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1. Introduction and main results

1.a. Since its introduction by Kazhdan in [Ka], property (T ) became a fundamental
concept in mathematics with a wide range of applications to such areas as:

• The structure of infinite groups—finite generation and finite Abelianization of
higher-rank lattices [Ka], obstruction to free or amalgamated splittings [Wa], [A], [M4],
structure of normal subgroups [M2] etc.;

• Combinatorics—the first construction of expanders [M1] (see [Lu]);
• Operator algebras—factors of type II1 whose fundamental group is countable [C]

or even trivial [Po1]; rigidity theorems for the factors associated to the Kazhdan group
[Po2];

• Ergodic theory—rigidity results related to orbit equivalence [Po3], [Hj]; the
Banach–Ruziewicz problem [M3], [Su];

• Smooth dynamics—local rigidity [FM1], [FM2]; actions on the circle [N1] (and
[PS], [Rz]).

It has also been an important tool in providing interesting (counter)examples: to
Day’s “von Neumann conjecture” [Gr1, §5.6] and in the context of the Baum–Connes
conjecture [HLS] (related to [Gr2]).

Bader partially supported by ISF grant 100146; Furman partially supported by NSF grants DMS-
0094245 and DMS-0604611; Gelander partially supported by NSF grant DMS-0404557 and BSF grant
2004010; Monod partially supported by FNS (CH) and NSF (US).
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Initially defined in terms of unitary representations, property (T ) turned out to be
equivalent to Serre’s property (FH)—a fixed-point property for affine isometric actions
on Hilbert spaces that can be rephrased as cohomological vanishing. (The equivalence
holds for σ-compact groups, in particular all locally compact second countable groups,
and was proved by Delorme [D] and Guichardet [Gu]. As pointed out by de Cornulier [Cr],
uncountable discrete groups that have Bergman’s cofinality property [Bn] have (FH)
but fail (T ).) Some of the above applications use this latter characterization. Recently
Shalom [Sh] described the reduced 1-cohomology with unitary coefficients for irreducible
lattices in products of completely general locally compact groups. This led to a list of
new rigidity results and added such lattices to the list of “naturally rigid” groups. For
further details and more references on these topics, we suggest the monograph [HV] and
the forthcoming [BHV].

1.b. Motivated by these broad themes: property (T ), property (FH), lattices in
semisimple groups and in general products, we study similar notions in the broader
framework of Banach spaces rather than Hilbert spaces. Some of the results below ap-
ply to general superreflexive Banach spaces, whilst some are specific to the subclass of
Lp(µ)-spaces with 1<p<∞. (A Banach space is superreflexive if it admits an equivalent
uniformly convex norm, see Proposition 2.3 below.)

One of the motivations to consider such questions came from the work of Fisher
and Margulis [FM1], [FM2], in which an Lp-analogue of property (T ) with p�2 allowed
them to weaken smoothness assumptions in their results.

The harder question of fixed-point results for affine actions on Lp for p�2 (see
Theorem B below) has applications e.g. for actions on the circle [N2], [BHV].

1.c. Let G be a topological group and B a Banach space. By a linear isometric G-
representation on B, we shall mean a continuous homomorphism %:G!O(B), where
O(B) denotes the (“orthogonal”) group of all invertible linear isometries B!B (see
Lemma 2.4 for a clarification of the continuity assumption). We say that such a repre-
sentation almost has invariant vectors if

inf
‖v‖=1

diam(%(K)v) = 0 for all compact subsets K ⊆G. (1.i)

Denote by B%(G) the closed subspace of G-fixed vectors; the G-representation % descends
to a linear isometric G-representation %′ on B′=B/B%(G) (see Remark 2.11 for more
details in the case of superreflexive spaces). We shall use the following as a Banach space
analogue of Kazhdan’s property (T ).
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Definition 1.1. Let B be a Banach space. A topological group G is said to have
property (TB) if for any continuous linear isometric G-representation %:G!O(B) the
quotient G-representation %′:G!O(B/B%(G)) does not almost have G-invariant vectors.

Note that if B is a Hilbert space, %′ is isomorphic to the restriction of % to the
orthogonal complement (B%(G))⊥ of the subspace of %(G)-invariants. Thus for Hilbert
spaces the above definition agrees with Kazhdan’s property (T ).

Let µ be a σ-finite measure on a standard Borel space (X,B). We are most interested
in the family Lp(µ), 1<p<∞, of Banach spaces, which are close relatives of Hilbert
spaces. They also possess a rich group of linear isometries O(Lp(µ)).

Theorem A. Let G be a locally compact second countable group. If G has Kazh-
dan’s property (T ) then G has property (TB) for Banach spaces B of the following types:

(i) Lp(µ) for any σ-finite measure µ and any 16p<∞;
(ii) a closed subspace of Lp(µ) for any 1<p<∞, p 6=4, 6, 8, ... ;
(iii) a quotient space of Lp(µ) for any 1<p<∞, p 6= 4

3 , 6
5 , 8

7 , ... .

If G has (TLp([0,1])) for some 1<p<∞ then G has Kazhdan’s property (T ).

1.d. Next we consider group actions by isometries on Banach spaces. By the Mazur–
Ulam theorem, such actions are always affine with the linear part being isometric as well
(working with real Banach spaces).

Definition 1.2. We say that G has property (FB) if any continuous action of G on B

by affine isometries has a G-fixed point.

When B is a Hilbert space this is precisely Serre’s property (FH). Delorme [D]
and Guichardet [Gu] proved that properties (T) and (FH) are equivalent for σ-compact
groups. Below we summarize the relations between properties (T ) and (FB) which hold
for general groups.

Theorem 1.3. For a locally compact second countable group G we have
(1) (FB) implies (TB) for any Banach space B;
(2) (T ) implies (FB) for closed subspaces B of Lp(µ), where 1<p62; likewise for

subspaces of L1 and of the pseudo-normed spaces Lp(µ), 0<p<1, except one obtains only
bounded orbits instead of fixed points;(1)

(3) (T ) also implies (FB) for closed subspaces of Lp(µ) for 26p<2+ε, where ε=
ε(G)>0 might depend on the Kazhdan group G.

(1) See Example 2.23 for an example without fixed point.
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Remark 1.4. (1) is essentially due to Guichardet [Gu] as his proof of (FH)⇒(T )
applies to all Banach spaces. We give two proofs for (2) reducing the problem, in both,
to one of the proofs of (T )⇒(FH). We note that the particular case of p=1 in (2) is one
of the results of [RS]. Statement (3) is due to Fisher and Margulis (unpublished). With
their kind permission we have included their argument here (see §3.c).

The above results imply that any locally compact group G with Kazhdan’s prop-
erty (T ) has property (TLp) for all 1<p<∞, and has the fixed-point property (FLp) for
1<p<2+ε(G). It turns out, however, that many Kazhdan groups (e.g. hyperbolic ones)
do not have property (FLp) for large values of p.

Indeed, in his study of Lp-cohomology, Pansu [Pa] proved that Spn,1(R) and cocom-
pact lattices in these groups have a non-trivial first Lp-cohomology LpH1 for all p>4n+2.
This is equivalent to asserting that for p>4n+2 these groups admit fixed-point-free affine
isometric actions on Lp(G) with linear part being the regular representation. Hence these
groups do not have property (FLp) for p>4n+2, whilst enjoying (T ).

More generally, LpH1(Γ) and hence H1(Γ, `pΓ) is non-zero for any non-elementary
hyperbolic group when p is large enough. Indeed, Bourdon and Pajot identify this co-
homology with a Besov space of functions on the boundary, which they prove to be
non-trivial as soon as p is larger than the Hausdorff dimension of an Ahlfors-regular met-
ric on the boundary, see [BP, Corollaire 6.2]. Again, this contradicts (FLp) for large p.

More recently, using Mineyev’s homological bicombings [Mi], Yu [Y] gave a very
short proof that any hyperbolic group Γ admits a proper action by affine isometries
on `p(Γ×Γ) if p is large enough. This is a strong negation of (FLp) for hyperbolic
groups and all their infinite subgroups. The corresponding strenghtening of the above
mentioned [Pa], [BP] for rank-one Lie (or algebraic) groups G has been established by
Cornulier–Tessera–Valette in [CTV]: For any p>1 larger than the Hausdorff dimension
of the boundary, there is a proper affine isometric action on Lp(G) whose linear part is
the regular representation. In particular, this holds for Spn,1(R) when p>4n+2.

1.e. Our next goal is now, by contrast, to establish (FLp) for certain groups. It is
often remarked that property (T ) for (simple) higher-rank Lie groups and their lattices
is more robust than property (T ) enjoyed by the rank-one groups Spn,1(R) and many
other Gromov hyperbolic groups. In view of the preceding discussion of hyperbolic groups
and Spn,1(R), the following result might be viewed as yet another evidence supporting
this view.

Theorem B. Let G=
∏m

i=1 Gi(ki), where ki are local fields (of any characteristic),
Gi(ki) are ki-points of Zariski connected simple ki-algebraic groups Gi. Assume that
each simple factor Gi(ki) has ki-rank >2.
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Then G and the lattices in G have property (FB) for all Lp(µ)-related spaces B as
in (i)–(iii) in Theorem A, assuming 1<p<∞.

1.f. A broader class of spaces in which we propose to study properties (TB) and (FB)
consists of superreflexive spaces, which can be defined as topological vector spaces iso-
morphic to uniformly convex Banach spaces.(2) In this context we consider linear repre-
sentations (resp. affine actions) which are uniformly equicontinuous; more concretely, for
any given norm compatible with the topology, the class of all such linear representations
(resp. affine actions) is that of uniformly bounded linear representations (resp. uniformly
Lipschitz affine actions). It turns out that such representations (resp. actions) can al-
ways be viewed as isometric with respect to some equivalent norm that is simultaneously
uniformly convex and uniformly smooth (Proposition 2.13).

Note that whether a given linear G-representation almost contains invariant vectors
or not, in the sense of (1.i), does not depend on a particular norm among all mutually
equivalent norms. Hence we can make the following definition.

Definition 1.5. Let B be a superreflexive topological vector space and G a locally
compact second countable group. We say that G has property (	TB) if for every uni-
formly equicontinuous linear representation % of G on B the quotient G-representation
on B/B%(G) does not almost have invariant vectors.

Likewise, G has property (
FB) if every uniformly equicontinuous affine G-action
on B has a fixed point.

Conjecture 1.6. Higher-rank groups G=
∏m

i=1 Gi(ki) as in Theorem B and their
lattices have property (
FB), and hence (	TB), for all superreflexive B.

Remark 1.7. To support this conjecture, let us point out the following:
(1) Much of our proof of Theorem B is done in the broad context of uniformly

equicontinuous affine actions on general superreflexive spaces, except for one argument—
a version of the relative property (TB), whose proof is special to Lp-related spaces.

(2) Lafforgue proved [Lg] that the group PGL3(Qp) has property (	TB) for all su-
perreflexive B (his result is actually stronger, in that he allows linear representations
with slowly growing, rather uniformly bounded Lipschitz norms, see Theorem 3.2, Defini-
tion 0.2 and the discussion preceding it in [Lg]). Combined with our proof of Theorem B,
it implies for example that SLn(Qp), n>4, has property (
FB).

(3) Shalom has proved (unpublished) that for Hilbert spaces H higher-rank groups
(and their lattices) have property (
FH), and hence (	TH), whilst rank-one groups have
neither (
FH) nor (	TH).

(2) For spaces that are only strictly convex, the fixed-point property always fails [BG], [HP].
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1.g. One way to generalize the context of semisimple (non-simple) Lie/algebraic groups
is simply to consider general products G=G1×...×Gn of n>2 arbitrary topological
groups. In the absence of any assumption on the factors Gi, one can still establish
splitting results for uniformly equicontinuous affine G-actions on superreflexive spaces.

Theorem C. Let G=G1×...×Gn be a product of topological groups with a continu-
ous action by uniformly equicontinuous affine maps on a superreflexive topological vector
space B without G-fixed points. Assume that the associated linear G-representation %

does not almost have non-zero invariant vectors.
Then there is a G-invariant closed complemented affine subspace B⊆B and an

affine equicontinuous G-equivariant isomorphism B∼=B1⊕...⊕Bn, where each Bi is a
superreflexive Banach space with an equicontinuous affine G-action factoring through
G!Gi.

Remarks 1.8. (1) If G has property (	TB) then the assumption that % does not almost
have invariant vectors is redundant.

(2) In the particular case where B is a Hilbert space and G is locally compact acting
by affine isometries, a stronger result was established by Shalom in [Sh]: one assumes
only that the affine G-action does not almost have fixed points. We replace Shalom’s
Hilbertian approach with an analogue of the geometric method used in the splitting
theorem of [Mo2].

(3) This result can be reformulated in terms of the cohomology of the associated
linear G-representation % on B as

H1(G, B)∼=
n⊕

i=1

H1(Gi, B
%(

∏
j 6=i Gj)).

It should be stressed that no such product formula holds in general. Not only does it fail
for more general Banach spaces (Example 2.27), but even for Hilbert spaces one needs
at least Shalom’s assumption mentioned above. Compare the similar situation for the
cohomological product formulas of [Sh] and [BMd].

1.h. When G is locally compact, we can as in the Lie case consider its lattices. One
then calls a lattice Γ<G irreducible if its projections to all Gi are dense. The above
Theorem C can be used to establish a superrigidity result for irreducible lattices much in
the way of [Sh]. (The general idea to use irreducibility in order to transfer results from
G1×...×Gn to Γ was also illustrated in [BMz], [BMd] and [MS]; it seems to originate
from the work of Margulis and [BK]; lattices in products of completely general locally
compact groups were first studied by Shalom [Sh].)
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Theorem D. Let Γ be an irreducible uniform lattice in a locally compact σ-compact
group G=G1×...×Gn. Let B be a superreflexive space with uniformly equicontinuous
affine Γ-action. Assume that the associated linear Γ-representation does not almost
have invariant vectors.

Then there is a Γ-closed complemented affine subspace of B on which the Γ-action
is a sum of actions extending continuously to G and factoring through G!Gi.

Remark 1.9. More precisely, the conclusion means that there are superreflexive
spaces Ei endowed each with a continuous uniformly equicontinuous affine G-action fac-
toring through G!Gi and a Γ-equivariant affine continuous map

⊕n
i=1 Ei!B. Equiva-

lently, the cocycle b: Γ!B of the original Γ-action is cohomologous to a sum b1+...+bn

of cocycles bi ranging in a subspace Bi⊆B on which the linear Γ-representation ex-
tends continuously to a G-representation factoring through Gi and such that bi ex-
tends continuously to a cocycle G!Gi!Bi (with respect to the corresponding linear
G-representation). Moreover, Bi

∼=Ei as G-spaces.
If one disregards a component of B where the linear Γ-representation ranges in a

compact group of operators, this sum of actions is actually just a direct sum
⊕

Bi⊆B

(see Remark 8.10).

Remark 1.10. A uniform lattice (in a locally compact group) is just a discrete co-
compact subgroup; the theorem however also holds for certain non-uniform lattices, see §8
(Theorem 8.3). Similar arguments allow us to generalise slightly Shalom’s superrigidity
for characters, see Theorem 8.4.

Organization of the paper. In §2 we collect preliminary facts and lemmas on uni-
formly convex/smooth and superreflexive Banach spaces, linear representations and affine
isometries on such spaces, special properties of Lp-spaces, and some general remarks and
basic counterexamples. In §3 Theorem 1.3 is proved. Equivalence of properties (T )
and (TLp) (Theorem A) is proved in §4. In §5 we discuss higher-rank groups and prove
Theorem B. §6 studies minimal convex sets. §7 addresses product groups and proves
the splitting theorem (Theorem C); it also proposes a proof of Theorem B that provides
some evidence for Conjecture 1.6. In §8, we prove Theorem D. Appendix 9 describes
Shalom’s proof of a generalized Howe–Moore theorem.

Acknowledgments. We would like to thank D. Fisher and G. A. Margulis for their
interest in this work and for letting us include their argument for 2<p<2+ε in §3.c. We
are indebted to A. Naor for several helpful conversations and to A. Nevo for his remarks
on the first manuscript. We are grateful to Y. Shalom for letting us give his proof of a
ucus version of Howe–Moore (Theorem 9.1). We thank A. Valette and U. Haagerup for
useful suggestions improving the exposition.
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2. Preliminaries

This section contains basic definitions, background facts and some preliminary lemmas
to be used in the proofs of our main results.

2.a. Banach Spaces

Let V be a Banach space; unless otherwise specified, we take the reals as scalar field. We
denote by S(V )={v∈V :‖v‖=1} its unit sphere. For v∈B and r>0 we denote by B(v, r)
and 	B(v, r) the open, respectively closed, ball of radius r around v.

A Banach space B is said to be strictly convex if its unit sphere does not contain
straight segments, or equivalently if ‖(u+v)/2‖<1 whenever u 6=v∈S(V ). A Banach
space V is called uniformly convex if the convexity modulus function

δ(ε) = inf
{

1−‖u+v‖
2

: ‖u‖, ‖v‖6 1 and ‖u−v‖> ε

}
(2.i)

is positive, δ(ε)>0, whenever ε>0.
We shall also use the notion of uniform smoothness of Banach spaces, which is easiest

to define as the uniform convexity of the dual space V ∗ (see [BL, Appendix A]). Hence a
Banach space V is uniformly convex and uniformly smooth (hereafter abbreviated ucus)
if both V and its dual V ∗ are uniformly convex.

Facts 2.1. We refer to [BL] for the following facts.
(1) The function δ(ε) is non-decreasing and tends to 0 when ε tends to 0. If V is

uniformly convex then δ(ε)!0 ⇔ ε!0.
(2) Uniformly convex Banach spaces are reflexive. Hence the class of ucus Banach

spaces is closed under taking duals. This class is also closed under the operations of
taking closed subspaces and quotients.

(3) If V ∗ is strictly convex, in particular if V is uniformly smooth, then every v∈
S(V ) has a unique supporting functional v∗∈S(V ∗), i.e. a unit functional with 〈v, v∗〉=1.

(4) If V is ucus then the duality map

∗: S(V )−!S(V ∗),

x 7−!x∗,

is a uniformly continuous homeomorphism with a uniformly continuous inverse.
(5) To any non-empty bounded subset E⊆V of a reflexive strictly convex Banach

space V , one can associate a unique point C(E)∈V , the circumcentre of E (also known
as the Chebyshev centre), defined as the unique v∈V minimizing inf{r>0:E⊆	B(v, r)}.
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The existence of x=C(E) in (5) follows from weak compactness of closed bounded
convex sets (i.e. from reflexivity), whilst the uniqueness follows from uniform convexity.
Note that somewhat contrary to the intuition, it was shown by Klee [Kl] that if dim(V )>3
and V is not a Hilbert space, then there exists a bounded subset E⊆V for which C(E)
does not belong to the closed convex hull of E. The notion of circumcentre is also used in
CAT(0) geometry. For CAT(0) spaces, the circumcentre C(E) always lies in the closed
convex hull of E.(3)

The following result can be found e.g. in [BL, §A.6 and §A.8].

Theorem 2.2. The following conditions on a topological vector space V are equiv-
alent :

(1) V is isomorphic to a uniformly convex Banach space;
(2) V is isomorphic to a uniformly smooth Banach space;
(3) V is isomorphic to a ucus Banach space.

The space V is called superreflexive if these equivalent conditions hold. The class
of superreflexive spaces is closed under taking duals, closed subspaces and quotients of
topological vector spaces.

2.b. Linear representations

Let V be a topological vector space. We denote by GL(V ) the group of invertible linear
transformations of V which are continuous together with their inverses.

Following the standard terminology [B1, §2, Definition 2, no. 1], a group G of trans-
formations of V is uniformly equicontinuous (with respect to the uniform structure de-
duced from the topological vector space structure) if for any neighbourhood U of 0∈V

there exists a neighbourhood W of 0 such that

x−y ∈W =⇒ g(x)−g(y)∈U for all g ∈G. (2.ii)

This definition will be applied to both linear groups and affine groups.
For a topological vector space V, we denote by N(V ) the (a priori possibly empty)

set of norms on V defining the given topology. Elements of N(V ) will be called compatible
norms and are pairwise equivalent.

The following key proposition is an equivariant version of Theorem 2.2. It enables
us to reduce questions about uniformly equicontinuous linear representations on super-
reflexive spaces to isometric linear representations on ucus Banach spaces.

(3) Note that Hilbert spaces are, in a sense, the most convex Banach spaces—they have the largest
possible modulus of continuity δ(ε) among Banach spaces. On the other hand, Hilbert spaces have the
smallest possible modulus of continuity among CAT(0) spaces. Thus, in a sense, CAT(0) spaces are
more convex then (non-Hilbertian) Banach spaces.
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Proposition 2.3. (Invariant ucus norm) For a superreflexive topological vector
space V and a group of linear transformations G of V, the following conditions are
equivalent :

(1) G is a uniformly equicontinuous group of linear transformations of V ;
(2) G acts by uniformly bounded linear transformations with respect to any/all com-

patible norms on V ;
(3) G acts by linear isometries with respect to some uniformly convex compatible

norm on V ;
(4) G acts by linear isometries with respect to some uniformly smooth compatible

norm on V ;
(5) G acts by linear isometries with respect to some uniformly convex and uniformly

smooth compatible norm on V .

Proof. The main part of the proof is the implication [(3) and (4)]⇒ (5); we begin
by establishing this.

Let N(V ) denote the set of all compatible norms on V equipped with the metric

d(‖ · ‖1, ‖ · ‖2) = sup
x6=0

∣∣∣∣log
‖x‖1
‖x‖2

∣∣∣∣.
This is a complete metric space. Let N(V )G stand for the closed subspace of G-invariant
norms in N(V ). Denoting by δ‖·‖ the convexity modulus of ‖ · ‖∈N(V )G, the subset
Nuc(V )G of uniformly convex G-invariant norms on V is given by the countable inter-
section

Nuc(V )G =
∞⋂

n=1

On, where On = {‖ · ‖ ∈N(V )G : δ‖·‖(1/n) > 0}.

Observe that the sets On are open. If ‖ · ‖0 is some fixed G-invariant compatible uniformly
convex norm (given in (3)) then any ‖ · ‖∈N(V )G can be viewed as a limit of uniformly
convex norms ‖ · ‖+ε‖ · ‖0 as ε&0. Hence Nuc(V )G is a dense Gδ set in N(V )G.

By duality between Nuc(V ∗)G and the set Nus(V )G of uniformly smooth norms
in N(V )G, the latter is also a dense Gδ set in the Baire space N(V )G. In particular
Nuc(V )G∩Nus(V )G is not empty, as claimed.

Now we observe that (1)⇔ (2) follows from the definitions and that (5)⇒ [(3)
and (4)] as well as [(3) or (4) or (5)]⇒ (2) are trivial. Moreover, proving (2)⇒ (3)
will also yield (2)⇒ (4) by duality, using the fact that the dual to a superreflexive space
is superreflexive. Therefore it remains only to justify (2)⇒ (3).

Let ‖ · ‖ be a compatible uniformly convex norm on V . The corresponding operator
norms ‖g‖=supx6=0 ‖gx‖/‖x‖ are uniformly bounded by some C<∞. Hence

‖x‖′ = sup
g∈G

‖gx‖
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defines a norm, equivalent to ‖ · ‖, and G-invariant. It is also uniformly convex. Indeed,
if ‖x‖′=‖y‖′=1 and ‖(x+y)/2‖′>1−α, then for some g∈G∥∥∥∥gx+gy

2

∥∥∥∥> 1−α whilst ‖gx‖6 ‖x‖′ =1 and ‖gy‖6 ‖y‖′ =1.

Thus α>δ‖·‖(‖gx−gy‖)>δ‖·‖(‖x−y‖′/C). Hence the convexity moduli satisfy

δ‖·‖′(ε) > δ‖·‖(ε/C) > 0 for all ε > 0.

If G is a topological group, one should impose a continuity assumption on linear
G-representations on V , that is on homomorphisms %:G!GL(V ). GL(V ) is naturally
equipped with the operator norm (which is too strong for representation theory), and
with the weak and the strong operator topologies. For uniformly equicontinuous repre-
sentations the latter two topologies impose the same continuity assumption.

Lemma 2.4. Let G be a topological group, V a superreflexive topological vector space,
and %:G!GL(V ) a homomorphism. Then the following are equivalent :

(1) % is weakly continuous;
(2) % is strongly continuous;
(3) the orbit maps g 7!%(g)u are continuous;
(4) the action map G×V!V is jointly continuous.

Since there is an invariant complete norm on V , this is a special case of a well-known
fact holding for all Banach spaces, see [Mo1, §3.3.4] for references. We give an elementary
proof in the present case.

Proof. Clearly it is enough to prove (1)⇒ (4). Let ‖ · ‖ be a %(G)-invariant ucus
norm on V . Assume gn!e∈G and un!u∈S(V ). Then

|〈%(gn)un, u∗〉−1|6 |〈%(gn)un, u∗〉−〈%(gn)u, u∗〉|+|〈%(gn)u, u∗〉−1|

6 ‖un−u‖+|〈%(gn)u, u∗〉−1|! 0.

It follows that %(gn)un!u, because〈
%(gn)u+u

2
, u∗

〉
6

∥∥∥∥%(gn)u+u

2

∥∥∥∥6 1−δ(‖%(gn)u−u‖)

and the left-hand side tends to 1.
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2.c. Invariant complements

One of the convenient properties of Hilbert spaces is the existence of a canonical comple-
ment M⊥ to any closed subspace M . Recall that a closed subspace X of a Banach space
V is called complemented if there is another closed subspace Y ⊆V such that V =X⊕Y

algebraically and topologically. This is equivalent to each of the following conditions:
• There is a continuous linear projection from V to X;
• There is a closed subspace Y and a continuous linear projection p:V!Y with

ker(p)=X.

A classical theorem of Lindenstrauss and Tzafriri says that every infinite-dimensional
Banach space which is not isomorphic to a Hilbert space admits a non-complemented
closed subspace [LT]. However, for any uniformly equicontinuous linear representation %

of a group G on a superreflexive space V , the subspace of invariant vectors V %(G) admits
a canonical complement, described below.

In view of Proposition 2.3 we may assume that the representation is linear isometric
with respect to a ucus norm on V , which allows us to use the duality map of the unit
spheres ∗: S(V )!S(V ∗).

Given any linear representation %:G!GL(V ) there is an associated dual (or con-
tragradient) linear G-representation %∗:G!GL(V ∗) defined by

〈x, %∗(g)y〉= 〈%(g−1)x, y〉, g ∈G, x∈V, y ∈V ∗.

If V is a Banach space and %:G!O(V ) is a linear isometric representation, then so is
its dual %∗:G!O(V ∗), where V ∗ is equipped with the dual norm. Hence the dual to
a uniformly equicontinuous representation on a superreflexive space is also of the same
type.

Observation 2.5. If V is a ucus Banach space and %:G!O(V ), then the duality map
∗: S(V )!S(V ∗) between the unit spheres intertwines the actions of %(G) and %∗(G). In
particular it maps the set of %(G)-fixed unit vectors to the set of %∗(G)-fixed unit vectors.

Proposition 2.6. Let % be a uniformly equicontinuous linear representation of G

on a superreflexive space V , let V %(G) denote the subspace of %(G)-fixed vectors in V ,
and let V ′=V ′(%) be the annihilator of (V ∗)%∗(G) in V . Then

V =V %(G)⊕V ′(%).

Furthermore, the decomposition is canonical in the following sense: if we denote by p(%)
and p′(%) the associated projections, then for every morphism of uniformly equicontinuous
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linear representations φ: (V1, %1)!(V2, %2), the following diagrams are commutative:

V1

p(%1)

��

φ
// V2

p(%2)

��

V1
φ

// V2

V1

p′(%1)

��

φ
// V2

p′(%2)

��

V1
φ

// V2

(2.iii)

Remark 2.7. The conclusion fails if we drop the superreflexivity assumption, see
Example 2.29.

Proof. Choose a G-invariant uniformly convex and uniformly smooth norm on V ,
and the dual one on V ∗ (Proposition 2.3). For any unit vector x∈V %(G) and arbitrary
y∈V ′,

1 = 〈x, x∗〉= 〈x−y, x∗〉6 ‖x−y‖ ‖x∗‖= ‖x−y‖.

Thus V %(G)∩V ′={0} and V %(G)⊕V ′ is a closed subspace in V . It is also dense in V .
Indeed if λ∈V ∗ is a unit vector vanishing on V ′ it cannot vanish on B%(G), because
λ∈(V ∗)%∗(G) by the Hahn–Banach theorem, and hence λ∗∈V %(G) and 〈λ∗, λ〉=1. Thus
V %(G)⊕V ′=V .

The last assertion follows from the fact that φ(V %1
1 )⊆V %2

2 , and φ∗((V ∗
2 )%2)⊆(V ∗

1 )%1

yields φ(V ′
2)⊆V ′

1 .

Corollary 2.8. The decomposition V =V %(G)⊕V ′ is preserved by the normalizer
of %(G) in GL(V ).

Corollary 2.9. Let G=G1×G2 be any product of two groups and B be a super-
reflexive space with a uniformly equicontinuous linear G-representation %. Then there is
a canonical G-invariant decomposition

V =V %(G)⊕V0⊕V1⊕V2

such that V %(Gi)=V %(G)⊕Vi for i=1, 2.

Proposition 2.10. Let % be a uniformly equicontinuous linear G-representation on
a superreflexive space V . Then

(1) V %(G) is isomorphic to V/V ′ as topological vector spaces;
(2) V ′ is isomorphic to V/V %(G) as G-representations;
(3) (V %(G))∗ is isomorphic to V ∗/(V ∗)′ as topological vector spaces;
(4) (V ′)∗ is isomorphic to (V ∗)′ as G-representations;
(5) V ′ almost has invariants if and only if (V ∗)′ almost has invariants;
(6) if 0!U!V!W!0 is an exact sequence of uniformly equicontinuous linear

G-representations on superreflexive spaces, then V ′ almost has invariant vectors if and
only if U ′ or W ′ does.
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If V is equipped with a compatible uniformly convex and uniformly smooth G-
invariant norm, then the natural isomorphisms in (1) and (3) are isometric.

Proof. Equip V with a G-invariant ucus norm (Proposition 2.3).

By the open mapping theorem the maps p:V!V %(G) and p′:V!V ′ induce isomor-
phisms of topological vector spaces

(1) p̃:V/V ′!V %(G) and (2) p̃′:V/V %(G)!V ′.

By Observation 2.5, (V %(G))∗ is (V ∗)%∗(G) and the latter is isomorphic to V ∗/(V ∗)′.
This proves (3).

To see that (1) and (3) are isometric (with respect to the norms corresponding to any
ucus G-invariant norm on V ) we note that the isomorphisms above satisfy ‖(p̃)−1‖61
and ‖(p̃′)−1‖61, by the definition of the norm on a quotient space. Furthermore, for
v∈S(V %(G)), we have v∗∈S((V ∗)%∗(G)), hence

‖(p̃)−1(v)‖V/V ′ = inf{‖v+v′‖V : v′ ∈V ′}> inf{〈v+v′, v∗〉 : v′ ∈V ′}= 〈v, v∗〉=1.

Hence p̃ is an isometry V/V ′∼=V %(G). Similarly, (V %(G))∗=(V ∗)%∗(G)∼=V ∗/(V ∗)′.

In general Banach spaces the dual E∗ of a subspace E⊂F is isometric to the quotient
F ∗/E⊥ by the annihilator E⊥⊂F ∗ of E. Thus, with respect to a ucus norm on V and
the above spaces, (V ′)∗ is isometric to V ∗/(V ∗)%∗(G) as Banach spaces, while the latter
is isomorphic to (V ∗)′ as a topological vector space, by (2). Whence (4).

(5) Assume that there exist xn∈S(V ′) with diam(%(K)·xn)!0. The uniformly
continuous map ∗: S(V )!S(V ∗) takes vectors xn∈S(V ′) to vectors x∗n∈S(V ∗) with

diam(%∗(K)·x∗n)! 0.

Since the x∗n’s are uniformly separated from (V ∗)%∗(G), their normalized projection y∗n
to (V ∗)′ still satisfy diam(%∗(K)·y∗n)!0.

(6) As U ′ maps into V ′, if U ′ almost has invariants, then so does V ′. If W ′ al-
most has invariants, then so does (W ∗)′, hence (V ∗)′, hence V ′. On the other hand,
assume that V ′ almost has invariant unit vectors vn. Assume for simplicity that U=U ′,
V =V ′ and W =W ′. Note that W is isomorphic to V/U , and denote by π:V!W the
projection. Then either π(vn) converges to 0∈W , then there exist un such that vn−un

converges to 0∈V , and the normalized sequence {un/‖un‖}∞n=1 is almost invariant in
U , or there exists a subsequence vnk

with infk ‖π(vnk
)‖>0, and then the normalized

sequence {π(vnk
)/‖π(vnk

)‖}∞n=1 is almost invariant in W .
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Remark 2.11. For a ucus Banach space V , Definition 1.1 of property (TV ) can be
rephrased as follows: For any representation %:G!O(V ), the restriction %′:G!O(V ′)
of % to the invariant subspace V ′ complement to V %(G) does not almost have invariant
vectors, i.e. for some compact K⊆G and ε>0,

for all v ∈S(V ′) there exists g ∈K such that ‖%(g)v−v‖> ε.

Hence item (4) gives the following result.

Corollary 2.12. Let V be a ucus Banach space, and G be a locally compact group.
Then G has property (TV ) if and only if it has (TV ∗).

2.d. Affine actions

The affine group Aff(V ) of a real affine space V (a vector space who forgot its origin)
consists of invertible maps satisfying

T (tx+(1−t)y) = tT (x)+(1−t)T (y), t∈R, x, y ∈V.

The group Aff(V ) is a semi-direct product Aff(V )=GL(V )nV , i.e. an invertible affine
map T has the form T (x)=Lx+b, where L∈GL(V ) is linear invertible.

An affine action of a group G on V , i.e. a homomorphism G!Aff(V ), has the form

g ·x= %(g)x+c(g),

where %:G!GL(V ) is a linear G-representation (we call it the linear part of the action)
and c:G!B is a %-cocycle, namely an element of the Abelian group

Z1(%) = {c:G!V : c(gh) = %(g)c(h)+c(g) for all g, h∈G}. (2.iv)

The group Z1(%) of %-cocycles contains the subgroup of %-coboundaries

B1(%) = {c(g) = v−%(g)v : v ∈V }. (2.v)

Z1(%) describes all affine G-actions on V with linear part %, and B1(%) corresponds to
those affine actions which have a G-fixed point (namely v in (2.v)). This description
involves the choice of reference point—the origin—in the space. Two cocycles differing
by a coboundary can be though of defining the same affine action viewed from different
reference points. The first cohomology of G with %-coefficients is the Abelian group

H1(G, %) =Z1(%)/B1(%).
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It describes different types of actions in the above sense. H1(G, %)=0 if and only if any
affine G-action on V with linear part % has a fixed point.

For a Banach space V , denote by Isom(V ) the group of isometries of V as a metric
space. It is a classical theorem of Mazur–Ulam that any surjective isometry T of a
(real) Banach space V is necessarily affine T (x)=Lx+c with linear part L∈O(V ) being
isometric. (This theorem is elementary when V is strictly convex; compare Lemma 6.1.)
Hence Isom(V )=O(V )nV .

Now suppose that V is a superreflexive topological vector space. Recall that a group
G of affine self maps is uniformly equicontinuous if it satisfies (2.ii). This condition is
equivalent to uniform equicontinuity of the linear part %:G!GL(V ).

Proposition 2.13. For a superreflexive topological vector space V and a group G

of transformations of V , the following conditions are equivalent :
(1) G is a uniformly equicontinuous group of affine transformations of V ;
(2) G acts by uniformly Lipschitz affine transformations with respect to any/all

compatible norms on V ;
(3) G acts by affine isometries with respect to some compatible norm on V ;
(4) G acts by affine isometries with respect to some uniformly convex and uniformly

smooth compatible norm on V .

Proof. Apply Proposition 2.3 to the linear part of the affine action, using Mazur–
Ulam to deduce in (3) that the action is affine.

If G is a topological group acting by affine transformations on a topological vector
space V , continuity of the action

G×V !V, g ·x= %(g)x+c(g),

is equivalent to continuity of the linear part G×V!V and the continuity of the cocycle
c:G!V . Indeed c(g)=g ·0, and %(g)x=g ·x−c(g).

Hence, in the context of topological groups, affine actions should be assumed con-
tinuous, and Z1(G, %) will include only continuous cocycles c:G!V (we assume that the
linear part % is continuous as well). If G is a locally compact σ-compact group, then
Z1(%) has a natural structure of a Fréchet space with respect to the family of semi-norms

‖c‖K = sup
g∈K

‖c(g)‖V ,

where K⊆G runs over a countable family of compact subsets which cover G and ‖ · ‖V is
a norm inducing the topology of V . Moreover, if G is compactly generated (e.g. if G has
property (T )), say by K0, then ‖c‖K0 is a norm on Z1(%) (note that any cocycle c∈Z1(%)
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is completely determined by its values on a generating set), and Z1(%) is a Banach space
with respect to this norm. We remark that in general B1(%) is not closed in Z1(%) (this
is the idea behind the (FV )⇒ (TV ) argument of Guichardet—see §3).

Lemma 2.14. For a uniform equicontinuous affine action of a group G on a super-
reflexive space V , the following are equivalent :

(1) there exists a bounded G-orbit ;
(2) all G-orbits are bounded ;
(3) G fixes a point in V ;
(4) G preserves a (Borel regular) probability measure on V .

Note that the notion of a subset E⊆V being bounded, means that for any open
neighbourhood U of 0∈V there is some t∈R so that E⊆tU . This notion agrees with the
notion of being bounded with respect to any compatible norm on V .

Proof. Introduce a G-invariant uniformly convex norm on V (Proposition 2.13). The
only non-trivial implications are (4)⇒ (1)⇒ (3). For the first, let µ be a G-invariant
probability on V . Since V is a countable union of closed bounded sets, there is a closed
bounded set A⊆V with µ(A)> 1

2 . For all g∈G we have µ(gA)> 1
2 hence gA∩A 6=∅. It

follows that the G-orbit of every point of A is bounded.
The latter implication follows by considering the circumcentre (compare §2.a) of the

given bounded G-orbit.

Proposition 2.15. Let V be a ucus Banach space. Then
(1) any finite (or compact) group has properties (TV ) and (FV );
(2) properties (TV ) and (FV ) pass to quotient groups;
(3) if G=G1×...×Gn is a finite product of topological groups then G has prop-

erty (TV ) (resp. (FV )) if and only if all Gi have this property.

Proof. (1) and (2) are straightforward, (3) follows from Corollary 2.9.

2.e. Special properties of Lp(µ)-spaces

In this subsection we collect some special properties of the Banach spaces Lp(µ) which
will be used in the proofs.

By an Lp(µ), or Lp(X, µ) space we mean the usual space of equivalence classes
(modulo null sets) of measurable p-integrable functions f :X!R, where µ is a positive
σ-finite measure defined on a standard Borel space (X,B). If 1<p<∞ then Lp(µ) is
ucus, whilst L1(µ) and L∞(µ) are not (they are not even strictly convex). For 16p<∞
the dual to Lp(µ) is Lq(µ) where 1<q6∞ is determined by q=p/(p−1).
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The space Lp([0, 1],Lebesgue measure) is usually denoted by Lp. Any Lp(µ)-space
with non-atomic finite or σ-finite measure µ is isometrically isomorphic to Lp. Indeed let
ϕ∈L1(µ) be a strictly positive measurable function with integral 1, and let µ1 be given
by dµ1=ϕ dµ. Then

Lp(µ)−!Lp(µ1),

f 7−! f ·ϕ−1/p,

is a surjective isometry. Since any non-atomic standard probability space is isomorphic to
[0, 1] as a measure space, Lp(µ1)∼=Lp. If µ is purely atomic then a similar argument gives
an isomorphism of Lp(µ) with a finite- or infinite-dimensional `p space. A general Lp(µ)
space is therefore isometrically isomorphic to a direct sum of Lp and `p components.

More generally, for another Banach space B, one defines the spaces Lp(µ,B) of B-
valued function classes by means of the Bochner integral. We refer the reader to [DU] for
details; we recall here that the dual of Lp(µ,B) is Lq(µ,B∗) through the natural pairing
for all 16p<∞, but only when B has the Radon–Nikodým property—this includes all
ucus spaces (see again [DU]). These spaces will be used in §8.b in order to induce
isometric (linear or affine) actions.

Banach [Ba] and Lamperti [Li] (see also [FJ, Theorem 3.25]) classified the linear
isometries of Lp(µ) as follows.

Theorem 2.16. (Banach, Lamperti) For any 1<p<∞, where p 6=2, any linear isom-
etry U of Lp(X,B, µ) has the form

Uf(x) = f(T (x))h(x)
(

dT∗µ

dµ
(x)

)1/p

,

where T is a measurable, measure-class preserving map of (X, µ), and h is a measurable
function with |h(x)|=1 almost everywhere.

Let µ=µa+µc be the decomposition of µ into its atomic and continuous parts
(µa=µ|A, where A⊆X is the (at most countable) set of atoms of µ). Then

Lp(µ) =Lp(µc)⊕Lp(µa)∼=Lp⊕`p(A), or just Lp(µ)∼= `p(A),

the latter case occurs if µ=µa is a purely atomic measure. Note that it follows from the
Banach–Lamperti theorem that this decomposition is preserved by any linear isometry
of Lp(µ). As `p(A) has a much smaller group of linear (or affine) isometries than Lp, we
could restrict our attention only to the latter. However we shall not make use of this
“simplification”.

Another useful tool in the study of Lp-spaces is the Mazur map.
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Theorem 2.17. ([BL, Theorem 9.1]) Let µ be a σ-finite measure. For any 16p, q<∞
the Mazur map Mp,q:Lp(µ)!Lq(µ) defined by

Mp,q(f) = sign(f)|f |p/q

is a (non-linear) map which induces a uniformly continuous homeomorphism between
the unit spheres Mp,q: S(Lp(µ))!S(Lq(µ)).

(Note that if p, q 6=1 and p−1+q−1=1 then the restriction of Mp,q to the unit spheres
is just the duality map ∗: S(Lp(µ))!S(Lp(µ)∗).)

In the proofs of Theorems A and B, the results for subspaces and quotients are
deduced from the Lp(µ) case using the following theorem of Hardin about extension of
isometries defined on subspaces of Lp(µ). The formulation we give here is not quite iden-
tical to the original, but it easily follows from it and from its proof (see [Ha, Theorem 4.2]
or [FJ, Theorem 3.3.14]).

Theorem 2.18. (Hardin) Let (X,B, µ) be a measure space. For every closed sub-
space F⊆Lp(X, µ), there is a canonical extension F⊆F̃⊆Lp(µ) which is isometric to
Lp(X ′, µ′) for some other measure space (X ′, µ′). Furthermore, if 1<p /∈2Z, then every
linear isometry U :F!Lp(Y, ν) extends uniquely to a surjective linear isometry

Ũ : F̃ −! ŨF ⊆Lp(Y, ν).

Remark 2.19. If B′⊆B is the minimal sub σ-algebra with respect to which all the
functions in F are measurable, then F̃ =Lp(X,B′, µ).

A straightforward consequence is the following result.

Corollary 2.20. Let 1<p /∈2Z, and let F⊆Lp(X, µ) be a closed subspace. Let %

be a linear isometric representation of the group G on F . Then there is some linear
isometric G-representation %′ of G on some other space Lp(X ′, µ′), and a linear G-
equivariant isometric embedding F ↪!Lp(X ′, µ′).

Another important fact about Lp(µ)-spaces, this time for p∈(0, 2], is that B=Lp(µ)
has an embedding j:B!H into the unit sphere of a Hilbert space so that

〈j(x), j(y)〉= ‖x−y‖p.

Having such an embedding is equivalent (via the classical result of Schoenberg, see [BHV])
to the following result.
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Proposition 2.21. For 0<p<2 and any s>0 the function f 7!e−s‖f‖p

is positive
definite on Lp(µ), i.e. for any finite collection fi∈Lp(µ) and any λi∈C,∑

i,j

e−s‖fi−fj‖p

λiλ̄j > 0.

In fact, more is known: it was shown by Bretagnolle, Dacunha-Castelle and Krivine
[BDK] (cf. [WW, Theorem 5.1]) that, for 16p62, a Banach space X is isometric to a
closed subspace of Lp(µ) if and only if e−s‖·‖p

is a positive definite function on X for
any s>0.

2.f. Some easy counterexamples and remarks

Example 2.22. ((TB) 6⇒ (FB)) Let B be a Banach space with O(B)∼=Z/2Z, i.e. a
space where the only linear isometries are the identity and the antipodal map x 7!−x.
A trivial example of such a space is the line B=R, but it is not hard to construct such
spaces of arbitrary dimensions even within the class of ucus Banach spaces (by considering
e.g. sufficiently asymmetric convex sets in Hilbert space and choosing the corresponding
norm). Clearly for such a space any group has property (TB). However the groups
Z or R or any group G with sufficiently large Abelianization G/[G, G] would fail to
have property (FB) for it would admit an isometric action by translations: n·x:=x+nx0,
where 0 6=x0∈B is arbitrary. However groups with trivial Abelianization would also have
property (FB) on such an asymmetric Banach space B.

Example 2.23. ((T ) 6⇒ (FB)) Suppose G is locally compact and non-compact (e.g.
G=SL3(R) or G=SL3(Z)). Fix a Haar measure dg on G and let

B =L1
0(G) = {f ∈L1(G) :

∫
f dg =0}

be the codimension-1 subspace of functions with 0 mean. Then B is isometric to the affine
subspace {f∈L1(G):

∫
f dg=1} on which G acts isometrically by translations without

fixed points. Hence G does not have property (FB). This Banach space is not ucus.
Notice that in this example all orbits are bounded regardless of G.

Remark 2.24. Haagerup and Przybyszewska [HP] showed that any locally compact
group G admits a proper isometric action on the strictly convex space

⊕∞
n=1 L2n(G).

Example 2.25. ((T ) 6⇒ (TB)) Let G be as in Example 2.23. Consider the space
B=C0(G) of continuous real-valued functions on G which tend to 0 at ∞ with the sup
(L∞-)norm. The action of G on B by translations is a linear isometric action. A function
f∈B which decays very slowly forms an “almost invariant vector”. On the other hand
there are no non-zero invariant vectors. Hence G does not have property (TB).
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Remark 2.26. Since any separable Banach space is a quotient of `1, Example 2.25
shows that case (iii) of Theorem A cannot be extended to p=1.

Example 2.27. (Remarks 1.8 (3)) Let G=G1×G2 be any product of non-compact
locally compact groups (e.g. G=Z×Z). Let B=L1

0(G) as in Example 2.23. Then
H1(G, B) 6=0, but there are no non-zero Gi-fixed vectors in the associated linear rep-
resentation. Thus the product formula of Remarks 1.8 (3) cannot hold for B.

Let us make some remarks about Kazhdan’s property (T ) and property (TB) as
in Definition 1.1 and Remark 2.11. Given a unitary representation (%,H) of a locally
compact group G, a compact subset K⊆G and ε>0, one says that a vector 0 6=v∈H is
(K, ε)-almost invariant if

sup
g∈K

‖%(g)v−v‖<ε‖v‖.

A locally compact group G has Kazhdan’s property (T ) if and only if it satisfies the
following equivalent conditions:

(1) For any unitary G-representation (%,H) there exist a compact K⊆G and ε>0
so that the G-representation %′ on (H%(G))⊥∼=H/H%(G) has no (K, ε)-almost invariant
vectors;

(2) There exist a compact K⊆G and ε>0 so that all non-trivial irreducible unitary
G-representations (%,H) have no (K, ε)-almost invariant vectors;

(3) There exist a compact K⊆G and ε>0 so that for all unitary G-representations
(%,H) the G-representation %′ on (H%(G))⊥∼=H/H%(G) has no (K, ε)-almost invariant
vectors.

In the above, (3) clearly implies both (1) and (2). In showing (1)⇒ (3) one uses
the fact that the category of Hilbert spaces and unitary representations is closed under
`2-sums and L2-integration. The fact that any unitary representation decomposes as an
L2-integral of irreducible ones gives (2)⇒ (3).

Remark 2.28. Definition 1.1 (Remark 2.11) of property (TB) is modeled on (1)
above. There does not seem to be any reasonable theory of irreducible representations
(and decomposition into irreducibles) for Banach spaces other than Hilbert ones. Hence
form (2) of property (T ) does not seem to have a Banach space generalization. As for
(3), for any given 1<p<∞ the class of Lp(µ)-spaces is closed under taking `p-sums (and
Lp-integrals) and hence for groups with property (TLp) an analogue of (3) holds, namely
there exist K⊆G and ε>0 which are good for all %:G!O(Lp). Also, if a group G has
property (TB) for all ucus Banach spaces B (conjecturally all higher-rank groups and
their lattices) then for every ucus Banach space B there is a pair (K, ε) which is good for
all linear isometric representations G!O(B). This uses the fact that L2(µ,B) is ucus
if B is (see Lemma 8.6 below).
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Finally, we justify Remark 2.7.

Example 2.29. Let G be a discrete group and consider the Banach space B=`∞(G)
with the (linear isometric) regular G-representation %. Then one shows that the space
B%(G) (which consists of the constant functions) admits a G-invariant complement (if
and) only if G is amenable. Indeed, the Riesz space (or Banach lattice) structure of B

allows one to take the “absolute value” of any linear functional on B; renormalizing the
absolute value of any non-zero invariant functional would yield an invariant mean on G.
Alternatively, one can argue similarly on the Banach space of continuous functions on
any compact topological G-space.

We point out that nevertheless the space B′ is well-defined for any topological vec-
tor G-space B; in the case at hand, we have B′=B which shows why it cannot be a
complement for B%(G) 6=0.

3. Proof of Theorem 1.3

3.a. Guichardet: (FB) ⇒ (TB)

Proof. Assume that G does not have property (TE), where E is a Banach space, and
let %:G!O(E) be a representation such that E/E%(G) admits almost invariant vectors.
In order to show that H1(G, %) 6={0} it suffices to prove that B1(G, %)⊆Z1(G, %) is not
closed.

As was mentioned in §2, the space of %-cocycles Z1(G, %) is always a Fréchet space
(and even a Banach space if G is compactly generated). Note that B1(G, %) is the image
of the bounded linear map

τ :E−!Z1(G, %), (τ(v))(g) = v−%′(g)v.

If τ(E) were closed, and hence a Fréchet space, the open mapping theorem would imply
that τ−1:B1(G, %)!E/E%(G) is a bounded map. That would mean that for some M<∞
and a compact K⊆G,

‖v‖6M‖τ(v)‖K =M sup
g∈K

‖%(g)v−v‖, v ∈E/E%(G),

contrary to the assumption that % almost contains invariant vectors.
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3.b. (T ) ⇒ (FLp), 0<p62

Proof. Let G be a locally compact group with Kazhdan’s property (T ) acting by
affine isometries on a closed subspace B⊆Lp(µ) with 0<p62. Using Proposition 2.21
and a slight modification of a Delorme–Guichardet argument for (T )⇒ (FH) we shall
prove that such an action has bounded orbits. For 1<p62 uniform convexity of B⊆Lp(µ)
yields a G-fixed point using Lemma 2.14.

Proposition 2.21 allows us to define a family, indexed by s>0, of Hilbert spaces Hs,
embeddings Us:B!S(Hs) and unitary representations πs:G!O(Hs) with the following
properties:

(1) the image Us(B) spans a dense subspace of Hs;
(2) 〈Us(x), Us(y)〉=e−s·‖x−y‖p

for all x, y∈B;
(3) Us(gx)=πs(g)Us(x) for all x∈B and g∈G.
Indeed, one constructs Hs as the completion of the pre-Hilbert space whose vectors

are finite linear combinations
∑

i aixi of points xi∈B, and the inner product is given by〈∑
i

aixi,
∑

j

bjyj

〉
=

∑
i,j

aib̄je
−s‖xi−yj‖p

.

The representation πs can be constructed (and is uniquely determined) by property (3).
Since G is assumed to have Kazhdan’s property (T ), for some compact subset K⊆G

and ε>0, any unitary G-representation with (K, ε)-almost invariant vectors has a non-
trivial invariant vector.

Let x0∈B be fixed. The isometric G-action is continuous, so Kx0 is a compact and
hence bounded subset of B, hence

R0 = sup
g∈K

‖gx0−x0‖<∞.

For the unit vectors us=Us(x0)∈S(Hs) we have

min
g∈K

|〈πs(g)us, us〉|> e−sRp
0! 1, as s! 0.

In particular, for a sufficiently small s>0, maxg∈K ‖πs(g)us−us‖<ε. Let us fix such
an s, and rely on property (T ) to deduce that πs has an invariant vector v∈S(Hs).

We claim that G must have bounded orbits for its affine isometric action on B.
Indeed, otherwise there would exist a sequence gn∈G so that

‖gnx−y‖!∞ and hence 〈πs(gn)Us(x), Us(y)〉! 0

for all x, y∈B. This implies that 〈πs(gn)w, u〉!0 for any w, u∈span(Us(B)) and, since
span(Us(B)) is dense in Hs, for any w, u∈Hs. Taking w=u=v, we get a contradiction.
Therefore the affine isometric G-action on B has bounded orbits, and hence fixes a point
in case 1<p62.
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3.c. Fisher–Margulis: (T ) ⇒ (FLp), p<2+ε(G)

Let G have Kazhdan’s property (T ). Fix a compact generating subset K of G.

Lemma 3.1. There exist a constant C<∞ and ε>0 such that for any G-action by
affine isometries on a closed subspace B⊆Lp(µ) with p∈(2−ε, 2+ε) and any x∈B there
exists a point y∈B with

‖x−y‖6Cdiam(K ·x), diam(K ·y) <
diam(K ·x)

2
.

Proof. By contradiction there exists a sequence of subspaces Bn⊆Lpn with pn!2,
affine isometric G-actions on Bn and points xn∈Bn so that, after a rescaling to achieve
diam(K ·xn)=1, we have

diam(K ·y) > 1
2 for all y ∈B(xn, n) (3.i)

Passing to an ultraproduct of the spaces Bn with the marked points xn and the corre-
sponding G-actions, one obtains an isometric (hence also affine) G-action on a Hilbert
space H, because the limit of Lp-parallelograms as p!2 is the parallelogram identity,
which characterizes Hilbert spaces. (The action is well-defined because K generates G

and we ensured diam(K ·xn)=1.) If G is a topological group, one needs to ensure con-
tinuity of the limit action by selecting uniformly K -equicontinuous sets of vectors (as
in [Sh, Lemma 6.3]; compare also [CCS]). Due to (3.i), this G-action has no fixed points,
contradicting property (FH), and hence (T ), of G.

Proof of (FB) for B⊆Lp(µ), 26p<2+ε(G). Now consider an arbitrary affine iso-
metric G-action on a closed subspace B⊆Lp with |p−2|<ε, where ε=ε(G)>0 is as
in the lemma. Define a sequence xn∈B inductively, starting from an arbitrary x0.
Given xn, let Rn=diam(K ·xn). Then, applying the lemma, there exists xn+1 within
the ball B(xn, CRn) so that

diam(K ·xn+1) <
Rn

2
.

We get Rn<R0/2n and
∞∑

n=1

‖xn+1−xn‖<∞.

The limit of the Cauchy sequence {xn}∞n=1 is a G-fixed point.

Question 3.2. For a given group G with property (T ), what can be said about the
following invariant?

p(G) := inf{p :G fails to have (FB) for some closed subspace B⊆Lp}.

For instance, Pansu’s aforementioned result [Pa] shows that for G=Spn,1(R) one has

p(G) 6 4n+2.
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4. Proof of Theorem A

We start with the first assertion of the theorem: (T )⇒ (TB) for B being an Lp-related
space as in (i), (ii) or (iii) in the theorem. We first reduce to the case (i), where B=
Lp(µ) with 16p<∞. Then, using Corollary 2.20 of Hardin’s extension theorem, (TLp(µ))
implies (TB) for subspaces B⊆Lp(µ), where p 6=4, 6, ... as in (ii), and the duality argument
(Corollary 2.12) gives the result for quotients of Lq(µ) with q 6= 4

3 , 6
5 , ... as in (iii). Hence

it suffices to prove (T )⇒ (TLp(µ)) for 16p<∞. We give two proofs for this implication.
Let us note that our restriction on p and q when taking subspaces/quotients comes

from our use of Hardin’s theorem.

Question 4.1. Does property (T ) imply property (TB) for any closed subspace and
any quotient B of Lp(µ) for any 1<p<∞ ?

4.a. Property (T ) implies (TLp(µ))

Proof. Assuming that a locally compact group G fails to have property (TLp(µ)) for
some 16p<∞, we are going to show that G does not have (T ). We may and will assume
p 6=2; write B=Lp(µ) and H=L2(µ). Using Remark 2.11, there is a representation

%:G−!O(B)

so that for the canonical complement B′ of B%(G) the restriction %′:G!O(B′) almost
has invariant vectors, i.e. there exist unit vectors vn∈S(B′) so that

fn(g) = ‖%(g)vn−vn‖

converges to 0 uniformly on compact subsets of G.
We shall obtain a related unitary, or orthogonal, representation π:G!O(H) using

the following lemma.

Lemma 4.2. For p 6=2, the conjugation U 7!Mp,2�U �M2,p by the non-linear Mazur
map sends O(B) to O(H).

Proof. This follows from Banach–Lamperti’s description of O(B) (Theorem 2.16) by
calculation.

Let us then define π:G!O(H) by π(g)=Mp,2�%(g)�M2,p. Note that Mp,2 maps
B%(G) onto Hπ(G).

As S(B′) is uniformly separated (in fact is at distance 1) from B%(G), the uniform
continuity of the Mazur map (Theorem 2.17) implies that un=Mp,2(vn) is a sequence in
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S(H) such that dist(un,Hπ(G))>δ>0 and ϕn(g)=‖π(g)un−un‖!0 uniformly on com-
pact subsets of G. Let wn denote the projections of un to H=(Hπ(G))⊥. Then

‖wn‖> δ > 0 and ‖π(g)wn−wn‖6ϕn(g)! 0

uniformly on compact sets. Thus the restriction π′ of π to H′ does not have G-invariant
vectors, but almost does. Hence G does not have Kazhdan’s property (T ).

Remark 4.3. In fact, the above proof has established the following more specific
statement. Let G act measurably on a σ-finite measure space. Denote by %p the as-
sociated linear isometric representation on Lp, namely the quasi-regular representation
twisted by the pth root of the Radon–Nikodým derivative. Then, the existence of almost
invariant vectors in Lp/(Lp)%p(G) is independent of 16p<∞.

4.b. Property (T ) implies (TLp(µ))

Proof. For 1<p62 we have (T )⇒ (FLp(µ))⇒ (TLp(µ)) by Theorem 1.3 (1) and (2).
Using duality (Corollary 2.12), this implication extends to Lp(µ) with 2<p<∞.

4.c. Property (TLp) implies (T )

Proof. Assume that G is not Kazhdan, i.e. G admits a unitary representation π

almost containing (but not actually containing) non-trivial invariant vectors. Connes
and Weiss [CW] showed how to find such a representation of the form L2

0(µ). More
precisely, they construct a measure-preserving, ergodic G-action on a probability space
(X, µ) which admits a sequence {En}∞n=1 of asymptotically invariant measurable subsets,
namely

for all g ∈G, µ(gEn4En)! 0 whilst µ(En) = 1
2 . (4.i)

Consider the unitary G-representation π′ on L2
0(µ)—the space of zero mean square in-

tegrable functions, which is the orthogonal complement of the constants. Then π′ does
not have non-trivial invariant vectors because of ergodicity; but it almost does, namely
fn=2·1En−1.

For a given 16p<∞, consider the linear isometric G-representation % on B=Lp(µ),
%(g)f(x)=f(g−1x). Then B%(G)=R1—the constants, and its canonical complement is

B′ =Lp
0(µ) = {f ∈Lp(µ) :

∫
f dµ =0}.
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The above sequence {fn}∞n=1 lies in Lp
0(µ), consists of unit vectors and still satisfies

‖%(g)fn−fn‖p! 0.

Hence failing to have Kazhdan’s property (T ) a group G does not have (TLp(µ)) either.
In the original paper [CW], Connes and Weiss considered discrete groups. In a

similar context the case of locally compact groups was also considered by Glasner and
Weiss (see [GW, §3] and references therein). One way to treat the non-discrete case, is
the following: start from a unitary representation π of a given locally compact secondly
countable G which has almost invariant vectors but no invariant ones, and apply the
original Connes–Weiss Gaussian construction to the restriction π|Γ of π to some dense
countable subgroup Γ⊆G. This gives an ergodic measure-preserving Γ-action on a prob-
ability space (X, µ) with an asymptotically invariant sequence {En}∞n=1 on X. The fact
that the representation π|Γ came from G is manifested by the fact that it is continuous in
the topology on Γ induced from G. It can be shown to imply that the Γ-representation
on L2

0(X, µ) is also continuous, hence extends to G, and thus the Γ-action on (X, µ) ex-
tends to a measurable G-action. This construction gives a uniform convergence in (4.i)
on compact subsets of G.

5. Fixed-point property for higher-rank groups

5.a. The goal of this section is to prove Theorem B; we start with some preliminaries
for the linear part.

The first ingredient needed for the proof is an analogue of Howe–Moore’s theorem
on vanishing of matrix coefficients, or rather its corollary analogous to Moore’s ergod-
icity theorem, extended to the framework of uniformly equicontinuous representations
on superreflexive Banach spaces. The ucus Banach space version of Howe–Moore is due
to Shalom (unpublished). With his kind permission we have included the argument in
Appendix 9. Here we shall use the following corollary, which we formulate for the case
of simple groups.

Corollary 5.1. (Banach space analogue of Moore’s theorem) Let k be a local
field and let G=G(k) be the k-points of a Zariski connected isotropic simple k-algebraic
group G. Let G+ be the image of the simply connected form G̃=G̃(k) in G under the
cover map. Let H⊆G+ be a closed non-compact subgroup.

Then for any superreflexive space B and any continuous uniformly equicontinuous
linear G-representation %:G+!GL(B), B%(H)=B%(G+) and the canonical complements
with respect to both %(G+) and %(H) coincide, and can be denoted just by B′.
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Proof. By Proposition 2.3, we may assume that B is a ucus Banach space and % is
a linear isometric representation %:G!O(B). Now the statement follows readily from
Theorem 9.1.

5.b. The second ingredient is the strong relative property (T ). It will be used to prove
Claim 5.5 below which is the only part that is specific to Lp-like spaces. The rest of the
argument applies to all affine isometric actions on ucus Banach spaces, or all uniformly
equicontinuous affine actions on a superreflexive space.

Definition 5.2. Let HnU be a semi-direct product of locally compact groups. We
shall say that it has

• the strong relative property (T ) if for any unitary representation π of HnU for
which H almost has non-trivial invariant vectors, U has invariant vectors;

• the strong relative property (TB), where B is a Banach space, if for any linear
isometric representation %:HnU!O(B) the linear isometric H-representation

%′:H −!O(B/B%(U))

does not almost have non-trivial invariant vectors.

Remarks 5.3. (1) The first definition is a variant of the “relative property (T )”.
The latter usually refers to a pair of groups G0⊆G and requires that any unitary G-rep-
resentation with G-almost invariant vectors, has non-trivial G0-invariant vectors. The
strong relative property (T ) for HnU implies, but is not equivalent to, the relative
property (T ) for (HnU,U). In fact SL2(R)nR2 has the strong relative property (T ),
and thus the relative property (T) as well, whilst its lattice SL2(Z)nZ2 does not have
the strong relative property (T ) even though the pair (SL2(Z)nZ2,Z2) has the relative
property (T ). (For the latter, cf. Burger’s appendix in [HV]. For the former, consider
the representation on `2(Z2) induced by the affine action on Z2.)

(2) If B is a ucus Banach space, then the canonical splitting with respect to %(U),
namely B=B%(U)⊕B′ is preserved by %(H) which normalizes %(U) (Corollary 2.8).
Hence, as in Remark 2.11, for a ucus space B the strong relative property (TB) re-
quires that the restriction of %(H) to B′ does not almost have invariant vectors. The
strong relative property (TH) for a Hilbert space H is equivalent to the strong relative
property (T ).

Lemma 5.4. A semi-direct product HnU with the strong relative property (T ) has
the strong relative property (TB) for all Lp-related Banach spaces B of types (i), (ii)
and (iii) as in Theorem A.
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Proof. This is analogous to the proof of (T )⇒ (TB) given in §4.a. First observe that
the extension Theorem 2.20 and a duality argument (based on Proposition 2.10) reduce
the statement to the case (i) of B=Lp(µ).

Thus we assume that B=Lp(µ) with p 6=2, and %:HnU!O(B) is a linear isometric
representation. Let B=B%(U)⊕B′ be the canonical splitting with respect to U . It is
preserved by %(H) because H normalizes U . Now let π=Mp,2�%�M2,p be the conjugate
of % by the Mazur map. Then π is an orthogonal representation π:HnU!O(H), where
H=L2(µ) (Lemma 4.2).

If HnU fails to have the strong relative property (TB), then there exist xn∈S(B′) so
that ‖%(h)xn−xn‖!0 uniformly on compact subsets of H. Uniform continuity of Mp,2

and the fact that dist(S(B′),S(B%(U)))=1, imply that for vn=Mp,2(xn),

dist(vn,H%(U)) > δ > 0 and ‖π(h)vn−vn‖! 0

uniformly on compact subsets of H. Taking projections of vn to H′, we show that in this
case HnU does not have the strong relative property (T ).

5.c. Proof of Theorem B

We first show that we can assume that G is (the k-points of a) connected and simply
connected algebraic group. Assuming that Theorem B is known for G̃0 and lattices
therein, we will prove it for G and its lattices. For any affine isometric action of G on B

there is an associated action of G̃0, inflated via the covering map G̃0!G. G̃0 has a fixed
point by assumption, hence G has a compact orbit, as the cokernel of the covering map
is compact [M5, Theorem I.2.3.1 (b)]. It follows that G has a fixed point as well. A
similar argument applies to lattices: For a given lattice Γ in G its inverse image Γ̃ by the
covering map is a lattice in G̃0, and its projection is of finite index in Γ. Every affine
isometric action of Γ gives rise to an affine isometric action of Γ̃, which, by assumption,
has a fixed point. It follows that Γ has a finite orbit, and therefore fixes a point.

Hereafter we will assume that G is (the k-points of a) connected and simply con-
nected group. In that case G decomposes into a direct product of simply connected
almost simple groups G=

∏
i Gi [M5, Proposition I.1.4.10].

In view of (the independent) §8.a and §8.b, more specifically Proposition 8.8 (2) and
the discussion following Definition 8.2, property (FB) for G=

∏
i Gi is inherited by its

lattices. Thus it suffices to consider the ambient group G=
∏

i Gi only. By Proposi-
tion 2.15 (3) the statement reduces to that about almost-simple factors Gi.

So we are left proving the theorem for G=G(k), a higher-rank connected, simply-
connected, almost-simple algebraic group. Using Proposition 2.13, we assume that B
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is a ucus Banach space and we consider a G-action on B by affine isometries, with
%:G!O(B) denoting the linear part of the action. Let B=B%(G)⊕B′ be the canonical
decomposition and %′:G!O(B′) denote the corresponding subrepresentation.

Claim 5.5. (For Lp-like spaces) G contains a direct product A×H so that
(1) the restriction %′|H :H!O(B′) does not almost contain invariant vectors;
(2) A is a 1-dimensional split torus, and in particular it is not compact.

Proof. Any higher-rank almost-simple group G=G(k) is known to contain a sub-
group whose simply-connected cover is isomorphic to either G0=SL3(k) or G0=Sp4(k)
[M5, Theorem I.1.6.2]. In the first case, G0=SL3(k) contains the semi-direct product
H0nU0=SL2(k)nk2 embedded in SL3(k) as

 a b x

c d y

0 0 1

 : ad−bc =1

 ,

where U0
∼=k2 is the subgroup given by a=d=1 and b=c=0. It is normalized by the

copy H0 of SL2(k) embedded in the upper left corner. Let A0⊆SL3(k) be the subgroup
diag[λ, λ, λ−2], λ∈k∗, which centralizes H0 in G0, and let A and HnU denote the cor-
responding subgroups in G.

The semi-direct product SL2(k)nk2 is known to have the strong relative prop-
erty (T ). Hence it also has the strong relative property (TB) for Lp-related spaces B

(Lemma 5.4). By Corollary 5.1, we have B%(G)=B%(U) and we have denoted by B′ the
common canonical complement. Then (1) follows from the strong relative property (TB)
for HnU , while (2) is clear from the construction.

In the second case, G contains a copy of G0=Sp4(k), which is usually defined as a
subgroup of SL4(k) by

Sp4(k) = {g ∈SL4(k) : tgJg =J}, where J =
(

0 I

−I 0

)
.

The semi-direct product H0nU0 embedded in SL4(k) is{(
A B

0 tA−1

)
:A∈SL2(k) and tB =A−1B(tA)

}
,

with H0 denoting the image A 7!diag[A, tA−1] of SL2(k), and U0 the normal Abelian
subgroup {(

I B

0 I

)
: tB =B

}
.
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The semi-direct product H0nU0 actually lies in Sp4(k), it is isomorphic to SL2(k)nS2(k),
where S2(k) is the space of symmetric bilinear forms on k2 with the natural SL2(k)
action. This semi-direct product is also known to have the strong relative property (T ),
and therefore the strong relative property (TB). H0 is centralized by

A0 = {diag[λ, λ, λ−1, λ−1] : λ∈ k∗}.

As in the G0=SL3(k) case, we conclude that the corresponding product A×H⊆G satis-
fies (1) and (2). The claim is proved.

We now turn to the affine isometric G-action defined by a %-cocycle c∈Z1(%). We
shall prove that c∈B1(%), i.e. that G has a global fixed point. Write c(g)=c0(g)+c′(g)
with c0(g)∈B%(G) and c′(g)∈B′, where B=B%(G)⊕B′ is the canonical splitting. Then
c0:G!B is a homomorphism into the (additive) Abelian group. As G has compact
Abelianization, c0(g)≡0, which means that the affine G-action preserves each affine sub-
space p+B′. Hence both the affine G-action and the representation can be restricted
to B′.

Claim 5.5 provides an input for the following general lemma.

Lemma 5.6. Let a direct product of topological groups A×H act by affine isometries
on a Banach space B. Suppose that the associated linear isometric representation %

restricted to H does not almost have invariant vectors. Then the affine action of A has
bounded orbits in B. In particular , if B is uniformly convex , then A has a fixed point
in B.

Remark 5.7. In the uniformly convex case, this follows of course from the stronger
splitting theorem (Theorem C); compare also with Theorem 7.1 below for the weaker
assumption that the product does not almost have invariant vectors.

Proof. Let %:A×H!O(B) and c∈Z1(%) denote the associated linear isometric rep-
resentation and the translation cocycle. The commutation relation between any h∈H

and a∈A gives
c(h)+%(h)c(a) = c(ha) = c(ah) = c(a)+%(a)c(h),

which can be rewritten as

(I−%(h))c(a) = (I−%(a))c(h).

By the assumption on %(H), there exist a compact subset K⊆H and ε>0 so that
maxh∈K ‖%(h)v−v‖>ε‖v‖ for all v∈B. Let R=maxh∈K ‖c(h)‖<∞. Then for a∈A,

ε‖c(a)‖6max
h∈K

‖(I−%(h))c(a)‖6 2R.
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Hence supa∈A ‖c(a)‖62R/ε, i.e. the A-orbit of 0 is bounded. If B is uniformly convex
then the circumcentre of this orbit is an A-fixed point as in Lemma 2.14.

We restrict the G-action to B′, since G has no additive characters. It follows from
Claim 5.5 and Lemma 5.6 that for some (1-dimensional) split torus A, there is an A-
fixed point. This point is unique; indeed, if x and y are A-fixed, then x−y∈B′ is
an A-invariant vector for the linear representation %. Since A is non-compact, the ucus
analogue of Moore’s ergodicity (Corollary 5.1) implies that B%(A)=B%(G). Hence x−y=0,
as claimed. Being unique, it is also fixed by any element commuting with A.

Let now S⊇A be a maximal split torus. Recall (Cartan decomposition) that there
is a compact subgroup M<G such that G=MSM . (We refer to [M5, Theorem I.2.2.1],
recalling that we placed ourselves in the case of simply connected algebraic groups; in
fact, there is even a “positive semigroup” S+⊆S such that G=MS+M , but we shall not
need this.)

At this point, we observe that if any group G of isometries of any metric space can
be written as a product of finitely many subgroups with bounded orbits, then G itself
has bounded orbits. Since S⊇A is commutative, it fixes the unique A-fixed point. In
particular, S has bounded orbits. Since M is compact, it has bounded orbits. In conclu-
sion, it follows that G=MSM has bounded orbits and hence a fixed point (Lemma 2.14),
concluding the proof of Theorem B.

6. Minimal sets

Let B be a strictly convex reflexive Banach space and G a group acting on B by affine
isometries. Consider the ordered category C of non-empty closed convex G-invariant
subsets of B endowed with G-equivariant isometric maps and inclusion order. The goal
of this section is to study minimal elements of C (regardless of whether they exist). In §7
we shall prove their existence, under conditions (see Corollary 7.5).

The Mazur–Ulam theorem states that a surjective isometry between (real) Banach
spaces is affine. It is not known (and probably not true under no further assumptions)
whether the analogue of the Mazur–Ulam theorem holds in the general context of convex
subsets of Banach spaces. However, for subsets of strictly convex spaces it is obviously
true.

Lemma 6.1. Let C⊆B be a convex subset. Then every isometric map C!B is affine.

Proof. It is enough to show that for all x, y∈C and for every 0<t<1 the point
p=tx+(1−t)y is determined metrically. This is true since, by strict convexity,

	B(x, (1−t)‖x−y‖) ∩ 	B(y, t‖x−y‖) = {p}.
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In particular the morphisms of C are affine. Another useful geometric property of
closed convex sets in B is the existence of a nearest point projection.

Lemma 6.2. Let C be a non-empty closed convex subset of B. Then for every x∈B

there exists a unique point πC(x)∈C such that ‖x−πC(x)‖=d(x,C).

Proof. The uniqueness follows from strict convexity. By the Hahn–Banach theo-
rem, C is weakly closed since it is closed and convex; therefore, by reflexivity and the
Banach–Alaoglu theorem, we have a nested family C∩	B(x, d) of weakly compact sets
as d&d(x,C); its intersection yields existence.

The map πC :B!C is called the nearest point projection on C. We remark that it
is not continuous in general. It is continuous for uniformly convex Banach spaces and
non-expanding for Hilbert spaces. Still, the distance between a point and its projection
is always a 1-Lipschitz function.

Lemma 6.3. Let C be a non-empty closed convex subset of B. Then the function

x 7−! ‖πC(x)−x‖

from B to R is 1-Lipschitz.

Proof. For any x, y∈B,

‖πC(x)−x‖6 ‖πC(y)−x‖6 ‖πC(y)−y‖+‖y−x‖.

Lemma 6.4. If C∈C is a minimal element , then any convex G-invariant continuous
(or lower semi-continuous) function ϕ:C!R is constant.

Proof. If ϕ were to assume two distinct values s<t, then ϕ−1((−∞, s]) would be a
strictly smaller element of C.

Lemma 6.5. Let C,C ′∈C with C minimal. Then the nearest point projection

π =πC′ |C :C −!C ′

is affine.

Proof. For every x, y∈C and t∈[0, 1], the definition of π implies that

‖π(tx+(1−t)y)−(tx+(1−t)y)‖6 ‖(tπ(x)+(1−t)π(y))−(tx+(1−t)y)‖

6 t‖π(x)−x‖+(1−t)‖π(y)−y‖.
(6.i)

It follows that the function C!R, x 7!‖π(x)−x‖, is convex. Clearly it is G-
invariant, and by Lemma 6.3 it is continuous, hence Lemma 6.4 implies that ‖π(x)−x‖
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is constant on C. This constant must be d(C,C ′); as both the right-hand side and the
left-hand side in (6.i) equal d(C,C ′), it follows that

‖(tπ(x)+(1−t)π(y))−(tx+(1−t)y)‖= ‖π(tx+(1−t)y)−(tx+(1−t)y)‖.

Therefore, by the uniqueness part of Lemma 6.2, we must have

tπ(x)+(1−t)π(y) =π(tx+(1−t)y).

Lemma 6.6. If C∈C is minimal and T :C!B is a G-equivariant affine map, then
there exists a %(G)-invariant vector b∈B such that T (c)=c+b for all c∈C.

Proof. The map C!R, x 7!‖Tx−x‖, is G-invariant, continuous and convex, hence
by Lemma 6.4 it has a constant value d>0. Since B is strictly convex and C is convex,
the affine map σ(x)=Tx−x from C to the sphere of radius d in B must be constant. Its
value b=σ(C) is the desired (%(G)-invariant) translation vector.

Corollary 6.7. The map πC :C!C ′ from Lemma 6.5 is in fact a translation.

Corollary 6.8. If C,C ′∈C are minimal , then they are equivariantly isometric.
Moreover , any equivariant isometry C!C ′ is a translation by a %(G)-invariant vector.

Proof. By Corollary 6.7, πC′ |C :C!C ′ is an isometry; it is G-equivariant and hence
onto, by the minimality of C ′. The second claim follows from Lemmas 6.1 and 6.6.

7. Actions of product groups and splitting

7.a. The main goal of this section is to prove Theorem C. By Proposition 2.13, we
may assume the affine action to be isometric with respect to a ucus norm on a Banach
space B. The main step is the following theorem.

Theorem 7.1. Let G=G1×G2 be a product of topological groups with a continuous
action by affine isometries on a uniformly convex Banach space B without G-fixed point.
Assume that the associated linear G-representation % does not almost have non-zero
invariant vectors. Then there exists a non-zero %(Gi)-invariant vector for some i∈{1, 2}.

The proof of Theorem 7.1 uses minimal sets (in analogy to [Mo2]); notice that we
are in the setting of §6, since uniformly convex spaces are reflexive and strictly convex
[BL, Appendix A]. More precisely, we show the following result.

Proposition 7.2. Let G and B be as above. Then there exists a minimal non-
empty closed convex G1-invariant subset in B. In fact , any non-empty closed convex
G1-invariant subset contains such a minimal subset.
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Proof of Theorem 7.1. Proposition 7.2 provides a minimal non-empty closed con-
vex G1-invariant set C⊆B. If there is no non-zero %(G1)-invariant vector, Lemma 6.6
(applied to G1) shows that G2 fixes every point of C. Since G1 preserves C and G has
no fixed point, C cannot consist of a single point. Picking two distinct points x, y∈C

yields the non-zero %(G2)-invariant vector x−y.

Recall that uniform convexity is characterized by the positivity δ defined in §2.a.
Moreover, δ is a positive, non-decreasing function which tends to zero at zero. Defining

δ−1(t) = sup{ε : δ(ε) 6 t},

δ−1 is easily seen to share the same properties. Furthermore, for every ε>0, δ−1
�δ(ε)>ε.

Proof of Proposition 7.2. Let C0⊆B be any non-empty closed convex G1-invariant
subset; we will show that C0 contains a minimal subset (if no initial C0 was prescribed,
one may choose C0=B).

Pick any p∈C0 and let C1⊆C0 be the closed convex hull of the G1-orbit of p. By
Hausdorff’s maximal principle, we can chose a maximal chain D of non-empty closed
convex G1-invariant subsets of C1. If bC :=πC(0) is bounded as C ranges over D, then
for some R>0 we have a nested family of non-empty sets 	B(0, R)∩C which are weakly
compact by reflexivity, the Hahn–Banach theorem and the Banach–Alaoglu theorem.
In particular the intersection

⋂
D is non-empty, thus providing a minimal set for G1.

Therefore, we may from now on assume, by contradiction, that the (non-decreasing) net
RC :=‖bC‖ is unbounded over C∈D. Let D′⊆D be the cofinal segment defined by RC >0.
We will obtain a contradiction by showing that for every compact K⊆G, diam(%(K)b̂C)
tends to zero along C∈D′, where b̂C =bC/RC .

Indeed, choose Ki⊆Gi compact with K⊆K1×K2 and let L=maxg∈K1×K2 ‖g ·0‖.
The choice of bC implies that g ·bC 6=0 and RC 6‖(bC +g ·bC)/2‖ for all g∈G. Therefore,
setting x=bC/‖g ·bC‖ and y=g ·bC/‖g ·bC‖, the convexity modulus δC,g :=δ(‖x−y‖) gives

RC 6

∥∥∥∥bC +g ·bC

2

∥∥∥∥6

∥∥∥∥x+y

2

∥∥∥∥ ‖g ·bC‖6 (1−δC,g)(‖g ·bC−g ·0‖+‖g ·0‖)

6 (1−δC,g)(RC +L) 6RC

(
1+

L

RC
−δC,g

)
for all g∈K1. Therefore δC :=supg∈K1

δC,g6L/RC!0 along C∈D′, and hence

sup
g∈K1

‖g ·bC−bC‖
‖g ·bC‖

6 δ−1(δC)! 0.

Using ‖g ·bC‖6‖g ·bC−g ·0‖+L6RC +L, it follows that

sup
g∈K1

‖g ·bC−bC‖
RC

! 0 along C ∈D′. (7.i)
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On the other hand, for every g∈G2, the function z 7!‖g ·z−z‖ is continuous, convex and
G1-invariant; therefore, it is bounded by ‖g ·p−p‖ on C1. Setting L′=maxg∈K2 ‖g ·p−p‖,
it follows now that for all k=(g1, g2)∈K we have

RC‖%(k)·b̂C−b̂C‖= ‖k ·bC−bC−k ·0‖6 ‖g1 ·bC−bC‖+‖g2g1 ·bC−g1 ·bC‖+L

6 ‖g1 ·bC−bC‖+L′+L.

Thus, in view of (7.i), diam(%(K)b̂C) goes to zero, as claimed.

Proof of Theorem C. We adopt the notation and the assumptions of the theorem;
let % be the linear part of the action. Assume first that n=2. Since we have in particular
B%(G)=0, Corollary 2.9 yields a canonical splitting B=B%(G1)⊕B%(G2)⊕B0 invariant
under %(G). Decomposing the cocycle G!B along this splitting shows that up to affine
isometry we may assume that the affine G-space B splits likewise as affine product of
affine spaces with corresponding linear parts. However, Theorem 7.1 shows that the
resulting affine G-action on B0 must have a fixed point, since B

%(Gi)
0 =0. Therefore, we

obtain a G-invariant affine subspace G-isometric to B%(G1)⊕B%(G2) in B, as claimed.

In order to obtain the general case n>2, we only need to observe that Corollary 2.9
applied to the product G1×

∏
i>2 Gi allows us to apply induction on n.

Remark 7.3. The above proof characterizes the subspaces Bi⊆B appearing in the
statement of Theorem C as follows: upon possibly replacing the Bi’s with the correspond-
ing linear subspaces (which corresponds to replacing the cocycles with cohomologous
cocycles), we have Bi=B%(G′

i) for G′
i=

∏
j 6=i Gj .

7.b. A more geometric approach to Theorem B and a step towards
Conjecture 1.6

Before continuing towards the superrigidity theorem, let us explain a more geometric,
and seemingly more general, approach to prove (TB)⇒ (FB), which is based on minimal
sets. First we shall formulate a very general statement in the vein of Conjecture 1.6.

Theorem 7.4. Let B be a ucus Banach space and G be a topological group with
property (TB) and compact Abelianization. Then for any continuous affine isometric
action of G on B there is a minimal non-empty closed convex subset C⊆B. Moreover ,
AutG(C) is trivial , C⊆B′ and C is unique, up to translations by a %(G)-invariant vector.

The proof of Theorem 7.4 relies on the following consequence of our discussion of
minimal sets.
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Corollary 7.5. Let G be a topological group with a continuous action by affine
isometries on a uniformly convex Banach space B. Assume that the associated linear
representation does not almost have non-zero invariant vectors. Then there exists a
unique minimal non-empty closed convex G-invariant subset C0⊆B. Moreover , there
are no non-trivial G-equivariant isometries of C0.

Remark 7.6. In view of the additional statement of Proposition 7.2, the set C0 is
contained in every non-empty closed convex G-invariant subset. Thus it is indeed the
(non-empty) intersection of all those subsets.

Proof. For the existence of C0, we may apply Proposition 7.2 if G=G1×1 has no
fixed point, or otherwise take such a fixed point for C0. Both uniqueness and the addi-
tional statement follow now from Corollary 6.8.

Proof of Theorem 7.4. Since G has compact Abelianization, the %(G)-invariant sub-
space B′ is in fact G-invariant as an affine space, as the projection of the cocycle to B%(G)

must be a homomorphism. It follows that every minimal non-empty closed convex G-
invariant set is contained in some coset of B′. The existence and uniqueness of such
a subset C inside B′ follows from Corollary 7.5. The fact that any two such sets are
different by a %(G)-invariant vector is a consequence of Corollary 6.8.

Let us now describe an alternative proof for Theorem B. Let B be an Lp-related
Banach space as in Theorem B. We reduce to the case where G is (the k-points of a)
connected, simply-connected and almost-simple as in §5. Now G either contains a copy
of SL3(k) or a copy of Sp(4, k) which, in each case, contains a semidirect product HnU

with the strong relative property (TB) (see Lemma 5.4 and the proof of Claim 5.5). We
decompose B=B%(U)⊕B′ according to that U -action; note that, by the Howe–Moore
theorem, B%(U)=B%(G). Then B′ is invariant under the affine action of G, and H does not
almost has invariant vectors in B′. Hence, by Corollary 7.5 there is a unique minimal non-
empty closed convex H -invariant subset C⊆B′ and it has no non-trivial automorphisms
which commute with the H -action. Since, by Claim 5.5, the centralizer of H is non-
compact, it follows by the Howe–Moore theorem that C is reduced to a point. Now one
finishes the proof as in §5 using a Cartan decomposition.

8. Induction and superrigidity

Let Γ⊂G=G1×...×Gn be a lattice in a product of n>2 locally compact groups. Under
an irreducibility assumption, the splitting theorem (Theorem C) implies a superrigidity
result for uniformly equicontinuous affine Γ-actions on superreflexive spaces B. As before,
such an action can be viewed as an affine isometric Γ-action on a ucus Banach space B.
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It therefore suffices to apply the splitting theorem to the induced G-action on an induced
space Lp(G/Γ, B) (compare [Sh] for the Hilbertian case).

The goal of this section is to address the various (mostly technical) issues that arise
when carrying out this programme. We begin by preparing for a statement (Theorem 8.3
below) that will then imply a more general form of Theorem D.

8.a. Let G be a locally compact group and Γ⊂G a lattice. The induction procedure
will work smoothly if Γ is uniform (i.e. cocompact); in order to treat some non-uniform
cases, one introduces the following definition.

Definition 8.1. ([M5, §III.1.8]) The lattice Γ is weakly cocompact if the G-representa-
tion L2

0(G/Γ), i.e. the canonical complement of the trivial representation in L2(G/Γ),
does not almost have non-zero invariant vectors.

One verifies that any cocompact lattice is weakly cocompact. If G has property (T ),
then all its lattices are weakly cocompact. This also holds if G is any (topologically) con-
nected semisimple Lie group ([Bk], compare also [M5, Remark III.1.12]). By Remark 4.3,
this definition does not depend on considering L2(G/Γ) rather than Lp(G/Γ) for some
other 16p<∞.

Definition 8.2. (See [Sh, §1.II]) Let p>0. The lattice Γ is p-integrable if either (i)
it is uniform, or (ii) it is finitely generated and for some (or equivalently any) finite
generating set S⊆Γ, there is a Borel fundamental domain D⊆G (with null boundary)
such that ∫

D
‖χ(g−1h)‖p

S dh <∞ for all g ∈G,

where ‖ · ‖S is the word-length associated to S and χ:G!Γ is defined by

χ−1(e) =D and χ(gγ−1) = γχ(g).

This formulation is a bit awkward so as to include all uniform lattices, since (ii)
would otherwise fail when G is not compactly generated. Condition (ii) holds (with
any p>1) for all irreducible lattices in higher-rank semisimple Lie/algebraic groups, see
[Sh, §2]; it holds likewise for Rémy’s Kac–Moody lattices [Ry].

Finally, given a product structure G=G1×...×Gn, we say that a lattice Γ⊂G is
irreducible if its projection to each Gi is dense.

Theorem 8.3. Let Γ be an irreducible lattice in a locally compact σ-compact group
G=G1×...×Gn. Assume that Γ is weakly cocompact and p-integrable for some p>1.
Let B be a ucus Banach space with a Γ-action by affine isometries.
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If the associated linear Γ-representation does not almost have invariant vectors,
then there is a Γ-closed complemented affine subspace of B on which the Γ-action is a
sum of actions extending continuously to G and factoring through G!Gi. (Compare
Remark 1.9.)

Theorem 8.3 indeed implies Theorem D in the wider generality of weakly cocompact
p-integrable lattices, since Proposition 2.13 allows us to assume that the topological
vector space of Theorem D is in fact a ucus Banach space with a Γ-action by affine
isometries.

A (simpler) application of the same techniques implies the following result.

Theorem 8.4. Let Γ be an irreducible lattice in a locally compact σ-compact group
G=G1×...×Gn. Assume that Γ is weakly cocompact and p-integrable for some p>1.

Then any homomorphism Γ!R extends continuously to G.

This result was established by Shalom in the case of cocompact lattices [Sh, The-
orem 0.8] (actually, his proof holds in the setting of square-integrable lattices). It is
therefore not surprising that our results imply the generalisation stated in Theorem 8.4
above (see the end of this section).

8.b. Induction

Throughout this section, G is a locally compact second countable group and Γ⊂G is
a lattice. In particular, the Haar measure induces a standard Lebesgue space structure
on G/Γ.

Remark 8.5. Even though Theorem 8.3 and Theorem D were stated in the more
general setting of σ-compact groups, it is indeed enough to treat the second countable
case: one can reduce to the latter by a structural result of Kakutani–Kodaira [KK] (the
details of the straightforward reduction are expounded at length in [Mo2]).

Let B be any Banach space and 1<p<∞. We consider the Banach space E=
Lp(G/Γ, B), as in §2.e.

Lemma 8.6. If B is uniformly convex or ucus, then so is E.

Proof. This follows from a result of Figiel and Pisier; see Theorem 1.e.9, point (i)
in [LT2, Vol. II].

Suppose now that B is endowed with a linear isometric Γ-representation %. Then E

can be canonically isometrically identified with the space of those Bochner-measurable Γ-
equivariant function classes f :G!B such that ‖f‖B :G/Γ!R is p-integrable (the latter
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condition is symbolized by the notation L[p]):

E∼=L[p](G, B)%(Γ). (8.i)

Here, we choose to interpret Γ-equivariance as f(gγ)=%(γ)−1f(g). The isomorphism (8.i)
can be e.g. realized by restricting equivariant maps to any Borel fundamental domain
D⊆G for Γ, since D∼=G/Γ as Lebesgue spaces. This identification allows us to endow E

with a continuous linear isometric G-representation by left multiplication. This G-rep-
resentation is called the induced representation. If we choose a fundamental domain D⊆G

and consider the corresponding map χ as in Definition 8.2, then this G-representation
reads as follows for f∈E=Lp(G/Γ, B):

(hf)(gΓ) = %(χ(g)−1χ(h−1g))f(h−1gχ(h−1g)Γ) (8.ii)

(a good indication that the model (8.i) is more natural!).

Lemma 8.7. Assume Γ to be weakly cocompact in G. If the linear Γ-representation
does not almost have invariant vectors, then the induced linear G-representation does
not either.

Proof. The proof given by Margulis in the unitary case [M5, Proposition III.1.11]
holds without changes (recalling that we can apply weak cocompactness in the Lp setting
by Remark 4.3).

Suppose now that B is endowed with an isometric Γ-action—not necessarily linear
anymore. We want to endow E with a continuous affine isometric G-action by identifying
E with a space of Γ-equivariant function classes G!B as before, except that equivariance
is now understood with respect to the affine Γ-action. Formally, there is nothing to
change to the special case of linear action considered above; the action is defined by
left G-translation of equivariant maps, so that, via the natural identification, we get for
f∈E=Lp(G/Γ, B) the action

(hf)(gΓ) =χ(g)−1χ(h−1g)f(h−1gχ(h−1g)Γ), (8.iii)

in complete analogy with (8.ii). However, the Lp integrability property might be lost.
The condition (ii) of Definition 8.2 is a straightforward sufficient condition to retain
integrability; cocompactness of Γ is also enough, because it ensures that one can choose D
in such a way that for any compact C⊆G the set {η∈Γ:Dη∩C 6=∅} is finite [B2, §VII.2,
Example 12]. Compare [Sh, §2] (and [Mo2, Appendix B]).

In conclusion, we may always consider the continuous induced (affine) isometric
G-action on E when Γ is p-integrable.
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By construction, the linear part of the induced affine action coincides with the
induced linear G-representation on E considered earlier. If we denote by b: Γ!B the
cocycle of the original affine Γ-action, then comparing (8.ii) with (8.iii) shows that the
cocycle b̃:G!E of the induced affine action is given by

b̃(h)(gΓ) = b(χ(g)−1χ(h−1g)). (8.iv)

Moreover, the correspondence b 7!b̃ induces a (topological) isomorphism

H1(Γ, B)−!H1(G, E).

At this point, we record the following result.

Proposition 8.8. Keep the notation of this section.
(1) If Γ has property (FB), then so does G.
(2) If G has property (FE) and Γ is p-integrable, then Γ has property (FB).

Proof. For (1), consider any continuous affine isometric G-action on B; then there is
a Γ-fixed point b∈B. The corresponding orbit map G!B descends to a continuous map
G/Γ!B. The image of the normalized invariant measure on G/Γ in B being preserved
by G, it follows from Lemma 2.14 that there is a G-fixed point.

For (2), consider an affine isometric Γ-action on B and endow E with the induced
affine action as in the discussion above. Then there is a G-fixed point f∈E. It follows
from the description of E as space of equivariant maps that f is essentially constant and
that its essential value is a Γ-fixed point of B.

8.c. Superrigidity

In order to prove Theorem 8.3, we now analyse the interplay between the induction
constructions and the setting of irreducible lattices

Γ⊂G =G1×...×Gn,

as in the beginning of this section. We will roughly imitate the arguments given by
Shalom when he deduces Corollary 4.2 in [Sh].

Keep all the above notation and write G′
i=

∏
j 6=i Gj . First we observe that the irre-

ducibility of Γ implies that for each i it is a well-posed definition to consider the maximal
(possibly zero) linear subspace Bi⊆B on which the linear Γ-representation % extends to
a continuous G-representation %i:G!Gi!O(Bi) factoring through Gi; moreover Bi is
automatically closed by maximality.
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The induced space E is ucus by Lemma 8.6. The isometric (affine) G-action on E

has no fixed point, by the very same argument given to prove Proposition 8.8 (2). On
the other hand, the linear part does not have almost invariant vectors, by Lemma 8.7.
Thus Theorem C applies: there is a G-invariant closed complemented affine subspace
E⊆E and an affine isometric G-equivariant isomorphism E∼=E1⊕...⊕En, where each Ei

is a ucus space with an affine isometric G-action factoring through G!Gi. In view of
Remark 7.3, there is no loss of generality in assuming that Ei is the space of G′

i-fixed
points under the induced linear representation. One verifies readily the following lemma.

Lemma 8.9. The map Bi!E∼=L[p](G, B)%(Γ), which with v∈Bi associates the func-
tion G!B defined by g 7!%i(g−1)v, yields an isometric isomorphism of (linear) G-spaces
Bi
∼=Ei.

Indeed, since the image of Γ in Gi is dense, the Fubini–Lebesgue theorem implies
that any map f :G!B in E that is G′

i-invariant in the linear representation on E is an
orbit map, as in the lemma.

At this point we observe that if the subspaces Bi had trivial intersection, we would
indeed have found a subspace

⊕
i Bi

∼=
⊕

i Ei of B on which the affine Γ-action extends
continuously to G as requested. In general, we have a Γ-equivariant affine map⊕

i

Ei−!
∑

i

Bi⊆B

induced by the maps of Lemma 8.9. Alternatively, we can think of this map as follows.
The cocycle induced as in (8.iv) decomposes as a sum of cocycles

b̃ =
⊕

i

b̃i:G−!E, b̃i:G−!Gi−!Ei,

and in turn, by Lemma 8.9, each b̃i is the cocycle induced under the correspondence (8.iv)
from a cocycle bi: Γ!Bi; the affine Γ-action on

∑
i Bi is determined by the cocycle

∑
i bi.

This completes the proof of Theorem 8.3.

Remark 8.10. As mentionned in Remark 1.9, the obstruction to extending the affine
Γ-action on some subspace of B is confined within a compact group. Indeed, the only
reason we might end up with a sum of actions extending to G through various Gi,
rather than with a direct sum (which then extends globally to G), is the possibility that
Bi∩Bj 6=0 for some i 6=j. But then the linear representation of Γ on Bi∩Bj extends
continuously to G in two different ways, both through Gi and through Gj . This may
indeed happen but forces the image of Γ in O(Bi∩Bj) to be compact; see examples and
discussion in [Mo2].
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Let us only mention the most basic example: Γ⊂G=G1×G2 with Gi=Zo{±1}
and Γ=Z2o{±1}. Then Γ acts affinely isometrically without fixed point on B=R (by
(n, m; ε)·x=εx+n+m) and the associated linear representation does not almost have
invariant vectors. However, it is easy to check that this action does not extend to G.
Instead, it is a sum of actions extending to Gi with sum map R⊕R!B=R. Here
B1=B2=B.

Proof of Theorem 8.4. Recall that the space of homomorphisms Γ!R is precisely
the space of affine isometric Γ-actions on R with the trivial representation as linear part.
By Remark 4.3, the G-representation on Lp

0(G/Γ) does not almost have invariant vectors.
Therefore, using p-integrable induction, one deduces Theorem 8.4 from Theorem C very
exactly as Shalom deduced [Sh, Theorem 0.8] from [Sh, Theorem 3.1].

Appendix 9. The Howe–Moore theorem on Banach spaces

In this appendix we sketch the proof of a version of the well known Howe–Moore theorem
on vanishing of matrix coefficients for unitary representations, extended to the framework
of ucus Banach spaces. This generalization is due to Shalom (unpublished) and we state
it here with a sketch of the proof for the reader’s convenience.

Theorem 9.1. Let I be a finite set , ki, i∈I, be local fields, Gi be connected semisim-
ple simply-connected ki-groups, Gi=Gi(ki) be the locally compact group of ki-points, and

G =
∏
i∈I

Gi.

Let B be a ucus Banach space and %:G!O(B) be a continuous isometric linear
representation, such that B%(Gi)={0} for each i∈I. Then all matrix coefficients

cx,λ(g) = 〈%(g)x, λ〉, x∈B, λ∈B∗,

vanish at infinity , i.e. cx,λ∈C0(G).

Notice that we can (and will) assume that the Gi have no ki-anisotropic factors,
since the group of ki-points of such factors are compact.

Proof. By contradiction, assume that for some gn!∞ in G, v∈S(B) and λ∈S(B∗)
one has

inf |〈%(gn)x, λ〉|= ε > 0.

We shall prove that at least one simple factor Gi of G has a non-trivial %(Gi) invariant
vector.
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Let G=KAK be a Cartan decomposition of G (here K=
∏

i Ki and A=
∏

i Ai, where
Gi=KiAiKi is the Cartan decomposition for Gi). We first show that without loss of
generality one may assume that gn∈A.

Lemma 9.2. (KAK reduction) There exists a sequence an!∞ in the Cartan sub-
group A⊆G and non-zero vectors y, z∈B so that

%(an)y w−! z 6=0,

where w−! denotes the weak convergence.

Proof. Write gn=knank′n, where kn, k′n∈K and an∈A. Then an!∞ since gn!∞.
Upon passing to a subsequence, k′n!k′∈K and kn!k∈K. Let

yn = %(k′n)x, y = %(k′)x, µn = %∗(k−1
n )λ and µ= %∗(k−1)λ,

where %∗ is the dual (contragradient) G-representation on B∗. Using the weak-compact-
ness of the unit ball of B, we may also assume that

%(an)y w−! z.

We shall show that 〈z, µ〉=limn!∞〈%(gn)x, λ〉 which is bounded away from zero, hence
implying that z 6=0.

Recall that in a uniformly convex Banach space B the weak and the strong topologies
agree on the unit sphere S(B): indeed if yn

w−!y are unit vectors, then

1−δ(‖yn−y‖) >
‖yn+y‖

2
>

〈
yn+y

2
, y∗

〉
! 1.

Hence δ(‖yn−y‖)!0 and ‖yn−y‖!0. For the same reason, we also have ‖µn−µ‖!0
in S(B∗). For an arbitrary ξ∈B∗,

|〈%(an)yn, ξ〉−〈%(an)y, ξ〉|6 ‖yn−y‖ ‖ξ‖! 0.

Hence %(an)yn
w−!z. In general, if zn

w−!z in B and µn
w−!µ in B∗ then 〈zn, µn〉!〈z, µ〉,

because weakly convergent sequences are bounded in norm and

|〈zn, µn〉−〈z, µ〉|6 |〈zn, µn−µ〉|+|〈zn−z, µ〉|6
(
sup

n
‖zn‖

)
‖µn−µ‖∗+|〈zn−z, µ〉|! 0.

Therefore,

〈%(gn)x, λ〉= 〈%(ank′n)x, %∗(k−1
n )λ〉= 〈%(an)yn, µn〉! 〈z, µ〉,

implying that |〈z, µ〉|>ε, which in particular means that z 6=0.
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Lemma 9.3. (Generalized Mautner lemma) Suppose that {an}∞n=1 and h in G satisfy
a−1

n han!1G in G. If y, z∈B are such that %(an)y w−!z then %(h)z=z. In particular , if
%(an)z=z then %(h)z=z.

Proof. (Strong) continuity of % gives

‖%(han)y−%(an)y‖= ‖%(a−1
n han)y−y‖! 0.

At the same time %(an)y w−!z and %(han)y w−!%(h)z. Hence %(h)z=z.

We can now prove Theorem 9.1 in the case of G=SL2(k), where k is a local field.
Assuming that %: SL2(k)!O(B) has some matrix coefficient not vanishing at infinity, we
get, by Lemma 9.2, a sequence an!∞ in A, and non-zero vectors y, z∈B with

%(an)y w−! z.

Let H be the unipotent (horocyclic) subgroup defined by H={h∈G:a−1
n han!e}.

It is normalized by an, and, by Lemma 9.3, z is a (non-trivial) %(H)-invariant vector.
We may assume that ‖z‖=1. The matrix coefficient f(g)=〈%(g)z, z∗〉 is a continuous
function on G, which is bi-H -invariant:

f(gh) = 〈%(g)%(h)z, z∗〉= 〈%(g)z, z∗〉= f(g), (9.i)

f(hg) = 〈%(g)z, %∗(h−1)z∗〉= 〈%(g)z, z∗〉= f(g) (9.ii)

for all g∈G and h∈H. The proof can now be completed as in the original unitary
Howe–Moore theorem. By (9.i), f can be viewed as a continuous function f0 on the
punctured plane G/H=k2\{(0, 0)}, and, by (9.ii), f0 is constant on each horizontal line
`s={(t, s):t∈k}, s 6=0, where we identify H with the upper triangular unipotent subgroup,
by choosing an appropriate basis for k2. By continuity, f0 is a constant on {(t, 0):t 6=0}.
Since f0(0, 1)=f(e)=1, this constant is 1.

This implies that z is %(A)-invariant, because 〈%(a)z, z∗〉=f(a)=f(e)=1 whilst z∗

attains its norm only on z.
Thus z is fixed by the upper triangular group AH⊆G and f descends to a continuous

function f1 on the projective line P(k2)=G/AH. The H -action on P(k2) has a dense
orbit. Thus f1 is constant 1, and so is f :

〈%(g)z, z∗〉= f(g) = f(e) = 1, g ∈G.

Thus the unit vector z is %(G)-invariant, completing the proof in the case of G=SL2(k).
The proof of the unitary Howe–Moore theorem for a semisimple Lie group G=

∏
i Gi

(cf. Zimmer [Z] and Margulis [M5]) relies only on the reduction to the Cartan subgroup
(Lemma 9.2), the structure of such groups, the case of SL2(k) and on the Mautner lemma.
Thus the “unitary” argument can be applied almost verbatim to the present setup of ucus
Banach spaces.
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[HLS] Higson, N., Lafforgue, V. & Skandalis, G., Counterexamples to the Baum–Connes

conjecture. Geom. Funct. Anal., 12 (2002), 330–354.
[Hj] Hjorth, G., A converse to Dye’s theorem. Trans. Amer. Math. Soc., 357 (2005), 3083–

3103.
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[Ry] Rémy, B., Integrability of induction cocycles for Kac–Moody groups. Math. Ann., 333

(2005), 29–43.
[Rz] Reznikov, A., Analytic topology of groups, actions, strings and varietes. Preprint,

2000. arXiv:math.DG/0001135.
[RS] Robertson, G. & Steger, T., Negative definite kernels and a dynamical character-

ization of property (T ) for countable groups. Ergodic Theory Dynam. Systems, 18
(1998), 247–253.

[Sh] Shalom, Y., Rigidity of commensurators and irreducible lattices. Invent. Math., 141
(2000), 1–54.

[Su] Sullivan, D., For n>3 there is only one finitely additive rotationally invariant measure
on the n-sphere defined on all Lebesgue measurable subsets. Bull. Amer. Math. Soc.,
4 (1981), 121–123.

[Wa] Watatani, Y., Property T of Kazhdan implies property FA of Serre. Math. Japon., 27
(1982), 97–103.

[WW] Wells, J. H. & Williams, L.R., Embeddings and Extensions in Analysis. Springer,
New York, 1975.

[Y] Yu, G., Hyperbolic groups admit proper affine isometric actions on lp-spaces. Geom.
Funct. Anal., 15 (2005), 1144–1151.

[Z] Zimmer, R. J., Ergodic Theory and Semisimple Groups. Monographs in Mathematics,
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2-4, rue du Livre
Case postale 64
CH-1211 Genève 4
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