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Abstract. Let Γ be a non-elementary subgroup of SL2(Z). If µ is a probability measure

on T2 which is Γ-invariant, then µ is a convex combination of the Haar measure and an

atomic probability measure supported by rational points. The same conclusion holds

under the weaker assumption that µ is ν-stationary, i.e. µ = ν ∗ µ, where ν is a finitely

supported probability measure on Γ whose support supp(ν) generates Γ. The approach

works more generally for Γ < SLd(Z).

Resume. Soit Γ un sous-groupe non-élementaire du groupe SL2(Z). Soit µ une measure

de probabilité Γ-invariante sur le tore T2. On démontre que µ est une moyenne de la

mesure de Haar et une probabilité discrète portée par des points rationnels. La même

conclusion reste vrai sous l’hypothèse que µ est ν-stationnaire, done µ = ν ∗ µ, où ν

est une probabilité sur Γ à support fini et engendrant Γ. L’approche se généralise aux

sous-groupes Γ de SLd(Z).
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Version française abrégée

Nous considérons l’action de SL2(Z) sur le tore T2. Soit Γ un sous-groupe non-

élémentaire du SL2(Z). Soit µ une measure sur T2 que nous supposons Γ-invariante,

ou, moins restrictivement, que µ est ν-stationnaire pour une probabilité ν sur Γ à

support fini et tel que 〈supp (ν)〉 = Γ. Nous démontrons que si µ n’est pas un mul-

tiple de la mesure de Haar sur T2, alors µ a une composante discrète. La méthode

comporte plusieurs étapes est des techniques d’analyse harmonique y jouent un rôle

essentiel. Supposons la transformé de Fourier µ̂(b) 6= 0 pour un élément b ∈ Z2\{0}.

Le point de départ consiste à étudier l’ensemble Λc = {n ∈ Z2; |µ̂(n)| > c} (c > 0

approprié) et de montrer que Λc est ‘riche’, en un certain sense d’entropie métrique.

On utilise ici divers arguments d’amplification et un résultat d’équirépartition pour

convolutions multiplicatives sur R, qui repose sur le théorème ‘somme-produit’

obtenu dans [B] et [BG]. Ensuite on déduit de la structure de Λc des propriétés de

‘porosité’ pour le support de µ et finalement une composante discrète.

————————

In this Note we present some new dichotomies for invariant and stationary mea-

sures µ on T2 under the action of SL2(Z)-subgroups.

Theorem A. If µ is invariant under the action of a non-elementary subgroup Γ

of SL2(Z), then µ is a linear combination of Haar measure on T2 and an atomic

measure supported by rational points.

Theorem B. The same conclusion holds if we assume µ is ν-stationary, i.e. µ =

ν ∗ µ =
∑

g∈Γ ν(g) g∗µ, with ν a finitely supported probability measure on SL2(Z)

such that Γ = 〈supp(ν)〉 is a non-elementary subgroup.

Theorem C. If for a point θ ∈ T2 the measure ηn = ν(n)∗δθ has Fourier coefficient

|η̂n(b)| > δ for some b ∈ Z2\{0}, then θ admits a rational approximation

(1)
∥∥∥∥θ − a

q

∥∥∥∥ < e−cn for some q <

(
‖b‖
δ

)C

with c, C > 0 depending on ν.

Theorem C answers the question of equidistribution, posed by Y. Guivarc’h [G].
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Theorem D. Unless θ ∈ T2 is rational, ν(n) ∗ δθ tend weak∗ to Lebesgue measure

as n →∞.

Comments. (1) The results extend to SLd(Z), assuming that supp(ν) generates

a Zariski dense subgroup in SLd(R) or, more generally, assuming that the smallest

algebraic subgroup Hν ⊂ SLd(R) supporting ν, is strongly irreducible (leaves in-

variant no finite union of Rd-hyperplanes) and contains a proximal element. Under

these conditions the top exponent is simple (see [G-M]).

(2) ν-stationary measures play an important role in the theory of boundaries of

groups, and were systematically used by H. Furstenberg and others in many works.

In his paper [F2] H. Furstenberg explores the relationship between ν-stationary

measures and Γ-invariant measures, where ν is a probability measure on Γ whose

support generates Γ. For a general action of Γ on a space X there is a big difference

between the two concepts: indeed, if X is compact ν-stationary measures always

exist but there may well be no Γ-invariant probability measure whatsoever. In

[F2] Furstenberg introduces the notion of stiff actions: an action of a group Γ on

a space X is said to be ν-stiff if every ν-stationary measure is in fact Γ-invariant,

and proves stiffness for the action of Γ = SLd(Z) on Td where ν is a (very) carefully

chosen probability measure on SLd(Z).

Furstenberg conjectures that this action is stiff for any ν whose support gener-

ates SL(d, Z). Theorem B and its extension to d > 2 establish in particular this

conjecture. Moreover, in conjunction with strong approximation results such as

those in [We], [P], our results imply that the action is “superstiff”, in the sense

that if 〈supp(ν)〉 is Zariski dense in SLd(R), any ν-stationary measure on Td is

invariant under a finite index subgroup of SLd(Z) (depending only on supp(ν)).

(3) Theorem A may be viewed as a non-Abelian analogue of the wellknown ×2,×3

invariant measure problem on the circle T. Thus the conjecture states that if µ ∈

M(T) satisfies µ̂(n) = µ̂(2n) = µ̂(3n) for all n ∈ Z, then µ is a combination of Haar

and discrete measures. It is known that if we assume moreover that µ has positive

entropy, then µ is Haar (see [R] and [Ka-K], [K-S], [E-L] for the generalization

to Zd-actions on tori). However, in the context of ×2,×3 problem, or its toral

analogues, statements such as Theorem D do not hold.
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(4) We also recall that there are (Abelian and non-Abelian) counterparts for orbit

closures. In the Abelian case, these are the dichotomy results of H. Furstenberg

[F1] and D. Berend [Be]. The non-Abelian problem for Γ-orbits, Γ ⊂ SLd(Z) a

semigroup action on Td, appears for example in G. Margulis list of open problems

[M]. Contributions here include the work of A. Starkov [St] (for Γ a strongly irre-

ducible subgroup of SLd(Z)), R. Muchnik [M1], [M2] (Γ a Zariski dense semigroup)

and Guivarc’h-Starkov [G-S].

Next, we give a brief overview of the proof of Theorem B. The proof of Theorem

C (which implies D, B and A) uses the same ingredients – see comments at the end.

There are several distinct steps in the proofs which we summarize.

Assume µ to be a ν-stationary probability measure on T2 different from the Haar

measure. Thus

µ̂(b) 6= 0 for some b ∈ Z2\{0}

and hence

(2)
∑

g

∣∣µ̂ (
gt(b)

)∣∣ · ν(r)(g) ≥ |µ̂(b)| = α > 0

for any convolution power ν(r) of ν. It is clear from (2) that µ has many large

Fourier coefficients; in fact, there is δ > 0 such that∣∣∣∣{n ∈ Z2 : ‖n‖ ≤ N and |µ̂(n)| > 1
2
α

}∣∣∣∣ > N δ

for all sufficiently large N . However, unless δ is sufficiently close to 2, we need a

more structured set of large Fourier coefficients. This is achieved in

Step 1. (amplification).

Lemma 1. There are positive constants β > 0 and κ > 0 such that for all suffi-

ciently large N ∈ Z+, there is a set F ⊂ Z2 ∩B(0, N) with the following properties

(a) |µ̂(k)| > β for k ∈ F .

(b) ‖k − k′‖ > N1−κ if k 6= k′ in F .

(c) |F| > βN2κ.

Our proof of Lemma 1 is rather involved. It is obtained by combining the

following ingredients.
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Denote by δ(x̄, ȳ) the angular distance on the projective space P (R2). The

following statement is obtained by combining Proposition 4.1 (p. 161) and Theorem

2.5 (p. 106) from [B-L].

Proposition 2 (small ball estimate). There is a uniform estimate for x̄, ȳ ∈ P (R2)

ν(n) {g : δ(gx̄, ȳ) < ε} < C(εα + e−cn)

for some α, c, C > 0.

We also use the large deviation estimate for the Lyapounov exponent γ (Theorem

6.2, p. 131 in [B-L]), which gives:

Proposition 3. Uniformly in x, ‖x‖ = 1:

ν(n)

{
g :

∣∣∣∣ 1
n

log ‖gx‖ − γ

∣∣∣∣ >
γ

10

}
< Ce−cn

The combinatorial information that can be extracted from Proposition 2 on the

set of large Fourier coefficients is amplified using the following general statement on

mixed multiplicative and additive convolution on R (which may be of independent

interest).

Proposition 4. Given θ > 0, C > 1, there are s ∈ Z+ and C ′ > 1 such that the

following holds.

Let δ > 0 and η a probability measure on [ 12 , 1] satisfying

max
a

η
(
B(a, ρ)

)
< Cρθ for δ < ρ < 1.

Consider the image measure ν of η ⊗ · · · ⊗ η (s2-fold) under the map

(x1, . . . , xs2) 7→ (x1 . . . xs) + (xs+1 . . . x2s) + · · ·+ (xs2−s+1 . . . xs2).

Then

max
a

ν
(
B(a, ρ)

)
< C ′ρ for δ < ρ < 1

where here B(a, ρ) = [a− ρ, a + ρ].

Proposition 3 is deduced from a set-theoretical statement, which is the ‘dis-

cretized ring conjecture’ (in the sense of [K-T]); see [B], [B-G].

Returning to Lemma 1, there is the following implication on the support of µ.

Step 2. (porosity property).
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Using elementary harmonic analysis, one shows the following general.

Lemma 5. Let µ be a probability measure on Td, d ≥ 1. Fix κ1, κ2 > 0.

Let N � M be large integers and assume

N ([|µ̂| > κ1] ∩B(0, N);M) > κ2

(
N

M

)d

where for A ⊂ Zd and R > 1, N (A;R) denotes the smallest number of balls of

radius R needed to cover A.

Then there are points x1, . . . , xβ ∈ Td such that

‖xα − xα′‖ >
1
M

for α 6= α′∑
α

µ

(
B

(
xα,

1
N

))
> ρ(κ1, κ2) > 0.

Combined with Lemma 1 (d = 2 and taking κ1 = β = κ2,M = N1−κ), we obtain

therefore

Lemma 6. For all N large enough, there are points x1, . . . , xβ ∈ T2 such that

‖xα − xα′‖ > 1
N1−κ for α 6= α′ and∑

α

µ

(
B

(
xα,

1
N

))
> ρ.

Our next aim is to improve the porosity property obtained in Lemma 4 by

decreasing the radius of the balls.

Step 3. (bootstrap).

Starting from the statement in Lemma 4 and using the group action, we prove

Lemma 7. For any fixed number C0, there is a collection of points {zα} ∈ T2 such

that

‖zα − zα′‖ >
1

2N1−κ
>

1
N

for α 6= α′

and ∑
α

µ

(
B

(
zα,

1
NC0

))
> ρ(C0) > 0.
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The statement follows from a simple iterative construction. Under the action

of SL2(Z)-elements, the balls become elongated ellipses and intersecting different

families leads to sets of smaller diameter.

Step 4. (rational approximation).

Assume

(3) µ (B(x, ε)) > ετ

where ε > 0 is small and τ > 0 a fixed exponent.

Take n ∼ ( 1
ε )1/2 and make a diophantine approximation

(4)
∣∣∣∣x1 −

a1

q

∣∣∣∣ <
1

q
√

n
,

∣∣∣∣x2 −
a2

q

∣∣∣∣ <
1

q
√

n

where 1 ≤ q ≤ n and gcd(a1, a2, q) = 1. It follows from (3), (4) that

µ

(
B

(
a

q
,

2
q
√

n

))
> ετ

and the ν-stationarity of µ implies for any r ∈ Z+

(5)
∑

g

µ

(
B

(
g(a)

q
,
2‖g‖
q
√

n

))
· ν(r)(g) > ετ .

Take r ∼ log n as to ensure that ‖g‖ < n1/3 if g ∈ supp ν(r). It follows then from

(5) and our choice of r that

ετ ≤
∑
b∈Z2

q

µ

(
B

(
b

q
,

1
2q

))
· ν(r) ({g|ga ≡ b(mod q)}) .

A spectral gap of the form ‖ν(r)‖ ≤ q−ω1 , r ≥ log q, on `2(Z2
q)	C with some fixed

ω1 > 0 depending only on ν, yields the estimate

max
b∈Z2

q

ν(r) ({g|ga ≡ b(mod q)}) < q−ω.

(6) q <

(
1
ε

)τ/ω

.

Recalling the conclusion of Lemma 5, the exponent τ in (3) may be taken to be

an arbitrary small fixed positive number. In particular, we may ensure that in (6),

q < Q(ε) < ( 1
ε )

1
20 . Thus we proved that there is ρ1 > 0 such that for all ε > 0

small enough

(7) µ(SQ(ε),ε1/4) > ρ1
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where we denote

(8) SQ,ε =
⋃

q<Q

⋃
(a,q)=1

B

(
a

q
, ε

)
.

Step 5. (conclusion).

Starting from (7) with ε = ε0 small enough (depending on ρ1), we perform again

an iterative bootstrap (as in Step 3), invoking the following.

Lemma 8. Let SQ,ε be as above and let n = n(ε) ∈ Z+ satisfying

n < c log
1
ε

(c depending on ν).

Assume

(ν(n) ∗ µ)(SQ,ε) =
∑

ν(n)(g)µ
(
g−1(SQ,ε)

)
> κ.

Then we have

µ(SQ,ε′) > κ− e−c2n

where

ε′ = e−
1
4 γnε.

The proof of Lemma 6 uses again Propositions 2 and 3.

Thus with Q = Q(ε0) fixed, ε is gradually decreased and in the limit we obtain

µ

({
a

q
: 1 ≤ q < Q(ε0), 0 ≤ a1, a2 < q

})
>

1
2
ρ1 > 0.

This establishes Theorem B.

We conclude with some comments on the proof of Theorem C. For m ≥ 1 we

denote by

(9) ηm = ν(m) ∗ δθ

the measure on T2 (δx stands here for the Dirac measure). It these notations, the

assumption of Theorem C becomes

(10) |η̂n(b)| > δ where b ∈ Z2 \ {0} .

The proof of steps (1)–(4) is quantitative, and even though ηm is not ν-stationary,

these arguments can still be applied if one is willing to sacrifice a few powers of ν.

For example, in step (1) we may conclude from (10) that for any k < n there

is some N with c3k < log N < c4k and a set F ⊂ Z2 ∩ B(0, N) satisfying (a)–(c)
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of Lemma 1 for µ = ηn−k and β = (δ/‖b‖)C (where C and c3, c4, as well as all

the other constants appearing below depend only on ν). Similarly modifying steps

(2)–(4) we conclude that for any k′ in the range C ′ log(‖b‖/δ) < k′ < n there are

Q, ε = Q−20 with c′3k
′ < log Q < c′4k

′ satisfying (cf. (7))

ηn−k′(SQ,ε) >

(
δ

‖b‖

)C

.

Let n′ = n − k′ for c5 log(‖b‖/δ) < k′ < n/2, with c5 a large constant. Since

ηn′ = ν(n′) ∗ δθ, if c5 is sufficiently large, iteration of Lemma 6 imply that

δθ(SQ,ε′) >

(
δ

‖b‖

)C

−max(Q−c3 , e−c2n′) > 0

where

ε′ < e−
1
4 γn′ε < e−

1
8 γn,

i.e. θ ∈ SQ,ε′ . Since Q < (‖b‖/δ)C0 for some C0, equation (1) of Theorem C

follows.
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