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Abstract. We study actions of higher rank lattices Γ < G on hyperbolic
spaces, and we show that all such actions satisfying mild properties come from

the rank-one factors of G. In particular, all non-elementary actions on an

unbounded hyperbolic space are of this type. Our results also apply to lattices
in products of trees, so that for example Burger–Mozes groups have exactly

two non-elementary actions on a hyperbolic space, up to a natural equivalence.

1. Introduction

How can a given group act by isometries on a hyperbolic space? The aim of
this paper is to study this question for irreducible lattices in a semisimple group
G of rank ≥ 2. Thomas Haettel [15] addresssed the case where all simple factors
of the ambient product G have rank ≥ 2 and showed, in that case, that the iso-
metric actions of the lattice on hyperbolic spaces are all degenerate (see below for
a more precise formulation). In this paper, we allow G to have simple factors of
rank 1. Since rank 1 simple groups have a natural geometric action on a proper
hyperbolic space (namely, a symmetric space or a tree), the lattices in G do admit
non-degenerate actions on hyperbolic spaces via their projections on the rank 1
simple factors of G. We show that, up to a natural equivalence, those are the only
actions of lattices in G on hyperbolic spaces. Our results also cover some non-linear
groups including, for example, lattices in products of trees.

1.A. Generalities on actions on hyperbolic spaces. Before stating our main
theorem, we now explain some general facts about actions on hyperbolic spaces.
First of all, any group has actions on hyperbolic spaces that fix a bounded set, as
well as actions that fix a point at infinity. Such actions can therefore not be used
to deduce anything about the group: from our viewpoint, they are degenerate,
and we will disregard them. Moreover, given an action on a hyperbolic space, one
could make a larger hyperbolic space containing the first one as a quasiconvex sub-
space, maintaining the group action. This can be done, for example, by attaching
equivariantly geodesic rays. To take this possibility into account, it is natural to
also rule out actions that admit a quasi-convex invariant set that is not coarsely
dense. In view of all this we define coarsely minimal actions (Definition 3.4) by,
essentially, ruling out the pathological behaviours discussed above. Arguably, those
are the most general actions that one might want to classify. Moreover, actions on
hyperbolic spaces that admit an equivariant quasi-isometry should be considered
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equivalent, and we capture this in Definition 3.5, where there is a subtlety to deal
with actions where given subgroups fix a bounded set rather than single points.

1.B. Higher rank groups and generalizations. As hinted at above we will
cover more than higher rank Lie groups in our main result. For this, we include the
following notion of a standard rank one group following [9, Theorem D]: a locally
compact group G is a standard rank one group if it has no nontrivial compact
normal subgroups and either

(1) G is the group of isometries or orientation-preserving isometries of a rank
one symmetric space X of noncompact type, or

(2) G has a continuous, proper, faithful action by automorphisms on a locally
finite non-elementary tree T , without inversions and with exactly two orbits
of vertices, such that the action of G on the set of ends ∂T is 2-transitive.

The symmetric space X in case (1) and the tree T in case (2) is called the model
space for the standard rank one group G. While standard rank one groups of type
(1) correspond to real Lie groups of rank one, type (2) includes, but is not restricted
to, simple algebraic groups over non-archimedean local fields of rank one.

Theorem 1.1. Let N ≥ n ≥ 0 be integers. Let G =
∏N

i=1Gi be a product of
N locally compact groups, where for all i ∈ {1, . . . , n}, Gi is a standard rank one
group, and for all j ∈ {n+1, . . . , N}, Gj is a simple algebraic group defined over a
local field kj with rkkj (Gj) ≥ 2. Let Γ < G be a lattice. Assume that n ≥ 2 or that
N > n. If N > 1, assume in addition that Γ has a dense projection to each proper
sub-product.

Then any coarsely minimal action of Γ on a geodesic hyperbolic space is equiva-
lent to one of the actions

Γ −→ G
pri−→ Gi −→ Isom(Xi, di) (1 ≤ i ≤ n)

where each Xi is a rank-one symmetric space or a tree, corresponding to the stan-
dard rank one factor Gi being of type (1) or (2).

As mentioned above, we refer to Definition 3.5 for the precise notion of equiva-
lence appearing in the theorem.

In the special case where G consists only of a single higher rank factor, that is
the case where n = 0 and N = 1, our considerations recover the main theorem of
[15].

Corollary 1.2. Let G = G(k) be a simple algebraic group defined over a local field
k, with rkk(G) ≥ 2, and Γ < G a lattice. Then Γ does not admit any coarsely
minimal action on a geodesic hyperbolic space.

One can also view Theorem 1.1 as a generalization of Margulis’ [17], where he
studied possible amalgam decompositions of lattices in higher rank.

1.C. Hyperbolic structures. The setup adopted here is inspired by the notion
of hyperbolic structures, defined in [1] to capture cobounded actions on hyperbolic
spaces. Coarsely minimal actions provide a similar but broader setup (see [1, Propo-
sition 3.12] for a comparison). In what follows, we regard a hyperbolic structure
as an equivalence class (in the sense of Definition 3.5) of cobounded actions on
hyperbolic spaces. Any such action is either coarsely minimal, or the hyperbolic
space being acted on is bounded (giving rise to what is called the trivial structure).
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That is, the number of hyperbolic structures up to equivalence is the number of
coarsely minimal action up to equivalence plus one.

Therefore, in the language of [1], Theorem 1.1 implies that the lattices under
consideration have exactly n + 1 inequivalent hyperbolic structures. Note that in
[1], for every integer n ≥ 1 the authors construct a finitely generated group Γ ad-
mitting precisely n distinct hyperbolic structures; irreducible lattices in higher-rank
semi-simple groups provide naturally occurring examples of that same phenome-
non. Note that any lattice in a higher-rank simple Lie group has only the trivial
hyperbolic structure by either [15] or Theorem 1.1.

Example 1.3 (Groups with n ≥ 2 non-trivial hyperbolic structures).

Choose n− 1 distinct primes p2, . . . , pn and consider the group

Γ = SL2(Z[
1

p2
, . . . ,

1

pn
])

that embeds as an irreducible lattice in SL2(R)× SL2(Qp2
)× · · · × SL2(Qpn

). The-
orem 3.7 implies that it has precisely n non-trivial hyperbolic structures that arise
from its actions on the hyperbolic plane H2 via pr1, or on the (pi + 1)-regular tree
Ti via pri for i = 2, . . . , n. These structures can also be viewed as coming from the
Cayley graphs X(Γ, Si), where S1 = {γ ∈ Γ / ∥ pri(γ)∥ ≤ 1 + ϵ1} for an arbitrary
fixed ϵ1 > 0, and for i ≥ 2 the set Si consists of those γ ∈ Γ that contain the prime
pi in the denominators of the matrix elements in power not exceeding 1.

Example 1.4 (A group with a single non-trivial hyperbolic structure).

Consider the quadratic form q(x1, . . . , x5) = x21+x
2
2+x

2
3+

√
2x24−x25, its orthogonal

group SO(q) = {g ∈ SL5 / q ◦ g = q}, and let Γ = SO(q)Z[
√
2] be the group of its

integer points. This group has only one non-trivial hyperbolic structure, because
Γ is an irreducible lattice in the semi-simple real Lie group SO(4, 1) × SO(3, 2)
that has a single rank-one factor SO(4, 1) ≃ Isom(H4) and another simple SO(3, 2)
factor of rank two.

Example 1.5 (Each Burger–Mozes group has two non-trivial hyperbolic struc-
tures).
M. Burger and S. Mozes [8] have constructed irreducible lattices Γ < G1 ×G2 in a
product of two standard rank one groups Gi < Aut(Ti), and proved many remark-
able properties of these groups. Theorem 3.7 shows that each of these lattices Γ has
precisely two distinct non-trivial hyperbolic structures, coming from their actions
on the trees T1 and T2.

1.D. Outline of proofs. In the proofs we will use boundary theory as outlined in
[4]. Roughly, given a group Γ one can associate to it a Lebesgue space B, called
Γ-boundary, which on one hand has very strong ergodic properties, and on the
other hand has the property that whenever Γ acts on a compact space Z, there is
a Γ-equivariant map B−→Prob(Z), called a boundary map. In Section 2 we will
study a general group Γ acting nicely on a hyperbolic space X, and show that in
this case the boundary map actually takes its values in the Gromov boundary ∂X
of X, and enjoy various extra rigidity properties. The case where X is proper had
been considered already in [4], and indeed the main result of the section is a direct
generalization of [4, Theorem 3.2]. To deal with the case of potentially non-proper
spaces, we make use of the horoboundary and its relation to the Gromov boundary.
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Similar strategies were considered by Duchesne in [10] and by Maher and Tiozzo
in [16]. Related ideas appeared already in the much earlier work [17] of Margulis,
where he studied actions of higher rank lattices on trees.

In Section 3 we specialize to the case where Γ is a (generalized) higher rank
lattice, as in our main theorem. In this case the Γ-boundary of Γ splits as a
product, with factors corresponding to the factors of the ambient locally compact
group G. Due to the ergodicity properties of Γ-boundaries, we see that when Γ
acts nicely on a hyperbolic space X, the boundary map from the Γ-boundary to
∂X factors through one of the algebraic factors of the ambient group G. At this
point, there are two cases to analyse. The first case is when the said factor is of
rank ≥ 2: we have to show that this cannot occur. This is done in Subsection 3.E
by adapting the Weyl group method of Bader–Furman [3]. The second case is that
the factor as above corresponds to a rank-one factor Gi of G. In that case, we have
to show that X is equivalent to the model space Xi for Gi (a symmetric space or a
tree). This is done in Subsections 3.F and 3.G. By hypothesis, the group G has at
least two factors in this case, the projection of Γ to Gi has dense image. To show
the equivalence between Xi and X, metric properties are transferred from Xi to X
via the boundary map. A key ingredient is that bounded subsets of Xi correspond
to precompact subsets of Gi, and the latter property can be rephrased in terms of
the boundedness of Radon–Nikodym derivatives for the action on the Gi-boundary.

Acknowledgements. The authors would like to acknowledge the support: UB
was supported by ISF Moked 713510 grant number 2919/19, PEC was supported by
the FWO and the F.R.S.-FNRS under the EOS programme (project ID 40007542),
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by BSF Grant 2018258.
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2. Boundary maps

In this section we fix the group Γ and discuss boundary maps associated to
various hyperbolic structures on Γ. In particular we prove Theorem 2.3 below. The
novel aspect of this theorem is that the Gromov hyperbolic spaces it deals with are
not assumed to be proper. Recall that the Gromov boundary of a proper Gromov
hyperbolic space is compact and the associated action is a convergence group action.
Boundary maps associated with such actions were considered in [4, Theorem 3.2].
Thus Theorem 2.3 below is an extension of [4, Theorem 3.2]. Our main task in this
section is to recall the setting of the latter and to explain the required adjustments
in its proof.

Let us first recall some definitions. Let G be a locally compact second countable
group. This includes the case of countable discrete group Γ. A Lebesgue G-space
is a Lebesgue space (Ω, µ) with a measurable, measure class preserving action map
G × Ω−→Ω. A Borel G-space V is a standard Borel space V with a Borel action
map G × V−→V . Given a Lebesgue G-space Ω and a standard Borel G-space
V , we denote by MapG(Ω, V ) the space of equivalence classes of measurable maps
f : Ω → V that satisfy f(g.ω) = g.f(ω) for a.e. g ∈ G and a.e. ω ∈ Ω, where
f, f ′ : Ω → V are identified if f(ω) = f ′(ω) for a.e. ω ∈ Ω. Any such map f is
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equivalent to f0 : Ω → V such that for every g ∈ G we have f0(g.ω) = g.f0(ω) a.e.
ω ∈ Ω ([18, Proposition B.5]).

We say that a Lebesgue G-space Ω is metrically ergodic if given any separable
metric space (S, d) and a continuous homomorphism π : G → Isom(S, d), the only
G-equivariant measurable maps F : Ω−→S are essentially constant ones, i.e.

MapG(Ω, S) = MapG({∗}, S).
Let p : Ω−→Σ be a measurable, measure class preserving, G-equivariant map be-
tween Lebesgue G-spaces. We say that p is a relatively metrically ergodic map if for
any measurable family {(Sy, dy)}y∈Σ of separable metric spaces, with a measurable
family

{πy(g) : (Sy, dy)−→(Sgy, dgy)} (g ∈ G, y ∈ Σ)

of isometries with πy(gh) = πhy(g)◦πy(h), the only G-equivariant measurable maps
{F (x) ∈ Sp(x)}x∈Ω are pull-backs F = f ◦ p of measurable G-equivariant family
{f(y) ∈ Sy}y∈Σ. In particular, for any fixed separable metric space (S, d) and
any continuous homomorphism π : G−→ Isom(S, d) we have a natural isomorphism
MapG(Ω, S) ≃ MapG(Σ, S).

Definition 2.1 ([4, Definition 2.3]). A pair (B−, B+) of Lebesgue G-spaces forms
a boundary pair if the actions G ↷ B− and G ↷ B+ are amenable, and the
projections

pr− : B− ×B+ −→ B−, pr+ : B− ×B+ −→ B+

are relatively metrically ergodic. A Lebesgue G-space B for which (B,B) is a
boundary pair will be called a G-boundary.

We recall the following facts (see [4, §2]).

Proposition 2.2. (a) Any lcsc group G admits a boundary pair (and also G-
boundaries), arising from Furstenberg–Poisson boundaries associated with
a generating and admissible probability measure µ and its reflection µ̌ on G
(see [4, Theorem 2.7]).

(b) For a simple Lie group G the quotient B = G/P by a minimal parabolic
subgroup P < G, equipped with a G-invariant measure class, gives a G-
boundary (see [4, Theorem 2.5]). More generally, for a local field k, (the
k-points of) a k-simple group G and a k-minimal parabolic subgroup P < G,
G/P is a G-boundary (see [2, Example 2.14]).

(c) For a locally compact group G which acts continuously, properly, by au-
tomorphisms on a locally finite tree, such that the boundary action is 2-
transitive, G/P is a G-boundary, where P < G the stabilizer of a boundary
point, (see [2, Example 2.15]).

(d) Let G = G1 × · · · × GN be a product of lcsc groups, and let (B
(i)
− , B

(i)
+ )

be Gi-boundary pairs, 1 ≤ i ≤ N . Then B− = B
(1)
− × · · · × B

(N)
− and

B+ = B
(1)
+ × · · · ×B

(N)
+ form a boundary pair for G.

(e) Let Γ < G be a lattice. Then any G-boundary pair (B−, B+) is a boundary
pair for Γ.

In the following theorem (X, d) is a separable Gromov hyperbolic space with a
group Γ acting by isometries on X. We denote by ∂X Gromov boundary, ∂X2 its
square, and

∂X(2) = {(ξ, η) / ξ ̸= η ∈ ∂X}
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the subset of distinct pairs of boundary points. Since X is not assumed to be
proper, ∂X is not necessarily compact. Yet, ∂X is a standard Borel space, and so
are ∂X(2) ⊂ ∂X2. The action of Γ on all these spaces is Borel.

Theorem 2.3 (cf. [4, Theorem 3.2]).
Let (B+, B−) be a boundary pair for Γ. Let (X, d) be a separable, Gromov hyperbolic
(possibly non-proper), geodesic metric space and assume that Γ acts continuously
and isometrically on X. Denote by ∂X the Gromov boundary of X and recall it is
a Polish space (possibly non-compact) on which Γ acts continuously. Assume that
Γ does not fix a bounded set in X and does not fix a point or a pair of points in
∂X.

Then there exist ϕ− ∈ MapΓ(B−, ∂X), ϕ+ ∈ MapΓ(B+, ∂X) such that the image
of the map ϕ▷◁ ∈ MapΓ(B− ×B+, ∂X

2) given by

ϕ▷◁(x, y) = (ϕ−(x), ϕ+(y))

is essentially contained in the set of distinct pairs ∂X(2) ⊂ ∂X2. Moreover:

(i) MapΓ(B−,Prob(∂X)) = {δ ◦ ϕ−}, and MapΓ(B+,Prob(∂X)) = {δ ◦ ϕ+}.
(ii) MapΓ(B− ×B+, ∂X) = {ϕ− ◦ pr−, ϕ+ ◦ pr+},
(iii) MapΓ(B− ×B+, ∂X

(2)) = {ϕ▷◁, τ ◦ ϕ▷◁}, where τ(ξ, ξ′) = (ξ′, ξ).

The rest of this section is devoted to the proof of this Theorem.

2.A. The horoclosure of a separable metric space. Let (X, d) be a separable
metric space. We consider the space of functions from X to R endowed with the
pointwise convergence topology, i.e the product space RX , and the constant function
1 ∈ RX . We endow RX/R · 1 with the quotient topological vector space structure.
We map X to RX by x 7→ d(·, x) and consider its image in RX/R ·1. We denote the
closure of the image of X in RX/R · 1 by X̄ and call it the horoclosure of X. We

denote the obvious map X → X̄ by i, and the preimage of X̄ in RX by X̃. Elements
of X̄ (and by abuse of notations, also elements of X̃) are called horofunctions. It
is a common practice to fix a base point x ∈ X and to consider the subspace

X̃ ⊃ X̃x =
{
h ∈ X̃ / h(x) = 0

}
.

Lemma 2.4. X̄ is a compact metrizable space and the map i : X → X̄ is an injec-
tive continuous map. For a fixed x ∈ X, the map X̃x → X̄ is a homeomorphism.

Proof. The fact that i is continuous is obvious. For x ̸= y in X, note that the
difference function d(x, ·) − d(y, ·) is not constant, as it attains different values at

x and y. Thus i is injective. We now fix x ∈ X. First we note that X̃x is closed
subset of ∏

y∈X

[−d(x, y), d(x, y)] ⊂
∏
y∈X

R = RX ,

thus it is compact. Fixing a countable dense subsetX0 inX, the obvious map X̃x →
RX → RX0 is a continuous injection (as X̃x consists of continuous functions), hence
a homeomorphism onto its image. The image is a Frechet space, thus metrizable. It
follows that X̃x is metrizable. Since the natural map X̃x → X̄ is also a continuous
bijection, we conclude that it is a homeomorphism and deduce that X̄ is compact
and metrizable. □
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Loosely speaking, we identify many times X with i(X) ⊂ X̄. Note however that
the image of X is in general not open in X̄ and the map i is not a homeomorphism
onto its image.

We decompose X̃ as follows.

X̃b =
{
h ∈ X̃ / f is bounded from below

}
,

X̃u =
{
h ∈ X̃ / f is unbounded from below

}
.

This decomposition is constant on the fibers of X̃ → X̄, thus gives a corresponding
decomposition X̄ = X̄b ∪ X̄u. Clearly we have i(X) ⊆ X̄b, so that X̄b is dense in
X̄.

Lemma 2.5. The decompositions X̃ = X̃b ∪ X̃u and X̄ = X̄b ∪ X̄u are measurable
and Isom(X)-equivariant.

Proof. The equivariance of the decompositions is obvious. Fix a dense countable
subset X0 in X and use the fact that X̃ consists of continuous functions to note
that

X̃u =
⋂
n∈N

⋃
x∈X0

{
h ∈ X̃ / h(x) ≤ −n

}
,

thus X̃u ⊂ X̃ is measurable. Fixing x ∈ X, using the measurability of X̃u
x , we

observe that X̄u ⊂ X̄ is measurable. □

We denote by Bdd(X) the space of closed non-empty bounded subsets of X and
endow it with the Hausdorff metric.

Lemma 2.6. The Borel σ-algebra on Bdd(X) is generated by the collection

C = {K ∈ Bdd(X) / K ⊂ U, U open in X} .

Proof. Denote by ⟨C⟩ the σ-algebra generated by the collection C. For every x ∈ X
and r > 0, the set {K / d(K,x) > r} is in C, thus {K / d(K,x) ≤ r} is in ⟨C⟩.
Given any subset K0 ∈ Bdd(X), using a dense countable subset K ′

0 in K0, we get
that

{K / ∀ x ∈ K0, d(K,x) ≤ r} =
⋂

x∈K′
0

{K / d(K,x) ≤ r} ∈ ⟨C⟩.

Note also that

{K / ∀ x ∈ K, d(K0, x) ≤ r} =
⋂
n

{
K / ∀ x ∈ K, d(K0, x) < r +

1

n

}
∈ ⟨C⟩

and that the intersection of the two sets above consists of the closed ball of radius
r around K0 in Bdd(X). As the open ball of radius r around K0 is given by the
union of the closed balls of radius r − 1/n around K0, we conclude that all open
balls in Bdd(X) are in ⟨C⟩. □

2.B. The horoclosure of a hyperbolic metric space. We now assume in addi-
tion that the separable metric space (X, d) is geodesic and Gromov hyperbolic (as
before, it is possibly non-proper).

Lemma 2.7. The function

inf : X̃b → R, h 7→ inf {h(x) / x ∈ X}
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is measurable and Isom(X)-invariant. For every h ∈ X̃b, the set

Ĩ(h) = {x ∈ X / h(x) < inf(h) + 1}

is bounded in X. The obtained map Ĩ : X̃b → Bdd(X) is measurable and factors

via X̃b → X̄b, defining a measurable map I : X̄b → Bdd(X). The maps Ĩ and I
are Isom(X)-equivariant.

Remark 2.8. In fact, as the proof below shows, the sets in the image of I are
uniformly bounded.

Proof. To see that inf is measurable, fix a dense countable subset X0 in X and use
the continuity of the functions in X̃b to observe that

inf(h) = inf {h(x) / x ∈ X0} .
The invariance of this function is clear.

Fix h ∈ X̃b. We argue to show that Ĩ(h) is of diameter bounded by C = 8+ 4δ,
where δ is the hyperbolicity constant associated with the thin triangles property of
X. Without loss of generality we assume that inf(h) = 0. Assuming the negation,
we fix two points x, x′ satisfying d(x, x′) > C and h(x), h(x′) < 1. We consider a
finite sequence of points x0, x1, . . . , xn on a geodesic segment from x to x′ such that
x0 = x, xn = x′ and d(xi, xi+1) < 1. We consider the image of h in X̄ along with
its neighborhood given by

U =
{
f + R · 1 / f ∈ RX , ∀0 ≤ i, j ≤ n, | (f(xi)− f(xj))− (h(xi)− h(xj)) | < 1

}
.

We fix a point y ∈ X whose image in X̄ is in U . We thus have:

(2.1) ∀0 ≤ i, j ≤ n, |d(y, xi)− h(xi)− d(y, xj) + h(xj)| < 1.

We consider geodesic segments from y to x and from y to x′ and, using that x, x′

and y are the vertices of a thin triangle, we fix i such that xi lies at distance at
most 1 + δ from these segments. Thus

d(y, xi) + d(xi, x) ≤ d(y, x) + 2 + 2δ,

d(y, xi) + d(xi, x
′) ≤ d(y, x′) + 2 + 2δ.

Note that d(x, xi) + d(xi, x
′) = d(x, x′). Upon possibly interchanging the roles of

x and x′, we will assume that d(x, xi) ≥ d(x, x′)/2. In particular, d(x, xi) ≥ C/2.
Taking j = 0 in Equation (2.1), we now have

0 = inf(h)

≤ h(xi)

< 1 + d(y, xi) + h(x)− d(y, x)

≤ 1 + (d(y, x) + 2 + 2δ − d(xi, x)) + h(x)− d(y, x)

< (3 + h(x)) + 2δ − d(xi, x)

≤ 4 + 2δ − C/2 = 0.

This is a contradiction, thus indeed the diameter of Ĩ(h) is bounded by C.

We now turn to prove the measurability of Ĩ and I. Fix an open set U in X.
Observe that for a countable dense subset F0 in X − U ,

Ĩ−1({K | K ⊂ U}) =
⋂

x∈F0

{
h ∈ X̃ / h(x)− inf(h) ≥ 1

}
,
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thus this is a measurable set. By Lemma 2.6, it follows that Ĩ is measurable.
The fact that Ĩ factors via X̃b → X̄b is clear. To see that the obtained map
I : X̄b → Bdd(X) is measurable, use Lemma 2.4 and the fact that, fixing x ∈
X, Ĩ is measurable on X̃b

x. The fact that Ĩ and I are Isom(X)-equivariant is
straightforward. □

2.C. Measurable barycenters. We now describe for each ϵ ∈ (0, 1/2) a measur-
able ”barycenter” Isom(X)-map

βϵ : Prob(Bdd(X))−→Bdd(X)

to be the set of centers of balls of almost minimal radius containing (1− ϵ) mass of
sets.

More precisely, given a probability measure m on Bdd(X), a point x ∈ X and
R <∞, consider the ball B(x,R) = {y ∈ X / d(x, y) < R} and the value

Fm,x(R) := m {A ∈ Bdd(X) / A ⊂ B(x,R)} .
Clearly Fm,x(R) → 1 as R → 1. So for every x ∈ X one has a well defined finite
Rx,ϵ,m = inf {R / Fm,x(R) > 1− ϵ}. Define R∗

ϵ,m := inf {Rx,ϵ,m / x ∈ X}. We set

βϵ(m) =
{
x ∈ X / Rx,ϵ,m < R∗

ϵ,m + 1
}
,

which is easily seen to be a bounded set, since if we have points x1, x2 ∈ X so that
m

{
A ∈ Bdd(X) / A ⊂ B(xi, R

∗
ϵ,m + 1)

}
> 1/2 for i = 1, 2, then we must have

B(x1, R
∗
ϵ,m + 1) ∩B(x2, R

∗
ϵ,m + 1) ̸= ∅.

From the definition, βϵ is Isom(X)-equivariant.

Lemma 2.9. Given C > 0 and ϵ ∈ (0, 1/2), if m1,m2 ∈ Prob(Bdd(X)) are such
that for every measurable E ∈ Bdd(X)

C−1m1(E) ≤ m2(E) ≤ Cm1(E)

then
βϵ/C(m2) ⊆ NR(ϵ,m1)(βϵ(m1)),

where R(ϵ,m1) = R∗
ϵ,m1

+R∗
ϵ/C2,m1

+ 3.

Proof. This is similar to the reason why βϵ(m) is bounded. Suppose that x1, x2 are
so that

m1

{
A / A ⊂ B(x1, R

∗
ϵ,m1

+ 1)
}
> 1− ϵ

and

m2

{
A / A ⊂ B(x2, R

∗
ϵ/C,m2

+ 1)
}
> 1− ϵ/C.

Then m1

{
A ∈ Bdd(X) / A ⊂ B(x2, R

∗
ϵ/C,m2

+ 1)
}
> 1− ϵ, hence

B(x1, R
∗
ϵ,m1

+ 1) ∩B(x2, R
∗
ϵ/C,m2

+ 1) ̸= ∅,

yielding d(x1, x2) ≤ R∗
ϵ,m1

+R∗
ϵ/C,m2

+ 2.

Moreover, R∗
ϵ/C,m2

≤ R∗
ϵ/C2,m1

+ 1, because given any x with the property that

m1

{
A / A ⊂ B(x,R∗

ϵ/C2,m1
+ 1)

}
> 1− ϵ/C2, by comparability of the measure we

also have that

m2

{
A ∈ Bdd(X) / A ⊂ B(x,R∗

ϵ/C2,m1
+ 1)

}
> 1− ϵ/C.

□
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2.D. The Gromov boundary. While the construction of the Gromov boundary
∂X is fairly standard, it is commonly taken under a properness assumption on X.
In preparation for our more general discussion we review this construction below.
As common, we fix from now on a base point o ∈ X. For x ∈ X we use the
shorthand notation |x| = d(o, x). Gromov products will be taken, unless otherwise
stated, with respect to o. That is, for x, y ∈ X we set

(x, y) =
1

2
(|x|+ |y| − d(x, y)) .

In our discussion below we fix δ > 0 such that for every x, y, z ∈ X we have

(x, z) ≥ min{(x, y), (y, z)} − δ.

We recall that a sequence of points (xn) in X is said to converge to infinity if
(xn, xm) converges to infinity when both m and n do.

Lemma 2.10. Assume (xn) is a sequence of points in X which converges in X̄ and
denote h̄ = limxn. Then (xn) converges to infinity if and only if h̄ ∈ X̄u. In that
case, if (x′n) is another sequences in X satisfying limx′n = h̄ then (xn, x

′
n) → ∞.

Proof. We will denote the lift of h̄ in X̃o by h and show that (xn) converges to

infinity if and only if h ∈ X̃u
o . Note that for every x ∈ X, d(xn, x)− |x| → h(x).

Assuming first (xn) converges to infinity, we will show that h ∈ X̃u
o . Fix r > 0.

Fix N such that for n,m > N , (xn, xm) > r. Fix m > N , note that |xm| ≥ r
and let x be a point on a geodesic segment from o to xm with |x| = r. Then by
hyperbolicity,

(xn, x) ≥ min{(xn, xm), (xm, x)} − δ = r − δ,

Thus

h(x) = lim
n→∞

(d(xn, x)− |xn|) = lim
n→∞

(|x| − 2(xn, x)) ≤ 2δ − r.

As r was arbitrary, indeed we get that h ∈ X̃u
o .

Assuming now h ∈ X̃u, we will show that (xn) converges to infinity. Fix r > 0.
Fix x such that h(x) < −r. Fix N such that for every n > N , d(xn, x)− |xn| < −r
and observe that for such n,

(xn, x) =
1

2
(|xn|+ |x| − d(xn, x)) ≥ −1

2
(d(xn, x)− |xn|) >

1

2
r.

Then by hyperbolicity, for n,m > N ,

(xn, xm) ≥ min{(xn, x), (x, xm)} − δ >
1

2
r − δ.

As r was arbitrary, indeed we get that the sequence (xn) converges to infinity.
In the setting of the former paragraph, if (x′n) is another sequences inX satisfying

x′n → h̄, fixing N ′ ≥ N such that for every n > N ′, d(x′n, x)− |x′n| < −r, the same
computation shows that (xn, x

′
n) > r/2− δ. Thus indeed, (xn, x

′
n) → ∞. □

Two sequences which converge to infinity, (xn) and (yn), are said to be equivalent
if (xn, yn) → ∞. We conclude that if (xn) and (x′n) are two sequences in X
satisfying

lim
n→∞

xn = lim
n→∞

x′n ∈ X̄u

then (xn) is equivalent to (x′n).
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A point in ∂X is, by definition, an equivalence class of sequences which converge
to infinity. We denote by π the unique map π : X̄u → ∂X satisfying

lim
n→∞

xn ∈ X̄u =⇒ π( lim
n→∞

xn) = [xn].

For a point ξ ∈ ∂X and r > 0 we set

U(ξ, r) =
{
η ∈ ∂X / sup

{
lim inf
n→∞

(xn, x
′
n) / (xn) ∈ ξ, (x′n) ∈ η

}
≥ r

}
.

We note that the collection of sets U(ξ, r) forms a basis for a topology and endow
∂X with the corresponding topology.

Lemma 2.11. The map π is continuous and Isom(X)-equivariant.

Proof. The equivariance of π is obvious. In order to show continuity, we fix a point
h̄ ∈ X̄u and show the continuity of π at h̄. Thus we fix r > 0 and argue to show
that there exists a neighborhood V of h̄ in X̄u such π(V ) ⊂ U(π(h̄), r). We will

denote the lift of h̄ in X̃u
o by h, set t = 2(r + δ) and fix a point x ∈ X such that

h(x) < −t. We let V ⊂ X̄u
o be the open neighborhood of h̄ corresponding to the

set {h′ ∈ X̃u
o | h′(x) < −t}. Fix h̄′ ∈ V and denote its lift in X̃u

o by h′. Let (xn)
and (x′n) be sequences in X converging to h̄ and h̄′ respectively. In particular,

h(x) = lim
n→∞

(d(xn, x)− |xn|) , h′(x) = lim
n→∞

(d(x′n, x)− |x′n|) .

FixN such that for every n > N both (d(xn, x)− |xn|) < −t and (d(x′n, x)− |x′n|) <
−t. Note that for n > N

(xn, x) =
1

2
(|xn|+ |x| − d(xn, x)) ≥ −1

2
(d(xn, x)− |xn|) >

1

2
t

and similarly (x′n, x) > t/2. Thus

(xn, x
′
n) ≥ min{(xn, x), (x, x′n)} − δ >

1

2
t− δ = r.

It follows that lim inf(xn, x
′
n) ≥ r and in particular,

sup
{
lim inf
n→∞

(xn, x
′
n) / (xn) ∈ π(h̄), (x′n) ∈ π(h̄′)

}
≥ r.

Thus, π(h̄′) ∈ U(π(h̄), r). We conclude that indeed π(V ) ⊂ U(π(h̄), r). □

Lemma 2.12. Assume Γ < Isom(X) is a countable group. Then there is a Borel
Γ-map

τ : ∂X(3)−→Bdd(X).

Proof. Of course, the idea is just that τ gives the coarse center of an ideal triangle,
but some care is needed because X might not be proper, and because we want a
Borel map. Let δ > 0 be a hyperbolicity constant for X.

Fix a dense, countable, Γ-invariant subset C ⊆ X. For x ∈ X, let Tx ⊆ X3

be the set of all triples (x1, x2, x3) so that d(xi, xj) > d(xi, x) + d(x, xj) − 10δ

for all distinct i, j ∈ {1, 2, 3}. We then define τ(a) = {x ∈ C : a ∈ Tx}, where the
closure of Tx is taken in (X ∪ ∂X)3. Notice that τ(a) is indeed a bounded, closed,
non-empty subset of X, and that τ is Γ-equivariant.

Let us now show that τ is Borel. Let U be an arbitrary open set in X and let
BU = {K ∈ Bdd(X) : K ⊂ U}. To show that τ is Borel, it suffices to show that
τ−1(BU ) = {a ∈ ∂X(3) : τ(a) ⊆ U} is a Borel set. Fix an exhaustion {Un} of U .
Notice that τ(a) ⊆ U if and only if there exists n so that {x ∈ C : a ∈ Tx} ⊆ Un. In
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turn, we have {x ∈ C : a ∈ Tx} ⊆ Un if and only if a /∈ Tx for all x ∈ C−Un. Hence,
setting An = {a ∈ ∂X(3) : a /∈ Tx ∀x ∈ C − Un}, we have τ−1(BU ) =

⋃
n∈NAn.

Hence, it suffices to show that each An is Borel. We have An =
⋂

x∈C−Un
{a ∈

∂X(3) : a /∈ Tx}, so that An is a countable intersection of closed sets, and we are
done. □

2.E. Digression: Atom-less measures. We now show a result needed in the
next section, but not needed for the proof of Theorem 2.3; we include it here since
we established the setup for its proof.

Given a hyperbolic space X, denote by Probc(∂X) be the set of all atom-less
probability measures on the standard Borel space ∂X.

Lemma 2.13. Given a countable group Γ acting on the hyperbolic space X. Then
there is a Γ-map

Ψ : Probc(∂X)−→Prob(Bdd(X)).

Proof. We have a Γ-map

Probc(∂X)−→Prob(∂X3), µ 7→ µ× µ× µ.

In fact, the assumption that µ has no atoms on a space ∂X implies that µ× µ× µ
gives zero mass to the diagonals in ∂X × ∂X × ∂X, and so is fully supported on
∂X(3). We thus get a well defined map

Probc(∂X)−→Prob(∂X(3)), µ 7→ µ× µ× µ.

By Lemma 2.12 there is a Borel Γ-map

∂X(3)−→Bdd(X).

We therefore obtain a Γ-map

Ψ : Probc(∂X)−→Prob(Bdd(X)),

as required. □

2.F. Proof of Theorem 2.3. We start with a preliminary claim that we will use
a few times.

Claim 2.14. We have

MapΓ(B− ×B+,Prob(Bdd(X))) = ∅

and therefore

MapΓ(B−,Prob(Bdd(X))) = MapΓ(B+,Prob(Bdd(X))) = ∅.

Proof. It suffices to rule out Γ-maps f : B− × B+ → Prob(Bdd(X)). If we had
such map, by composing with a map βϵ we would then also have a Γ-equivariant
map B−×B+ → Bdd(X). By metric ergodicity (where we are thinking of Bdd(X)
as a metric space), any such map is essentially constant, with value a fixed point
of Γ in the space Bdd(X). Since we are assuming that Γ has unbounded orbits in
X, this is impossible. □

By amenability of Γ ↷ B±, there exist Γ-equivariant maps ϕ′′± : B± → Prob(X̄).

Claim 2.15. We have:

MapΓ(B−,Prob(X̄
b)) = MapΓ(B+,Prob(X̄

b)) = ∅.
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Proof. Recall from Lemma 2.7 that we have a Γ-equivariant measurable map I :
X̄b → Bdd(X). Hence, if we had a map f as above, we would also have a Γ-
equivariant map B± → Prob(Bdd(X)), contradicting Claim 2.14. □

In view of the claim, for a.e. b ∈ B± we have that the support of ϕ′′±(b) must be

contained in X̄u, so that we can think of ϕ′′± as a map B± → Prob(X̄u). We can

then compose ϕ′′± with π∗ : Prob(X̄u) → Prob(∂X), to obtain the maps

ϕ′± : B±−→Prob(∂X).

Claim 2.16. For a.e. b ∈ B±, we have that ϕ′±(b) = δξ± for some ξ± ∈ ∂X.

For later purposes, we remark that the proof applies to any Γ-maps ϕ′± : B± →
Prob(∂X) (meaning not necessarily obtained in the way described above).

Proof. We consider the Γ-equivariant map ψ : B−×B+ → Prob((∂X)3) defined by

ψ(b−, b+) = ϕ′−(b−)× ϕ′+(b+)×
1

2
(ϕ′−(b−) + ϕ′+(b+)).

By ergodicity of Γ ↷ B− × B+, either the image of ψ is essentially contained in
Prob((∂X)(3)), or it is essentially contained in Prob(∆(∂X)), where ∆(∂X) is the
set of triples so that at least two entries coincide.

In the latter case, we see that ψ(b−, b+) is atomic with at most two atoms for
a.e. (b−, b+), which implies that ϕ′±(b) is a Dirac measure for a.e. b ∈ B±, as we
wanted. Hence, we have to rule out the first case.

If, by contradiction, the image of ψ is essentially contained in Prob((∂X)(3)),
then in view of Lemma 2.12 we also have a Γ-map B− × B+ → Prob(Bdd(X)),
which does not exist by Claim 2.14. This concludes the proof. □

In view of the previous claim, we have Γ-equivariant maps

ϕ± : B±−→∂X, defined by ϕ′±(b) = δϕ±(b).

Now we have to show various properties.
First, we show that the image of ϕ▷◁ = ϕ−×ϕ+ is essentially contained in ∂X(2).

If not, by ergodicity the image would be essentially contained in the diagonal. By
varying the coordinates in B− × B+ separately, we see that this would imply that
both maps ϕ± are essentially constant, which is impossible because Γ does not fix
any point in ∂X.

Next, we show that ϕ± are essentially unique. This is because Claim 2.16 shows
that any Γ-map B± → Prob(∂X) has image essentially contained in the set of Dirac
measures. However, if we had two essentially distinct Γ-maps ϕi± : B± → ∂X, then

we would have the Γ-map B± → Prob(∂X) given by b 7→ 1
2 (δϕ1

±(b) + δϕ1
±(b)), which

contradicts the said property.
Consider now ψ ∈ MapΓ(B− ×B+, ∂X), and let Ψ = ψ × (ϕ ◦ pr−)× (ϕ ◦ pr+),

which is a Γ-map B− × B+ → (∂X)3. As in the proof of Claim 2.16, if the
image was essentially contained in (∂X)(3), then in view of Lemma 2.12 we would
have a Γ-map B− × B+ → Prob(Bdd(X)), which does not exist by Claim 2.14.
Hence, Ψ essentially takes values in (∂X)3 \ (∂X)(3), and since the image of ϕ▷◁ is
essentially contained in (∂X)(2), more precisely Ψ essentially takes value in either
{(x, y, z) : x = y} or {(x, y, z) : x = z}. This is equivalent to (ii).

Finally, notice that (iii) can be deduced from (ii) by looking at the coordinates
in (∂X)(2). □
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3. Classification of actions on hyperbolic spaces

3.A. Rank-one groups. In order to work with rank-one Lie groups and automor-
phisms of trees simultaneously, we fix the following setup:

Setup 3.1. Consider a locally compact group G that acts continuously, properly
and cocompactly by isometries on a proper hyperbolic space X with |∂X| ≥ 3, and
has a compact subgroup K that acts transitively on the boundary. We call X the
model space for G.

Remark 3.2. Standard rank-one groups as defined in the introduction, that is,
simple algebraic groups over a local field and groups of automorphisms of a tree
acting 2-transitively on the boundary both fit the above setup (in the latter case,
the model space is the tree being acted on). In fact, by [9, Theorem 8.1] a group G
as in Setup 3.1 is a standard rank-one group up to modding out a compact kernel.

Lemma 3.3. Any group G as in Setup 3.1 admits a G-boundary (B, ν) with the
property that given any precompact subset {γi} ⊆ G, the corresponding Radon-
Nikodym derivatives are uniformly bounded meaning:

sup ∥dγiν
dν

∥∞ < +∞.

Proof. One way to prove this involves appealing to Proposition 2.2 via [9, Theorem
8.1]; we also give another argument below as it might be of interest.

By [12, Theorem 1.4(1)], for suitable measures on G the Furstenberg-Poisson
boundary can be realized by a measure on ∂X (to check that the theorem applies
note that the action having bounded exponential growth follows from cocompact-
ness of G and properness of X, and note also the Furstenberg-Poisson boundary is
not trivial in our case since G is non-amenable in view of the assumption that ∂X
has at least 3 points). By Proposition 2.2-(a) we can take B = ∂X. Furthermore,
letting K be as in Setup 3.1, we can take the measure on G to be K-invariant,
and hence ν will also be K-invariant. Note that K acts transitively on ∂X by the
assumptions from Setup 3.1.

Endow ∂X with any visual metric ρ, that is, any metric bilipschitz equivalent
to e−ϵ(·,·)o for a fixed ϵ > 0 and basepoint o for the Gromov product. We will
use the fact that (∂X, ρ) is a doubling metric space (see [5, Theorem 9.2]), that is,
there exists a constant N such that all balls in ∂X can be covered by at most N
balls of half the radius. We will also use the fact that precompact subsets of G act
by uniformly bilipschitz homeomorphisms of ∂X. This follows from the fact the
Gromov product changes a bounded amount when changing the basepoint, meaning
that |(·, ·)o − (·, ·)o′ | ≤ d(o, o′). This in particular applies to K, and we denote by
L0 the corresponding bilipschitz constant.

Now, we claim that there exists a constant C0 such that for any R > 0 and any
balls B,B′ in ∂X of radii R and R/2 respectively (possibly centered at a different
point), we have ν(B)/ν(B′) ≤ C0. This is because B can be covered by boundedly
many (at most N⌈log2(2L0)⌉) balls of radius R/(2L0), and each such ball has measure
at most that of B′ since it can be mapped inside B′ using an element of K.

Fix now any precompact subset {γi} ⊆ G, and let L be the corresponding
bilipschitz constant for the action on the boundary. By the bound on ratios of
measures of balls, this implies that there exists a constant C such that for any ball
B in ∂X and any i we have ν(γiB)/ν(B) ≤ C. This implies the desired bound
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on Radon-Nikodym derivatives in view of the Lebesgue differentiation theorem (for
doubling metric measure spaces, see [11, Theorem 2.9.8, Theorem 2.8.17]). □

3.B. Lattices acting on hyperbolic spaces. Recall that a subset A of a met-
ric space is coarsely dense if there exists a constant R such that X is the R-
neighborhood of A. Also recall that given a group Γ acting on a hyperbolic space
X, its limit set is the set of boundary points that are equivalence classes of sequence
of points γx, for some fixed x ∈ X.

Definition 3.4. We say that an action Γ ↷ X on a hyperbolic space is coarsely
minimal if X is unbounded, the limit set of Γ in ∂X is not a single point, and every
quasi-convex Γ-invariant subset of X is coarsely dense.

Note that coarse minimality is a stronger requirement than asking that the orbits
of Γ have full limit set (for example, start with the action of a hyperbolic group on
its Cayley graph and attach arbitrarily long geodesics equivariantly).

Notice that if H is an infinite normal subgroup of infinite index of the hyperbolic
G, then the action of H on a Cayley graph of G is coarsely minimal, but not
cobounded.

Given a metric space X and C ≥ 0, denote by BddC(X) the set of all closed
subsets of diameter at most C, endowed with the Hausdorff metric. Notice that
BddC(X) is quasi-isometric to X.

Definition 3.5. Two actions Γ ↷ X1, X2 on metric spaces X1, X2 are equivalent
if there exists an equivariant quasi-isometry X1 → BddC(X2) for some C ≥ 0.

The reason for having BddC(X2) instead of X2 is that we want to allow the
situation where some group element has a fixed point in X1 but merely a bounded
orbit in X2; for example, we want to declare all actions on bounded metric spaces
to be equivalent.

Remark 3.6. Consider an action Γ ↷ X on a geodesic hyperbolic space.

(1) If the action is cobounded, then it is coarsely minimal.
The following two items follow from a construction well-known to ex-

perts, namely taking the coarse convex hull of an orbit and approximating
it with a graph; this is explained for example in [14, Remark 4].

(2) If the limit set of Γ is not a single point, then there is a coarsely minimal
action Γ ↷ Y on a geodesic hyperbolic space Y and an equivariant quasi-
isometric embedding Y → X.

(3) If Γ is countable and Γ ↷ X is coarsely minimal, then Γ ↷ X is equivalent
to an action on a separable geodesic hyperbolic space (in fact, a graph).

Consider a locally compact group G = G1×· · ·×GN where each factor is either a
simple algebraic group over a local field ki of rank at least 2, or a standard rank-one
group. Also, assume that either N ≥ 2 or N = 1 and G = G1 is a simple algebraic
group as above of rank at least 2.

Re-order the factors in such a way that Gi is a standard rank-one group if and
only if 1 ≤ i ≤ n, for some n ≤ N .

We now re-state our main theorem, in the context of standard rank-one groups.

Theorem 3.7. Let Γ be an irreducible lattice in G = G1×· · ·×GN as above. Then
every coarsely minimal action of Γ on a geodesic hyperbolic space is equivalent to
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the action

Γ−→G
pri−→Gi−→ Isom(Xi, di)

for some i ∈ {1, . . . , n}, where Xi is the model space for Gi.

Let us extend the notation of the theorem by denoting Xj , for j > n, the
symmetric space for Gj .

Let Γ ↷ (X, d) be a coarsely minimal action of Γ on the geodesic hyperbolic
space X. Denote by di the pseudo-metric on Γ corresponding to Γ ↷ Xi (with
respect to some basepoint xi, for i ≤ n), and d the pseudo-metric corresponding to
Γ ↷ (X, d).

3.C. Ruling out elementary actions. In order to be able to apply Theorem 2.3,
we have to rule out that Γ fixes a pair of points in ∂X (the case that it fixes one
point being ruled out by hypothesis). If that were the case, the subgroup Γ′ of
index at most 2 of Γ that fixes a boundary point would admit the quasimorphism
described in [9, Proposition 3.7]. According to [6,7], Γ′ does not admit unbounded
quasimorphisms, so that according to [9, Lemma 3.8] the action Γ ↷ X has a single
limit point, contradicting minimality of the action. From now on, we will assume
that Γ does not fix a point or a pair of points in X.

Finally, we can assume that X is separable by Remark 3.6.

3.D. Boundary map from one factor. For i ≤ n (the rank one factors), we let
(Bi, νi) be a boundary as in Lemma 3.3. For i > n (the higher rank factors), we let
Bi = Gi/Pi and we let νi be a measure in the Haar class on Bi. By Proposition 2.2,
(Bi, νi) is a Gi-boundary. Moreover, again by the Proposition, B = B1 × · · · ×BN

is a G-boundary, hence a Γ-boundary.
Theorem 2.3 affords now two Γ-maps B → ∂X satisfying various properties. The

first of these properties implies that these two maps must coincide a.e. We assume
henceforth that both maps are identical, and we denote it by ϕ : B → ∂X.

Claim 3.8. The map ϕ factors through one of Bi: there is i ∈ {1, . . . , N} and a Γ

map Bi
ϕi−→∂X such that

ϕ : B
pri−→Bi

ϕi−→∂X.

Proof. As ∂X contains no Γ-fixed points and by the ergodicity of B ×B, the map
ϕ is not constant. It thus depend on Bi for some i, which we now fix. We let B′

be the product of the other factors. We thus identify B ≃ Bi × B′. Using this
identification we consider the map

Φ : Bi ×B′ ×Bi ×B′ → ∂X2, (x, y, x′, y′) 7→ (ϕ(x, y), ϕ(x, y′)).

By Theorem 2.3(iii) we have three cases: Φ(B × B) is contained in the diagonal
∆ ⊂ ∂X2, Φ = ϕ▷◁, or Φ = τ ◦ ϕ▷◁, where ϕ▷◁ = ϕ× ϕ and τ(m,m′) = (m′,m). In
the first case we see that ϕ(x, y) is independent of y ∈ B′, and therefore descends
to a Γ-map Bi → ∂X as required. In the second and third cases, ϕ is independent
of x ∈ Bi, contradicting our choice of i. □

From now on we fix i to be such that ϕ factors via Bi.
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3.E. The factor Bi is associated with a rank one factor.

We now explain that the factor Bi alluded to in Claim 3.8 is associated with a
rank one factor, that is i ≤ n. We argue by contradiction, assuming i > n, that is,
Gi is of higher rank.

As before, we let Pi < Gi be a minimal parabolic. In the sequel we will omit
the index i and denote P = Pi. Let A < P be a maximal split torus. We let
W = NGi(A)/ZGi(A) be the corresponding Weyl group and let S ⊂ W be the
standard Coxeter generators associated with the positivity defined by P . Letting
Z = ZGi

(A) be the centralizer of A, we note that W acts naturally on Gi/Z by
Gi-automorphisms.

As usual we identify the set S with the set of simple roots of Gi associated
with the pair (A,P ). Any subset T of S generates a subgroup WT < W and it
corresponds to a standard parabolic PT < Gi containing P = P∅. All the subgroups
of Gi containing P are of this form. Denoting by πT : Gi/Z → Gi/PT the standard
map coming from the inclusion Z < P < PT , we note that

WT = {w ∈W | πT ◦ w = πT }.

We let π = π∅ : Gi/Z → Gi/P be the standard map and let w0 ∈ W be the
longest element (with respect to the word distance induced by S). It is a standard
fact that map π×π ◦w0 : Gi/Z → Gi/P ×Gi/P is injective and its image is Zariski
open (this image is the big cell in the Bruhat decomposition of Gi/P ×Gi/P ).

Recall that Bi = Gi/P is endowed with the Haar measure class. We also endow
Gi/Z with the Haar measure class and identify it, as measured Gi spaces, with
Bi × Bi = Gi/P × Gi/P via the map π × π ◦ w0. We set ϕi : Bi → ∂X to be the
map given in Claim 3.8. Note that ϕi is not essentially constant, as ∂X has no Γ
fixed points. We thus may find a bounded measurable function f0 : ∂X → C such
that f0 ◦ ϕi is not essentially constant. We fix such a function f0.

We consider the map ψ = ϕi ◦ p1 : Bi × Bi−→∂X, where p1 : Bi × Bi−→Bi is
the projection on the first factor, and let

U = {w ∈W | ψ ◦ w agrees a.e with ψ} < W.

By Theorem 2.3(ii) we conclude that U < W is of index at most 2.
Consider now the algebra L∞(Gi/Z) and its subalgebra π∗(L∞(Gi/P )) consist-

ing of functions pulled back from L∞(Gi/P ) under π : Gi/Z → Gi/P (which we
identify with p1 : Bi ×Bi → Bi). Consider the subalgebra

{f ∈ L∞(Gi/Z) | f ∈ L∞(Gi/P ) and for every u ∈ U, f ◦ u agrees a.e with f}.

This is a weak*-closed Gi-invariant subalgebra of L∞(Gi/Z). By Mackey’s point
realization theorem this algebra coincides with the subalgebra of functions pulled
back from a Gi-factor of Gi/Z. As all functions in it are pulled back from Gi/P ,
this factor is of the form Gi/PT for some T ⊂ S. As the algebra includes the
non-constant function f0 ◦ψ, we conclude that PT ̸= Gi, thus T ̸= S and WT ̸=W .
We have that πT ◦ u = πT for every u ∈ U , thus U < WT . It follows that WT is of
index 2 in W and in particular it is a normal subgroup.

As Gi is of higher rank, |W | > 2, thus WT is non-trivial. Consider the standard
reflection representation V of W . This is a faithful representation. By simplicity of
Gi, the Coxeter system (W,S) is irreducible thus the representation V is irreducible.
WT has non-trivial invariant vectors in V . Indeed, it preserves a proper, non-trivial
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face of the Weyl chamber. AsWT is normal and V is irreducible,WT is in the kernel
of V . This contradicts the non-triviality of WT , as V is faithful.

3.F. Bounded in Gi is d-bounded.

Next, we show that d is “smaller” than di, for i as in Claim 3.8.

Claim 3.9. There exist L,C so that for all γ, γ′ we have

d(γ, γ′) ≤ L · di(γ, γ′) + C.

As G is of higher rank, we know that N > 1 and in particular, we get that
pri(Γ) is dense in Gi. Hence, in the metric di any pair of points is connected by a
(1, 1)-quasi-geodesic, and to prove the claim it suffices to show that sequences that
are bounded in Gi are bounded in (Γ, d). In other words, it suffices to show that
any sequence {γj} in Γ for which {pri(γj)} is precompact in Gi, one has

sup
j
d(γj , 1) < +∞.

Recall that we denote the Gi-boundaries by (Bi, νi); let us drop the subscript i
from νi and let µ = ϕ∗ν ∈ Prob(∂X) be its pushforward. By the metric ergodicity
of Bi, µ has no atomic part. Indeed, if it had we would get a countable invariant
subset of ∂X and upon endowing it with the discrete metric, in view of the metric
ergodicity of Bi, we will conclude that this set contains a single point which is Γ
invariant, contradicting our assumption that ∂X is fixed point free.

By Lemma 2.13, we have a Γ-map

Ψ : Probc(∂X)−→Prob(Bdd(X)),

where recall that Probc(∂X) is the set of all atom-less probability measures on ∂X.
We assume that {γj} is such that {pri(γj)} is precompact in Gi.
By Lemma 3.3 we have:

sup
j≥1

∥dγjν
dν

∥∞ = C < +∞.

We thus have the same bound on the Radon-Nikodym derivatives of µ

sup
j≥1

∥dγjµ
dµ

∥∞ ≤ C

and also

sup
j≥1

∥dΨ(γjµ)

dΨ(µ)
∥∞ ≤ C.

Then for ϵ ∈ (0, 1/2) as in Lemma 2.9, we have that for all n the bounded sets

γj(βϵ/C ◦Ψ(µ)) = βϵ/C ◦Ψ(γjµ)

all lie in a neighborhood of finite radius of βϵ◦Ψ(µ). We thus have that the sequence
{γj} is bounded in (Γ, d).
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3.G. Unbounded in Gi is d-unbounded.

Claim 3.10. There exist L,C so that for all γ, γ′ we have

di(γ, γ
′) ≤ L · d(γ, γ′) + C.

Let γ0 ∈ Γ be a loxodromic element for Γ ↷ X, which exists by Gromov’s
classification of actions on hyperbolic spaces [13, Section 8]. Since the identity map
(Γ, di) → (Γ, d) is coarsely Lipschitz, γ0 is loxodromic for Γ ↷ Xi as well. Let us

choose a constants A so that for each j ≥ 0 we have j/A ≤ di(1, γ
j
0) ≤ Aj and

j/A ≤ d(1, γj0) ≤ Aj. Note that, up to increasing A, since Gi is rank one and γ0 is
loxodromic, the set

{κγj0 | κ ∈ Ki, j ≥ 0}
is A-dense in Xi, where we denote by Ki the compact subgroup as in Setup 3.1.
This is because, since Ki acts transitively on ∂X, there exists a constant C such
that given any two points on a sphere around xi, there is an element of Ki that
moves the first point C-close to the second one.

Since the rank of Gi equals one, we know by hypothesis that N > 1 and in
particular, we get that pri(Γ) is dense in Gi. Approximating elements of Ki by
elements of Γ we get that the set

{κγj0 | di(1, κ) ≤ 1, j ≥ 0}
is A+1-dense in Γ for the metric di. Enlarging A if necessary, let us further assume
that d(1, γ) ≤ Adi(1, γ) +A for all γ ∈ Γ.

Consider an arbitrary γ ∈ Γ. Using the above we find κ ∈ Γ such that di(1, κ) ≤ 1

and di(κγ, γ
j
0) ≤ A+ 1 for some j ≥ 0. Therefore, we obtain

di(1, γ) = di(κ, κγ)

≤ di(1, γ
j
0) +A+ 2

≤ Aj +A+ 2

≤ A2d(1, γj0) +A+ 2

≤ A2(d(1, κ) + d(κ, κγ) + d(κγ, γj0)) +A+ 2

≤ A2d(1, γ) +A3 + 2A2 + 3A+ 2,

as required.

3.H. Conclusion. We have seen in Section 3.E that the rank of Gi is 1. Claims 3.9
and 3.10 imply that there is a Γ-equivariant quasi-isometric embedding f : Xi →
BddC(X) for some C ≥ 0 (since (Γ, di) is Γ-equivariantly quasi-isometric to Xi,
and there is a Γ-equivariant quasi-isometric embedding (Γ, di) → X). Since Xi is
hyperbolic, the image of that quasi-isometric embedding is quasi-convex. Since the
Γ-action on X is coarsely minimal, it follows that the Γ-action on X is cobounded,
so that the quasi-isometric embedding (Γ, di) → X is in fact a quasi-isometry. This
proves that Γ ↷ Xi is indeed equivalent to Γ ↷ X, as required. □
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