INVARIANT MEASURES AND STIFFNESS FOR NON ABELIAN GROUPS OF TORAL AUTOMORPHISMS

J. BOURGAIN^(a), A. FURMAN^(b), E. LINDENSTRAUSS^(c), S. MOZES^(d)

^(a) Institute for Advanced Study, Princeton, NJ 08540

^(b) University of Illinois at Chicago, Chicago, IL 60607

^(c) Princeton University, Princeton, NJ 08544

^(d) The Hebrew University, 91904 Jerusalem, Israel

ABSTRACT. Let Γ be a non-elementary subgroup of $\operatorname{SL}_2(\mathbb{Z})$. If μ is a probability measure on \mathbb{T}^2 which is Γ -invariant, then μ is a convex combination of the Haar measure and an atomic probability measure supported by rational points. The same conclusion holds under the weaker assumption that μ is ν -stationary, i.e. $\mu = \nu * \mu$, where ν is a finitely supported probability measure on Γ whose support $\operatorname{supp}(\nu)$ generates Γ . The approach works more generally for $\Gamma < \operatorname{SL}_d(\mathbb{Z})$.

RESUME. Soit Γ un sous-groupe non-élementaire du groupe $\operatorname{SL}_2(\mathbb{Z})$. Soit μ une measure de probabilité Γ -invariante sur le tore \mathbb{T}^2 . On démontre que μ est une moyenne de la mesure de Haar et une probabilité discrète portée par des points rationnels. La même conclusion reste vrai sous l'hypothèse que μ est ν -stationnaire, done $\mu = \nu * \mu$, où ν est une probabilité sur Γ à support fini et engendrant Γ . L'approche se généralise aux sous-groupes Γ de $\operatorname{SL}_d(\mathbb{Z})$.

Version française abrégée

Nous considérons l'action de $\operatorname{SL}_2(\mathbb{Z})$ sur le tore \mathbb{T}^2 . Soit Γ un sous-groupe nonélémentaire du $\operatorname{SL}_2(\mathbb{Z})$. Soit μ une measure sur \mathbb{T}^2 que nous supposons Γ -invariante, ou, moins restrictivement, que μ est ν -stationnaire pour une probabilité ν sur Γ à support fini et tel que $\langle \operatorname{supp}(\nu) \rangle = \Gamma$. Nous démontrons que si μ n'est pas un multiple de la mesure de Haar sur \mathbb{T}^2 , alors μ a une composante discrète. La méthode comporte plusieurs étapes est des techniques d'analyse harmonique y jouent un rôle essentiel. Supposons la transformé de Fourier $\hat{\mu}(b) \neq 0$ pour un élément $b \in \mathbb{Z}^2 \setminus \{0\}$. Le point de départ consiste à étudier l'ensemble $\Lambda_c = \{n \in \mathbb{Z}^2; |\hat{\mu}(n)| > c\}$ (c > 0approprié) et de montrer que Λ_c est 'riche', en un certain sense d'entropie métrique. On utilise ici divers arguments d'amplification et un résultat d'équirépartition pour convolutions multiplicatives sur \mathbb{R} , qui repose sur le théorème 'somme-produit' obtenu dans [B] et [BG]. Ensuite on déduit de la structure de Λ_c des propriétés de 'porosité' pour le support de μ et finalement une composante discrète.

In this Note we present some new dichotomies for invariant and stationary measures μ on \mathbb{T}^2 under the action of $SL_2(\mathbb{Z})$ -subgroups.

Theorem A. If μ is invariant under the action of a non-elementary subgroup Γ of $SL_2(\mathbb{Z})$, then μ is a linear combination of Haar measure on \mathbb{T}^2 and an atomic measure supported by rational points.

Theorem B. The same conclusion holds if we assume μ is ν -stationary, i.e. $\mu = \nu * \mu = \sum_{g \in \Gamma} \nu(g) g_* \mu$, with ν a finitely supported probability measure on $SL_2(\mathbb{Z})$ such that $\Gamma = \langle supp(\nu) \rangle$ is a non-elementary subgroup.

Theorem C. If for a point $\theta \in \mathbb{T}^2$ the measure $\eta_n = \nu^{(n)} * \delta_{\theta}$ has Fourier coefficient $|\hat{\eta}_n(b)| > \delta$ for some $b \in \mathbb{Z}^2 \setminus \{0\}$, then θ admits a rational approximation

(1)
$$\left\|\theta - \frac{a}{q}\right\| < e^{-cn} \quad for \ some \quad q < \left(\frac{\|b\|}{\delta}\right)^C$$

with c, C > 0 depending on ν .

Theorem C answers the question of equidistribution, posed by Y. Guivarc'h [G].

Theorem D. Unless $\theta \in \mathbb{T}^2$ is rational, $\nu^{(n)} * \delta_{\theta}$ tend weak^{*} to Lebesgue measure as $n \to \infty$.

Comments. (1) The results extend to $\operatorname{SL}_d(\mathbb{Z})$, assuming that $\operatorname{supp}(\nu)$ generates a Zariski dense subgroup in $\operatorname{SL}_d(\mathbb{R})$ or, more generally, assuming that the smallest algebraic subgroup $H_{\nu} \subset \operatorname{SL}_d(\mathbb{R})$ supporting ν , is strongly irreducible (leaves invariant no finite union of \mathbb{R}^d -hyperplanes) and contains a proximal element. Under these conditions the top exponent is simple (see [G-M]).

(2) ν -stationary measures play an important role in the theory of boundaries of groups, and were systematically used by H. Furstenberg and others in many works. In his paper [F2] H. Furstenberg explores the relationship between ν -stationary measures and Γ -invariant measures, where ν is a probability measure on Γ whose support generates Γ . For a general action of Γ on a space X there is a big difference between the two concepts: indeed, if X is compact ν -stationary measures always exist but there may well be no Γ -invariant probability measure whatsoever. In [F2] Furstenberg introduces the notion of stiff actions: an action of a group Γ on a space X is said to be ν -stiff if every ν -stationary measure is in fact Γ -invariant, and proves stiffness for the action of $\Gamma = \operatorname{SL}_d(\mathbb{Z})$ on \mathbb{T}^d where ν is a (very) carefully chosen probability measure on $\operatorname{SL}_d(\mathbb{Z})$.

Furstenberg conjectures that this action is stiff for any ν whose support generates $\mathrm{SL}(d,\mathbb{Z})$. Theorem B and its extension to d > 2 establish in particular this conjecture. Moreover, in conjunction with strong approximation results such as those in [We], [P], our results imply that the action is "superstiff", in the sense that if $\langle \mathrm{supp}(\nu) \rangle$ is Zariski dense in $\mathrm{SL}_d(\mathbb{R})$, any ν -stationary measure on \mathbb{T}^d is invariant under a finite index subgroup of $\mathrm{SL}_d(\mathbb{Z})$ (depending only on $\mathrm{supp}(\nu)$).

(3) Theorem A may be viewed as a non-Abelian analogue of the wellknown $\times 2, \times 3$ invariant measure problem on the circle \mathbb{T} . Thus the conjecture states that if $\mu \in M(\mathbb{T})$ satisfies $\hat{\mu}(n) = \hat{\mu}(2n) = \hat{\mu}(3n)$ for all $n \in \mathbb{Z}$, then μ is a combination of Haar and discrete measures. It is known that if we assume moreover that μ has positive entropy, then μ is Haar (see [R] and [Ka-K], [K-S], [E-L] for the generalization to \mathbb{Z}^d -actions on tori). However, in the context of $\times 2, \times 3$ problem, or its toral analogues, statements such as Theorem D do not hold. (4) We also recall that there are (Abelian and non-Abelian) counterparts for orbit closures. In the Abelian case, these are the dichotomy results of H. Furstenberg [F1] and D. Berend [Be]. The non-Abelian problem for Γ -orbits, $\Gamma \subset \mathrm{SL}_d(\mathbb{Z})$ a semigroup action on \mathbb{T}^d , appears for example in G. Margulis list of open problems [M]. Contributions here include the work of A. Starkov [St] (for Γ a strongly irreducible subgroup of $\mathrm{SL}_d(\mathbb{Z})$), R. Muchnik [M1], [M2] (Γ a Zariski dense semigroup) and Guivarc'h-Starkov [G-S].

Next, we give a brief overview of the proof of Theorem B. The proof of Theorem C (which implies D, B and A) uses the same ingredients – see comments at the end. There are several distinct steps in the proofs which we summarize.

Assume μ to be a ν -stationary probability measure on \mathbb{T}^2 different from the Haar measure. Thus

$$\hat{\mu}(b) \neq 0$$
 for some $b \in \mathbb{Z}^2 \setminus \{0\}$

and hence

(2)
$$\sum_{g} \left| \hat{\mu} \left(g^{t}(b) \right) \right| \cdot \nu^{(r)}(g) \ge \left| \hat{\mu}(b) \right| = \alpha > 0$$

for any convolution power $\nu^{(r)}$ of ν . It is clear from (2) that μ has many large Fourier coefficients; in fact, there is $\delta > 0$ such that

$$\left|\left\{n\in\mathbb{Z}^2\ :\ \|n\|\leq N \text{ and } |\hat{\mu}(n)|>\frac{1}{2}\alpha\right\}\right|>N^{\delta}$$

for all sufficiently large N. However, unless δ is sufficiently close to 2, we need a more structured set of large Fourier coefficients. This is achieved in

Step 1. (amplification).

Lemma 1. There are positive constants $\beta > 0$ and $\kappa > 0$ such that for all sufficiently large $N \in \mathbb{Z}_+$, there is a set $\mathcal{F} \subset \mathbb{Z}^2 \cap B(0, N)$ with the following properties

- (a) $|\hat{\mu}(k)| > \beta$ for $k \in \mathcal{F}$.
- (b) $||k k'|| > N^{1-\kappa}$ if $k \neq k'$ in \mathcal{F} .
- (c) $|\mathcal{F}| > \beta N^{2\kappa}$.

Our proof of Lemma 1 is rather involved. It is obtained by combining the following ingredients.

Denote by $\delta(\bar{x}, \bar{y})$ the angular distance on the projective space $P(\mathbb{R}^2)$. The following statement is obtained by combining Proposition 4.1 (p. 161) and Theorem 2.5 (p. 106) from [B-L].

Proposition 2 (small ball estimate). There is a uniform estimate for $\bar{x}, \bar{y} \in P(\mathbb{R}^2)$

$$\nu^{(n)} \{g : \delta(g\bar{x}, \bar{y}) < \varepsilon\} < C(\varepsilon^{\alpha} + e^{-cn})$$

for some $\alpha, c, C > 0$.

We also use the large deviation estimate for the Lyapounov exponent γ (Theorem 6.2, p. 131 in [B-L]), which gives:

Proposition 3. Uniformly in x, ||x|| = 1:

$$\nu^{(n)} \left\{ g : \left| \frac{1}{n} \log \|gx\| - \gamma \right| > \frac{\gamma}{10} \right\} < Ce^{-cn}$$

The combinatorial information that can be extracted from Proposition 2 on the set of large Fourier coefficients is amplified using the following general statement on mixed multiplicative and additive convolution on \mathbb{R} (which may be of independent interest).

Proposition 4. Given $\theta > 0, C > 1$, there are $s \in \mathbb{Z}_+$ and C' > 1 such that the following holds.

Let $\delta > 0$ and η a probability measure on $[\frac{1}{2}, 1]$ satisfying

$$\max \eta (B(a,\rho)) < C\rho^{\theta} \quad for \quad \delta < \rho < 1.$$

Consider the image measure u of $\eta \otimes \cdots \otimes \eta$ (s²-fold) under the map

$$(x_1, \ldots, x_{s^2}) \mapsto (x_1 \ldots x_s) + (x_{s+1} \ldots x_{2s}) + \cdots + (x_{s^2 - s + 1} \ldots x_{s^2}).$$

Then

$$\max_{a} \nu \big(B(a, \rho) \big) < C'\rho \quad for \quad \delta < \rho < 1$$

where here $B(a, \rho) = [a - \rho, a + \rho].$

Proposition 3 is deduced from a set-theoretical statement, which is the 'discretized ring conjecture' (in the sense of [K-T]); see [B], [B-G].

Returning to Lemma 1, there is the following implication on the support of μ . Step 2. (porosity property). Using elementary harmonic analysis, one shows the following general.

Lemma 5. Let μ be a probability measure on \mathbb{T}^d , $d \geq 1$. Fix $\kappa_1, \kappa_2 > 0$.

Let $N \gg M$ be large integers and assume

$$\mathcal{N}\left(\left[|\hat{\mu}| > \kappa_1\right] \cap B(0, N); M\right) > \kappa_2 \left(\frac{N}{M}\right)^d$$

where for $A \subset \mathbb{Z}^d$ and R > 1, $\mathcal{N}(A; R)$ denotes the smallest number of balls of radius R needed to cover A.

Then there are points $x_1, \ldots, x_\beta \in \mathbb{T}^d$ such that

$$\|x_{\alpha} - x_{\alpha'}\| > \frac{1}{M} \quad for \quad \alpha \neq \alpha'$$
$$\sum_{\alpha} \mu\left(B\left(x_{\alpha}, \frac{1}{N}\right)\right) > \rho(\kappa_1, \kappa_2) > 0.$$

Combined with Lemma 1 (d = 2 and taking $\kappa_1 = \beta = \kappa_2, M = N^{1-\kappa}$), we obtain therefore

Lemma 6. For all N large enough, there are points $x_1, \ldots, x_\beta \in \mathbb{T}^2$ such that $||x_\alpha - x_{\alpha'}|| > \frac{1}{N^{1-\kappa}}$ for $\alpha \neq \alpha'$ and

$$\sum_{\alpha} \mu\left(B\left(x_{\alpha}, \frac{1}{N}\right)\right) > \rho.$$

Our next aim is to improve the porosity property obtained in Lemma 4 by decreasing the radius of the balls.

Step 3. (bootstrap).

Starting from the statement in Lemma 4 and using the group action, we prove

Lemma 7. For any fixed number C_0 , there is a collection of points $\{z_{\alpha}\} \in \mathbb{T}^2$ such that

$$||z_{\alpha} - z_{\alpha'}|| > \frac{1}{2N^{1-\kappa}} > \frac{1}{N} \quad for \quad \alpha \neq \alpha'$$

and

$$\sum_{\alpha} \mu\left(B\left(z_{\alpha}, \frac{1}{N^{C_0}}\right)\right) > \rho(C_0) > 0.$$

The statement follows from a simple iterative construction. Under the action of $SL_2(\mathbb{Z})$ -elements, the balls become elongated ellipses and intersecting different families leads to sets of smaller diameter.

Step 4. (rational approximation).

Assume

(3)
$$\mu\left(B(x,\varepsilon)\right) > \varepsilon^{\tau}$$

where $\varepsilon > 0$ is small and $\tau > 0$ a fixed exponent.

Take $n \sim (\frac{1}{\varepsilon})^{1/2}$ and make a diophantine approximation

(4)
$$\left|x_1 - \frac{a_1}{q}\right| < \frac{1}{q\sqrt{n}}, \quad \left|x_2 - \frac{a_2}{q}\right| < \frac{1}{q\sqrt{n}}$$

where $1 \le q \le n$ and $gcd(a_1, a_2, q) = 1$. It follows from (3), (4) that

$$\mu\left(B\left(\frac{a}{q},\frac{2}{q\sqrt{n}}\right)\right) > \varepsilon^{\tau}$$

and the ν -stationarity of μ implies for any $r \in \mathbb{Z}_+$

(5)
$$\sum_{g} \mu\left(B\left(\frac{g(a)}{q}, \frac{2\|g\|}{q\sqrt{n}}\right)\right) \cdot \nu^{(r)}(g) > \varepsilon^{\tau}.$$

Take $r \sim \log n$ as to ensure that $||g|| < n^{1/3}$ if $g \in \operatorname{supp} \nu^{(r)}$. It follows then from (5) and our choice of r that

$$\varepsilon^{\tau} \leq \sum_{b \in \mathbb{Z}_q^2} \mu\left(B\left(\frac{b}{q}, \frac{1}{2q}\right)\right) \cdot \nu^{(r)} \; \left(\{g|ga \equiv b(\operatorname{mod} q)\}\right).$$

A spectral gap of the form $\|\nu^{(r)}\| \leq q^{-\omega_1}$, $r \geq \log q$, on $\ell^2(\mathbb{Z}_q^2) \ominus \mathbb{C}$ with some fixed $\omega_1 > 0$ depending only on ν , yields the estimate

$$\max_{b\in \mathbb{Z}_q^2}\nu^{(r)}\left(\{g|ga\equiv b(\mathrm{mod}\,q)\}\right) < q^{-\omega}.$$

(6)
$$q < \left(\frac{1}{\varepsilon}\right)^{\tau/\omega}$$

Recalling the conclusion of Lemma 5, the exponent τ in (3) may be taken to be an arbitrary small fixed positive number. In particular, we may ensure that in (6), $q < Q(\varepsilon) < (\frac{1}{\varepsilon})^{\frac{1}{20}}$. Thus we proved that there is $\rho_1 > 0$ such that for all $\varepsilon > 0$ small enough

(7)
$$\mu(\mathfrak{S}_{Q(\varepsilon),\varepsilon^{1/4}}) > \rho_1$$

where we denote

(8)
$$\mathfrak{S}_{Q,\varepsilon} = \bigcup_{q < Q} \bigcup_{(a,q)=1} B\left(\frac{a}{q},\varepsilon\right)$$

Step 5. (conclusion).

Starting from (7) with $\varepsilon = \varepsilon_0$ small enough (depending on ρ_1), we perform again an iterative bootstrap (as in Step 3), invoking the following.

Lemma 8. Let $\mathfrak{S}_{Q,\varepsilon}$ be as above and let $n = n(\varepsilon) \in \mathbb{Z}_+$ satisfying

$$n < c \log \frac{1}{\varepsilon}$$
 (c depending on ν).

Assume

$$(\nu^{(n)} * \mu)(\mathfrak{S}_{Q,\varepsilon}) = \sum \nu^{(n)}(g)\mu(g^{-1}(\mathfrak{S}_{Q,\varepsilon})) > \kappa.$$

Then we have

$$\mu(\mathfrak{S}_{Q,\varepsilon'}) > \kappa - e^{-c_2 n}$$

where

$$\varepsilon' = e^{-\frac{1}{4}\gamma n}\varepsilon$$

The proof of Lemma 6 uses again Propositions 2 and 3.

Thus with $Q = Q(\varepsilon_0)$ fixed, ε is gradually decreased and in the limit we obtain

$$\mu\left(\left\{\frac{a}{q} : 1 \le q < Q(\varepsilon_0), \ 0 \le a_1, a_2 < q\right\}\right) > \frac{1}{2}\rho_1 > 0.$$

This establishes Theorem B.

We conclude with some comments on the proof of Theorem C. For $m \ge 1$ we denote by

(9)
$$\eta_m = \nu^{(m)} * \delta_\theta$$

the measure on \mathbb{T}^2 (δ_x stands here for the Dirac measure). It these notations, the assumption of Theorem C becomes

(10)
$$|\hat{\eta}_n(b)| > \delta$$
 where $b \in \mathbb{Z}^2 \setminus \{0\}$

The proof of steps (1)–(4) is quantitative, and even though η_m is not ν -stationary, these arguments can still be applied if one is willing to sacrifice a few powers of ν .

For example, in step (1) we may conclude from (10) that for any k < n there is some N with $c_3k < \log N < c_4k$ and a set $\mathcal{F} \subset \mathbb{Z}^2 \cap B(0, N)$ satisfying (a)–(c) of Lemma 1 for $\mu = \eta_{n-k}$ and $\beta = (\delta/\|b\|)^C$ (where *C* and c_3, c_4 , as well as all the other constants appearing below depend only on ν). Similarly modifying steps (2)–(4) we conclude that for any k' in the range $C' \log(\|b\|/\delta) < k' < n$ there are $Q, \epsilon = Q^{-20}$ with $c'_3 k' < \log Q < c'_4 k'$ satisfying (cf. (7))

$$\eta_{n-k'}(\mathfrak{S}_{Q,\varepsilon}) > \left(\frac{\delta}{\|b\|}\right)^C$$

Let n' = n - k' for $c_5 \log(||b||/\delta) < k' < n/2$, with c_5 a large constant. Since $\eta_{n'} = \nu^{(n')} * \delta_{\theta}$, if c_5 is sufficiently large, iteration of Lemma 6 imply that

$$\delta_{\theta}(\mathfrak{S}_{Q,\varepsilon'}) > \left(\frac{\delta}{\|b\|}\right)^C - \max(Q^{-c_3}, e^{-c_2n'}) > 0$$

where

$$\varepsilon' < e^{-\frac{1}{4}\gamma n'} \varepsilon < e^{-\frac{1}{8}\gamma n},$$

i.e. $\theta \in \mathfrak{S}_{Q,\varepsilon'}$. Since $Q < (\|b\|/\delta)^{C_0}$ for some C_0 , equation (1) of Theorem C follows.

References

- [Be] D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc., 280 (2), 509–532.
- [B-L] P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, Birkhauser 1985.
- [B] J. Bourgain, On the Erdös-Volkmann and Katz-Tao ring conjecture, GAFA, 13 (2003), 334–365.
- [B-G] J. Bourgain, A. Gamburd, On the spectral gap for finitely-generated subgroups of SU(2), preprint, submitted to Inventiones.
- [E-L] M. Einsiedler, E. Lindenstrauss, Rigidity properties of Z^d-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 99–110.
- [F1] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1–49.
- [F2] H. Furstenberg, Stiffness of group actions, in 'Lie groups and ergodic theory', (Mumbai, 1996), 105–117, Tata Inst. Fund. Res. Stud. Math., 14, Tata Inst. Fund. Res., Bombay, 1998.
- [G-M] I. Ya. Gol'dsheĭd, G. A. Margulis, Lyapunov exponents of a product of random matrices. (Russian) Uspekhi Mat. Nauk 44 (1989), no. 5(269), 13–60; translation in Russian Math. Surveys 44 (1989), no. 5, 11–7.
- [G] Y. Guivarc'h, private communication.
- [G-S] Y. Guivarc'h, A.N. Starkov, Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms, Ergodic Theory Dynam. Systems, 24 (2004), no. 3, 767–802.
- [Ka-K] B. Kalinin, A. Katok, Invariant measures for actions of higher rank abelian groups, Smooth ergodic theory and its applications (Seattle, WA, 1999), 593–637, Proc. Sympos. Pure Math., 69, Providence, RI, 2001.
- [K-S] A. Katok, R. Spatzier, Invariant measures for higher rank hyperbolic abelian actions, Ergodic Th. Dyn. Syst. 16 (1996), n 4, 751–778.
- [K-T] N. Katz, T. Tao, Some connections between Falconer's distance set conjecture and sets of Furstenberg type, New York J. Math. 7 (2001), 149–187.
- [M] G. Margulis, Problems and conjectures in rigidity theory, Mathematics: frontiers and perspectives, 161–174, Amer. Math. Soc., 2000.

- [Mu1] R. Muchnik, Orbits of Zariski dense semigroups of $SL(n, \mathbb{Z})$, Ergodic Theory Dynam. Systems.
- [Mu2] R. Muchnik, Semigroup actions on \mathbb{T}^n , Geometriae Dedicata, **110** (2005), 1–47.
- [P] P. Pink, Strong approximation for Zariski dense subgroups over arbitrary global fields, Comment. Math. Helv. 75 (2000), no 4, 608-643.
- [R] D. Rudolph, ×2 and ×3 invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395–406.
- [St] A.N. Starkov, Orbit closures of toral automorphism groups, preprint, Moscow, 1999.
- [We] B. Weisfeiler, Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. (2), 120 (1984), no. 2, 271–315.

10