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ABSTRACT

We compare two families of left-invariant metrics on a surface group

Γ = π1(Σ) in the context of course-geometry. One family comes from

Riemannian metrics of negative curvature on the surface Σ, and another

from quasi-Fuchsian representations of Γ. We show that the Teichmüller

space T (Σ) is the only common part of these two families, even when

viewed from the coarse-geometric perspective.

1. Introduction and statement of the main result

1.A. Introduction and Background. Let Σ be a closed surface of genus at

least two, and Γ = π1(Σ) its fundamental group. The Teichmüller space T (Σ)

has several equivalent descriptions: as the moduli space of (i) complex struc-

tures, or (ii) conformal structures, or (iii) Riemannian structures of constant

curvature −1 on Σ, or as (iv) the space of discrete cocompact representations

Γ → PSL2(R), up to conjugation. The latter two points of view can be extended

as follows:

• R(Σ)—the space of all Riemannian structures of possibly variable neg-

ative curvature, up to isotopy and scaling.

• QF (Σ)—the space of all convex cocompact representations

Γ = π1(Σ)−→PSL2(C) ∼= Isom+(H3),

up to conjugation.

Received August 12, 2021 and in revised form March 3, 2022

365



366 E. FRICKER AND A. FURMAN Isr. J. Math.

Both R(Σ) and QF (Σ) arise from convex cocompact isometric Γ-actions

on CAT(-1) spaces: the Γ-action by deck transformations on the universal

cover (Σ̃, dg̃) in the Riemannian case, and the Γ-action on H3 in the quasi-

Fuchsian case.

We can put these notions into an even broader context by looking at the

space DΓ of equivalence classes [d] of left-invariant metrics d on Γ obtained

from restricting the metric of the underlying Gromov-hyperbolic space to a Γ-

orbit. Here two metrics d, d′ on Γ are equivalent if they are bounded distance

from each other after scaling:

d ∼ d′ if ∃k,A : |d′(γ1, γ2)− k · d(γ1, γ2)| ≤ A.

This perspective, introduced by the second author in [11] (see also more recent

treatment in Bader–Furman [1]), allows to observe possible “geometries” of Σ

from the “outside” by studying the corresponding classes [d] ∈ DΓ of metrics d

on Γ. The space DΓ can be defined for a general non-elementary Gromov hy-

perbolic group Γ, and DΓ contains classes of metrics on Γ from various sources,

such as word metrics on Γ, Green metrics associated with symmetric generating

random walks on Γ (see Blachère–Häıssinsky–Mathieu [3, 4]), Anosov represen-

tations of Γ in higher rank simple Lie groups (see Dey–Kapovich [10]), etc.

To avoid ambiguity in scaling we can normalize metrics d by the growth

hd = lim
R→∞

1

R
log#{γ ∈ Γ | d(γ, e) < R},

replacing d by d̂ = hd · d, so that hd̂ = 1. For δ ∈ DΓ we can define:

• Marked Length Spectrum �δ : Γ → R+ given by the limit

�δ(γ) = lim
n→∞

d̂(γn, e)

n

where δ = [d] and d̂ = hd · d. Note that �δ is constant on conjugacy

classes, so we can write it as �δ : CΓ → R+.

• Patterson–Sullivan-like Γ-invariant measure class [νPS
δ ] on ∂Γ (see

Coorneart [7], and [11, 1]).

• Bowen–Margulis–Sullivan-like Γ-invariant Radon measure mBMS
δ on the

space ∂(2)Γ of distinct pairs (ξ, η) of points on ∂Γ (see [11, 1]).

In [11] (see also Bader–Furman [1]), it was shown that each δ ∈ DΓ is deter-

mined by each of these objects. Furthermore, extending a prior work of Bader–

Muchnik [2], Garncarek [12] showed that for each δ ∈ DΓ the quasi-regular
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unitary Γ-representation

πδ : Γ−→U(∂Γ, νPS
δ )

is irreducible, and that the map DΓ −→Γ̂, δ �→ πδ, is also injective. Thus DΓ

can be embedded into any one of the following spaces:

RCΓ
+ , Prob(∂Γ), MeasΓ(∂

(2)Γ), Γ̂.

The space DΓ is also equipped with a natural metric: given two classes δ = [d],

δ′ = [d′] in DΓ we can define the (log) Lipschitz distance by

ρLip(δ, δ
′) := log

(
inf

{K

k
| ∃A, k · d−A ≤ d′ ≤ K · d+ A

})
.

It is clear from the definition that ρLip(−,−) is symmetric and satisfies the

triangle inequality. One can see that for any a, b ∈ Γ \ {e} one has
∣∣∣ log

( �δ(a)
�δ(b)

:
�δ′(a)

�δ′(b)

)∣∣∣ ≤ ρLip(δ, δ
′).

This shows that ρLip(δ, δ
′) = 0 implies �δ = �δ′ , which occurs only when δ = δ′.

So ρLip(, ) is indeed a metric on DΓ (see also a recent work of Cantrell–Tanaka [6]

for a more detailed picture).

1.B. Riemannian and quasi-Fuchsian structures on surfaces. In this

paper we focus on surface group Γ = π1(Σ) and two specific sources for δ ∈ DΓ:

namely R(Σ) and QF (Σ).

For the case of negatively curved Riemannian metric g on Σ, fix x ∈ Σ̃ and

consider the metric on Γ

dg,x(γ1, γ2) := dg̃(γ1x, γ2x).

Since |dg,x − dg,x′ | ≤ d(x, x′) the class [dg,x] does not depend on the choice

of x ∈ Σ̃, and we can denote this class by δg = [dg,x]. Note that hdg,x is the

topological entropy of the geodesic flow on the unit tangent bundle T 1Σ to Σ,

and we assume that all g ∈ R(Σ) are normalized so that hdg,x = 1. We have a

map

(1.1) i : R(Σ) −→ DΓ .

The Marked Length Spectrum Rigidity Conjecture, that for surfaces was proved

by Otal [14] and Croke [8], asserts that a Riemannian structure g of vari-

able negative curvature on a surface Σ is uniquely determined by the function

�g : CΓ → R. As a consequence, we obtain:
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Proposition 1.1: The map R(Σ)−→DΓ, i : g �→ δg, is injective.

Our second source of examples are quasi-Fuchsian representations. For

q ∈ QF (Σ) choose a representation π : Γ → Isom+(H3) ∼= PSL2(C) in this

class and a point y ∈ H3 and consider the metric on Γ:

dπ,y(γ1, γ2) := dH3(π(γ1).y, π(γ2).y).

The class [dπ,y] does not depend on the choice of y ∈ H3 and remains unchanged

if π is replaced by a conjugate γ �→ gπ(γ)g−1; thus we write δq for [dπ,y]. This

gives a well defined map

(1.2) j : QF (Σ) −→ DΓ .

One can deduce from a work of Burger [5] (or Dal’bo–Kim [9]) the following.

Proposition 1.2: The map QF (Σ)−→DΓ, j : q �→ δq, is injective.

Hence one might view each of R(Σ) and QF (Σ) as being embedded in DΓ.

Remark 1.3: We note in passing that the uniformization theorem allows us to

view R(Σ) as a bundle over T (Σ) with fibers that can be identified with the

positive cone C∞
+ (Σ)/R+; in particular R(Σ) is connected. One can show that

the map (1.1) is continuous, and so the image i(R(Σ)) in DΓ is connected.

Ahlfors and Bers showed that QF (Σ) can be identified with T (Σ)× T (Σ),

and is in particular connected. The map (1.2) can be shown to be continuous;

hence the image j(QF (Σ)) is a connected subset of DΓ.

It is natural to wonder whether the intersection

i(R(Σ)) ∩ j(QF (Σ)) ⊂ DΓ

contains anything except for the image of T (Σ). In other words, is it true

that given a quasi-Fuchsian representation π : Γ−→PSL2(C) and a negatively

curved metric g on the surface Σ, there exist constants k,A and points x ∈ Σ̃,

y ∈ H3, so that

k · dg̃(γ.x, x) −A ≤ dH3(π(γ).y, y) ≤ k · dg̃(γ.x, x) +A (γ ∈ Γ)

only if g has constant curvature, π is conjugate to a subgroup of PSL2(R), and

(Σ, g) and π represent the same point in T (Σ)?

Our main result answers this affirmatively.
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Theorem A: The images of R(Σ) and QF (Σ) in DΓ have only T (Σ) in

common. Moreover, for any q ∈ QF (Σ) \ T (Σ) there is αq > 0 so that

ρLip(δq, δg) ≥ αq > 0

for all g ∈ R(Σ).

The following natural question remains open.

Question 1.4: Is it true that for any g ∈ R(Σ) \ T (Σ) there is βg > 0 so that

ρLip(δq, δg) ≥ βg > 0

for all q ∈ QF (Σ)?
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2. Length inequalities for negatively curved surfaces

Consider the topological picture first. Let Σ be a closed surface of genus at

least two, Γ = π1(Σ) the corresponding surface group, that acts on the universal

cover Σ̃ by deck transformations. This action extends to the action of Γ on the

boundary circle ∂Σ̃, which is also the Gromov boundary ∂Γ of Γ. Every γ �= 1

in Γ has two fixed points on the topological circle ∂Σ̃: a repelling point γ− and

an attracting point γ+. We shall consider a pair a, b ∈ Γ where a−, a+, b−, b+

are four distinct points on the circle.

Let A = (α1, α2) and B = (β1, β2) be two ordered pairs on a circle C, where

all four points are distinct. The action of Homeo(C) on such pairs has 3 orbits

corresponding to 3 possible relative positions of the two pairs A, B:

• The pairs are linked, meaning that β1 and β2 lie in distinct arcs defined

by {α1, α2}—connected components of C \ {α1, α2}. The relation of

being linked is symmetric: A is linked with B iff B is linked with A.
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The order within the pairs A = (α1, α2) and B = (β1, β2) does not

change the status of being linked. We say that disjoint pairs A and B

are unlinked if they are not linked.

• The pairs A and B are unlinked and aligned, if in the arc α1, α2

determined by {α1, α2} on C containing β1 and β2 one has linear order

α1 < β1 < β2 < α2. We note that A is unlinked and aligned with B

iff B is unlinked and aligned with A. In this case flipping the order in

both pairs A and B simultaneously does not change the status of being

aligned.

• The pairs A and B are unlinked and misaligned, if in the arc α1, α2

determined by {α1, α2} on C containing β1 and β2 one has linear order

α1 < β2 < β1 < α2. We note that A is unlinked and misaligned with B

iff B is unlinked and misaligned with A. In this case flipping the order

in both of A and B simultaneously does not change the status of being

misaligned. Yet flipping the order in either A or B makes the pair

unlinked and aligned.

α1

α2

β1

β2

linked

β1

β2

α1

α2

unlinked and aligned

β2

β1

α1

α2

unlinked and misaligned

Let us now choose a negatively curved Riemannian metric g on Σ, and

let g̃ be its lift to Σ̃. Denote by dg̃ the corresponding distance on Σ̃, and

by �g : Γ → [0,∞) the associated stable length

�g(γ) := lim
1

n
dg̃(γ

n.p, p)

where p ∈ Σ̃ is arbitrary.
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Theorem 2.1: Let a, b ∈ Γ be non-trivial elements with distinct fixed points

a−, a+, b−, b+ on the boundary circle ∂Γ. Then:

(1) If (a−, a+) and (b−, b+) are linked, then

�g(ab) < �g(a) + �g(b).

(2) If (a−, a+) and (b−, b+) are unlinked and aligned, then

�g(ab) > �g(a) + �g(b).

(3) If (a−, a+) and (b−, b+) are unlinked and misaligned, then

�g(a
−1b) > �g(a) + �g(b).

Proof. First recall that in the case of negatively curved manifolds, such as (Σ, g),

the stable length �g(γ) can also be defined as the minimal translation length

�g(γ) = inf
p∈Σ̃

dg̃(γ.p, p).

Moreover, when �g(γ) > 0, which is the case of any non-trivial γ �= 1, the inf is

attained and the set

Axγ := {p ∈ Σ̃ | dg̃(γ.p, p) = �g(γ)}
is the geodesic line (γ−, γ+) in Σ̃. It is called the axis of γ.

Elementary topology of the disc Σ̃ implies that when (a−, a+) and (b−, b+) are
linked, the axes Axa and Axb must intersect in Σ̃. Due to negative curvature

the intersection is a singleton: Axa ∩Axb = {p}. Since p ∈ Axb, we have

x = b−1.p ∈ Axb. Similarly, we have p and y = a.p are in Axa as well. To prove

part (1) we use the triangle inequality to obtain for x = b−1.p:

�g(ab) ≤ dg̃(x, ab.x) < dg̃(x, b.x) + dg̃(b.x, ab.x)

= dg̃(b
−1.p, p) + dg̃(p, a.p) = �g(b) + �g(a).

We observe that the second inequality is strict and will sharpen it in the proof

of Theorem A below.

In the case where the pairs (a−, a+) and (b−, b+) are unlinked and aligned,

we remind ourselves of the definition, that a−, a+ define an arc a−a+ on the

boundary circle containing both b− and b+, which can be equipped with a linear

order (anti-clockwise in the figure) so that

a− < b− < b+ < a+.
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a−

a+

b−

b+

p

x = b−1.p

y = ab.x

linked

b−

b+

a−

a+

(ab)−

(ab)+

b.(ab)−

b.(ab)+

p

x = b−1.p

ab.x

unlinked and aligned

The action of b on the arc/interval from b+ to a+ is decreasing towards the fixed

point b+, while the action of a is increasing towards a+. Thus abmaps this inter-

val into itself, and therefore the attracting point (ab)+ satisfies b+ < (ab)+ < a+.

Moreover, we have

b+ = b.b+ < b.(ab)+ < (ab)+.

Since the repelling fixed point of an element is the attracting fixed point of

its inverse, the same argument gives a− < (ab)− < b−. We claim that

a− < b.(ab)− < (ab)−. Indeed, in the linear order on the arc b+b− that con-

tains a± so that b+ < a+, a− < b− the map b is decreasing, and thus

ξ = b.(ab)− < (ab)−. Since a.ξ = (ab).(ab)− = (ab)− > ξ we deduce that

a− < ξ < (ab)−. Hence

a− < b.(ab)− < (ab)−.

We conclude that the pair ((ab)−, (ab)+) is linked with its image under b. De-

note by p the intersection of Axab and b.Axab in Σ̃, and let x = b−1.p. Since

p ∈ b.Axab we have x ∈ Axab and ab.x ∈ Axab as well. Thus the points x,

p = b.x, ab.x = a.p lie on the geodesic line Axab, and in fact in this linear order.

This can be seen by inspecting the projections of these points to Axa and Axb,

making use of the assumption that the pairs are aligned. Hence

�g(ab) = dg̃(x, ab.x) = dg̃(x, b.x) + dg̃(p, a.p) > �g(b) + �g(a).
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The strict inequality here occurs because p �∈ Axa and x �∈ Axb. This proves

statement (2).

Statement (3) follows from (2) by replacing a by a−1. This completes the

proof of Theorem 2.1.

3. Spiraling of the boundary of a quasi-Fuchsian embedding

Let Γ = π1(Σ) be a surface group, and q ∈ QF (Σ) be defined by a represen-

tation π : Γ → PSL2(C). For γ ∈ Γ the element g = π(γ) ∈ PSL2(C) has two

preimages ±ĝ in SL2(C). Since the traces ± tr(ĝ) are invariant under conjuga-

tion, we can denote them by ± trq(γ). The following is a particular case of a

lemma of Vinberg [15] (see [13, Corollary 3.2.5]).

Lemma 3.1: Let Γ = π1(Σ) be a surface group, and q ∈ QF (Σ) \T (Σ). Then

there exists γ ∈ Γ with ± trq(γ) ∈ C \R.

Let π : Γ → PSL2(C) be a quasi-Fuchsian representation. There exists a

Γ-equivariant continuous map

φ : ∂Γ−→P
1
C, φ ◦ γ = π(γ) ◦ φ

that is a homeomorphism between the topological circle ∂Γ and the Jordan

curve on the sphere P
1
C formed by the limit set Lπ(Γ) of π(Γ).

Proposition 3.2: Let q ∈ QF (Σ) \ T (Σ) be given by a quasi-Fuchsian rep-

resentation π : Γ−→PSL2(C). Then there exists an isometrically embedded

hyperbolic plane H2 ⊂ H3 and a sequence ξ1, ξ2, . . . → ξ∗ ∈ ∂Γ whose cyclic

order with respect to the circle ∂Γ is

ξ1, ξ2, ξ3, ξ4, . . . , ξ∗

and whose images φ(ξn) ∈ P
1
C lie on the boundary circle ∂H2 in the following

cyclic order:

φ(ξ1), φ(ξ3), φ(ξ5), . . . , φ(ξ∗), . . . , φ(ξ6), φ(ξ4), φ(ξ2).

In particular, we have:

• (ξ1, ξ4) and (ξ2, ξ3) are unlinked and aligned in ∂Γ, while (φ(ξ1), φ(ξ4))

and (φ(ξ2), φ(ξ3)) are linked in ∂H2.

• (ξ1, ξ3) and (ξ2, ξ4) are linked in ∂Γ, while (φ(ξ1),φ(ξ3)) and (φ(ξ2),φ(ξ4))

are unlinked and aligned in ∂H2.
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Proof. Fix an element γ ∈ Γ with ± trq(γ) ∈ C \ R as in Lemma 3.1. Note

that γ must be hyperbolic, and denote by ξ∗ the attracting point γ+ ∈ ∂Γ. At

the same time π(γ) ∈ PSL2(C) is loxodromic with an attracting point φ(γ+).

Identifying P
1
C with C∪{∞} and replacing π : Γ−→PSL2(C) by an appropriate

conjugate we may assume φ(γ+) = ∞ and φ(γ−) = 0. Then the action of π(γ)

on C is given by the linear map

z �→ (λe2πiθ) · z with λ > 1, θ ∈ R \ Z.
Identify ∂Γ\{γ+} with R so that γ− corresponds to 0 ∈ R. With a slight abuse

of notation we write γ and φ for the corresponding homeomorphism ofR, and an

equivariant injective continuous map R−→C. Note that γ(0) = 0, γ is strictly

increasing on [0,∞) (and strictly decreasing on (−∞, 0]), while φ satisfies

(3.1) φ(γ(t)) = λe2πiθ · φ(t)
and

|φ(t)| → ∞ as |t| → ∞.

Since φ(t) �=0 for all t∈(0,∞) there exist continuous functions r : (0,∞)→(0,∞)

and s : (0,∞) → R so that

φ(t) = r(t) · e2πi·s(t) (t > 0).

Thus (3.1) implies that

r(γn(t)) = λn · r(t), s(γn(t)) = s(t) + nΘ

where Θ ∈ θ+Z. Note that the assumption that q ∈ QF (Σ)\T (Σ) gives θ �∈ Z

(Lemma 3.1), implying Θ �= 0.

Fix t0 > 0 and use points tn = γn(t0), n ∈ Z, to partition the ray (0,∞). Let

R0 = max{r(t) | 0 ≤ t ≤ t0}, r0 = min{r(t) | t0 ≤ t < ∞}.
Then |φ(t)| = r(t) ≤ λn · R0 for all t ∈ [0, tn], and |φ(t)| = r(t) ≥ λn · r0 for

all t ≥ tn. We can now choose integers n(1) < m(1) < n(2) < m(2) < · · · so

that

(m(k)− n(k)) · |Θ| > 1, λn(k+1)−m(k) > R0/r0

for all k ∈ N. The first condition guarantees that s(tm(k)) > s(tn(k)) + 1 and

therefore there exist

ξk ∈ [tn(k), tm(k)] with e2πi·s(ξk) = (−1)k.
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Thus φ(ξk) = (−1)kr(ξk) lie on the real line R ⊂ C on both sides of 0 ∈ R in

alternating order. Since ξk ≤ tm(k) < tn(k+1) ≤ ξk+1 we also have

|φ(ξk)| = r(ξk) ≤ λm(k) · R0 < λn(k+1) · r0 ≤ r(ξk+1) = |φ(ξk+1)|.
Thus the sequence {|φ(ξk)|} is monotonically increasing. In particular, we have

· · · < φ(ξ5) < φ(ξ3) < φ(ξ1) < 0 < φ(ξ2) < φ(ξ4) < φ(ξ6) < · · ·
on R ⊂ C. Recalling that φ(ξ∗) = ∞ we get the required cyclic order.

4. Proof of Theorem A

Let us first recall two general well-known facts, one related to CAT(-1) spaces

(X, dX), and another to Gromov hyperbolic groups Γ acting on their bound-

ary ∂Γ. We will apply them to X = H3 and to the surface group Γ = π1(Σ).

Recall that given a point p ∈ H3 and a pair of distinct boundary

points ξ �= η ∈ ∂H3 the following limit exists:

Bp(ξ, η) = lim
x→ξ, y→η

(dH3(p, x) + dH3(p, y)− dH3(x, y)).

Triangle inequality implies that Bp(ξ, η) ≥ 0. Crucial for our purposes is the

fact that the strict inequality occurs unless p lies on the geodesic line (ξ, η):

Bp(ξ, η) > 0 ⇐⇒ p �∈ (ξ, η).

The second fact is a consequence of the topological transitivity of the geodesic

flow on the unit tangent bundle to the surface. It can be used to show that for

any ξ �= η in ∂Γ there exists an infinite sequence {γn} in Γ so that

ξ = lim
n→∞ γ+

n , η = lim
n→∞ γ−

n

where γ−
n , γ+

n ∈ ∂Γ denote the repelling and the attracting points of γn ∈ Γ.

With these observations we can proceed to the proof of Theorem A. Using

Proposition 3.2, let us pick (ξ1, ξ4) and (ξ2, ξ3) that are unlinked and aligned

in ∂Γ while (φ(ξ1), φ(ξ4)) and (φ(ξ2), φ(ξ3)) are linked in a copy of a hyperbolic

plane ∂H2 contained in the hyperbolic space H3. Let p ∈ H3 denote the

intersection of the linked geodesic lines (φ(ξ1), φ(ξ4)) and (φ(ξ2), φ(ξ3)). Since

these two geodesic lines are distinct, p �∈ (φ(ξ2), φ(ξ4)), and therefore, using the

first fact, we obtain

δ = Bp(φ(ξ2), φ(ξ4)) > 0.
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We can now use the second fact, and find sequences {an} and {bn} in Γ, so that

a−n−→ξ1, a+n−→ξ4, b−n−→ξ2, b+n−→ξ3.

Denote An = π(an) and Bn = π(bn) the corresponding elements in PSL2(C).

Note that φ(a±n ) = A±
n and φ(b±n ) = B±

n are the repelling/attracting points

in ∂H3. Upon replacing an, bn by their powers, we may assume that

�H3(An)−→∞, �H3(Bn)−→∞.

Let pAn denote the projection of point p to the geodesic line (φ(a−n ), φ(a
+
n )) which

is the axis AxAn in H3. Since φ : ∂Γ−→∂H3 is continuous,

A−
n = φ(a−n )−→φ(ξ1) and A+

n = φ(a+n )−→φ(ξ4).

This implies

dH3(pAn , p)−→0.

Similarly, denoting by pBn ∈ H3 the projection of p to the geodesic line

(φ(ξ2), φ(ξ3)) which is the axis AxBn in H3, we get dH3(pBn , p)−→0.

B−
n

B+
n

A+
n A−

n

φ(ξ4) φ(ξ1)

φ(ξ2)

φ(ξ3)

p

pBn

xn = B−1
n .pBn

pAn
yn = An.p

A
n
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Now consider the points xn = B−1
n .pBn and yn = An.p

A
n . Since pbn = Bn.xn

and xn are on the axis AxBn of Bn we have dH3(pbn, xn) = �H3(Bn) and

(4.1) |dH3(p, xn)− �H3(Bn)| ≤ dH3(p, pBn )−→0.

Similarly,

(4.2) |dH3(p, yn)− �H3(An)| ≤ dH3(p, pAn )−→0.

Hence

lim
n→∞xn = lim

n→∞A+
n = φ(ξ2), lim

n→∞ yn = lim
n→∞B−

n = φ(ξ4).

Therefore

(4.3) lim
n→∞(dH3(xn, p) + dH3(p, yn)− dH3(xn, yn)) = Bp(φ(ξ2), φ(ξ4)) = δ > 0.

We also have

dH3((AnBn).xn, yn) = dH3(An.p
B
n , yn)

= dH3(An.p
B
n , An.p

A
n ) = dH3(pBn , p

A
n )

≤ dH3(pBn , p) + dH3(p, pAn )−→0.

Using (4.1), (4.2), (4.3) we deduce

lim
n→∞(�H3(An) + �H3(Bn)− dH3(AnBn.xn, xn)) = δ.

Since �H3(AnBn) ≤ dH3(AnBn.xn, xn), it follows that

lim inf
n→∞ (�H3(An) + �H3(Bn)− �H3(AnBn)) ≥ δ.

The latter fact can be rewritten as

lim inf
n→∞ (�q(an) + �q(bn)− �q(anbn)) ≥ δ.

Recall that (ξ1, ξ4) and (ξ2, ξ3) are unlinked and aligned in ∂Γ, and are approx-

imated by (a−n , a
+
n ) and (b−n , b

+
n ) respectively. Thus, we can find k ∈ N large

enough, so that the pair of elements a = ak, b = bk satisfy

�q(a) + �q(b)− �q(ab) >
1

2
δ

while (a−, a+) and (b−, b+) are unlinked and aligned. By Theorem 2.1 the latter

condition implies that for every g ∈ R(Σ) we have

�g(a) + �g(b)− �g(ab) < 0.
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Thus
�q(a) + �q(b)

�q(ab)
:
�g(a) + �g(b)

�g(ab)
>

�q(a) + �q(b)

�q(ab)
> 1 +

δ

2�q(ab)
.

We deduce that for every g ∈ R(Σ) we get

ρLip(δq, δg) > log(1 +
δ

2�q(ab)
) > 0.

This completes the proof of Theorem A.
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