j} independent random variables $E\left(x_{i j}\right)=0, E\left(x_{i j}^{2}\right)=1$
$E\left((\operatorname{det} X(A))^{2}\right)=$ perm A. Godsil-Gutman 1981
Concentration results

Probabilistic Methods I

$A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}, X(A):=\left[\sqrt{a_{i j}} x_{i j}\right]$,
$x_{i j}$ independent random variables $E\left(x_{i j}\right)=0, E\left(x_{i j}^{2}\right)=1$
$E\left((\operatorname{det} X(A))^{2}\right)=$ perm A. Godsil-Gutman 1981
Concentration results
A. Barvinok 1999 -

1. $x_{i j}$ real Gaussian $\Rightarrow \operatorname{det} X(A)^{2}$ with high probability
$\in\left[c^{n}\right.$ perm $\left.A, \operatorname{perm} A\right] c \approx 0.28$
2. $x_{i j}$ complex Gaussian $E\left(\left|x_{i j}\right|^{2}\right)=1 \Rightarrow|\operatorname{det} X(A)|^{2}$ with high probability $\in\left[c^{n}\right.$ perm A, perm $\left.A\right] c \approx 0.56$
3. $x_{i j}$ quaternion Gaussian $E\left(\left|x_{i j}\right|^{2}\right)=1 \Rightarrow|\operatorname{det} X(A)|^{2}$ with high probability $\in\left[c^{n}\right.$ perm A, perm $\left.A\right] c \approx 0.76$

Probabilistic Methods I

$A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}, X(A):=\left[\sqrt{a_{i j}} x_{i j}\right]$,
$x_{i j}$ independent random variables $E\left(x_{i j}\right)=0, E\left(x_{i j}^{2}\right)=1$
$E\left((\operatorname{det} X(A))^{2}\right)=\operatorname{perm} A$. Godsil-Gutman 1981
Concentration results
A. Barvinok 1999 -

1. $x_{i j}$ real Gaussian $\Rightarrow \operatorname{det} X(A)^{2}$ with high probability
$\in\left[c^{n}\right.$ perm A, perm $\left.A\right] c \approx 0.28$
2. $x_{i j}$ complex Gaussian $E\left(\left|x_{i j}\right|^{2}\right)=1 \Rightarrow|\operatorname{det} X(A)|^{2}$ with high probability $\in\left[c^{n}\right.$ perm A, perm $\left.A\right] c \approx 0.56$
3. $x_{i j}$ quaternion Gaussian $E\left(\left|X_{i j}\right|^{2}\right)=1 \Rightarrow|\operatorname{det} X(A)|^{2}$ with high probability $\in\left[c^{n}\right.$ perm $\left.A, \operatorname{perm} A\right] c \approx 0.76$

Friedland-Rider-Zeitouni 2004:
$0<a \leq a_{i j} \leq b, x_{i j}$ real Gaussian $\Rightarrow \operatorname{det} X(A)^{2}$ with high probability $\in\left[\left(1-\varepsilon_{n}\right)\right.$ perm A, perm $\left.A\right] \varepsilon_{n} \rightarrow 0$

Probabilistic Methods II

FRZ results use concentration for $\log _{\varepsilon} \operatorname{det} Z(A)=\operatorname{tr} f(Z(A))$,
$Z(A)=X(A)^{\top} X(A) \succeq 0, f=\log _{\varepsilon} x=\log \max (x, \varepsilon)$.
or $\log _{\varepsilon} \operatorname{det} Y(A), Y(A)=\left[\begin{array}{cc}0 & X(A) \\ X(A)^{\top} & 0\end{array}\right]$

Probabilistic Methods II

FRZ results use concentration for $\log _{\varepsilon} \operatorname{det} Z(A)=\operatorname{tr} f(Z(A))$,
$Z(A)=X(A)^{\top} X(A) \succeq 0, f=\log _{\varepsilon} x=\log \max (x, \varepsilon)$.
or $\log _{\varepsilon} \operatorname{det} Y(A), Y(A)=\left[\begin{array}{cc}0 & X(A) \\ X(A)^{\top} & 0\end{array}\right]$
Modifying the approach to non-bipartite graphs

Probabilistic Methods II

FRZ results use concentration for $\log _{\varepsilon} \operatorname{det} Z(A)=\operatorname{tr} f(Z(A))$,
$Z(A)=X(A)^{\top} X(A) \succeq 0, f=\log _{\varepsilon} x=\log \max (x, \varepsilon)$.
or $\log _{\varepsilon} \operatorname{det} Y(A), Y(A)=\left[\begin{array}{cc}0 & X(A) \\ X(A)^{\top} & 0\end{array}\right]$
Modifying the approach to non-bipartite graphs
Make each undirected edge (i, j) with weight $a_{i j}=a_{j i} \geq 0$ to two opposite directed edges with weights $\pm a_{i j}$ to obtain a skew symmetric matrix
$B=\left[b_{i j}\right] \in \mathbb{R}^{(2 n) \times(2 n)}, b_{i i}=0$

Probabilistic Methods II

FRZ results use concentration for $\log _{\varepsilon} \operatorname{det} Z(A)=\operatorname{tr} f(Z(A))$,
$Z(A)=X(A)^{\top} X(A) \succeq 0, f=\log _{\varepsilon} x=\log \max (x, \varepsilon)$.
or $\log _{\varepsilon} \operatorname{det} Y(A), Y(A)=\left[\begin{array}{cc}0 & X(A) \\ X(A)^{\top} & 0\end{array}\right]$
Modifying the approach to non-bipartite graphs
Make each undirected edge (i, j) with weight $a_{i j}=a_{j i} \geq 0$
to two opposite directed edges with weights $\pm a_{i j}$ to obtain a skew symmetric matrix
$B=\left[b_{i j}\right] \in \mathbb{R}^{(2 n) \times(2 n)}, b_{i i}=0$
$Y(B)=\left[\operatorname{sign}\left(\mathrm{b}_{\mathrm{ij}}\right) \sqrt{\left|\mathrm{b}_{\mathrm{ij}}\right|} \mathrm{x}_{\mathrm{ij}}\right], x_{i j}=x_{j i}, x_{12}, \ldots, x_{(2 n-1),(2 n)}$ i.r.v
$E\left(x_{i j}\right)=0, E\left(x_{i j}^{2}\right)=1$
$E(\operatorname{det} Y(B))=$ haf A -
total weight of weighted matchings in induced graph by A

Prob. Methods III-

$E\left(\operatorname{det}(\sqrt{t} I+Y(B))=\Phi_{G_{w}}(t)\right.$ - the weighted matching polynomial of $G(A)$.
Thm: Concentration of $\log \operatorname{det}(\sqrt{t} I+Y(A))$ around expected value $\log \tilde{\Phi}_{G_{w}}(t), t>0$ which less $\log \Phi_{G_{w}}(t)$ $\frac{1}{n} \log \tilde{\Phi}\left(t, G_{\omega}\right) \leq \frac{1}{n} \log \Phi\left(t, G_{\omega}\right) \leq \frac{1}{n} \log \tilde{\Phi}\left(t, G_{\omega}\right)+\min \left(\frac{\max _{i, j}\left|a_{j i}\right|}{2 t}, 1.271\right)$

Prob. Methods III-

$E\left(\operatorname{det}(\sqrt{t} I+Y(B))=\Phi_{G_{w}}(t)\right.$ - the weighted matching polynomial of $G(A)$.
Thm: Concentration of $\log \operatorname{det}(\sqrt{t} I+Y(A))$ around expected value $\log \tilde{\Phi}_{G_{w}}(t), t>0$ which less $\log \Phi_{G_{w}}(t)$
$\frac{1}{n} \log \tilde{\Phi}\left(t, G_{\omega}\right) \leq \frac{1}{n} \log \Phi\left(t, G_{\omega}\right) \leq \frac{1}{n} \log \tilde{\Phi}\left(t, G_{\omega}\right)+\min \left(\frac{\max _{i, j}\left|a_{j i}\right|}{2 t}, 1.271\right)$
Jerrum-Sinclair-Vigoda 2004: fully polynomial randomized approximation scheme (fpras) to compute perm A A variation of MCMC method using rapidly mixed Markov chains converging to equilibrium point

Prob. Methods III-

$E\left(\operatorname{det}(\sqrt{t} I+Y(B))=\Phi_{G_{w}}(t)\right.$ - the weighted matching polynomial of $G(A)$.
Thm: Concentration of $\log \operatorname{det}(\sqrt{t} I+Y(A))$ around expected value $\log \tilde{\Phi}_{G_{w}}(t), t>0$ which less $\log \Phi_{G_{w}}(t)$
$\frac{1}{n} \log \tilde{\Phi}\left(t, G_{\omega}\right) \leq \frac{1}{n} \log \Phi\left(t, G_{\omega}\right) \leq \frac{1}{n} \log \tilde{\Phi}\left(t, G_{\omega}\right)+\min \left(\frac{\max _{i, j}\left|a_{j i}\right|}{2 t}, 1.271\right)$
Jerrum-Sinclair-Vigoda 2004: fully polynomial randomized approximation scheme (fpras) to compute perm A A variation of MCMC method using rapidly mixed Markov chains converging to equilibrium point

The proofs do not carry over for nonbipartite graphs

Prob. Methods III-

$E\left(\operatorname{det}(\sqrt{t} I+Y(B))=\Phi_{G_{w}}(t)\right.$ - the weighted matching polynomial of $G(A)$.
Thm: Concentration of $\log \operatorname{det}(\sqrt{t} I+Y(A))$ around expected value $\log \tilde{\Phi}_{G_{w}}(t), t>0$ which less $\log \Phi_{G_{w}}(t)$
$\frac{1}{n} \log \tilde{\Phi}\left(t, G_{\omega}\right) \leq \frac{1}{n} \log \Phi\left(t, G_{\omega}\right) \leq \frac{1}{n} \log \tilde{\Phi}\left(t, G_{\omega}\right)+\min \left(\frac{\max _{i, j}\left|a_{j i}\right|}{2 t}, 1.271\right)$
Jerrum-Sinclair-Vigoda 2004: fully polynomial randomized approximation scheme (fpras) to compute perm A A variation of MCMC method using rapidly mixed Markov chains converging to equilibrium point

The proofs do not carry over for nonbipartite graphs
A dichotomy: some \#P complete problem have fpras and some do not

Expected values of k-matchings

Expected values of k-matchings

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G}_{\text {mult }}(r, 2 n)$ and vice versa

$$
G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle
$$ number of different σ inducing the same simple G is $(r!)^{n}$

Expected values of k-matchings

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G}_{\text {mult }}(r, 2 n)$ and vice versa
$G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle$ number of different σ inducing the same simple G is $(r!)^{n}$
- μ probability measure on $\mathcal{G}_{\text {mult }}(r, 2 n)$:
$\mu(G(\sigma))=((n r)!)^{-1}$

Expected values of k-matchings

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G}_{\text {mult }}(r, 2 n)$ and vice versa
$G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle$ number of different σ inducing the same simple G is $(r!)^{n}$
- μ probability measure on $\mathcal{G}_{\text {mult }}(r, 2 n)$:
$\mu(G(\sigma))=((n r)!)^{-1}$
- FKM 06:
$\left.\left.E(k, n, r):=\mathrm{E}(\phi(k, G))=\binom{n}{k}^{2} r^{2 k} k!(n r-k)!\right)(n r)!\right)^{-1}$,
$k=1, \ldots, n$

Expected values of k-matchings

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G}_{\text {mult }}(r, 2 n)$ and vice versa
$G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle$
number of different σ inducing the same simple G is $(r!)^{n}$
- μ probability measure on $\mathcal{G}_{\text {mult }}(r, 2 n)$:
$\mu(G(\sigma))=((n r)!)^{-1}$
- FKM 06:
$\left.\left.E(k, n, r):=\mathrm{E}(\phi(k, G))=\binom{n}{k}^{2} r^{2 k} k!(n r-k)!\right)(n r)!\right)^{-1}$, $k=1, \ldots, n$
- $1 \leq k_{l} \leq n_{l}, l=1, \ldots$, increasing sequences of integers s.t.
$\lim _{l \rightarrow \infty} \frac{k_{l}}{n_{l}}=p \in[0,1]$. Then

$$
\lim _{l \rightarrow \infty} \frac{\log E\left(k_{l}, n_{l}, r\right)}{2 n_{k}}=f(p, r)
$$

$f(p, r):=\frac{1}{2}\left(p \log r-p \log p-2(1-p) \log (1-p)+(r-p) \log \left(1-\frac{p}{r}\right)\right)$

p-matching entropy

p-matching entropy

$G=(V, E)$ infinite, degree of each vertex bounded by N,

p-matching entropy

$G=(V, E)$ infinite, degree of each vertex bounded by N,
$p \in[0,1]$-matching entropy, (p-dimer entropy) of G

$$
h_{G}(p)=\sup _{\text {on all sequences }} \lim _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

$G_{l}=\left(E_{I}, V_{I}\right), I \in \mathbb{N}$ a sequence of finite graphs converging to G, and

$$
\lim _{l \rightarrow \infty} \frac{2 k_{1}}{\# V_{l}}=p
$$

Asymptotic Lower and Upper Matching conjectures

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

ALMC: $\operatorname{low}_{r}(p)=f(p, r)($ For most of the sequences liminf $=f(p, r))$
Friedland-Gurvits 2008: For $3 \leq \in \mathbb{N}$ and $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$, ALMC holds

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

ALMC: $\operatorname{low}_{r}(p)=f(p, r)($ For most of the sequences liminf $=f(p, r))$
Friedland-Gurvits 2008: For $3 \leq \in \mathbb{N}$ and $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$, ALMC holds

$$
\operatorname{upp}_{r}(p):=\sup _{\text {all allowable sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

ALMC: $\operatorname{low}_{r}(p)=f(p, r)($ For most of the sequences liminf $=f(p, r))$
Friedland-Gurvits 2008: For $3 \leq \in \mathbb{N}$ and $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$, ALMC holds

$$
\operatorname{upp}_{r}(p):=\sup _{\text {all allowable sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

AUMC: $\operatorname{upp}_{r}(p)=h_{K(r)}(p), K(r)$ countable union of $K_{r, r}$

$r=4$

$r=6$

References

Tin R．J．Baxter，Dimers on a rectangular lattice，J．Math．Phys． 9 （1968），650－654．
L．M．Bregman，Some properties of nonnegative matrices and their permanents，Soviet Math．Dokl． 14 （1973），945－949．
T．G．P．Egorichev，Proof of the van der Waerden conjecture for permanents，Siberian Math．J． 22 （1981），854－859．
T．G．P．Egorychev，Permanents，Book in Series of Discrete Mathematics，（in Russian）， Krasnoyarsk，SFU， 2007.
T．P．Erdös and A．Rényi，On random matrices，II，Studia Math．Hungar． 3 （1968），459－464．
B D．I．Falikman，Proof of the van der Waerden conjecture regarding the permanent of doubly stochastic matrix，Math．Notes Acad．Sci．USSR 29 （1981），475－479．

M．E．Fisher，Statistical mechanics of dimers on a plane lattice，Phys．Rev． 124 （1961）， 1664－1672．
R．H．Fowler and G．S．Rushbrooke，Statistical theory of perfect solutions，Trans．Faraday Soc． 33 （1937），1272－1294．
（ S．Friedland，A lower bound for the permanent of doubly stochastic matrices，Ann．of Math． 110 （1979），167－176．
S．Friedland，A proof of a generalized van der Waerden conjecture on permanents，Lin． Multilin．Algebra 11 （1982），107－120．

References

显
S．Friedland，FPRAS for computing a lower bound for weighted matching polynomial of graphs，arXiv：cs／0703029．

S．Friedland and L．Gurvits，Lower bounds for partial matchings in regular bipartite graphs and applications to the monomer－dimer entropy，Combinatorics，Probability and Computing， 2008，15pp．

S．Friedland，E．Krop，P．H．Lundow and K．Markström，Validations of the Asymptotic Matching Conjectures，Journal of Statistical Physics， 133 （2008），513－533， arXiv：math／0603001v3．
S．Friedland，E．Krop and K．Markström，On the Number of Matchings in Regular Graphs， The Electronic Journal of Combinatorics， 15 （2008），\＃R110，1－28，arXiv：0801．2256v1 ［math．Co］ 15 Jan 2008.

S．Friedland and U．N．Peled，Theory of Computation of Multidimensional Entropy with an Application to the Monomer－Dimer Problem，Advances of Applied Math．34（2005），486－522．
曷
L．Gurvits，Hyperbolic polynomials approach to van der Waerden／Schrijver－Valiant like conjectures，STOC＇06：Proceedings of the 38th Annual ACM Symposium on Theory of Computing，417－426，ACM，New York， 2006.

References

J．Hammersley and V．Menon，A lower bound for the monomer－dimer problem，J．Inst．Math． Applic． 6 （1970），341－364．

O．J．Heilmann and E．H．Lieb，Theory of monomer－dimer systems．，Comm．Math．Phys． 25 （1972），190－232．

P．W．Kasteleyn，The statistics of dimers on a lattice，Physica 27 （1961），1209－1225．
L．Lovász and M．D．Plummer，Matching Theory，North－Holland Mathematical Studies，vol． 121，North－Holland，Amsterdam， 1986.P．H．Lundow，Compression of transfer matrices，Discrete Math． 231 （2001），321－329．
C．Niculescu，A new look and Newton＇inequalties，J．Inequal．Pure Appl．Math． 1 （2000）， Article 17.
T．L．Pauling，J．Amer．Chem．Soc． 57 （1935），2680－．
T．A．Schrijver，Counting 1－factors in regular bipartite graphs，J．Comb．Theory B 72 （1998）， 122－135．
T H．Tverberg，On the permanent of bistochastic matrix，Math．Scand． 12 （1963），25－35．

L．G．Valiant，The complexity of computing the permanent，Theoretical Computer Science 8 （1979），189－201．B．L．van der Waerden，Aufgabe 45，Jber Deutsch．Math．－Vrein． 35 （1926）， 117.

