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MEASURABLE RIGIDITY OF ACTIONS
ON INFINITE MEASURE HOMOGENEOUS SPACES, II

ALEX FURMAN

1. Introduction and statement of the main results

The starting point of our discussion is the following beautiful result of Yehuda
Shalom and Tim Steger:

Theorem 1.1 (Shalom and Steger, [21]). Measurable isomorphisms between linear
actions on R2 of abstractly isomorphic lattices in SL2(R) are algebraic.

More precisely, if τ : Γ1

∼=−→Γ2 is an isomorphism between two lattices in SL2(R)
and T : R2 → R2 is a measure class preserving map with T (γx) = γτT (x) for a.e.
x ∈ R2 and all γ ∈ Γ1, then there exists A ∈ GL2(R) so that γτ = A γA−1 for all
γ ∈ Γ1 and T (x) = Ax a.e. on R2.

The linear SL2(R)-action on R2−{0} is G = SL2(R)-action on the homogeneous
space G/H where H is the horocyclic subgroup

H =
{(

1 s
0 1

)
: s ∈ R

}
.

The action of Γ on G/H is closely related to its “dual” dynamical system—the
action of H on G/Γ, which is an algebraic description of the horocycle flow on the
unit tangent bundle SM to the Riemann surface M = H2/Γ = K\G/Γ (here we
assume that Γ is torsion-free). In the 1980s, Marina Ratner discovered remarkable
measurable rigidity properties of the horocycle flow, proving that all measurable iso-
morphisms [17], measurable quotients [18], and finally all joinings [19] of such flows
are algebraic, i.e., G-equivariant. The Shalom-Steger result above can be viewed
as a “dual companion” of Ratner’s isomorphism theorem [17]. It is important to
emphasize, however, that despite the similarities, Theorem 1.1 is not directly re-
lated to (neither implies nor follows from) any of the above results of Ratner; it also
cannot be deduced from the celebrated Ratner classification of invariant measures
theorem [20], which contains [17], [18], [19] as particular cases.

Shalom and Steger prove their Theorem 1.1 (and other rigidity results, such as
Corollary 1.9 (1), (2) below) ingeniously using unitary representation techniques.
The present paper grew out of an attempt to give an alternative, purely dynamical
proof for this theorem and other related results from [21]1. The technique that
has been developed for this purpose—the alignment property—is quite general and
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turns out to be very powerful. We develop it as an abstract tool and show how
to apply it to homogeneous spaces and spaces of horospheres. In the present work
the rigidity phenomena of Theorem 1.1 are generalized in several directions: (1) we
consider homogeneous spaces of all semi-simple groups, (2) we also consider spaces
of horospheres in variable pinched negative curvature, (3) in the context of negative
curvature we treat actions of discrete groups Γ which are not necessarily lattices,
(4) in all the above examples we prove rigidity results not only for isomorphisms
but also for quotients and more generally for joinings. In the forthcoming paper [2]
further generalizations of these results are obtained using more direct arguments
on homogeneous spaces.

Before stating the results, we need to set a few conventions concerning II∞
actions—these are measure preserving, ergodic group actions on non-atomic infinite
measure Lebesgue spaces (see section 2 for more details).

Definitions 1.2. Let (Xi, mi, Γ) (i = 1, 2) be two ergodic measure preserving
actions of a fixed group Γ on infinite measure Lebesgue spaces (Xi, mi) and τ ∈
AutΓ be a group automorphism. A morphism or (τ -twisted) quotient map between
such systems is a measurable map π : X1 → X2 such that

π∗m1 = const · m2 and π(γx) = γτπ(x)

for all γ ∈ Γ and m1-a.e. x ∈ X1. In particular, the first condition implies that the
preimage π−1(E) of a set E ⊂ X2 of finite m2-measure has finite m1-measure. A
(τ -twisted) isomorphism is a measurable bijection with the same properties. A (τ -
twisted) joining of such systems is a measure m̄ on X = X1×X2 which is invariant
under the (twisted) diagonal Γ-action

γ : (x1, x2) �→ (γx1, γ
τx2)

and such that the projections πi : X → Xi (i = 1, 2) are morphisms, i.e.,

(πi)∗m̄ = consti · mi (i = 1, 2).

Two systems are disjoint if they admit no joinings2. Given an infinite measure
preserving ergodic system (X, m, Γ), its measurable centralizer is defined to be
the group of all measurable (possibly twisted) automorphisms of the Γ-action on
(X, m). Similarly self-joinings are joinings of (X, m, Γ) with itself.

This framework of II∞-actions in many respects parallels that of II1-actions—the
classical theory of ergodic probability measure preserving actions. For example, self-
joinings control centralizers and quotients of a given system, and joinings between
two systems control isomorphisms and common quotients (see section 2 for details).

We shall be mostly interested in actions of discrete subgroups Γ < G on homo-
geneous spaces X = G/H, where G is a locally compact (always second countable)
group and H is a closed subgroup so that G/H carries an infinite G-invariant
measure mG/H . The main results of the paper assert that

• measurable centralizers, quotients and self-joinings of (G/H, Γ) and
• measurable isomorphisms and joinings between two such systems (G1/H1, Γ)

and (G2/H2, Γ)
are algebraic, i.e., essentially coincide with centralizers, quotients, isomorphisms,
joinings, etc., for the transitive G-action on X = G/H. Let us describe algebraic
centralizers and quotients more explicitly:

2Note that for infinite measure systems the product measure m1 × m2 is a not a joining.



MEASURABLE RIGIDITY ON HOMOGENEOUS SPACES 481

Example 1.3 (Algebraic centralizers and quotients). Let X = G/H be a homo-
geneous space with an infinite G-invariant measure m. For the transitive G-action
on (X, m) we have the following:

Centralizers: The centralizer of the G-action on X in both the measurable
and set-theoretic sense is the group Λ = NG(H)/H, where λ = nλH ∈ Λ
acts on X = G/H by λ : x = gH �→ λx = gnλH.

Quotients: Any G-equivariant measurable quotient of G/H is G/H ′ via π :
gH �→ gH ′, where H < H ′ and H ′/H is compact.

We shall consider semi-simple Lie groups G and a class of closed unimodular
subgroups H < G which we call “super-spherical” (see Definition 1.7). For rank
one real Lie group G, a super-spherical subgroup is any closed subgroup H < G
with N < H < MN , where N is the horospherical subgroup and M < K is the
centralizer of the Cartan A in K. The assumptions on Γ < G will vary: requiring
Γ < G to be a lattice would be sufficient to establish rigidity for all the examples;
for homogeneous spaces G/H of rank one real Lie groups G, a wider class of discrete
subgroups Γ < G can be shown to be rigid. We start with these latter cases.

Homogeneous spaces of rank one real Lie groups.

Theorem A (Real rank one: Centralizers, self-joinings and quotients).
Let G be a real, connected, Lie group of rank one with trivial center, N < G its
horospherical subgroup, and H < G a proper closed unimodular subgroup N < H <
MN . Suppose that Γ < G is a discrete subgroup acting ergodically on (G/N, mG/N )
and hence also on the homogeneous space (X, m) = (G/H, mG/H).

Then the Γ-action on (X, m) has only algebraic centralizers and quotients as
described in Example 1.3, and any ergodic self-joining descends to an algebraic
centralizer of the algebraic quotient G/MN .

Let us describe the scope of this theorem. The possibilities for H < G as in the
theorem are quite restricted: the spaces G/H are compact extensions of G/MN—
the space of horospheres Hor(SH) in the unit tangent bundle SH to the symmetric
space H ∼= G/K of G. However, the condition on a discrete subgroup Γ < G is
quite mild. Examples of such subgroups include the following.

• Any lattice Γ in G (both uniform and non-uniform ones). Ergodicity of the
Γ-action on (G/H, mG/H) follows from Moore’s ergodicity theorem (H is
not precompact and hence acts ergodically on G/Γ).

• Let Λ < G be a lattice and Γ�Λ so that Λ/Γ is nilpotent. Then Γ acts ergod-
ically on G/MN = Hor(SH). This was proved by Babillot and Ledrappier
[1] for the case where Λ/Γ is Abelian and Λ < G is a uniform torsion-free
lattice. In [11] Kaimanovich showed that in this context ergodicity of the
Γ-action on the space of horospheres is equivalent to the ergodicity of the
Γ-action on the sphere at infinity ∂H = G/MAN which, in turn, is equiva-
lent to the lack of non-constant bounded harmonic functions on the regular
cover M̄ = Γ\H of the finite volume manifold M = Λ\H. For nilpotent
covering group Λ/Γ the latter is well known (e.g., Kaimanovich [10]).

The next rigidity result requires a stronger assumption on a discrete group Γ
in a rank one Lie group G. Let H = G/K denote the symmetric space of G and
∂H = G/MAN its boundary.
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Definition 1.4. We shall say that a torsion-free Γ satisfies condition (E2) if the
following equivalent conditions hold (the equivalence is due to Sullivan [22]):
(E2a) Γ acts ergodically on ∂H× ∂H with respect to the standard measure class

(that of the K × K-invariant measure).
(E2b) The geodesic flow is ergodic on SH/Γ.
(E2c) The Poincaré series

∑
γ∈Γ e−s·d(γp,p) diverges at s = δ(H) where

δ(H) = lim
R→∞

1
R

log Vol(B(p, R))

denotes the volume growth rate of the symmetric space H.

These conditions are satisfied by any lattice Γ < G. In [8] Guivarc’h considered
geodesic flows on regular covers of compact hyperbolic manifolds. His results (ex-
tending previous work of M. Rees) in particular imply that if Λ < G is a uniform
lattice and Γ�Λ, then Γ satisfies (E2b) iff a simple random walk on Λ/Γ is recurrent,
which occurs iff Λ/Γ is a finite extension of Zd with d ≤ 2.

Theorem B (Real rank one: Rigidity of actions). Let G1, G2 be real, con-
nected, non-compact, rank one Lie groups with trivial centers, Ni < Gi the horo-
spheric subgroups, Hi < Gi closed unimodular subgroups with Ȟi = Ni < Hi <
Ĥi = MiNi, and (Xi, mi) = (Gi/Hi, mGi/Hi

). Let Γi < Gi be discrete subgroups
satisfying condition (E2) and acting ergodically on (Gi/Ni, mGi/Ni

). Assume that

Γ1 and Γ2 are isomorphic as abstract groups τ : Γ1

∼=−→Γ2 and that (Xi, mi, Γi)
admit a τ -twisted (ergodic) joining m̄. Then

(1) τ : Γ1 → Γ2 extends to an isomorphism of the ambient groups τ : G1

∼=−→G2

which maps N1 onto N2,
(2) the joining m̄ descends to an algebraic isomorphism T ′ : G1/Ĥ1 → G2/Ĥ2

between algebraic quotients of the original systems, with Ĥi = MiNi > Hi,
(3) if the actions admit not only an ergodic joining but actually a measurable

τ -twisted isomorphism T : X1 → X2, then the isomorphism τ : G1 → G2

as in (1) in addition maps H1 onto H2 and for some λ ∈ NG2(H2) we have
almost everywhere T (gH1) = λgτH2.

The above theorem in particular applies to Γi < Gi being lattices. However, due
to Mostow rigidity the only examples of abstractly isomorphic but not conjugate
lattices occur in G1 = G2 = PSL2(R). In these cases, X1 = X2 = (R2 − {0})/x ∼
±x, but an easy modification gives a similar rigidity result for Γi < SL2(R) acting
linearly on R2. In this case statement (3) gives Shalom and Steger’s result, Theorem
1.1.

In addition to lattices in SL2(R), there are many examples of infinite covolume
discrete subgroups in rank one G satisfying condition (E2); in particular, these
examples include certain normal subgroups in uniform lattices, namely fundamental
groups of Z or Z2 regular covers of compact locally symmetric spaces. This opens
the possibility for the same group Γ to be embedded as a discrete subgroup satisfying
(E2) in different rank one groups G1 and G2. It is known that most (conjecturally
all) arithmetic lattices in rank one groups G � SOn,1(R) and SUn,1(R) have a
finite index subgroup Λ with infinite abelianization (cf. [12], [16]). In particular it
would fit in an exact sequence Γ → Λ → Z, and often the kernel Γ is expected to
be a free group on infinitely many generators F∞.
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Another class of examples is obtained by embedding the fundamental group
Γ = π1(S) of a closed orientable surface S of genus g ≥ 2 in PSL2(C). Let φ
be a pseudo-Anosov diffeomorphism of S, and let Γφ = Z �[φ] Γ denote the semi-
direct product defined by [φ] ∈ OutΓ. Then Γφ is a fundamental group for the
3-manifold Mφ = S × [0, 1]/(x, 0) ∼ (φ(x), 1). By the famous hyperbolization
theorem of Thurston ([15]) such an Mφ admits a hyperbolic structure, i.e., Γφ is a
cocompact lattice in G = Isom+(H3) = PSL2(C). It contains the surface group
Γ as a normal subgroup with Γφ/Γ ∼= Z. Thus Γ satisfies (E2). Therefore, surface
groups Γ can appear as a discrete subgroup with condition (E2) in a variety of ways
in PSL2(R) ∼= Isom+(H2) and in PSL2(C) ∼= Isom+(H3). In the former, there is
a continuum of such embeddings—parametrized by the Teichmuller space; in the
latter, there are (at least) countably many such embeddings defined by varying a
pseudo-Anosov element φ in the mapping class group of S.

Remark 1.5. The rank one results can be extended to the geometric context of the
spaces of horospheres in manifolds of variable negative curvature. We formulate
this result (Theorem 5.2) in Section 5.

Homogeneous spaces of general semi-simple groups. It turns out that rigid-
ity phenomena for actions of lattices are quite wide spread among homogeneous
spaces G/H of semi-simple groups G and sufficiently large unimodular H < G.
Before formulating general results, consider the following:

Example 1.6. Let k be a local field, i.e., R, C, or a finite extension of Qp for a
prime p, and let G = SLn(k). Then X = kn \ {0} is the homogeneous space G/H
for the unimodular closed subgroup

H = {g ∈ SLn(k) : g11 = 1, g21 = · · · = gn1 = 0} .

More generally, given a partition n = n1 + · · · + nm (with m > 1 and ni ∈ N),
consider the subgroup Q < G = SLn(k) consisting of the upper triangular block
matrices of the form

(1.i)

⎛
⎜⎜⎜⎝

A11 B12 · · · B1m

0 A22 · · · B2m

...
...

. . .
...

0 · · · 0 Amm

⎞
⎟⎟⎟⎠

where Aii ∈ GLni
(k) and Bij ∈ Mni×nj

(k). Let Ȟ � Q denote the closed subgroup
consisting of matrices with detAii = 1 (i = 1, . . . , m); and let Ĥ � Q denote a
slightly larger subgroup consisting of block matrices as above with | detAii| = 1,
where | · | : k → [0,∞) denotes the absolute value on k. Then Ȟ < Ĥ and any
intermediate closed subgroup Ȟ < H < Ĥ are unimodular and X = G/H carries
an infinite G-invariant measure m = mG/H .

We shall now describe a more general setting for our rigidity results: G will be
a semi-simple group (in a very general sense), while H < G will be restricted to
some class of subgroups, which we shall call “super-spherical”; this class includes
the cases appearing in Theorems A and B and in Example 1.6. The formal defini-
tion/construction is the following:

Definition 1.7 (Super-spherical subgroups H in a semi-simple G). Let A be a
finite set. For α ∈ A let kα be a local field and Gα be some connected, semi-simple
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linear algebraic kα-group. The product

(1.ii) G =
∏
α∈A

Gα(kα)

of kα-points of the corresponding kα-groups taken with the Hausdorff topology is a
localy compact second countable group. We shall refer to such groups just as semi-
simple. For each α ∈ A, choose a kα-parabolic subgroup Qα < Gα and, taking the
product of kα-points of these groups, form a closed subgroup Q =

∏
α∈A Gα(kα)

in G. To any such subgroup Q < G, which we call parabolic, we associate two
closed unimodular subgroups Ȟ � Ĥ < G with Ȟ < [Q, Q] < Ĥ and Ĥ/Ȟ compact;
any intermediate closed subgroup Ȟ < H < Ĥ will be called super-spherical. We
let Ĥ be the preimage under the abelianization epimorphism Q → Q/[Q, Q] of
the maximal compact subgroup of the locally compact Abelian group Q/[Q, Q],
and let Ȟ =

∏
α∈A Ȟα where Ȟα = [Q,Q](kα)+. (For a k-algebraic group L,

L(k)+ denotes the normal subgroup generated by unipotent radicals of k-parabolic
subgroups of L; it is a normal cocompact subgroup of L(k) [4, 6.14].)

Remark 1.8. In a given semi-simple group G, the collection of all super-spherical
subgroups H < G splits into families of groups related to a given parabolic Q < G;
in each such family the groups H share a common cocompact normal subgroup Ȟ
and a common compact extension Ĥ with [Q, Q].

Theorem C (General case: Centralizers, self-joinings and quotients). Let
G =

∏
Gα(kα) be a semi-simple group and H < G be a super-spherical subgroup

as in Definition 1.7 associated to a parabolic Q < G. Let Γ < G be a lattice acting
by left translations on (X, m) = (G/H, mG/H).

Then the only measurable centralizers and quotients of the Γ-action on (X, m)
are algebraic (as in Example 1.3), and any ergodic self-joining descends to an al-
gebraic automorphism of an algebraic quotient (X̂, m̂) = (G/Ĥ, mG/Ĥ) and is it-
self a quotient of an algebraic automorphism of an algebraic extension (X̌, m̌) =
(G/Ȟ, mG/Ȟ).

Corollary 1.9. Let k be a local field, let Γ < SLn(k) be a lattice and let (X, m)
denote the vector space kn with the Lebesgue measure, with the linear Γ-action.
Then

(1) the measurable centralizer of the system (X, m, Γ) consists only of homo-
theties: x �→ λx, where λ ∈ k∗,

(2) the only measurably proper quotients of (X, m, Γ) are of the form kn/C
where C is a closed subgroup of the compact Abelian group of k-units Uk =
{u ∈ k : |u| = 1},

(3) the only ergodic self-joinings are on graphs of homotheties

{(x, λx) | x ∈ kn} (λ ∈ k∗).

Remark 1.10. Items (1) and (2) in the above corollary were first proved by Shalom
and Steger [21].

For higher rank groups our techniques are restricted to lattices. Due to Mostow-
Margulis rigidity, we are not able to vary the embedding of a given lattice in a
higher rank group G. Hence, we shall consider a fixed lattice Γ < G, but we will
still be able to vary the homogeneous space G/H.
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Theorem D (General case: Rigidity for actions). Let G =
∏

Gi(ki) be a
semi-simple group, Γ < G be a lattice, and H1, H2 < G be two super-spherical sub-
groups as in Definition 1.7. Assume that the Γ-actions on (Xi, mi) = (G/Hi, mG/Hi

)
admit an ergodic joining m̄.

Then X1, X2 share a common algebraic quotient (X̂, m̂) = (G/Ĥ, mG/Ĥ) and a
common algebraic extension (X̌, m̌) = (G/Ȟ, mG/Ȟ); the joining m̄ descends to an
algebraic automorphism of the Γ-action on (X̂, m̂) and is a quotient of an algebraic
automorphism of (X̌, m̌).

Furthermore, if the original Γ-actions on (Xi, mi) are isomorphic, say via T :
X1 → X2, then for some q ∈ Q: H1 = qH2q

−1 and T (gH1) = gqH2 for m1-a.e.
gH1 ∈ X1.

Organization of the paper. Section 2 contains the basic properties of our setup,
such as joinings of infinite measure preserving group actions. In section 3, the no-
tion of alignment is introduced, and general rigidity results are proved for principal
bundles with alignment. In section 4 we establish the alignment property for our
main examples: homogeneous spaces and spaces of horospheres. In section 5 join-
ings between spaces of horospheres are studied. In section 6 the final results on
homogeneous spaces are proved using the alignment property.

In the forthcoming paper [2], Theorems C and D are extended to more general
homogeneous spaces by using more direct arguments.

2. Preliminaries

2.a. Strictly measure class preserving maps. We first discuss some technical
points regarding II∞-actions. Let (Xi, mi, Γ) (i = 1, 2) be two such actions of a
fixed group Γ. A measurable map T : (X1, m1) → (X2, m2) will be called strictly
measure class preserving if T∗m1 ∼ m2 and the Radon-Nikodym derivative T ′

is almost everywhere positive and finite. Note that such a map as the projection
R2 → R, (x, y) �→ x, is not strictly measure class preserving, although it is usually
considered measure class preserving.

Any strictly measure class preserving Γ-equivariant map X1 → X2 between
ergodic measure preserving Γ-actions has a Γ-invariant, and hence a.e. constant
positive and finite, Radon-Nikodym derivative. Therefore

Lemma 2.1. If (Xi, mi, Γ), i = 1, 2, are two ergodic infinite measure preserving
systems and some fixed τ ∈ AutΓ, then the following hold.

(1) Any strictly measure class preserving map T : X1 → X2, satisfying

T (γx) = γτT (x) (γ ∈ Γ)

for a.e. x ∈ X1, is a (τ -twisted) quotient map. If furthermore T is invert-
ible, then T is a (τ -twisted) isomorphism.

(2) A measure m̄ on X = X1 × X2 invariant under the (τ -twisted) diagonal
Γ-action

γ : (x1, x2) �→ (γx1, γ
τx2),

for which the projections πi : (X, m̄) → (Xi, mi) are strictly measure class
preserving, is a (τ -twisted) joining of (Xi, mi, Γ), i = 1, 2.
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Lemma 2.2. Let (X, m, Γ) be an ergodic, infinite measure preserving system, and
suppose that L is a locally compact group with a faithful measurable action by mea-
sure class preserving transformations on (X, m), which commute with Γ. Then the
following hold.

(1) There exists a continuous multiplicative character ∆ : L → R∗
+ so that

g−1
∗ m = ∆(g)m for all g ∈ L.

(2) Any compact subgroup K < L acts by measure preserving transformations
on (X, m), and the K-orbits define a quotient system

P : (X, m, Γ) → (X ′, m′, Γ) where X ′ = X/K, m′ = m/K

with P : x ∈ X �→ Kx ∈ X ′.

Proof. (1) The derivative cocycle ∆(g, x) = dg−1
∗ m
dm (x) is a measurable map L×X →

R∗
+ which is invariant under the Γ-action on X. By ergodicity, ∆(g, x) is a.e.

constant ∆(g) on X. Hence ∆ is a measurable character L → R∗
+. It is well known

that any measurable homomorphisms between locally compact second countable
groups are continuous.

(2) The multiplicative positive reals R∗
+ do not have any non-trivial compact

subgroups. Thus ∆ is trivial on K, i.e., K acts by measure preserving transforma-
tions on (X, m). The space of K-orbits X ′ inherits (1) a measurable structure from
X (because K is compact), (2) the action of Γ (because it commutes with K), and
(3) the measure m′, as required. �

2.b. Joinings of II∞ systems. Let us point out some facts about joinings of
ergodic infinite measure preserving systems:

(1) Any joining between two ergodic infinite measure preserving systems dis-
integrates into an integral over a probability measure space of a family of
ergodic joinings.

(2) If (X × Y, m̄) is a τ -twisted joining of ergodic infinite measure preserving
systems (X, m, Γ) and (Y, n, Γ) (where m̄ projects as c1 · m on X and as
c2 · n on Y ), then there exist unique up to null sets measurable maps
X → Prob(Y ), x �→ µx, and Y → Prob(X), y �→ νy, so that

m̄ = c1 ·
∫

X

δx ⊗ µx dm(x) = c2 ·
∫

Y

νy ⊗ δy dn(y).

Furthermore, µγx = γ ∗µx and νγτ y = γ∗νy for all γ ∈ Γ and m-a.e. x ∈ X
and n-a.e. y ∈ Y .

(3) In contrast to actions on probability spaces, group actions on infinite mea-
sure systems do not always admit a joining3. Existence of a joining is an
equivalence relation between II∞-actions of a fixed group Γ. Indeed, reflex-
ivity is obvious; if m̄ on X1 × X2 is a (τ -twisted) joining of (X1, m1, Γ)
with (X2, m2, Γ), then the image ˇ̄m of m̄ under the flip X1 × X2 →
X2 ×X1, (x1, x2) �→ (x2, x1), is a (τ−1-twisted) joining of (X2, m2, Γ) with
(X1, m1, Γ).

For transitivity, one can use the following “amalgamation” construction:
given three systems (Xi, mi, Γ) (i = 1, 2, 3) and joinings m̄12 and m̄23 of

3Note that the product measure m1 × m2 is not a joining.
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the corresponding pairs, one can use the decompositions

m̄12 = c12 ·
∫

X2

µ(1)
y ⊗ δy dm2(y), m̄12 = c23 ·

∫
X2

δy ⊗ µ(3)
y dm2(y)

with µ(i) : X2 → Prob(Xi) (i = 1, 3) measurable functions in order to
construct the “amalgamated” joining m̄ = m̄12 ×X2 m̄23 of X1 with X3 by
setting

m̄ =
∫

X2

µ(1)
y ⊗ µ(3)

y dm2(y).

Note that this amalgamated joining need not be ergodic, even if m̄12 and
m̄23 are. If m̄12 is τ -twisted and m̄23 is σ-twisted, then the amalgamated
joining m̄ is σ ◦ τ -twisted.

(4) If (Y, n, Γ) is a common quotient of two systems (Xi, mi, Γ) (i = 1, 2), then
one can form a relatively independent joining of X1 with X2 over Y by
taking the measure m̄ on X1 × X2 to be

m̄ =
∫

Y

µ(1)
y ⊗ µ(2)

y dn(y)

where mi = ci ·
∫

Y
µ

(i)
y dn(y) (i = 1, 2) are the disintegration with respect

to the projections.
(5) An isomorphism (or a τ -twisted isomorphism) T : (X1, m1) → (X2, m2)

gives rise to the (τ -twisted) joining:

m̄ =
∫

X1

δx ⊗ δT (x) dm1(x)

which is supported on the graph of T . In particular, any (non-trivial)
element T of the centralizer of (X, m, Γ) defines a (non-trivial) self-joining
of (X, m, Γ).

(6) Any (τ -twisted) measurable quotient p : (X, m, Γ) → (Y, n, Γ) gives rise to
the relatively independent self-joining (X × X, m̄) of (X, m, Γ) given by

m̄ =
∫

Y

µy ⊗ µy dn(y)

where m = c ·
∫

Y
µy dn(y) is the disintegration of m with respect to n

into a measurable family Y → Prob(X), y �→ µy, of probability measures
(µy(p−1{y}) = 1 and µγy = γ∗µy for n-a.e. y ∈ Y ). This joining need not
be ergodic.

Thus, understanding joinings between different systems and self-joinings of a
given system provides useful information on isomorphisms between systems, quo-
tients and centralizers.

2.c. An auxiliary lemma. We shall need the following technical lemma.

Lemma 2.3 (Pushforward of singular measures). Let (X, µ), (Y, ν) be measure
spaces, Z be a standard Borel space, ρ : Y → Z and x ∈ X �→ αx ∈ Prob(Y ) be
measurable maps so that∫

X

αx(B) dµ(x) = 0 whenever ν(B) = 0.

Define a measurable map X → Prob(Z) by x ∈ X �→ βx = ρ∗αx ∈ Prob(Z). Then
the following hold.
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(1) The map β : X → Prob(Z) is well defined in terms of α : X → Y and
ρ : Y → Prob(Z), all up to null sets. More precisely, if x ∈ X �→ α′

x ∈
Prob(Y ) agrees µ-a.e. with αx and ρ′ : Y → Z agrees ν-a.e. with ρ, then
the map x ∈ X �→ β′

x = ρ′∗α
′
x ∈ Prob(Z) agrees with βx for µ-a.e. x ∈ X.

(2) If a countable group Γ acts measurably on X, Y , Z, preserving the measure
class of µ on X and of ν on Y and such that

αγx = γ∗αx, ρ(γy) = γρ(y)

for µ-a.e. x ∈ X, ν-a.e. y ∈ Y and all γ ∈ Γ, then βγx = γ∗βx for µ-a.e.
x ∈ X and all γ ∈ Γ.

Proof. (1) For µ-a.e. equality βx = β′
x it suffices to show that for each E ∈ B(Z)

µ {x ∈ X : βx(E) = β′
x(E)} = 0

because B(Z) is countably generated (Z is a standard Borel space). Let F =
ρ−1(E), F ′ = ρ′

−1(E) ∈ B(Y ). We have ν(F � F ′) = 0 and therefore∫
X

αx(F � F ′) dµ(x) = 0.

By Fubini, αx(F ) = αx(F ′) for µ-a.e. x ∈ X. At the same time µ-a.e. αx(F ′) =
α′

x(F ′) and so
βx(E) = αx(F ) = α′

x(F ′) = β′
x(E)

for µ-a.e. x ∈ X.
(2) For each γ we have a.e. αγx = γ∗αx and ρ ◦ γ = γ ◦ ρ which give rise to

βγx = ρ∗(γ∗αx) = (ρ ◦ γ)∗αx = (γ ◦ ρ)∗αx = γ∗βx,

justified by part (1). �

3. Principal bundles with alignment properties

3.a. Basic definitions. The following notion, which we call the alignment prop-
erty, will play a key role in the proofs of our results. Section 4 contains examples
of the alignment property. Here we shall give the definition, basic properties and
the main applications of this notion.

Definition 3.1. Let Γ be a group, (X, m) be a measure space with a measure
class preserving Γ-action, B be a topological space with a continuous Γ-action,
and π : X → B be a measurable Γ-equivariant map. We shall say that π has
the alignment property with respect to the Γ-action if x �→ δπ(x) is the only Γ-
equivariant measurable map from (X, m) to the space Prob(B) of all regular Borel
probability measures on B (as usual two maps which coincide m-a.e. are identified).

The alignment property depends only on the measure class [m] on a Borel space
X. However in all the examples of the alignment phenomena in this paper, X is
a topological space with a continuous Γ-action, the map π : X → B is continuous
and m is an infinite Γ-invariant measure on X. The notion seems to be related to
the notions of strong proximality and boundaries (cf. Furstenberg [6], [7]).

Given a measurable map π : (X, m) → B on a Lebesgue space, there is a well
defined measure class [ν] on B—the “projection” [ν] = π∗[m] of the measure class
[m] on X. It can be defined by taking the usual pushforward ν = π∗µ of some finite
measure µ equivalent to m (being Lebesgue, m is σ-finite). The measure class [ν]
depends only on [m], and ν(E) = 0 iff m(π−1E) = 0.
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We start with a list of simple but useful observations about the alignment prop-
erty.

Lemma 3.2 (Uniqueness). Let (π : (X, m) → B; Γ) be an alignment system and ν
a probability measure on B with [ν] = π∗[m]. Then

(1) π is the unique, up to m-null sets, measurable Γ-equivariant map X → B,
(2) b �→ δπ(b) ∈ Prob(B) is the unique, up to ν-null sets, measurable Γ-

equivariant map B → Prob(B),
(3) the identity map is the unique, up to ν-null sets, measurable Γ-equivariant

map B → B.

Proof. Evident from the definitions. �
Lemma 3.3 (Conservative). If π : (X, m) → B has the alignment property with
respect to a Γ-action, with a non-trivial B, then Γ-action on (X, m) is conservative.

Proof. Indeed, otherwise there exists a Borel subset E ⊂ X with m(E) > 0 so that
m(γ1E ∩ γ2E) = 0 whenever γ1 = γ2 ∈ Γ. Choose an arbitrary measurable map
p : E → B with p(x) = π(x), extend it in a Γ-equivariant way to ΓE =

⋃
γE and

let p(x) = π(x) for x ∈ X \ ΓE. Then p is a measurable Γ-equivariant map which
does not agree with π on a positive measure set ΓE, contradicting the alignment
property. �
Lemma 3.4 (Intermediate quotients). Let (X, m, Γ) and (X0, m0, Γ) be some mea-
sure class preserving measurable Γ-actions, p : (X, m) → (X0, m0) a Γ-equivariant
measurable map, B a topological space with a continuous Γ-action, and π0 : (X0, m0)
→ B a measurable Γ-equivariant map. If the composition map

π : (X, m)
p−→(X0, m0)

π0−→B

has the alignment property, then so does π0 : (X0, m0) → B.

Proof. Follows from the definitions. �
Lemma 3.5 (Compact extensions). Let p : (X1, m1) → (X, m) be a compact group
extension of a Γ-action on (X, m), i.e., a compact group K acts on (X1, m1) by
measure preserving transformations commuting with the Γ-action so that (X, m) =
(X1, m1)/K with p being the projection. If π : (X, m) → B has the alignment
system with respect to Γ, then the map

π1 : (X1, m1)
p−→(X, m) π−→B

has the alignment property too.

Proof. If y ∈ X1 �→ νy ∈ Prob(B) is a measurable Γ-equivariant map, then

x ∈ X �→ µx, µp(y) =
∫

K

νky dk

is a Γ-equivariant map, and by the alignment property µx = δπ(x) for m-a.e. x ∈ X.
Since Dirac measures are extremal points of Prob(B), it follows that νy = δπ(p(y))

for m1-a.e. y ∈ X1. �
Lemma 3.6 (Finite index tolerance). Let (X, m, Γ) be a measure class preserving
action of a countable group Γ, B a topological space with a continuous Γ-action,
and π : X → B a measurable Γ-equivariant map. Let Γ′ < Γ be a finite index
subgroup.
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Then π : (X, m) → B has the alignment property with respect to Γ if and only if
it has the alignment property with respect to Γ′.

Proof. Let γi (i = 1, . . . , k) be the representatives of Γ′ cosets. Suppose x ∈ X �→
νx ∈ Prob(B) is a Γ-equivariant measurable map. Then x �→ µx = k−1

∑k
1 νγix is

a Γ′-equivariant map X → Prob(B), and therefore it is µx = δπ(x). The fact that
δπ(x) are extremal points of Prob(B) implies that νx = δπ(x) for m-a.e. x ∈ X. �

Lemma 3.7 (Products). A direct product of alignment systems is an alignment
system.

Proof. For i = 1, 2 let πi : (Xi, mi) → Bi be alignment systems with respect to
actions of some groups Γi. Define

(X, m) = (X1 × X2, m1 ⊗ m2), B = B1 × B2, Γ = Γ1 × Γ2.

We demonstrate that π(x, y) = (π1(x), π2(y)) has the alignment property.
Suppose that (x, y) ∈ X �→ µx,y ∈ Prob(B1 × B2) is a measurable Γ-equivariant

map. Choose probability measures m′
i in the measure classes of mi. Define mea-

surable maps ν(i) : (Xi, mi) → Prob(Bi) by

ν(1)
x (E) =

∫
µx,y(E × B2) dm′

2(y), ν(2)
y (F ) =

∫
µx,y(B1 × F ) dm′

1(x).

Then ν(i) : (Xi, mi) → Prob(Bi) are measurable and Γi-equivariant. Thus ν
(i)
x =

δπi(x) and since these are extremal points, we conclude that a.e.

µx,y(E × B2) = δπ1(x)(E), µx,y(B1 × F ) = δπ2(y)(F ).

This readily gives µx,y = δπ1(x) ⊗ δπ2(y). �

We shall be interested in examples where π : X → B is a principal bundle, in the
sense that π : X → B is a surjective continuous map between topological spaces,
and L is a locally compact group acting continuously and freely on X so that the
L-orbits are precisely the fibers of π : X → B. An automorphism of a principal L-
bundle is a homeomorphism of X which commutes with the L-action and therefore
descends to a homeomorphism of B = X/L.

Definition 3.8. If π : X → B is a principal L-bundle, Γ a group of bundle
automorphisms, m a measure on X so that both Γ and L act on (X, m) by measure
class preserving transformations, and π : (X, m) → B has the alignment property
with respect to the Γ-action, we shall say that (π : (X, m) → B; Γ) is a principal
L-bundle with alignment.

3.b. Rigidity properties of principal bundles with alignment property.
We start by showing how to compute the measurable centralizer, quotients and
self-joinings of any II∞ system (X, m, Γ) admitting a structure of a principal bundle
with an alignment property relative to its base.

Theorem 3.9 (Centralizers, self-joinings, quotients). Let (X, m, Γ) be an ergodic
infinite measure preserving system and π : X → B be a principal L-bundle with
alignment. Then the following hold.

(1) Let T : X → X be some Borel map, satisfying m-a.e. on X

T (γx) = γ T (x) (γ ∈ Γ).
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Then there exists a unique λ0 ∈ L so that T (x) = λ0x for m-a.e. x ∈ X.
In particular, the measurable centralizer of (X, m, Γ) is L.

(2) Any ergodic self-joining of the Γ-action on (X, m) is given by the measure
c · mλ0 on X × X for some 0 < c < ∞ and λ0 ∈ L, where

mλ0 =
∫

X

δx ⊗ δλ0x dm(x)

(3) The only measurably proper Γ-equivariant quotients of (X, m) are of the
form (X, m)/K where K < L is a compact subgroup.

Note that T in (1) is not assumed a prioi to preserve the measure class of m.

Corollary 3.10. If an ergodic infinite measure preserving system (X, m, Γ) can be
viewed as a principal L-bundle with alignment, then the base action (B, ν, Γ), the
quotient map π : X → B, and the structure group L are uniquely determined by
(X, m, Γ).

Proof. Theorem 3.9 (1) allows us to identify L acting on (X, m) as the measurable
centralizer of the Γ-action and (B, [ν]) as the space of the ergodic components
(X, m)//L of the centralizer of Γ. �

Proof of Theorem 3.9. (1) The map X
T−→X

π−→B is Borel and Γ-equivariant. By
the alignment property we have π(T (x)) = π(x) for m-a.e. x ∈ X. This allows us
to define a measurable function λ : X → L by T (x) = λxx. For m-a.e. x ∈ X and
all γ ∈ Γ,

γλγxx = λγxγx = T (γx) = γT (x) = γλxx.

In view of the freeness of the L-action, we get m-a.e. λγx = λx. Ergodicity of the
Γ-action on (X, m) implies that λx is m-a.e. a constant λ0 ∈ L and T (x) = λ0x as
claimed.

(2) Given an ergodic self-joining, (X × X, m̄), disintegrate the measure m̄ with
respect to its projections as

m̄ = c1 ·
∫

X

δx ⊗ µx dm(x) = c2 ·
∫

X

νx ⊗ δx dm(x)

with 0 < c1, c2 < ∞ and {µx} and {νx} being measurable families of probability
measures on X, indexed by x ∈ X. These measures satisfy m-a.e.

µγx = γ∗µx, νγx = γ∗νx (γ ∈ Γ).

By Lemma 2.3 we can define a measurable Γ-equivariant map

X
µ·−→ Prob(X) π∗−→ Prob(B), by x �→ νx �→ π∗νx.

By the alignment property for m-a.e. x the measure µx is supported on π−1(π(x)) =
Lx. Thus λx ∈ Lx �→ λ ∈ L maps µx to a probability measure σx on L. Note that
{σx}, x ∈ X, is a measurable family of probability measures on L, which satisfies
for m-a.e. x ∈ X, every γ ∈ Γ, and every Borel set E on L:

σγx(E) = µγx ({λγx : λ ∈ E}) = γ∗µx ({γλx : λ ∈ E})
= µx ({λx : λ ∈ E}) = σx(E).

Ergodicity of the Γ-action on (X, m) implies that σx is a.e. equal to a fixed proba-
bility measure σ on L.
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The fact that a.e. π∗µx = δπ(x) means that the measure m̄ is supported on the
set

(3.i) F = {(x, y) ∈ X × Y : π(x) = π(y)} .

Given a Borel set E ⊆ L, define FE = {(x, λx) : x ∈ X, λ ∈ E} ⊆ F and observe
that

• FE is invariant under the diagonal Γ-action,
• m̄(FE) = 0 if and only if σ(E) = 0,
• F \ FE = FL\E .

If m̄ is ergodic with respect to the diagonal Γ-action, for each measurable E ⊂ L
either m̄(FE) = σ(E) = 0 or m̄(FL\E) = σ(L \ E) = 0. This implies that σ
is a Dirac measure δλ0 at some λ0 ∈ L, and consequently m̄ is supported on
{(x, λ0x) : x ∈ X} as in the statement of the theorem.

(3) Let p : (X, m) → (Y, n) be a Γ-equivariant measurably proper quotient. Then
m can be disintegrated with respect to the quotient map

m =
∫

Y

µy dn(y)

where µy ∈ Prob(X) and µy(p−1({y})) = 1 for n-a.e. y ∈ Y . Consider the
independent joining relative to p : X → Y , given by

(3.ii) m̄ =
∫

Y

µy ⊗ µy dn(y).

The disintegration of m̄ into Γ-ergodic components consists of ergodic self-joinings
of (X, m, Γ):

m̄ =
∫

L

mλ dσ(λ), where mλ =
∫

X

δx ⊗ δλx dm(x)

and σ is a probability measure on L. In particular m̄ is supported on the set

F = {(x, x′) : π(x) = π(x′)} = {(x, λx) : x ∈ X, λ ∈ L} ⊂ X × X.

A comparison with (3.ii) yields that for n-a.e. y ∈ Y , the measure µy is supported
on a single L-orbit and moreover for µy-a.e. x∫

L

f(λx) dσ(λ) =
∫

X

f(x′) dµy(x′) (f ∈ Cc(X)).

Since the roles of x and x′ are symmetric, σ is a symmetric measure, i.e., dσ(λ) =
dσ(λ−1). Moreover, for any f ∈ Cc(X) and µy-a.e. x we have∫

L

∫
L

f(λ2λ1x) dσ(λ1) dσ(λ2) =
∫

L

(∫
X

f(λ2x1) dµy(x1)
)

dσ(λ2)

=
∫

X

(∫
L

f(λ2x1) dσ(λ2)
)

dµy(x1) =
∫

X

f dµy =
∫

L

f(λx) dσ(λ)

which implies that σ ∗ σ = σ.

Lemma 3.11. A symmetric probability measure σ on a locally compact group L
satisfies σ ∗ σ = σ if and only if it is the Haar measure σ = mK on a compact
subgroup K < L.
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Proof. The “if” part is evident. For the “only if” part assume σ is symmetric
and σ ∗ σ = σ and let K = supp(σ). Then K is a closed subset of L satisfying
K−1 = K and K ·K ⊆ K, i.e. K is a closed subgroup of L. To see the latter, given
k1, k2 ∈ supp(σ) and a neighborhood U of k1 · k2, choose open neighborhoods Vi of
ki so that V1 · V2 ⊂ U , and note that

σ(U) = σ ∗ σ(U) ≥ σ(V1) · σ(V2) > 0.

As U was arbitrary, it follows that k1 · k2 ∈ K.
Now let Pσ be the Markov operator

(Pσf)(k) =
∫

K

f(kk′) dσ(k′)

which is defined on C0(K,R) and takes values in C0(K,R). It is a projection
because P 2

σ = Pσ∗σ = Pσ. If g ∈ C0(K,R) is a Pσ-invariant function, then the
closed set Ag = {k ∈ K : g(k) = max g} satisfies Agk

′ = Ag for σ-a.e. k′ ∈ K, and
K = supp(σ) yields Ag = K and so g = const. This implies that K is compact
for C0(K,R) contains a non-trivial constant function. Hence, for f ∈ C(K) and
k0 ∈ K we have∫

K

f(k) dσ(k) = (Pσf)(e) = (Pσf)(k0) =
∫

K

f(k0k) dσ(k)

which means that the probability measure σ is left invariant on the compact group
K. �

Remark 3.12. The assumption that σ is symmetric in Lemma 3.11 is redundant:
from σ = σ ∗ σ we deduced that K = supp(σ) is a closed subsemigroup of L; but
compact subsemigroups in topological groups are known to form subgroups.

Returning to the description of the quotient (Y, n) of (X, m), observe that for
n-a.e. y ∈ Y the measure νy is supported and equidistributed on a single K-orbit in
X. Hence (Y, n) can be identified with (X/K, m/K). The Γ-action on X descends
to an action on X/K because Γ and K < L commute. This completes the proof of
Theorem 3.9. �

Next we consider isomorphisms and, more generally, joinings of two ergodic in-
finite measure actions (Xi, mi, Γ) (i = 1, 2) of the same group Γ. We assume that
the systems are principal Li-bundles with alignment. The isomorphism case follows
from Corollary 3.10: any (τ -twisted) isomorphism T : (X1, m1) → (X2, m2) identi-
fies the structure groups L1

∼= L2, provides a measurable (τ -twisted) Γ-equivariant
isomorphism φ : (B1, [ν1]) → (B2, [ν2]). Similar phenomena hold for general join-
ings:

Theorem 3.13 (Joinings and boundary maps). Let (Xi, mi, Γ), i = 1, 2, be two
ergodic infinite measure preserving actions of some countable group Γ, which are
principal Li-bundles with alignment πi : Xi → Bi. Suppose the systems (Xi, mi, Γ)
admit a (τ -twisted) ergodic joining m̄. Then the following hold.

(1) There exists a unique (τ -twisted) Γ-equivariant measure class preserving
isomorphism φ : (B1, [ν1])

∼=−→(B2, [ν2]), where [νi] = (πi)∗[mi]; the joining
m̄ is supported on

Fφ = {(x1, x2) ∈ X1 × X2 : φ(π1(x1)) = π2(x2)} .
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(2) Structure groups Li contain compact subgroups Ki, so that m̄ is K1 × K2-
invariant; m̄ projects to the joining m̄′ of the quotient systems (X ′

i, m
′
i) =

(Xi, mi)/Ki with m̄′ being the graph of a (τ -twisted) isomorphism

T ′ : (X ′
1, m

′
1, Γ)

∼=−→(X ′
2, m

′
2, Γ).

Furthermore, if Ki are normal in Li, then we have the following.
(3) The alignment systems π′

i : X ′
i−→Bi are principal Λi = Li/Ki-bundles and

T ′(λ1x) = ρ(λ1)T ′(x)

for some continuous group isomorphism ρ : Λ1

∼=−→Λ2.

The following commutative diagram schematically summarizes these statements:

(X1, m1)
m̄−−−−→ (X2, m2)⏐⏐�/K1

⏐⏐�/K2

(X ′
1, m

′
1)

T ′
−−−−→ (X ′

2, m
′
2)

π′
1

⏐⏐��Λ1 ∼=Λ2�
⏐⏐�π′

2

(B1, [ν1])
φ−−−−→ (B2, [ν2])

Proof of Theorem 3.13. Hereafter, we shall use the standard decompositions of m̄:

m̄ = c1 ·
∫

X1

δx ⊗ µx dm1(x) = c2 ·
∫

X2

νy dm2(y)

where X1 → Prob(X2), x �→ µx, and X2 → Prob(X1), y �→ νy, are, respectively, τ -
and τ−1-twisted Γ-equivariant measurable maps.

Claim 3.14. There exists a unique measurable τ -twisted Γ-equivariant map

p : X1−→B2.

We start with the existence claim. Consider the amalgamation m̃ = ˇ̄m ×X1 m̄,
which is an untwisted (not necessarily ergodic) self-joining of (X2, m2, Γ) given by

(3.iii) m̃ =
∫

X1

µx ⊗ µx dm1(x).

Using Theorem 3.9 (2) and the ergodic decomposition of m̃, we obtain

m̃ = const ·
∫

L2

δy ⊗ δλy dσ(λ)

for some probability measure σ on L2. In particular, m̃ is supported on

F2 = {(y, y′) ∈ X2 × X2 | π2(y) = π2(y′)}.
It follows from the construction (3.iii) that for m1-a.e. x ∈ X1 for µx × µx-a.e.
(y, y′) one has π2(y) = π2(y′). Thus p : X1 → B2 can be defined by

p(x) = supp((π2)∗µx) ∈ B2.

For the uniqueness, observe that any τ -twisted Γ-equivariant map P : X1 →
Prob(B2) takes values in Dirac measures. Indeed, the map

X2
ν∗−→Prob(X1)

P∗−→Prob(B2), y �→ P∗νy
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(using Lemma 2.3) is an untwisted Γ-equivariant measurable map. By the alignment
property, P∗νy = δπ2(y). In particular, P (x) is a Dirac measure on B2. This
observation, in particular, gives the uniqueness part of the claim: if p, q : X1 → B2

are τ -twisted Γ-equivariant maps, then

P (x) =
1
2
(δp(x) + δq(x))

should take values in Dirac measures, which is possible only if p(x) = q(x) a.e.
Claim 3.14 is proved.

(1) We shall use both the fact that π1 : X1 → B1 is a principle L1-bundle
and the uniqueness of the τ -twisted Γ-equivariant map p : X1 → B2 to construct
φ : B1 → B2. Indeed, for any λ ∈ L1 the map pλ : X1 → B2 defined by

pλ(x) = p(λx)

is a τ -twisted Γ-equivariant measurable map. Thus by Claim 3.14, for every λ ∈ L1

for m1-a.e. x ∈ X1,
p(λx) = pλ(x) = p(x).

Using Fubini, the map p : X1 → B2 descends to a τ -twisted Γ-equivariant measur-
able map φ : B1 = X1//L1 → B2.

It follows that for a.e. x, x′ ∈ X1 with π1(x) = π1(x′) = b1 the measures µx, µx′

are supported on the π2-fiber of φ(b1) ∈ B2. In other words, the original joining m̄
is supported on

Fφ = {(x, y) ∈ X1 × X2 | φ(π1(x)) = π2(y)}.

Since m̄ projects to consti · mi in the factors and since [νi] = (πi)∗[mi], it follows
that φ∗[ν1] = [ν2]. A symmetric argument provides a τ−1-twisted Γ-equivariant
map ψ : B2 → B1 with ψ∗[ν2] = [ν1]. Lemma 3.2 shows φ = ψ−1. This completes
the proof of part (1).

(2) For m1-a.e. x ∈ X1 and µx-a.e. y ∈ X2 let η
(2)
(x,y) ∈ Prob(L2) be the

probability measure defined by

η
(2)
(x,y)(E) = µx{λ2y | λ2 ∈ E ⊂ L2}, E ∈ B(L2).

Similarly, there is a measurable map (x, y) �→ η
(1)
(x,y) ∈ Prob(L1), given by

η
(1)
(x,y)(E) = νy{λ1x | λ1 ∈ E ⊂ L1}, E ∈ B(L1).

The Γ-action γ : (x, y) �→ (γx, γτy) commutes with the L1 × L2-action. Hence, for
i = 1, 2, we have η

(i)
γ(x,y) = η

(i)
(x,y) for every γ ∈ Γ and m̄-a.e. (x, y). Hence, η

(i)
(x,y)

are m̄-a.e. equal to fixed probability measures η
(i)
(x,y) = η(i) on Li (i = 1, 2).

For both i = 1, 2, the probability measures η(i) on Li are symmetric and satisfy
η(i) = η(i) ∗η(i). This follows from the fact that for m1-a.e. x ∈ X1, choosing y and
y′ in X2 independently according to µx, we will have y′ = λy where the distribution
of λ ∈ L2 is η(2), and similarly for η(1) (this is analogous to the argument in the proof
of part (3) of Theorem 3.9). Thus, Lemma 3.11 yields that η(i) is the normalized
Haar measure on a compact subgroup Ki < Li.

Next consider the natural Γ-equivariant quotients

pi : (Xi, mi) → (X ′
i, m

′
i) = (Xi, mi)/Ki (i = 1, 2)
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as in Lemma 2.2. Consider Fφ with the joining measure m̄ as an ergodic infinite
measure preserving action of Γ. The measure m̄ is invariant under the action of
the compact group K = K1×K2 which commutes with the Γ-action. The quotient
system (F , m̄)/K is a subset of X ′

1 ×X ′
2 with the measure m̄′ = m̄/K having one-

to-one projections on X ′
i. Therefore, it is supported on a graph of a measurable

map T ′ : X ′
1 → X ′

2, and since m̄′ is invariant under the τ -twisted diagonal Γ-action,
T ′ is a τ -twisted isomorphism.

(3) We assume that Ki are normal in Li for both i = 1, 2.
Let Λi = Li/Ki and observe that πi : Xi → Bi is a principal Λi-bundle which

still has the alignemnt property (Lemma 3.4).

Claim 3.15. The groups Λi = Li/Ki are continuously isomorphic.

The graph of T ′ is supported on

F ′
φ = {(x′

1, x
′
2) ∈ X ′

1 × X ′
2 : φ(π′

1(x
′
1)) = π′

2(x
′
2)} = Fφ/(K1 × K2).

This allows us to define a Borel map ρ : Λ1 × X ′
1 → Λ2 by

(3.iv) T ′(λx) = ρ(λ, x)T ′(x) (λ ∈ Λ1, x ∈ X ′
1).

It is an (a.e.) cocycle, i.e., ρ(λ′λ, x) = ρ(λ′, λx)ρ(λ, x) for m′
1-a.e. x ∈ X ′

1 and a.e.
λ ∈ Λ1. Another a.e. identity is

ρ(λ, γx) = ρ(λ, x)

for γ ∈ Γ whose action commutes with both Λ1 on X ′
1 and Λ2 on X ′

2. Ergodicity
implies that for a.e. λ ∈ Λ1 the value ρ(λ, x) is a.e. constant ρ(λ). The a.e. cocycle
property of ρ(λ, x) means that ρ : Λ1 → Λ2 is a measurable a.e. homomorphism. It
is well known that a.e. homomorphisms between locally compact groups coincide
a.e. with a continuous homomorphism, which we continue to denote by ρ. Thus,
(3.iv) translates into (3) of Theorem 3.13, and the fact that T ′

∗m1 = m2 implies
that ρ : Λ1 → Λ2 is one-to-one onto.

This completes the proof of Theorem 3.13. �

4. Main examples of the alignment property

Let us focus on two examples of principal bundles, which will prove to have the
alignment property under some mild assumptions.

Example 4.1 (Homogeneous spaces). Let G be a locally compact group and H �Q
closed subgroups. Set

X = G/H, B = G/Q, π : X → B, π(gH) = gQ.

Observe that Q acts on G/H from the right by q : gH �→ gq−1H. This action is
transitive on the π-fibers with H being the stabilizer of every point gH. Thus L =
Q/H acts freely on X producing the π-fibers as its orbits. Thus π : G/H → G/Q
is a principal L-bundle. In this setup the group G and its subgroups act by bundle
automorphisms.

Example 4.2 (Space of horospheres). Let N be a complete simply connected Rie-
mannian manifold of pinched negative curvature, and let ∂N denote the boundary
of N . For p, q ∈ N and ξ ∈ ∂N the Busemann function is defined as

(4.i) βξ(p, q) = lim
z→ξ

[d(p, z) − d(q, z)] .
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The horospheres in N are the level sets of the Busemann function:

horξ(t) = {p ∈ N : βξ(p, o) = t}
where o ∈ N is some reference point. We denote by

Hor(N) = {horξ(t) : ξ ∈ ∂N, t ∈ R}
the space of horospheres.

Hor(N) fibers over ∂N via horξ(t) �→ ξ. This is a principal R-bundle over ∂N ,
where R acts by s : horξ(t) �→ horξ(t + s). Since βξ(p, q) + βξ(q, 0) = βξ(p, o),
different choices of o ∈ N change only the trivialization of this bundle.

The group of isometries of N acts also on the boundary B = ∂N and on the
space Hor(N) of horospheres because βγξ(γp, γo) = βξ(p, o) for γ ∈ Isom(N). In
the above parametrization this action takes the form

γ : horξ(t) �→ horγξ(t + c(γ, ξ)), where c(γ, ξ) = βξ(γo, o).

Note that c : Γ × ∂N → R is an additive cocycle, that is,

(γ′γ, ξ) = c(γ′, γ · ξ) + c(γ, ξ).

Theorem 4.3 (Space of horospheres). Let N be a complete simply connected Rie-
mannian manifold of pinched negative curvature, X = Hor(N) be the space of
horoshperes, B = ∂N be the boundary, π : X → B be the projection horξ(−) �→ ξ.
Let Γ < Isom(N) be a discrete group and m be some Borel regular Γ-invariant
measure with full support on X.

Then π : (X, m) → B has the alignment property with respect to Γ if and only if
the Γ-action on (X, m) is conservative.

Proof. Lemma 3.3 provides the “only if” direction. The content of this theorem
is the “if” direction. We assume that the Γ-action on (X, m) is conservative and
x ∈ X �→ µx ∈ Prob(B) is a measurable Γ-equivariant map, which should be proven
to coincide m-a.e. with δπ(x). Assuming the contrary, the set

A = {x ∈ X : µx({π(x)}) < 1} has m(A) > 0.

Note that A is Γ-invariant and we may assume that µγx = γ∗µx for all x ∈ A and
all γ ∈ Γ. For x ∈ A denote by νx the normalized restriction of µx to B \ {π(x)}.
Then also {νx}, x ∈ A, is Γ-equivariant: νγx = γ∗νx.

Fix some (say piecewise linear) continuous function φ : [0,∞) → [0, 1] with
φ|[0,1] ≡ 0 and φ|[2,∞) ≡ 1, and choose some metric ρ on B = ∂N , e.g., the
visual metric from the base o ∈ N . Let fx,r(ξ) = φ(r · ρ(π(x), ξ)) and let Uξ,r =
{η ∈ B : ρ(ξ, η) < r} be small neighborhoods of ξ. Then fx,r ∈ C(B) and

fx,r|Uξ,r
≡ 0, fx,r|B\Uξ,2r

≡ 1.

Consider the set Ar = {x ∈ A : νx(fx,r) > 1/2}. Then m(Aε) > 0 for some suffi-
ciently small ε > 0. By Luzin’s theorem there exists a (compact) subset C ⊆ Aε

with m(C) > 0 so that the map x ∈ C �→ νx ∈ Prob(B) is continuous on C. Since
Γ is conservative on (X, m) and m is positive on non-empty open sets, for m-a.e.
x ∈ C there exists an infinite sequence of elements γn ∈ Γ so that

γnx → x and γnx ∈ C ⊆ Aε, n ∈ N.

Let us fix such an x and the corresponding infinite sequence {γn}; denote f =
fx,ε ∈ C(B) and K = supp(f) ⊂ B \ Ux0,ε. We shall show below that for n ≥ n0
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the functions f ◦ γn and f have disjoint supports. This will lead to a contradiction
because then

νx(f) + νx(f ◦ γn) ≤ 1 (n ≥ n0)

while

νx(f ◦ γn) = νγn.x(f) → νx(f) >
1
2
.

In order to show that K = supp(f) and supp(f ◦ γn) = γ−1
n K are disjoint for large

n, we look at the unit tangent bundle SN of N . It is homeomorphic to

{(η, ξ, t) : η = ξ} via v ∈ SN �→ (v+, v−, t(v))

were v+ = v− ∈ ∂N denote the forward and backward end points of the geodesic
in N determined by v and t(v) = βv+(p(v), o) ∈ R, where p(v) ∈ N is the base
point of the unit tangent vector v.

Let ξ0 = π(x0). The horosphere x0 = horξ0(t0) corresponds in a one-to-one fash-
ion to {(ξ0, η, t0) : η = ξ0}—the set of unit vectors based at points of horξ0(t0) and
pointing towards ξ0 ∈ ∂N (this is the usual identification between the horosphere
as a subset of N and as the stable leaf in SN). The assumption that γnx0 → x0 in
X means that γξ0 → ξ0 and tn → t0 in R, where γn : horξ0(t0) �→ horγnξ0(tn).

Let n0 ∈ N be such that ρ(γnξ0, ξ0) < ε/2 and |tn − t0| < 1 for all n ≥ n0. The
set

Q =
{
u ∈ SN | ρ(u+, u−) ≥ ε

2
, t(u) ∈ [t0 − 1, t0 + 1]

}
is compact in SN . Note that Isom(N) acts properly on N and on SN . Thus, the
infinite sequence {γn} in the discrete subgroup Γ < Isom(N) eventually moves Q
away from itself. In other words, there exists n1 so that

γnQ ∩ Q = ∅, ∀n ≥ n1.

We claim that γ−1
n K ∩ K = ∅ for all n ≥ max{n0, n1}. Indeed suppose that

η ∈ γ−1
n K ∩ K for some n ≥ n0, and let v ∈ SN be (the unique) vector with

(v+, v−, t(v)) = (ξ0, η, t0). Then v ∈ Q and γnv, corresponding to (γnξ0, γnη, tn),
also lies in Q. This is possible only if n < n1. This completes the proof of the
theorem. �

For the proof of the alignment property for maps between homogeneous spaces
we shall need the following general result.

Theorem 4.4 (Homogeneous spaces). Let G be a locally compact group, H < Q <
G be closed subgroups and Γ < G be a discrete subgroup. Suppose that there exists
an open cover

G/Q \ {eQ} =
⋃

Vi

and closed subgroups Ti < H so that for each i

(1) Vi is a Ti-invariant set and Ti acts properly on Vi,
(2) the Γ-action on (G/Ti, mG/Ti

) is conservative.
Let (X, m) = (G/H, mG/H), B = G/Q and π : X → B be the natural projection.
Then π : (X, m) → B has the alignment property with respect to the Γ-action.

Proof. Let X → Prob(G/Q), x �→ µx, be a fixed Borel map satisfying

µγx = γ∗µx
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for all γ ∈ Γ and m-a.e. x ∈ X. We shall prove that µx = δπ(x) for m-a.e. x ∈ X
by reaching a contradiction starting from the assumption that m(A) > 0 where

A = {x ∈ X : µx(B \ {π(x)}) > 0} .

Let x �→ gx be some Borel cross section of the projection G → G/H. As B\{π(x)} =
gx(G/Q \ {eQ}) = gx (

⋃
Vi), we have

A =

{
x ∈ X : µx(

⋃
i

gxVi) > 0

}
⊆

⋃
i

{x ∈ X : µx(gxVi) > 0} .

The set of indices i in the assumption of the theorem can always be taken to be
finite or countable because all the homogeneous spaces in question are separable
(in the applications below, the set is actually finite). Thus m(A) > 0 implies that
for some i, the set

Ai = {x ∈ X : µx(gxVi) > 0}
has positive m-measure. Let x ∈ A �→ νx ∈ Prob(G/Q) denote the normalized
restrictions of µx to gxVi:

νx(E) = µx(E ∩ gxVi)/µx(gxVi) (E ⊂ G/Q measurable).

We still have νγx = γ∗νx for a.e. x ∈ Ai and all γ ∈ Γ. Given a continuous function
f : Vi → [0, 1] with compact support, define

(4.ii) Ai,f =
{

x ∈ Ai : νx(f ◦ g−1
x ) >

1
2

}
.

Let 0 ≤ f1 ≤ f2 ≤ · · · ↗ 1 be an increasing sequence of compactly supported
continuous functions fn : Vi → [0, 1] pointwise converging to 1. For each x ∈ Ai we
have νx(fn ◦ g−1

x ) ↗ 1; so we can choose some f = fn0 with m(Ai,f ) > 0.
By Luzin’s theorem, there exists a (compact) subset C ⊆ Ai,f with m(C) > 0,

so that both gx ∈ G and νx ∈ Prob(G/L) vary continuously on x ∈ C (we use the
weak-* topology on Prob(G/L) ⊂ Cc(G/L)∗). We can also assume that νγx = γ∗νx

for all x ∈ C and all γ ∈ Γ.
We shall now use the recurrence of the Γ-action on (X ′, m′) = (G/Ti, mG/Ti

) to
obtain the following

Lemma 4.5. For m-a.e. x ∈ C there exist sequences γn → ∞ in Γ, un, vn → e in
G, and tn → ∞ in Ti, so that

γn = gxvntnu−1
n g−1

x , γnx ∈ C, γnx → x.

Proof. Let U be a neigborhood of e ∈ G. Choose a smaller neighborhood W for
which e ∈ W = W−1 and W 2 ⊂ U . Since x ∈ C �→ gx ∈ G is continuous,
the compact set C ⊂ X can be covered by (finitely many) subsets C =

⋃
Bj of

small enough size to ensure that g−1
x gy ∈ W whenever x and y lie in the same Bj .

Consider the subsets Ej ⊂ X ′ defined by

Ej = {gxwTi : x ∈ Bj , w ∈ W ∩ H} .

Then m′(Ej) > 0 whenever m(Bj) > 0. For each such j apply the following
argument: Γ is conservative on (X ′, m′), i.e., m′-a.e. point of Ej is recurrent. This
implies that for m-a.e. x ∈ Bj and mH -a.e. w ∈ W ∩ H, there exists a non-trivial
γ ∈ Γ such that γgxwTi = gyw′Ti where y = γx ∈ Bj and w′ ∈ W ∩ H. Hence for
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some t ∈ Ti we have γgxw = gyw′t and

γ = gx(g−1
x gy)w′tw−1g−1

x = gxutvg−1
x

where u = (g−1
x gy)w′ ∈ W 2 ⊂ U and v = w−1 ∈ W−1 ⊂ U .

This shows (by applying these arguments to all Bj of positive measure) that
for m-a.e. x ∈ C ⊂ X there exists γ ∈ Γ with γx ∈ C and γ = gxutvg−1

x where
u, v ∈ U and t ∈ Ti. By passing to a sequence {Un} of neighborhoods shrinking to
identity in G, we obtain the sequence γn = gxvntnu−1

n g−1
x with un, vn → e. Here Γ

is discrete in G. Thus γn → ∞ in G which yields tn → ∞ in Ti. By construction,
γnx ∈ E, and γnx → x from the above form of γn. �

We return to the proof of the theorem, where a function of compact support
f : Vi → [0, 1] was chosen so that the set Ai,f as in (4.ii) has m(Ai,f ) > 0. Let
K ⊂ Vi be a compact set containing supp(f) in its interior, and let U be a symmetric
neighborhood U of e ∈ G small enough to ensure Usupp(f) ⊂ K. For a.e. x ∈ C
let γn, un, vn and tn be as in Lemma 4.5. For n large enough, un, vn ∈ U and
tnK ∩ K = ∅; hence

unsupp(f) ∩ tnvnsupp(f) = ∅
and so, pointwise on Vi, 0 ≤ f + f ◦ vntnu−1

n ≤ 1 , giving

νx(f ◦ g−1
x ) + νx(f ◦ vntnu−1

n g−1
x ) ≤ 1.

Since gxvntnu−1
n g−1

x x = γnx → x in C, we have

νx(f ◦ vntnu−1
n g−1

x ) = νx(f ◦ g−1
x γn) = γnνx(f ◦ g−1

x )
= νγnx(f ◦ g−1

x ) → νx(f ◦ g−1
x ).

This leads to a contradiction because 2 · νx(f ◦ g−1
x ) > 1. �

Let us illustrate this general result in two concrete examples and then in a more
general situation.

Corollary 4.6. Let k be a local field, G = SL2(k), and Γ < G be a discrete
subgroup acting conservatively on k2 w.r.t. the Haar measure. Then the projection
π : k2 \ {0} → kP 1 has the alignment property with respect to the Γ-action.

Proof. Denote by H the stabilizer in G of e1 = (1, 0) ∈ k2 and by Q the stabilizer in
G of the projective point [e1] = ke1 ∈ kP 1. Then G/Q ∼= kP 1 and (G/H, mG/H) ∼=
(k2 \ {0}, Haar), and the H-action on G/Q acts properly discontinuously (and
transitively) on the complement V = G/Q \ {eQ} of the fixed point {eQ}. The
assumptions of Theorem 4.4 are satisfied. �

Corollary 4.7. Let k be a local field, G = SLn(k) and Γ < G be a lattice. Then
the projection π : kn \ {0} → kPn−1 has the alignment property with respect to the
Γ-action and the Haar measure on kn.

Proof. Let H be the stabilizer in G of e1 = (1, 0, . . . , 0) ∈ kn, and let Q be the
stabilizer of the [e1] = ke1 ∈ kPn−1. Then (G/H, mG/H) ∼= (kn \ {0}, Haar) and
G/Q ∼= kP 1. For i = 2, . . . , n let

Vi =
{
[(x1, . . . , xn)] ∈ kPn−1 : xi = 0

}
, Ti = {I + tE1,i : t ∈ k}

where I denotes the identity matrix and Ej,k the elementary matrix with 1 in
the j, k-place and zeros elsewhere. This system satisfies the assumptions of Theo-
rem 4.4. Indeed the only non-elementary condition is conservativity of the Γ-action
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on G/Ti. By Moore’s ergodicity theorem, Ti acts ergodically on G/Γ, which is
equivalent to the ergodicity of the Γ-action on G/Ti. �

The above are particular cases of the following more general theorem.

Theorem 4.8. Let G =
∏

Gα(kα) be a semi-simple group and H < G be a
“super-spherical” subgroup as in Definition 1.7, i.e., H is pinched Ȟ � H < Ĥ
between certain unimodular subgroups Ȟ, Ĥ � Q associated to a parabolic Q < G.
Let Γ < G be a lattice (not necessarily irreducible). Denote (X, m) = (G/H, mG/H),
(X̌, m̌) = (G/Ȟ, mG/Ȟ), (X̂, m̂) = (G/Ĥ, mG/Ĥ) and B = G/Q. Then

(1) the natural projections

π̌ : (X̌, m̌) → B, π : (X, m) → B, π̂ : (X̂, m̂) → B

have the alignment property with respect to the action of Γ,
(2) the systems π̌ : X̌ → B, π̂ : X̂ → B are principal bundles with structure

groups Ľ = Q/Ȟ and L̂ = Q/Ĥ.

Proof of Theorem 4.8. The natural projections are nested:

X̌ → X → X̂−→B, gȞ �→ gH �→ gĤ �→ gQ.

So by Lemma 3.4 it suffices to prove the alignment property for the Γ-action on
π̌ : (X̌, m̌) → B.

The group G, as well as Ȟ � Q, is a product group:

G =
∏
α∈A

Gα, Ȟ =
∏
α∈A

Ȟα, Q =
∏
α∈A

Qα,

formed by the kα-points of the corresponding kα-groups. So π̌ : X̌ → B splits as a
product of projections

π̌α : X̌α = Gα/Hα −→ Bα = Gα/Qα.

If Γ is reducible, then some subgroup of finite index Γ′ splits as a product of
irreducible lattices Γi <

∏
α∈Ai

Gα, where A =
⋃

i Ai is some non-trivial partition.
Thus Lemmas 3.6 and 3.7 allow us to transfer the alignment property from Γ(i)-
actions on X̌(i) =

∏
α∈Ai

X̌α → B(i) =
∏

α∈Ai
Bα to that of Γ on X̌ → B.

Therefore, we may assume that Γ itself is irreducible in G. We now point out
two important properties of Ȟ:

(i) Ȟ is generated by unipotent elements in its factors Ȟα.
(ii) If g ∈ G satisfies g−1Ȟg < Q, then necessarily g ∈ Q.

The first property follows from the construction; in fact, Ȟα is generated by all
the roots of Gα contained in Qα. This also explains the second statement (see [3,
Corollary 4.5]).

Next, let {Ti} be a (finite) family of one parameter unipotent subgroups (col-
lected from different factors) in Ȟ generating Ȟ. The Ti-action on the projective
variety B = G/Q is algebraic. Hence G/Q decomposes as Fi � Vi where Fi is the
set of Ti-fixed points and Vi is the union of free Ti-orbits (Ti

∼= k has no proper
algebraic subgroups). The intersection

⋂
Fi consists of Ȟ-fixed points, i.e., points

gQ such that ȞgQ = gQ. Property (ii) above yields⋂
Fi = {eQ}, so that

⋃
Vi = G/Q \ {eQ}.
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By Moore’s ergodicity theorem, Ti acts ergodically on G/Γ and so the Γ-action on
G/Ti is ergodic and hence conservative with respect to the Haar measure mG/Ti

.
The Ti-action on Vi is properly discontinuous. It therefore follows from Theorem 4.4
that π : G/Ȟ → G/Q has the alignment property. �

5. Rigidity for spaces of horospheres

In this section we consider the geometric framework of pinched negatively curved
manifolds. The analysis of this geometric situation, in particular, implies the rigid-
ity results for rank one symmetric spaces: Theorems A and B (see section 6 below).

Let N be a a complete simply connected Riemannian manifold with pinched
negative curvature, let ∂N denote its boundary at infinity (homeomorphic to a
sphere Sdim N−1), and let Γ < Isom(N) be some non-elementary discrete group of
isometries.

Recall some fundamental objects associated with this setup. The critical expo-
nent δ = δ(Γ) of Γ is

δ(Γ) = lim
R→∞

1
R

log |{γ ∈ Γ | d(γp, q) < R}|

(the limit exists and is independent of p, q ∈ N). The Poincaré series of Γ is

Ps(p, q) =
∑
γ∈Γ

e−s·d(γp,q).

It converges for all s > δ(Γ) and diverges for all s < δ(Γ) regardless of the location
of p, q ∈ N . If the series diverges at the critical exponent s = δ(Γ), the group Γ is
said to be of divergent type.

The Patterson-Sullivan measure(s) is a measurable family {νp}p∈N of mutually
equivalent finite non-atomic measures supported on the limit set L(Γ) ⊆ ∂N of Γ,
satisfying

(5.i)
dνp

dνq
(ξ) = e−δ·βξ(p,q) and νγp = γ∗νp

where βξ(p, q) is the Busemann cocycle βξ(p, q) = limz→ξ [d(p, z) − d(q, z)] (the
limit exists and is well defined for any p, q ∈ N and ξ ∈ ∂N). Patterson-Sullivan
measures exist, and for Γ of divergent type, the family {νp}p∈N is defined by the
above properties uniquely, up to a scalar multiple.

The space Hor(N) of horospheres is a principal R-bundle over ∂N (see Exam-
ple 4.2). In the parametrization Hor(N) ∼= ∂N ×R defined by a base point o ∈ N ,
the Γ-action on Hor(N) is given by

γ : (ξ, t) �→ (γξ, t + c(γ, ξ)) where c(γ, ξ) = βξ(γo, o).

Define an infinite measure m on Hor(N) by

(5.ii) dm(ξ, t) = e−δ·t dνo(ξ) dt

where νo is the Patterson-Sullivan measure. Then m is Γ-invariant.

Remark 5.1. Measure-theoretically, the Γ-action on (Hor(N), m) can be viewed as
the standard measure preserving extension of the measure class preserving Γ-action
on (∂N, ν∗), where ν∗ is any representative of the measure class of the Patterson-
Sullivan measures.
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Theorem 5.2 (Rigidity for actions of spaces of horospheres). Let N1 and N2 be
complete simply connected Riemannian manifolds of pinched negative curvature and

Isom(N1) > Γ1

∼=−→Γ2 < Isom(N2)

be two abstractly isomorphic Γ1
τ−→Γ2 discrete non-elementary groups of isome-

tries. Fix some base points oi ∈ Ni. Let νi denote the Patterson-Sullivan measures
on L(Γi) ⊆ ∂Ni, and let mi be the corresponding measures on the extensions on
Hor(Ni). Assume that (Hor(Ni), mi, Γi) are ergodic.

Then the following are equivalent:
(1) The actions (Hor(Ni), mi, Γi) (i = 1, 2) admit an ergodic τ -twisted joining.
(2) The actions (Hor(Ni), mi, Γi) (i = 1, 2) admit a measurable τ -twisted iso-

morphism
T : (Hor(N1), m1)−→(Hor(N2), m2).

(3) There exists a τ -twisted measure class preserving isomorphism

φ : (L(Γ1), ν1)−→(L(Γ2), ν2).

Under these (equivalent) conditions, all ergodic joinings are graphs of isomorphisms,
the map φ is uniquely defined (up to null sets), and every measurable isomorphism
Hor(N1) → Hor(N2) has the form

horξ(t) ∈ Hor(N1) �→ horφ(ξ)(
δ2

δ1
· t + sξ).

Furthermore, if Γi are of divergent type, then the above conditions imply that φ :
L(Γ1) → L(Γ2) is a homeomorphism and the groups Γi have proportional length
spectra:

δ2 · �2(γτ ) = δ1 · �1(γ) (γ ∈ Γ1),

where �i(γ) = inf{di(γp, p) | p ∈ Ni} is the translation length of γ ∈ Isom(Ni).

Remark 5.3. In some cases, the last statement implies that N1 is equivariantly
isometric to N2, after a rescaling by δ1/δ2. This is known as the Marked Length
Spectrum Rigidity (Conjecture). It has been proved, for example, for surface groups
([14]) and in the case that N1 is a symmetric space and N1/Γ1 is compact ([9]).
See also [5] for some related results.

Proof of Theorem 5.2. “(1) ⇒ (2) and (3)”. By Theorem 4.3 the (Hor(Ni), mi) →
∂Ni are R-principal with alignment with respect to Γi (i = 1, 2). Let m̄ be an
ergodic τ -twisted joining on Hor(N1) × Hor(N2). Applying Theorem 3.13, we get
the desired (unique) measure class preserving τ -twisted equivariant map

φ : (∂N1, ν1)−→(∂N2, ν2).

As (R, +) has no compact subgroups, it follows that m̄ is a graph of an isomorphism.
As the only automorphisms of R are t �→ c · t, we get the general form of such an
isomorphism defining sξ by horξ(0) �→ horφ(ξ)(sξ) as stated.

“(1) ⇒ (2)” and “(3) or (2) ⇒ (1)” being trivial, we are left with “(3) ⇒ (2)”.
But this follows from Remark 5.3.

We are now left with the proof of the geometric conclusions in the case of diver-
gent groups. The arguments below are probably known to experts, but we could
not find a good reference in the existing literature.
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Recall some general facts from Patterson-Sullivan theory. Let Γ < Isom(N) be a
discrete group of isometries of a connected, simply connected manifold N of pinched
negative curvature. Let

∂2N = {(ξ, η) ∈ ∂N × ∂N : ξ = η}
denote the space of pairs of distinct points at infinity of N (this is the space of
oriented but unparametrized geodesic lines in N). Another Busemann cocycle (or
Gromov product) can be defined for ξ = η ∈ ∂N and p ∈ N by

Bp(ξ, η) = lim
x→ξ,y→η

1
2

[d(p, x) + d(p, y) − d(x, y)] .

It can also be written as Bp(ξ, η) = βξ(p, q) + βη(p, q), where q is an arbitrary
point on the geodesic line (ξ, η) ⊂ N . For any fixed p ∈ N , the function Bp(ξ, η) is
continuous and proper on ∂2N , i.e., tends to ∞ as ξ and η approach each other.

We have βγξ(γp, γq) = βξ(p, q) and Bγp(γξ, γη) = Bp(ξ, η) for any isometry
γ ∈ Isom(N). This implies that

(5.iii) Bp(γξ, γη) − Bp(ξ, η) =
1
2

[βξ(γp, p) + βη(γp, p)] .

In view of (5.i) the measure µ on ∂2N ⊂ ∂N × ∂N , defined by

(5.iv) dµ(ξ, η) = e2δBp(ξ,η)dνp(ξ) dνp(η),

is Γ-invariant. This definition is independent of p ∈ N . One of the basic facts in
Patterson-Sullivan theory states that Γ is of divergent type iff its action on (∂2N, µ)
is ergodic ([22], [23]).

The function Bo(·, ·) can be used to define a cross-ratio on ∂N by

(5.v) [ξ1, ξ2, η1, η2] = e2δ·[Bo(ξ1,η1)+Bo(ξ2,η2)−Bo(ξ1,η2)−Bo(ξ2,η1)]

where o ∈ N is some reference point. This cross-ratio is independent of the choice
of o ∈ N and is invariant under Isom(N) > Γ and satisfies the usual identities.

Returning to the given pair Γi < Isom(Ni) (i = 1, 2), we have

Claim 5.4. The measurable τ -twisted Γ-equivariant map

φ : (L(Γ1), ν1) → (L(Γ2), ν2)

is a τ -twisted Γ-equivariant homeomorphism (possibly after an adjustment on null
sets). Moreover, for all distinct ξ1, ξ2, η1, η2 ∈ L(Γ1) ⊆ ∂N1:

(5.vi) [φ(ξ1), φ(ξ2), φ(η1), φ(η2)]2 = [ξ1, ξ2, η1, η2]1.

This is a consequence of property (i) and the ergodicity of Γi on µi (the following
argument is a version of Sullivan’s argument for Kleinian groups in [22] but can
also be traced back to Mostow in the context of quasi-Fuchsian groups).

The idea is that φ∗ν1 ∼ ν2 and µi ∼ νi ⊗νi imply that the pushforward measure
(φ × φ)∗µ1 is absolutely continuous with respect to µ2. Since µ1 is Γ1-invariant
while φ is equivariant, it follows that (φ× φ)∗µ1 is Γ2-invariant. Hence, its Radon-
Nikodym derivative with respect to µ2 is a.e. a constant. In view of (5.i), (5.iv)
this amounts to a µ1-a.e. relation

2δ2 · B2(φ(ξ), φ(η)) = 2δ1 · B1(ξ, η) + f(ξ) + f(η) + C,

where f(ξ) = 2δ1 · log
dφ∗ν1

dν2
(φ(ξ)).
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Substituting these into the definition of the cross-ratios, one observes that the
f -terms and the constant C cancel out. It follows that (5.vi) holds ν1-almost
everywhere.

For any fixed distinct ξ2, ξ3, ξ4 we have

[ξ, ξ2; ξ3, ξ4]1 → 0 iff ξ → ξ3.

This allows us, using Fubini’s theorem and the a.e. identity (5.vi), to conclude that
φ agrees ν1-a.e. with a continuous function φ0 defined on supp(ν1) = L(Γ1). Since
all the data are symmetric, it follows that φ0 is a homeomorphism, and the relation
(5.vi) extends from a.e. to everywhere on supp(ν1) = L(Γ1) by continuity.

The cross-ratio determines the marked length spectrum. More precisely,

Lemma 5.5. Let N be a simply connected Riemannian manifold of pinched negative
curvature, Γ < Isom(N) be a non-elementary discrete group of isometries, δ = δ(Γ)
is the growth exponent, and [, ; , ] is the corresponding cross-ratio as in (5.v). If
γ ∈ Γ is a hyperbolic element with attracting, repelling points γ+, γ− ∈ ∂N , then

2δ · �(γ) = log[γ+, γ−; ξ, γξ]

for all ξ ∈ ∂N \ {γ−, γ+}.

Proof. It is well known that Bp(ξ, η) is within a constant (depending only on N)
from dist(p, (ξ, η)) = inf{d(p, x) | x ∈ (ξ, η)}. For a fixed ξ = γ± and p ∈ N we can
estimate (with an error depending on p and ξ but independent of n ∈ N)

dist(p, (γ+, γnξ)) = dist(γ−np, (γ+, ξ)) � d(γ−np, p) � n · �(γ).

Hence
1
n

Bp(γ+, γnξ)−→�(γ).

At the same time, dist(p, (γ−, γnξ))−→dist(p, (γ−, γ+)), and so
1
n

Bp(γ−, γnξ)−→0.

Since γ fixes the points γ−, γ+ ∈ ∂N and preserves the cross-ratio we have for each
n

log[γ+, γ−; ξ, γξ] =
1
n

n−1∑
k=0

log[γ+, γ− ; γkξ, γk+1ξ]

=
2δ

n
·

n−1∑
k=0

(
Bo(γ+, γkξ) − Bo(γ+, γk+1ξ) + Bo(γ−, γk+1ξ) − Bo(γ−, γkξ)

)

=
2δ

n
· (Bo(γ+, ξ) − Bo(γ−, ξ) + Bo(γ+, γnξ) − Bo(γ−, γnξ))

−→ �(γ) as n → ∞.

�

We return to Γi < Isom+(Ni) (i = 1, 2), related by an abstract isomorphism τ :
Γ1 → Γ2 and an equivariant homeomorphism φ : L(Γ1) → L(Γ2). The classification
of elements of Isom+(Ni) into elliptic, parabolic and hyperbolic can be done in
terms of the dynamics on the boundaries, e.g., a hyperbolic isometry g has two
fixed points g−, g+ and source/sink dynamics. Thus, the topological conjugacy φ
of the Γi-actions on L(Γi) ⊂ ∂Ni shows that τ preserves the types of the elements.
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If γ ∈ Γ1 is hyperbolic, then so is γτ ∈ Γ2, and φ maps the corresponding repelling
contracting points γ± of γ to those of γτ ∈ Γ2, because

φ(γ±) = φ( lim
n→±∞

γnξ) = lim
n→±∞

(γτ )nφ(ξ) = γτ
±

for any ξ ∈ ∂N1 \ {γ−, γ+}. Thus, using the previous lemma we arrive at

δ1�1(γ) = log[γ+, γ−; ξ, γξ]1 = log[φ(γ+), φ(γ−); φ(ξ), φ(γξ)]2
= log[γτ

+, γτ
−; φ(ξ), γτφ(ξ)]2 = δ2�2(γτ ).

Hence δ1�1(γ) = δ2�2(γτ ) for all hyperbolic elements γ ∈ Γ and the same formula
(in the trivial form of 0 = 0) applies to parabolic and elliptic γ ∈ Γ1. This completes
the proof of Theorem 5.2. �

6. Proofs of the rigidity results

In this section we put all the ingredients developed in Sections 3–5 together in
order to deduce the results stated in the Introduction. We shall need some auxiliary
facts, some of which, e.g., Theorem 6.3, may be of independent interest. We start
with the following general lemma.

Lemma 6.1. Let Γ be some discrete group with II∞-actions on six infinite measure
spaces linked into two sequences as follows:

(X̌i, m̌i)
pi−→(Xi, mi)

qi−→(X̂i, m̂i) (i = 1, 2).

Suppose m̄ is an ergodic (possibly τ -twisted) joining of the Γ-actions on (X1, m1)
with (X2, m2). Then there exist ergodic (τ -twisted) joinings m̌ of (X̌1, m̌1) with
(X̌2, m̌2) and m̂ of (X̂1, m̂1) with (X̂2, m̂2) so that

(6.i) (X̌1 × X̌2, m̌)
p1×p2−→ (X1 × X2, m)

q1×q2−→ (X̂1 × X̂2, m̂)

are quotient maps for the II∞ diagonal (τ -twisted) Γ-actions.

Proof. The measure m̂ of m is defined by m̂(E1 ×E2) = m(q−1
1 E1 × q−1

2 E2) and it
is straightforward to verify that it is a joining of m̂1 with m̂2; its ergodicity follows
from the ergodicity of m.

To construct m̌, first consider the disintegration of m̌i with respect to mi:

m̌i =
∫

Xi

µ(i)
x dmi(x) (i = 1, 2).

Consider the measure m∗ on X̌1 × X̌2 defined by

m∗ =
∫

X1×X2

µ(1)
x ⊗ µ(2)

y dm(x, y).

This measure forms a (τ -twisted) joining of the Γ-actions on (X̌i, m̌i) for i = 1, 2
and also projects to m under p1 × p2. Let m∗ =

∫
m̌t dη(t) denote the ergodic

decomposition of m∗ into ergodic joinings. Then m is an average of ergodic joinings
(p1×p2)∗m̌t. Since m is ergodic, the η-a.e. ergodic joining m̌t projects to a multiple
of m and can serve as m̌ in the lemma. �
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Proof of Theorem A. Let G be a real, connected, simple, non-compact, center-
free, rank one group, and let G = KP and P = MAN be the Iwasawa de-
compositions. Denote by H = G/K the associated symmetric space and by
∂H = G/P = G/MAN its boundary. The unit tangent bundle is SH = G/M ,
and the space of horospheres Hor(H) can be identified with G/MN .

Let H < G be a closed, unimodular, proper subgroup containing N , and denote
Ĥ = MN , X̌ = G/N , X = G/H, X̂ = G/Ĥ = Hor(H) and let m̌, m, m̂ denote
the corresponding Haar measures. We assume that Γ acts ergodically on (X̌, m̌) =
(G/N, mG/N ) and hence on (X, m). The projection

X = G/H−→G/P, gH �→ gP

has the alignment property by Theorem 4.3 and Lemma 3.5. If H is normal in P ,
for example if H = Ȟ = N or H = Ĥ = MN , then (X, m) → B is a principal
bundle with an alignment property (Theorem 4.3), and therefore Theorem A is a
direct corollary of Theorem 3.9.

In the general case, the argument for algebraicity of quotients is the simplest:
any quotient q : (X, m) → (Y, n) defines a quotient of (X̌, m̌)

p−→(X, m)
q−→(Y, n).

As mentioned, Theorem 3.9 applies to X̌ = G/Ȟ, which gives that (Y, n) can
be identified with (G/H ′, mG/H′) where Ȟ < H ′ with H ′/Ȟ compact. Since the
factor map q ◦ p : gȞ �→ gH ′ factors through G/H, it follows that H < H ′ and
p(gH) = gH ′.

To analyze the centralizers of the Γ-action on (X, m), we first consider general
ergodic self-joinings m of (X, m). Let m̌ and m̂ be ergodic self-joinings of (X̌, m̌)
and (X̂, m̂) as provided by Lemma 6.1. Applying Theorem 3.9 to (X̌, m̌) and
(X̂, m̂), we deduce that there exist λ ∈ Λ̌ = NG(N)/N = P/N = MA and a ∈ Λ̂ =
NG(MN) = P/MN = A so that

m̌ = const ·
∫

X̌

δx ⊗ δλx dm̌(x) and m̂ = const ·
∫

X̂

δx ⊗ δax dm̂(x).

Since (X × X, m) is an intermediate quotient as in (6.i), it follows that a ∈ A is
the image of λ ∈ MA under the natural epimorphism Λ̌ = MA → Λ̂ = A. This
completes the description of self-joinings in the theorem.

Finally, let T : X → X be a measurable centralizer of the Γ-action on (X, m).
Applying the above arguments to the corresponding self-joining

m =
∫

X

δx ⊗ δT (x) dm(x),

we deduce, in particular, that T is “covered” by an algebraic automorphisms Ť of
X̌ = G/N , i.e., for some q ∈ P = MAN the map Ť : gN �→ gqN . The fact that
the graph of Ť covers that of T means that for a.e. gH ∈ X, if T (gH) = g′H, then
the map T̂ takes the preimage

Ť
(
p−1(gH)

)
= p−1(g′H), where p−1(gH) = {ghN ∈ X̂ | h ∈ H}.

This implies that q ∈ NG(H) and T (gH) = gqH is algebraic as in Example 1.3.
Theorem A is proved.

Proof of Theorem B. Now consider a discrete subgroup Γ < G which satisfies
property (E2) (defined before the statement of Theorem B). Such groups Γ have
the full limit set L(Γ) = ∂H, the maximal critical exponent δ(Γ) = δ(H) at which
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its Poincare series diverges (so they are of divergent type), and the associated
Patterson-Sullivan measures are in the Haar class on ∂H. The Γ-invariant measure
m on SH ∼= G/H1 as in (5.ii) is a scalar multiple of mG/H′ . It is well known that
G = Isom+(H) can be identified with the conformal group on the boundary, and
the latter can be defined using the cross-ratio

(6.ii) G = Isom+(H) ∼= {ψ ∈ Homeo+(∂H) | [, ; , ] ◦ ψ = [, ; , ]} .

Consider the framework of Theorem B, in which two rank one groups Gi (i = 1, 2)
as above contain abstractly isomorphic discrete subgroups Γi < Gi, τ : Γ1

∼=−→Γ2,
and the homogeneous spaces Xi = Gi/Hi admit a τ -twisted joining m with respect
to the Γi-actions. Denote by Hi, ∂Hi, [, , , ]i, etc., the corresponding symmetric
spaces, their boundaries, cross-ratios, etc. Set Ȟi = Ni < Hi < Ĥi = MiNi < Gi

and
X̌i = Gi/Ȟi −→ Xi = Gi/Hi −→ X̂i = Gi/Ĥi (i = 1, 2).

Let m̂ on X̂1 × X̂2 denote the quotient joining of m on X1 × X2 as in Lemma 6.1.
Note that X̂i = Hor(Hi). Applying Theorems 4.3 and 5.2, we conclude that there
exists a homeomorphism φ : ∂H1 → ∂H2 such that

(i) [, , , ]2 ◦ φ = [, , , ]1,
(ii) φ(γξ) = γτφ(ξ) for all ξ ∈ ∂H1, γ ∈ Γ1.

In view of (6.ii), property (i) yields an isomorphism G1

∼=−→G2 for which φ serves
as the boundary map. It follows from (ii) that this isomorphism extends τ : Γ1 →
Γ2. Thus the result essentially reduces to that of Theorem A (see the proof of
Theorem D for full details).

Proof of Theorem C. The proof of Theorem A applies almost verbatim to that
of Theorem C with the appeal to Theorem 4.3 replaced by Theorem 4.8.

For the proof of Theorem D, we need some preparations, which are of indepen-
dent interest.

Let (B, ν) be a standard probability space and Γ a group acting by measure class
preserving transformations on (B, ν). Such an action is called “strongly almost
transitive” if

(SAT) ∀A ⊂ B with ν(A) > 0, ∃γn ∈ Γ : ν(γ−1
n A) → 1.

Lemma 6.2. Let Γ be a group with a measure class preserving (SAT) action on a
standard probability space (B, ν), let C be a standard Borel space with a measurable
Γ-action, and let π1, π2 : B → C be two measurable maps such that

πi(γx) = γπi(x) for ν-a.e. x ∈ B (γ ∈ Γ).

Then π1(x) = π2(x) for ν-a.e. x ∈ B, unless the measures (π1)∗ν, (π2)∗ν are
mutually singular.

Proof. Suppose that ν ({x ∈ B | π1(x) = π2(x)}) > 0. In this case, there exists
a measurable set E ⊂ C so that the symmetric difference π−1

1 (E)�π−1
2 (E) has

positive ν-measure. Upon possibly replacing E by its complement, we may assume
that the set A = π−1

1 (E) \ π−1
2 (E) has ν(A) > 0. Set Fi = πi(A) ⊂ C. Then F1

and F2 are disjoint. By the (SAT) property there exists a sequence {γn} in Γ so
that

∞∑
n=1

ν(γ−1
n (B \ A)) < ∞.
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Then for ν-a.e. x ∈ B, we have γnx ∈ A for all n ≥ n0(x) ∈ N. For i = 1, 2,
let Ci ⊂ C denote the set of points y ∈ C for which {n | γny ∈ Fi} is finite, i.e.,
Ci = lim inf γ−1

n Fi. Hence C1 ∩ C2 = ∅ because F1 ∩ F2 = ∅. In view of ν-a.e.
equivariance of πi we get that the measure ηi = (πi)∗ν is supported on Ci. Hence,
η1 ⊥ η2. �

Theorem 6.3. Let G be a semi-simple group, Γ < G a Zariski dense subgroup with
full limit set, e.g., a lattice in G (irreducible or not), P < G a minimal parabolic
and ν a probability measure on G/P in the Haar measure class.

(1) Let Q < G be some parabolic subgroup containing P and π : G/P → G/Q
be a measurable map, s.t. π(γx) = γπ(x) a.e. on G/P for all γ ∈ Γ. Then
ν-a.e. π(gP ) = gQ.

(2) Let Q1, Q2 < G be two parabolic subgroups containing P , νi be probability
measures on G/Qi in the Haar measure class, and φ : G/Q1 → G/Q2 be a
measurable bijection with φ∗ν1 ∼ ν2 and s.t. φ(γx) = γφ(x) a.e. on G/Q1

for all γ ∈ Γ. Then Q1 = Q2 and φ(x) = x a.e. on G/Q.

In particular, the second statement with parabolic subgroups Q1 = Q2 immedi-
ately gives

Corollary 6.4. Let Γ < G be as in Theorem 6.3, e.g., a lattice; let Q < G be
a parabolic subgroup and ν be a probability measure on G/Q in the Haar measure
class. Then the measurable centralizer of the Γ-action on G/Q is trivial.

Remark 6.5. If G is of higher rank and Γ < G is an irreducible lattice, then the
only measurable quotients of the Γ-action on G/Q are algebraic, i.e., they are given
by G/Q → G/Q′ with Q < Q′ and are given by gQ �→ gQ′. This is the content of
Margulis’s Factor Theorem (see [13]).

Proof of Theorem 6.3. (1) The natural projection π0 : G/P → G/Q, π0(gP ) = gQ
is G-equivariant. It is well known that an action of a Zariski dense subgroup Γ on
(G/P, ν) is (SAT). The argument is then completed by Lemma 6.2.

(2) Denote by πi : G/P → G/Qi the natural projections πi(gP ) = gQi. Lemma
6.2 shows that the maps φ ◦ π1 and π2 agree ν-a.e. on G/P . This in particular
implies that for a.e. gP and all q ∈ Q1,

gQ2 = π2(gP ) = φ(π1(gP )) = φ(gQ1) = φ(gqQ1) = π2(gqP ) = gqQ2.

This means that Q1 < Q2 and that φ(gQ1) = gQ2 a.e. The same reasoning applies
to φ−1 ◦ π2 and π1 as maps G/P → G/Q1, giving Q2 < Q1 and φ being a.e. the
identity. �

Proof of Theorem D. Let G be a semi-simple group and Hi < G (i = 1, 2) be
two super-spherical subgroups as in Definition 1.7. We consider the action of a
lattice Γ < G on the two homogeneous spaces Xi = G/Hi equipped with the Haar
measures mi = mG/Hi

.
Each of the groups Hi (i = 1, 2) is pinched between Ȟi � Ĥi associated to some

parabolic subgroup Qi < G. The corresponding homogeneous spaces are linked by
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the natural G-equivariant projections

X̌i = G/Ȟi
pi−→ Xi = G/Hi

qi−→ X̂i = G/Ĥi.

These homogeneous spaces naturally project to Bi = G/Qi, which is a compact
space with a continuous action of G. The G-equivariant projections

π̌i : X̌i−→Bi, πi : Xi−→Bi, π̂i : X̂i−→Bi (i = 1, 2)

have the alignment property with respect to the corresponding Haar measures and
the Γ-action (Theorem 4.8). We also note that π̌i : X̌i → Bi and π̂i : X̂i → Bi are
principle bundles with amenable structure groups Ľi = Qi/Ȟi and L̂i = Qi/Ĥi.

Let m be an ergodic joining of the Γ-actions on (Xi, mi), and let m̌ and m̂ be
ergodic joinings of X̌1× X̌2 and X̂1× X̂2 as in Lemma 6.1. Applying Theorem 3.13
to m̌ (or m̂), we deduce that there exists a Γ-equivariant measurable bijection
φ : B1 → B2 mapping the Haar measure class [ν1] on B1 to the measure class
[ν2] on B2. Then part (2) of Theorem 6.3 shows that under these circumstances
Q1 = Q2. Hence, simplifying the notations, we have a single parabolic Q < G and

B < Ȟ < H1, H2 < Ĥ � Q and Ľ = Q/Ȟ, L̂ = Q/Ĥ

and m̌ and m̂ are ergodic self-joinings of the Γ-actions on X̌ = G/Ȟ and X̂ = G/Ĥ,
which are principal bundles over B with the alignment property with respect to the
Γ-action. By Theorem 3.9, they have the form

(6.iii) m̌ = const·
∫

G/Ȟ

δgȞ⊗δgqȞ dm̌(gȞ), m̂ = const·
∫

G/Ĥ

δgĤ⊗δgqĤ dm̌(gĤ)

for some fixed q ∈ Q.
To complete the proof of the theorem, it remains to consider in more detail the

case of an isomorphisms T : X1 → X2; we shall prove that in this case the above
q ∈ Q conjugates H1 to H2. So let m be the joining coming from the graph of T ,
and let m̌ be the ergodic joining supported on the graph of the map Ť (gȞ) = gqȞ
where qȞ = λ ∈ Ľ. Then Ť maps the preimage

p−1
1 ({gH1}) = {gh1Ȟ ∈ X̌ | h1 ∈ H1}

of a typical point gH1 ∈ X1 to the preimage

p−1
2 ({g′H2}) = {g′h2Ȟ ∈ X̌ | h2 ∈ H2}

of the point g′H2 = T (gH1) ∈ X2. With q ∈ Q as in (6.iii), we have gH1q = g′H2 =
T (gH1). This implies that H2 = q−1H1q and T (gH1) = gqH2 a.e. This completes
the proof of Theorem D.
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