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INTRODUCTION

The study of asymptotic behavior of sums S, = X,, + --- + X; of independent
identically distributed real valued random variables is a well established part of the
classical probability theory. Under suitable boundness conditions the phenomena
of Recurrence, Law of Large Numbers, Functional Central Limit Theorem, Iterated
Logarithm Law and further limit theorems have been well understood already in the
first half of 20-th century. In the recent decades the study of more general non-
commutative situation became an active area of research. The general setup that will
be discussed in this paper consists of a group G with a probability measure p on it,
and the questions concern the statistic behavior of the products S, = X, ---X; of
independent G-valued random variables { X, } which have a common distribution .
A sequence {S,} of such products is referred to as a path of the y-random walk on
G.

In this paper we discuss three aspects of random walks. Chapter 1 is devoted to
random walks on matrix groups G = SLg(R). This theory is mainly concerned with
Laws of Large Numbers and other limit theorems. The techniques involved include
Markov processes, the dynamics of the projective G-action on flag varieties, elements
of the structure theory of SL;(R) as an algebraic group and some considerations with
unitary representations. Although the presentation is restricted to SLg(R), most of
the results can be formulated and proved in the more general context of semisimple
real Lie groups.

In chapter 2 random walks on general (locally compact or discrete) groups are
discussed. The focus is on the connections between the properties of the group (such
as nilpotency, amenaibility, growth etc.) and the behavior of the random walks on
it. After a discussion of recurrence properties of random walks, we discuss bounded
p-harmonic functions, the concept of the Poisson boundary and related notions of
boundary entropy and random walk entropy.

Chapter 3 is about random walks on groups of transformations of measure spaces
and manifolds. The chapter starts with Random Ergodic Theorem and related results,
and then turns to the random-walk-based notion of entropy. This notion is discussed
in the context of diffeomorphisms of manifolds and in the general measurable setting.
The discussion closes with a connection between entropy of random volume-preserving
diffeomorphisms and the starting topic of the paper - random walks on matrix groups.

Obviously, the choice of the presented material was dictated by time, space and
expertise limitations of the author as well as the personal taste. In particular, several
important topics are not represented in this paper at all, most notably: random walks
on graphs, Martin boundary, random perturbations in smooth dynamics and appli-
cations to stochastic differential equations. References to these topics in the present
context should include: Woess [69], Guivarc’h, Ji, Taylor [25] and Kaimanovich [33],
and works of Y. Kifer [41], [43].
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The results in the paper are often stated not in the most general form known. For
general statements and detailed proofs the reader is referred to the original papers,
references to which are included. Obviously, any mistakes in the statements or proofs
are in the full responsibility of the present author. Proofs of the stated results are
included in the paper only if they are relatively short and exhibit important ideas.
In many cases the proofs are just outlined with some details left out, however an
effort was made to achieve a consistent and “relatively self contained” presentation.
Included proofs appear either in the main text, or in the last sections 4, in which case
the statements are marked by a star.
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Benjamin Weiss and Robert Zimmer for sharing their knowledge, ideas and insights,
and for their comments and corrections to the first draft of this paper. I would also like
to thank the editors - Anatole Katok and Boris Hasselblatt - for the invitation to write
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RANDOM WALKS ON GROUPS AND RANDOM TRANSFORMATIONS 5

1. PRODUCTS OF RANDOM MATRICES

1.1. General Overview. One of the most natural and important examples of trans-
formation groups are linear transformations of finite dimensional real linear spaces,
i.e. subgroups of GLi(R). In this chapter we shall focus on the behavior of ran-
dom products of such transformations, namely the products of random matrices. If
{X,,n > 1} is a sequence in GL(R) consider the real numbers z,, = k' log | det X,,|
and the sequence X = e~ X,, of k x k-matrices, for which det X/ = +1, and

_ Int-tx ! !
X, - X, = e XX

The study of sums of i.i.d. real variables x,, + --- + x; belongs to the classical
probability theory, while the new aspects of the matrix setup arise from the absence
of commutativity in matrix multiplication of the X/ part. Therefore, it is customary
to discuss random products of matrices in the group

SL't(R) = {g € GLg(R) | det g = £1}

or in SLi(R) which is a subgroup of index two in SL/ix(R).

Let 4 be a Borel probability measure on G = SL',(R), and let S, (w) = X, (w) - - - X1 (w)
be a sequence of random products, where { X,,(w), n > 1} are independent p-distributed
random variables. X, can be viewed as coordinate projections of the product proba-
bility space

(,P) = (G", 1)

related by X,, = Xy 0 "% for n > k, where 0 : Q — Q is the shift (fw); = w1
on (£2,P). Often we shall omit the point w € €2 from the notation, and denote the
random variables by just X;, Xo,..., X,,... and S, = X, --- X}.

We shall be interested in the qualitative and quantitative properties of the random
products S, € G and in their actions on the vector space R¥, the projective space
Pk~ Grassmannians and the flag varieties. In the context of products of random
matrices one can study a non-commutative analogue of the Law of Large Numbers
which describes the limit

1
lim — log || X, - - X

n—oo 1
where || - || is some norm on the matrix algebra M, (R). Since any two such norms
Il II, || - || are equivalent (in the sense that || - ||/|| - ||" is bounded from 0 and co) the

existence and the value of the above limit does not depend on the choice of the norm.
Hereafter it will be convenient to use the operator norm [|Al| = sup,-; [|[Av|| with
respect to the [2-norm |[v]| = (v? + -+ + v?)'/2 on R*.

Laws of large numbers require some, typically L!, boundness condition on the
variables. We shall say that p has finite first moment if

/G log llgll dyu(g) < oo (1.1)
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Proposition 1.1. Let p on SL/kx(R) be a probability measure with finite first mo-
ment, and let {X,,n > 1} denote the sequence of independent p-distributed random
variables. Then with P-probability one the limit

1
lim — log || X, - Xi]|
n—oo n

exists, its value Ai(u) is P-a.e. constant and can also be expressed as

1 1
A = lim — [ 1 du™(g) =inf — [ 1 du™
1(1) nggon/(} og [lgll dp"(9) %Iim/g og [lgll dp"(9)
where u™ denotes the n-th convolution power of p.

Proof. This fact was originally proved by Furstenberg and Kesten [18]. Now it can
be easily deduced from the subadditive ergodic theorem of Kingman as follows: the
functions h,(w) = log ||S,(w)]| on (€2, P, @) form a subadditive cocycle

hnim(w) = 10g|[Snim(W)[| = log[|Sn(0™w)Sm(w)]|
< log [|Sn (67w) || + log [|Sm (W) = hn(67w) + him(w)

and condition (1.1) is hy € L'(Q,P). Since the the shift  is ergodic on the space
(2,P), there exists a P-a.e. constant limit \;(u) = lim, ;o n~' - h,(w) which can
also be expressed as

M) = lim * /hndP:igfl /hndP

n—oo 1 n

Since all matrices in G = SL';(R) have norm of at least one, h, > 0 and therefore
/\1 > 0. 0

The number \;(u) is the top Lyapunov exponent of the random matrices. It is the
first in a sequence

Au(p) 2 Ae(p) = -+ = Me(p)
of k£ constants referred to as the Lyapunov exponents or the Lyapunov spectrum of
random matrices with the law p. The exponents A, (i), p > 1, are defined inductively,
via the top Lyapunov exponents of the exterior powers A?S,, = APX,, --- AP X7 by the
relations

1
Mp) o+ Xp(p) = lim = log [ AP Sall - p=1,2,.. k.

For any A € SL/(R) one has AFA = det A = 41 and consequently A\; +---+ Xz = 0.

This formal definition of A,, 1 < p < k has a more transparent interpretation.
Recall that any matrix M € SL',(R) can be written in the polar form M = VDU,
where D = diag[e™,...,e%] denotes the diagonal matrix with a; > ay > --- > a4
and U,V are orthogonal matrices. Due to our choice of the norm one has

| M]| = e, || AP M|| = e®rHtow for 1<p<k. (1.2)
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which in particular shows that a; > --- > a; are uniquely determined by M. Propo-
sition 1.1 asserts that writing the random products S,, in the polar form

Sp =Xy X1 =V, diag [em™, ... ex™] U, (1.3)

with a;(n) > --- > ax(n) and U,,V,, € O(k), one has with P-probability one:
limy, o a1(n)/n = A1, and (1.2) implies that lim,, o a,(n)/n = A, forallp=1,..., k.

This argument constitutes a part of the Oseledec theorem, which applies to general
(ergodic) stationary processes {X,,n > 1} in G. In what follows we shall specialize to
the case of independent random variables, obtaining much more detailed information.

1.2. Preliminaries on Markov processes. Consider the following general setup:
let M be a compact metric space and denote by P (M) the space of all probability
measures on M, which is a convex compact metric space in the weak-* topology
induced by C(M). Given a continuous map M — P(M), z — p,, one can define a
Markov operator P acting on C(M) by

Pf(z) = /M £() dpa(v)

The measures p,,x € X, are called transition probabilities of P. The dual operator
P* acts on the space of measures on M preserving the convex compact set P(M), and
the set of P*-fixed measures in P (M) is a convex compact subset. By a standard fixed
point theorem it is non-empty - indeed for any 7y € P(M) any accumulation point
of n= -3 " (P*)Ing is fixed by P*. A probability measure n € P(M) with P*np=n is
called P-stationary.

A Markov operator P as above and an arbitrary measure § € P (M) gives rise
to the corresponding Markov process {Z,,n > 0} on M, where Z; is taken with
distribution € on M, and the conditional distribution E(Z, i1 | Zy, ..., Z) is pz,.
Such a Markov process {Z,,n > 0} is stationary if and only if the initial distribution
0 of Z, is P-stationary. In this general context we shall use the following fact:

Theorem 1.2 (Furstenberg [13], see also [19]). Let P be a Markov operator on a
compact metric space M and o be a continuous function on M. Take an arbitrary
(not necessarily P-stationary) measure € P(M), and let {Z,,n > 0} denote the
corresponding Markov process on M. Then with probability one

1 n

lim sup — Za(Zk) < sup {/ odn ‘77 € P(M) s.t. P'n= 7)}
n—oo T 1 M

If, moreover, [ odn takes the same value « for all P-stationary probability measures

n on M, then with probability one n=' > _, o(Zx) — «.

Next consider the situation where a locally compact group (or a semigroup) G acts
on a compact metric space M so that the action map G x M — M, (g,z) — g -z,
is continuous. Hereafter such M with the G-action is called a G-space. Given a
probability measure y on G and a probability measure ¥ on M one can define the
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convolution probability measure pu * v on M as the image of ;4 x v under the action
map G x M — M. In other words

AﬁawwriLAﬁwwmwmww) for  fec(M)

In particular, taking Dirac measures v = §,, * € M, one obtains a continuous
assignment z +— p, = p * 6, which defines a Markov operator P on C(M) by

/fgwdu) for feC(M), zeM

Probability measures v € P(M) satisfying uxv = v (equivalently P*v = v) are called
p-stationary measures. As before, one notes that the set of all y-stationary measures
in P(M) is non-empty convex compact set, and it is easy to see that each p-stationary
measure v gives rise to a stationary M-valued Markov process {UY,n > 0}. It is a
general fact about Markov processes that {UY,n > 0} fails to be ergodic iff there
exists a P-invariant measurable set £ C M with 0 < v(E) < 1 (see Theorem 3.1
below). In the present context of a compact G-space M one can check that a -
stationary measure v admits P-invariant measurable £ C M with 0 < v(E) < 1 iff v
is not an extremal point of the set of all y-stationary measures. This discussion can
be summarized in terms of ergodic theory as follows:

Proposition 1.3. Let G be a locally compact group, u a probability measure on G,
M a compact G-space, and v - a probability measure on M. Consider the one-sided
Bernoulli shift (S, P,0) where (,P) = (GN, 1Y), (w); = wiy1, @ € N, and the
transformation T of the product space Q@ x M defined by T'(w,z) = (fw,w; - z). Then
(a) The product measure P x v is T-invariant if and only if v is a u-stationary
measure.
(b) The product measure P x v is an ergodic T-invariant measure iff v is an extremal
point of the compact convex set of all p-stationary measures on M.

Given a probability measure y on G' and a G-space M, one can also consider the
product space M = G x M with the Markov operator P deﬁned by

=Lﬂ%¢@@@) (1.4)

The corresponding M-valued Markov process Z can be described as follows: let U
be a M-valued random variable with distribution v, {X,, n > 0} a sequence of G-
valued random variables with distribution p which are independent from each other
and from Uy; and let

Zr = (X,,Up) where U,=X,---X1-Uy =85, -Uy (1.5)

Notice that this construction does not quite fit into the framework of Markov
processes on compact spaces if G' is not compact. If p has a compact support S C G,
then one may simply replace the non-compact space G x M by the compact one
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M=S8xM. In general, one can consider the compact space M = G x M where
G=GU {*} is a one point compactification of G, taking special care while applying
Theorem 1.2 to functions ¢ on G which do not extend continuously to G.

One can easily check that for any p-stationary measure v € P(M), the measure
px v on M is P-stationary, and so is the Markov process {Z¥,n > 0} given by (1.5).
Moreover

Lemma 1.4 (cf. [14]). The set of P-stationary probability measures on M is
{pxv|iveP(M) st pxv=rv}

Hence every stationary Markov processes on M has the form (1.5). Moreover, the
stationary Markov processes {Z¥,n > 0} is ergodic if and only if the u-stationary
measure v is an extremal point of the convexr compact consisting of all u-stationary
probability measures on M.

1.3. A formula for the top Lyapunov exponent. Consider the natural projective
action of G = SL'4(R) on the projective space M = P¥~1 take M = G x M and let
o1 : G x PF~! — R be defined by

where u € RF is a non-zero vector in the line %. Note that o, is a cocycle with respect
to the G-action on P*"1 ie. o1(¢'g,u) = 01(¢',g- u) + 01(g, ©), and for any non-zero
vector v € R¥ and any g, g1, ..., gn € G one has

10g [|gn - - - goull — log ||ull = 01(gn, us) + + - - + 01(g0, to) (1.7)
where 1 is the line spanned by v and @41 = g;-4;, 7 =0,...,n— 1.

Let u be a probability measure on (G, and let us assume for the moment that y has
compact support S C G. Taking M = S x P*! one obtains a continuous function
op: M =S x PP 5 R on a compact space, so that Theorem 1.2 applies to any
Markov process Z! = (X,,Uy,) = (Xp, Xy - - - X1Up) where the distribution v of U
is arbitrary (not necessarily p-stationary), while {X,, n > 0}, are independent u-
distributed random variables. In particular, taking v = d; where u is any non-zero
vector u € R¥, one has with P-probability one

1
lim sup — log 1 X5 -+ Xqul| = sup {e, | vE€ PP ) st pxv=v}

where «,, denotes the integral

o= [ [ oawxv=[ [ olamae

The equality (1.8) holds not only for compactly supported p, but for any p with finite
first moment. To show this, one needs to consider the space M = G x P*~! and a
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sequence of continuous functions agT) : M — R, where U%T) are certain truncations of
o1. We refer to [19] for the details of this argument. Let us also point out that often
there is only one p-stationary measure v on P*~! (see Theorem 1.34).

Remark 1.5. The definition of o; involved the choice of a norm || - || on R¥, which
has no influence on the limit in the left hand side of (1.9). In order to see that the
right hand side is not sensitive to such a choice either, consider a cocycle o7 and o, ,
which are defined similarly to oy and ¢, ,, with || - || been replaced by another norm
| - |- Then the cocycles o1 and o} are cohomologous in the sense that

01(g,a) — o1(g,u) = ¢(g - @) — ¢(a)

where ¢(u) = log(||u||’/||u||) is a bounded function of @. Hence

A= = [ [ oto-n)dute) @ = [ o@) dv(a)

Pk—1

= dd(p*v) — ¢pdv =20

Pk—1 Pk—1
Definitions 1.6. Hereafter the following definitions are frequently used

(a) Given a probability measure 1 on G = SL/i(R), or more generally on an arbi-
trary locally compact second countable group, denote by grp(u) (resp. sgr(u))
the smallest closed subgroup (resp. semi-group) of G with full y measure. E-
quivalently, grp(u) (resp. sgr(u)) is the closed subgroup (resp. semi-group)
generated by supp(u). If G = grp(u) we shall say that u is generating.

(b) A closed (semi)group T of G = SL/(R) is said to be strongly irreducible, if there
does not exist a finite union W = V; U --- U V, of proper linear subspaces of
R with TW C W. If T is a group strong irreducibility is equivalent to the
condition that all finite index subgroups of T act irreducibly on RX.

(c¢) The notion of strong irreducibility of a (semi)group " C G = SL/x(R) extends
in an obvious way to any linear representation of G. For p € {1,...,k} we shall
say that a (semi)group T is strongly p-irreducible if it is strongly irreducible in
the natural G-action on the exterior power APR*. A (semi)group 7 which is
strongly p-irreducible for all p =1,..., k, will be called totally irreducible.

(d) A probability measure g on G = SL/i(R) is called strongly irreducible/strongly
p-irreducible/ totally irreducible if G, = grp(p) (equivalently T}, = sgr(u)) has
the corresponding property.

(e) A probability measure v on the projective space P¥ 1 is called proper, if v(L) = 0
for any proper linear subspace L C R¥.

The key property of strongly irreducible measures is the following

Lemma (*) 1.7 (Furstenberg, [13]). A probability measure u on G = SL'k(R) is
strongly irreducible if and only if all p-stationary measures v on P*=1 are proper.
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Let u be a fixed strongly irreducible probability measure p on G = SL/gx(R) with
finite first moment. Choose an extremal p-stationary measure v on P*~1. Since such v
is necessarily proper (Lemma 1.7), taking & unit vectors uq, . . ., u, with the directions
Uy, ..., U, € P! being chosen independently with distribution v, one obtains with
probability one a basis for R*. For any such choice uq, ..., u; there exists a constant
C = C(uq,...,u) such that for any matrix X € SL/k(R) the norm || X|| can be
estimated by

mas [ Xugl| < [|X[ < € max || Xu

Since v was chosen to be extremal, the process Z,‘; is ergodlc, so that for a.e. choice
of w;, 72 =1,...,k, Birkhoft’s Ergodic Theorem gives

1 1 —
)| Xn---Xi:—E 7Y — dudv =y,
n og | 1| n 4 o (%) /G/mlal pav =y,

while
log C

1 1 1
—log || Xn -+ - Xqu|| < =log || Xy, - - - X1|| € max —log|| X, - - Xiui|| +
n n 1<i<m N

Therefore, for strongly irreducible p with finite first moment one has o, = A\ (u) for
all extremal p-stationary measures v. Since oy, is affine in v (as well as in p), it takes
the same value \;(u) for all y-stationary measures v - which form a convex closure
of the extremal (i.e. ergodic) ones. Applying the second part of Theorem 1.2, (and
taking special care of non-compactness of (G, by considering appropriately truncated
functions £0(7)), one deduces the following result:

Theorem 1.8 (Furstenberg, [13]). Let u on G = SL't(R) be a strongly irreducible
probability measure with finite first moment. Then

o lgul,
M) = o= [ [ tog T av(a) duto

for any probability measure v € P(P*1) satisfying u * v = v. Moreover, for every
non-zero vector u € ]Rk with P-probability one the random products X,, - -- Xy satisfy

n—00

1
lim — 10g||X Xl = lim — log || Xp - - - Xq|| = M ()
n—ooc M

Remark 1.9. Note that the statement about vector growth n=" -log ||S,u|| — A1 (1)
in the theorem differs, in general, from a similar assertion in Oseledec theorem. For
example, if p is strongly irreducible with Ay(p) < A;(p), which as we shall see is a
typical situation, Oseledec theorem states that there is a measurable family of random
(i.e. depending on w) codimension one subspaces Es(w) such that for P-a.e. w

VueR\ Eyw): lim n=" - log || S, (w)u|| = A(p)
n—o0
Vu € Ey(w) \ {0} : li_>m n~ - log IS, (w)ul] < Aa(p) < A (w)
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Yet Theorem 1.8 asserts that for every fired no-zero vector u, for P-a.e. w one has
lim 7" - log [|Sp(w)ull = A (1)
n—0o0

This just means that for every non-zero vector u the event {w | u € Ey(w)} has
P-probability zero.

The formula of Theorem 1.8 for A;(x) has many important applications, but in
general it does not allow explicit computations of A;(u) in terms of pu, for it involves
auxiliary p-stationary measures v on the boundary, and these are generally hard to
identify. However, an explicit computation of \; (1) is available for some special family
of measures ;1 on G

Theorem 1.10 (Furstenberg, [13] 7.3). Let p be a probability measure on G = SLy(R)
of the form p = p1 * mg * o, where mg denotes the Haar measure on the mazimal
compact K = SO(k). Then u has a unique stationary measure v = py * vy where vg is
the unique K-invariant probability measure on P¥=1, and if u has finite first moment

then
kgog k'u
///// lo 92€1 ”d 11(91) dpa(91) dpo(g2) die di’
okl (1.10)

for any non zero vector u € R¥. For bi-K -invariant measures (1 = mg * jio * Mg with
finite first moment (1.10) reduces to

:/G/Pk_llogﬂgu”dl/o(U) dpo(g)

Proof. Observe that for any probability measure 7 on P¥~! one has mg *n = 14, and
therefore (uy % mpg * o) *n = p1 * 1. Thus py * 1 is the unique p-stationary measure
for yu = py * mg * po, and (1.10) follows from Theorem 1.8. If y is bi-K-invariant,
then 14 is the unique p-stationary measure and the second formula follows. 0

1.4. Non-random filtration associated to p. The probabilistic approach based
on Markov processes on G x P¥~! briefly described above, allows further analysis of
vector growth under products of random matrices. In particular, strong irreducibility
condition in Theorem 1.8 can be relaxed to just irreducibility, and furthermore, in
the general case (of possibly reducible grp(u)) one has the following:

Theorem 1.11 (Furstenberg-Kifer [19]). Let u on G = SL',(R) be a probability mea-
sure with finite first moment, and let G, = grp(p). Then there exists an integer r
with 1 <r <k, a sequence of G ,-invariant subspaces

{3V=L, CL C---CLyCL =RF



RANDOM WALKS ON GROUPS AND RANDOM TRANSFORMATIONS 13

and a sequence of real numbers A (p) > Ao(p) > --- > M), with A (1) = A (p),
such that for every vector u € L; \ L;y1 with P-probability one

1 ~
lim —log [|X5, - - - Xyul| = Ai(p)
n—oo N

Moreover the set A = {)\; | 1 < i < r} coincides with the set of values of of Qs
where v ranges over all extremal p-stationary probability measures on Pkl For an
extremal p-stationary measure v, oy, = \i(p) if and only if v(L; \ Liy1) = 1.

Corollary 1.12. There exists a p-stationary measure v € P(PE1) with v(Ly) = 0.
For any such measure v, one has o, = A\(u) = M\(p). If G, is irreducible then
o,y = M(p) for all p-stationary v.

Remark 1.13. Note that the theorem describes a non-random filtration L, C --- C
L, C L, = R* which differs, in general, from the random (i.e. depending on w € )
filtration provided by the Oseledec theorem. The set of the corresponding exponents
A = {N(p) | 1 <4 <7} is contained in the Lyapunov spectrum A = {\;j(u) | 1 <
J < k}, but is, typically, smaller. In particular if G, is irreducible then the filtration
is trivial: {0} = L, € Ly = R*¥ and A = { (1) = M\ (1) }.

The key ingredients of the proof of Theorem 1.11 are the following observations:

(i) For a fixed non-zero vector v € R¥ the upper limit

a(v) = limsup = log || Xy - - - Xq|

n—oo N
is P-a.e. constant. This is basically a 0 — 1 law.

(ii) For any real a the collection of vectors E(a) = {v € R*¥ | v = 0 or a(v) < a}
is a linear subspace of R¥, which is invariant under p-a.e. g. Hence E(a) is a
G ,-invariant subspace.

(iii) Inspecting the discrete drops in dim E'(a) as a varies from A; to —oo, one recog-
nizes the exponents \; and the spaces L;.

1.5. Furstenberg’s condition for positive growth. The mere existence of the top
Lyapunov exponent A (u) > 0, or even the formulae in Theorems 1.8 and 1.11, do not
give a clear indication whether the growth of the random products S, = X,,--- X3
is actually exponential (A;(s) > 0) or sub-exponential (A;(p) = 0). If g happens
to be supported by a compact subgroup of G = SL'k(R), then the random prod-
ucts X, ---X; are bounded and clearly A;(¢) = 0. In his fundamental work [13]
Furstenberg proved that for strongly irreducible p, this obvious obstacle to exponen-
tial growth is the only one. More precisely

Theorem 1.14 (Furstenberg, [13]). Let u on G = SL'x(R) be a probability measure
with finite first moment. Then A\ () > 0 unless, G, = grp(p) is not strongly irre-
ducible or compact.
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We postpone the proof of Theorem 1.14 to the next section.

Remark 1.15. A remarkable feature of Furstenberg’s condition for A;(yx) > 0 is
that it is not given in terms of y itself, but rather in terms of the closed subgroup
grp(p) generated by p. In fact, since both (strong) irreducibility and compactness
are algebraic properties (i.e. can be described by polynomial equations in the entries
of the matrices) Furstenberg’s condition can be formulated in terms of the Zariski

closure H, = grp(u)z of grp(p) (compare this with Theorem 1.25 below).

To illustrate the (strong) irreducibility condition, consider a measure p with finite
first moment on G = SL,(R) such that G, is reducible. Then G, is conjugate into

AL A
(5 4. A€ GLuR), Ay € GLLR), A € My

where k = ki + ko and 0 < ky, ke < k. Let u, denote the distribution of the A, part
on GLy, (R). It is not hard to show (cf. [59] or [19]) that in this case

Ar(p) = max{A; (), Ai(pa)}

that is to say that the growth of the Al,-part is dominated by the maximum of the
growths of the A, and A!, parts. Separate the scalar parts a; = |det A};| from the
truly non-commutative components

Ay = ai_l/ki - Aj; € SL'; (R)

and let y; denote the distribution of A;; on SL', (R), ¢ = 1,2. Since loga; +logay =0
one obtains

() =| [ 1o dt -+ max s ()}

If G, is contained in (a conjugate of) the upper triangular group P then applying the
above argument inductively one concludes that

) = 1o

[ 10810 du(g)‘

where g;; denote the ij-entry of a matrix g € SLg(R). Observe that the map g —
(log|gi1], - - -,log|gkk|) is @ homomorphism

p:P—RE={zeR" |2+ -+, =0}

and A (p) is the || - ||o norm of the barycenter of the push-forward measure p,u on
RE.
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1.6. Unitary representation approach I. Positivity of the top Lyapunov expo-
nent A;(p) > 0 describes the exponential growth of products of p-distributed inde-
pendent random matrices. In the projective action on P*~! such growth corresponds
to certain (exponential) contraction, which can further be related to a “spectral gap”
of a Markov operator acting on certain space of functions on P*¥~!. This idea was
made precise by Virtzer, who deduced Theorem 1.8 from a spectral gap in the quasi-
regular unitary representation on L?(P*!). In fact, the result of Virtzer [67] is more
general, in the sense that it gives a sufficient condition for A;(x) > 0 not only for
products of independent p-distributed random matrices, but also for products of ran-
dom matrices satisfying certain condition on their correlations. Here we shall discuss
the independent case only:

Theorem 1.16 (Virtzer [67]). Let u be a probability measure on G = SL'k(R), such
that G, = grp(u) does not have an invariant probability measure on P*~1. Then there
exists a positive constant y(u), so that with P-probability one

1
liminf —log || X, - - - X4 > y(u) > 0 (1.11)
n—oo N

In particular, if u has a finite first moment then Ai(p) > ~v(u) > 0.

Proof. Denote by vy the SO(k)-invariant probability measure on P*~!. One can
verify by a direct computation that for g € G = SL';x(R) and every non-zero u € RF

dg'v 2y = llgull ok
“ar, ¥ (nun) (1.12)

This implies the following estimate
—2/k

lgull . [dgw dg- 11/0 _
”g” = mgx ”u” = maln du (u) duv VO(U’)
0 pe-t 0 (1.13)

We shall also make use of the following general facts.

Proposition (*) 1.17. Let H be a locally compact group, p a generating probability
measure on H and let X be a compact metric space with a continuous H-action on
it, which has no invariant probability measures. Then there exists a positive constant
e = ¢(X, H,u) > 0, so that for any quasi-invariant probability measure v on X, the
average operator m,(p) = [ m,(h) du(h) on L*(X, v) corresponding to the quasi-regular
unitary H-representation m,

dhv _
m (W) f(@) =\~ @) f(h2)  (f e P(X,v))
has a spectral gap |7, (p)lls, <1 — €, where ||T|;, = lim |T™||'/™ denotes the spectral

radius of a bounded operator T .
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Lemma (*) 1.18 ([11]). Let © be a unitary representation of some group H on a
Hilbert space H, u be a probability measure on H, and {X,,n > 1} be a sequence
of independent j-distributed H-valued random variables. Assume that fi, fo € H are
two wvectors with the property that (m(h)f1, fo) > 0 for every h € H. Then with
P-probability one

liminf — = log ((Sa(w)) f1, fo) > log ——— >0
noo 7 17 ()5
Now consider the projective action of G, = grp(u) on P*~'. Since G, has no
invariant measures, by Proposition 1.17, the quasi-regular G ,-representation ,, on
L*(P*", 1) has a spectral gap ||m,,(u)|ly, < 1. Using the estimate (1.13) and Lem-
ma 1.18, applied to the constant functions f; = fo = 1 € L%(P* !, 14), one has for
P-a.e. w € Q the sequence S,, = S, (w) satisfies

| dS-1
liminf, 10g||S | > hm 1nf——log/ 45y, VO u) dvg(u
k—1 dl/o
)

2
= hgggjlf—%log (1, m, (S, 1 —llglogf—glog (e (Sn)1, 1)
1
> —logi >0
ke g (1) llsp

Observe that Theorem 1.14 is a corollary of Theorem 1.16: if G, = grp(p) is
strongly irreducible and there exists a G ,-invariant probability measure v on P¢~1,
then v is proper (Lemma 1.7), while the stabilizers of proper measures in PSL;(R)-
action on PE~1 are compact (see 1.27 below).

1.7. Unitary representation approach II. In Theorem 1.16 the positivity of the
top Lyapunov exponent A;(u) > 0 was deduced from a spectral gap in the quasi-
reqular representation of G/, which followed from the absence of G ,-invariant mea-
sures on P!, The latter is a manifestation of non-amenability of G,. It is natural
therefore to try to deduce A;(p) > 0 directly from non-amenability of G, which can
be characterized by a spectral gap in the regular representation 7., of G,. This
approach, taken up in a joint work with Y. Shalom [11], leads to a lower estimate of
A1(p) in terms of an intrinsic spectral gap of G, which might be easier to compute.

Consider the following general setup: let G be locally compact group with a left
invariant Haar measure mg, and assume that G has a left invariant metric d with
finite growth §(G, d) < oo, where

§(G,d) = limsup%log me {9 € G |d(g,e) <R} (1.14)

R— o0
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A probability measure p on G is said to have a finite first moment (with respect to
a metric d) if

/G d(g,e)du(g) < oo

It follows from Kingman’s subadditive ergodic theorem that for p with finite first
moment there exists a P-a.e. constant finite limit

1
@) = lim =
A (p) = lim —d(Sh, e) (1.15)
often called the escape rate of the y-random walk.

Theorem 1.19 (Furman-Shalom, [11], [63]). Let d be a left invariant metric on a
locally compact group G with finite growth 6(G,d) < oo, and let p € P(G) be a
probability measure on G. Assume that the closed group H = grp(u) C G is non-
amenable. Then for P-a.e. w one has

L d(Sa(w), e) 2 1
lim inf > 0g
m1n n §(G,d) " || Treg (12)

>0

[

where Toeg(pt) = [ Treg(h) du(h) denotes the average operator associated to the left
reqular H-representation Tweg on L*(H,my). If p has finite first moment then the
escape rate A (1) is bounded below by the positive constant on the RHS above.

Example 1.20. Let F, = (ai,...,a,) be a free group of rank » > 1, and G be
a locally compact group with a left invariant metric d and growth 6(G,d) < oc.
Then for any discrete embedding 7 : F, — G and the measure p on G given by
w(j(a;)*t) = 1/2r one has

2 r
AD () > 1
Wz 5G9 m—

Proof of Theorem 1.19. Consider two unitary H-representations 7., and 7’ on
L?(H,mp) and L?(G, mg) respectively, defined by
(meg(MA)(B) = f(RTR)  (f € L*(H,mp)),
(r'(Mf)lg) = f(h7g)  (f € L*(G,mg))

and the associated operators myeg (i), 7'(11), respectively. The left H-action on G is
free and admits a measurable cross section G = H - X with some o-finite measure 7
on X, so that mg = my x n. Writing f € L?>(G,mg) as f(W,z) with i’ € H, x € X,
one has 7'(h)f(K,z) = f(h™'W',z), so that the representation 7' of H is just an
integral of myeg-representations 7' = [y mreg dn(x), which implies ||7'(1)]| = [|7reg (1) ]
and [|7" (1)l = [17reeg (12) llgp-

Non-amenability of H implies (basically is equivalent to) the spectral gap condition
[7eeg (1), <1 (see Theorem 2.3 of Derriennic and Guivarc’h). Hence we have

17" (1)l = [17mreg (14) Il <1
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Let U be some bounded subset of G of positive Haar measure and let f; denote
the function mg(U)™! - 1y where 1y is the characteristic function of U. Fix some
d > (G, d) and let

f(g) — 6_6/2(1(976)
Then both fy and f are in L?>(G, mg). Observe that for any g € G one has

—log(7'(9)f, fu) = —log (mgl(U) /[]6—5/2d(9’,9)dmc(gl))

— & [ 3 9 dmete) < 5 (lg.) = B

where R = sup{(e,¢’) | ¢' € U}. Using this inequality for ¢ = S, (w) and applying
Lemma 1.18, one has for P-a.e. w

1 2 1 2 1
liminf —d(S,(w),e) > = log—F——+— = = log ————
noo 1 6 Tl 6 llmreg (1)l
Since ¢ can be chosen arbitrarily close to 6(G, d), the theorem is proved. n

1.8. Simplicity of the spectrum. Let p be a probability measure on G = SL';(R)
with a finite first moment. Note that since A;(u)+- - -+ A, (1) = 0 condition Ay (u) > 0
means that not all of A\,(u), p=1,...,k, vanish (i.e. the Lyapunov spectrum is not
trivial). An important problem is to obtain conditions on g which guarantee the
simplicity of the top Lyapunov exponent, i.e. Aj(p) > Ag(u), and more generally
conditions for the simplicity of the whole Lyapunov spectrum:

A(p) > Ao(p) > - > Ag(p)
To state the main results in this direction we shall need the following definitions.

Definitions 1.21. Consider the group G = SL/(R) and its projective action on P*~!
and on P(APR¥) for p=1,2,...,k — 1. A sequence {g,} in G is called

(a) contracting (on PE~1) to € € P*=1 if the K = SO(k) invariant measure v, on
P*~! is contracted by g, to the Dirac measure d, i.e. if g v — 0 weakly.

(b) p-contracting (to an £ € P(APRF)) for some p € {1,...,k—1} if APg, is contract-
ing on P(APRF), i.e. if g vy — & weakly, where 14 is the K-invariant measure
on P(APRF).

A (semi)group T C G is called

(c) contracting (resp. p-contracting) if T contains a contracting (resp. p-contracting)
sequence.

(d) totally contracting if T is p-contracting for all p=1,2,...,k — 1.

The measure vy used in the above definition can be replaced by an arbitrary proper
measure (see Lemma 1.30).
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Remark 1.22. Let T be a topological semigroup acting continuously on a compact
metric space ).

(a) The T-action on compact metric @ is said to be prozimal if for any z,y € @ there
exists a sequence g, in T and a point z € () so that lim,,_,o, g, - = = lim,,_,« g, -
y = z. In view of the compactness, the following condition is equivalent to
proximality: for any two point set F' in () there exists a sequence g, in T so that
lim,, ,, diam(g,F) = 0. In fact, it can be shown that in this definition “two
point sets F” can be replaced by “finite sets F”.

(b) The T-action on a compact metric ) is said to be strongly prozimal if for any
probability measure v on () there exists a sequence g, € T and a point z € @)
so that the measures g, - v converge weakly (with respect to C(Q)*-topology)
to the Dirac measure §,. Strong proximality implies proximality (consider v =
(05 + &4)/2), but in general this is a stronger notion.

(c) Let T be a semigroup in SL';(R) which acts (strongly) irreducibly on R*. Then
it can be shown (for example using Lemma 1.30 below) that for the T-action on
Q@ = P*! the three conditions prozimality, strong prozimality and contraction
are equivalent. In fact, under strong irreducibility condition, these properties
are also equivalent to an existence of g € T with a dominant eigenvalue.

Let us point out an important instance of the contraction phenomenon. Let i be a
measure on SL';(R) with finite first moment and A,(p) > Ap;1(p). Then for P-a.e. p-
random walk S, = X, --- X, the transposed sequence S! = X}--- X! is contracting
on P(APRF); while the sequence S, itself is not necessarily contracting, yet always
contains contracting subsequences. Indeed, write

with D,, = diag [e‘“(”), . .,e“k(”)} and U,,V,, € K = SO(k). For P-a.e. w one has
ap(n)/ay+1(n) — oo which forces the measure D,,vy = D,Ulvy = D, V,v, to converge
to the Dirac measure dg, at § = e; A --- Ae,. Oseledec Theorem also implies that
Vi.& = V1. & converges to some subspace {(w) (which is actually E,.q(w)*
where RF = F; D Ey(w) D ... is the Oseledec filtration). Thus S? is contracting:
St-vy — d¢(w)- On the other hand, U,&, converges only after passing to a subsequence,
which explains why S, itself is not necessarily contracting.

The transposed sequence S! will indeed play a role in the proof of the following
remarkable result of Guivarc’h and Raugi.

Theorem 1.23 (Guivarc’h - Raugi [27]). Let p be a probability measure on G =
SL'x(R) with a finite first moment, Assume that the semigroup T, = sgr(u) is strong-
ly p-irreducible. Then T), is p-contracting iff \py(1) > Apy1(p). In particular, if T,
is totally irreducible then T, is totally contracting iff the Lyapunov spectrum of p is
simple:

A(p) > Ao(p) > -+ > Ae(p)
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Remark 1.24. Note the following phenomena emphasized by this result: under the
(strong) irreducibility condition a typical random walk S, (w) (i) necessarily “detect-
s” the contraction property of the ambient semi-group 7),, and (ii) translates the
“qualitative” contraction into the quantitative exponential contraction.

Unfortunately it is not easy to verify the condition of Theorem 1.23 because it
is given in terms of the semi-group T),, which is often hard to identify. The next
conceptual step was made by Goldsheid and Margulis who proved that in the condi-
tions of Theorem 1.23 one can replace the semi-group 7, by a larger and much more
convenient object:

Theorem 1.25 (Goldsheid - Margulis, [23]). Let u be a probability measure on G =
SL'x(R) with finite first moment, and let H, denote the smallest real algebraic sub-

group of G containing supp(p) (i.e. H, = grp(p) ). If H, is strongly p-irreducible
and p-contracting so is T, = sgr(p), and therefore Ap(p) > Api1(p). Hence, if grp(p)
s Zariski dense in G then the Lyapunov spectrum of i is simple:

A(p) > Aa(p) > > Ae(p)

Remark 1.26. In a subsequent work [28] Guivarc’h and Raugi gave a general de-
scription of the multiplicities of the Lyapunov exponents of i in terms of the algebraic
closure H, of grp(u).

Observe that Zariski density condition H, = G is a relatively weak one. For a
typical choice (in the sense of Haar measure, Baire category etc.) of a pair (A, B) €
SLi(R) x SLg(R) the group generated by A and B is Zariski dense in SL(R), and
therefore every measure p with finite first moment and A, B € supp(u) has a simple
Lyapunov spectrum.

We shall outline the proofs of Theorems 1.23 and 1.25 in sections 1.11 and 1.12.
The following sections contain some important notions and auxiliary facts needed for
these proofs.

1.9. Quasi-Projective transformations and Flag Varieties. The contraction
property, which is central to Theorems 1.23 and 1.25, describes limit behavior of a
sequence of projective transformations of P*~1. In [13] Furstenberg has introduced
a very useful notion of quasi-projective transformations (QP-transformations), which
provides a convenient framework for the analysis of the contraction properties.

A transformation b of the projective space P¥~! is called quasi-projective (QP)
if there exists a sequence of projective transformations A, of P¥~!, given by some
matrices A4, € SL/(R), so that for each £ € P*~! one has

Let A, € SL't(R) be an arbitrary sequence. Consider the matrices A! = | A4,]|~'- A4,
which belong to the compact set M}, , = {A" € My, (R) | ||4'|| = 1}. Being scalar

multiples of A, the matrices A/, define the same projective transformations 4, = A’,,.
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Passing to a convergent subsequence, one can assume that A, — By, where By is a
k x k matrix with ||By|| = 1 and det By = lim,,_,, ||A,||7*. If A, are bounded, then
A, — By € PSLi(R) and the process terminates with b = By. Otherwise By is a
singular matrix with ||Bp|| = 1. Denote Ly = R¥, L; = Ker By, k; = dim L,. Note
that for £ € Ly \ Ly one has
lim A, -é = lim A, - £ =By - &
n—0o0 n—o0
Next consider the restricted transformations A} = A,|;, : Ly — R*. Let By : L; —
R* be a limit of some convergent subsequence of the transformations || AL~ - AL :
L; — R* which, as before, belong to a compact set M, ., of k1 x k-matrices of norm
one. Set Ly = Ker By C L;. Continuing this procedure, one obtains a sequence of
subspaces
RF=LyD>L DD Ly DL, ={0}
and a sequence of linear transformations {B; : L; — R’“}gzo with L;;; = Ker B; such
that for a suitable subsequence A, of A, one has
limﬁnjf:E-g for e L\ Ly
J]—00
Hence, the above limit defines a QP-transformation b = lim;_, Anj of the projective
space PF—1,
Let us summarize some important facts which follow from these arguments:
(i) Any sequence of PT-s {4, } contains a subsequence converging to a QP-transformation

b. Such limit transformations b are called quasi-projective limits (QP-limits) of

the sequence {A,}.
(ii) A sequence {A,} in G = SL/x(R) is bounded iff all QP-limits (of its subse-

quences) are actually projective transformations.
(iii) Any QP-transformation b of P*~! admits a description by {B; : L; — RF}_,

where R¥ = Ly D L; D -+ D L, = {0} are nested subspaces, B; : L; — R*

are linear transformations with L;; = Ker B; and ||B;|| = 1. In this description
b: Pkt — Pk-1 is given by
bfzgzg for 66 Li\Li—H (116)

(It should be pointed out that such a description need not be unique). Converse-
ly, one can show that any system {B; : L; — R*¥}’_, with the above properties
defines a QP-transformation by (1.16).

Observe that if a QP-limit of b of a sequence A,, € SL'x(R) then for any v € P(P*F1)
one has

lim A, -v=0b-v (1.17)

n—oo

Already the first layer By of b, described by {B; : L; — R*}"_,, contains important
information on {A,}. If A, are unbounded then b is a genuine QP-transformation
with L; = Ker By and R; = Im B, being proper subspaces of R*¥. Writing v = vy + 14
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where 1y, = v|r and v; = v — vy, the measure b - v; is supported on R;, while
0 Lo 0 3

b-vy = lim, . Ay, - 1 is supported on the limit of projective spaces A, (Lg), which is
also a proper projective subspace. This consideration leads to the following:

Lemma 1.27 (Furstenberg [12]). Let A, € G = SLUx(R), and v,V € P(PF1) be
probability measures so that A, -v — v'. Then either A, are bounded, or there exist
proper subspaces V,W C RF such that V' is supported on V.U W. In particular,
the stabilizer Stabg(v) = {9 € G | gv = v} of any proper measure v is a compact
subgroup of G.

Remark 1.28. Further analysis of QP-limits along similar lines was used by Zimmer
(see [72] 3.4.2) to prove that the stabilizer Stabpsy, &) (v) of any measure v € P(P*1)
has a normal subgroup of finite index which is algebraic (recall that compact sub-
groups of real algebraic groups are algebraic).

Typically, QP-transformations are not continuous. Following Goldsheid-Margulis
[23], we shall denote by M;(b) C P¥~1 the closure of the set of the discontinuity points
of a QP-transformation b, and by M (b) the b-image of the set of its continuity points.
With these definitions, My(b) is always a projective subspace of P*~!, more precisely

Lemma 1.29 (see [23] 2.8). If My(b) contains more than one point, then My(b) =
Im By and M,(b) = Ly. If My(b) is a single point, then either M, (b) = L; for some
1<i<r, or Mi(b) is empty.

The contraction property (Definition 1.21) has the following characterization:

Lemma 1.30 ([27]). Let {A,} be a sequence in G = SL'k(R), and v be an arbitrary
proper probability measure on PE=1. Write A, = U, diag [e‘“(”), een, e“k(”)] Vi with
Un, Vi € O(k) and a1(n) > as(n) > -+ > ax(n). The following conditions are
equivalent

(a) {A,} is a contracting sequence with A, - vy — 0 where & € PF~1.

(b) An vV — 5£. B
(¢) im0 a2(n)/a1(n) =0 and lim,_,,, U, - & =&

(d) All QP-limits b of {A,} have My(b) = {£}.

Remark 1.31. Note that a semigroup 7" C SL/t(R) is p-strongly irreducible and
p-contracting iff the transposed semigroup 7% = {g¢' | ¢ € T} has these properties.
Indeed strong irreducibility is preserved by the transpose operation, as well as the
existence of contracting sequences (use part (c) of the Lemma).

The linear action of G = SL/;(R) on R* defines the corresponding projective actions
not only on the projective space, but also on more general flag varieties. Let us recall
the basic definitions of the latter. A flag of type 7 = (71,...,7), where 1 <1 < 75 <
-+ < 71, < k are integers, is an r-tuple of nested linear subspaces V; C Vo C --- C V,
of R* with dimV; = 7; for i = 1,...,r. The flag variety F, of type 7 = (71,...,7,) is
the collection of all flags of type 7. Typical examples of flag varieties are: F(1) - the
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projective space PF—1, F(p) - the Grassmannian Grp, and the full flags F(1 2, x). We
shall also use F{; ) consisting of projective line elements (i.e. a point and a direction
through the point) on P*~1. A flag variety F, forms a closed subset of the compact
projective space of the linear space @7_; A7 R¥. This provides it with the natural
topology, projective G = SL';(R)-action and with a notion of QP-transformations.
Any fixed Euclidean norm || - || on R¥ defines the corresponding norms on the exterior
products APR¥, which allow to define cocycles o1, ..., 0y for the G = SL';(R)-action
on the full flag variety F = F(1,. 1) as follows: for g € G and § € F set

lgui A <<= A guy|
[lur A== Al
where £ is the flag (a1, u1 Aug,...,u1 A+~ Auyp). One easily checks that:

op(9,€) = log (1.18)

(i) the cocycles o, are well defined;
(ii) each o, can be defined on the corresponding Grassmannian o, : G X Fp) in a
way which is consistent with the natural G-equivariant quotient map F — F,);
(iii) the definition of oy coincides with the one given in (1.6).
Next consider the cocycle o = 05 — 201 : G X F(1,2) — R, which can be explicitly
defined as
lgungoll . fluA
lgull? [l
where £ = (u,uAv) € F1,2. One can verify that expo(g,§) is the dilatation co-
efficient of the projective action of g on P! in the direction of the projective line
element &.
In the sequel we shall need the following property of contracting sequences:

Lemma 1.32 (see [27]). Let {gn} be a sequence in G = SL'i(R) contracting P**
towards z € PE"L. Then for every line element £ = (u,u Av) € F1,2) with u & zt,
the transposed sequence {g'} satisfies o(gl,£§) — —oo.

o(g,€) = log (1.19)

1.10. Some Auxiliary Results. This section contain some basic ingredients of the
proof of Theorem 1.23 (providing the grounds for the phenomena pointed out in
Remark 1.24).

Th following fact plays a crucial role in Theorem 1.23 and in the notion of (G, p)-
boundaries discussed in the next chapter.

Lemma (*) 1.33 (Furstenberg [13], Guivarc’h-Raugi [27]). Let G be a locally com-
pact group, @@ be a compact metric G-space, p a probability measure on G, and let
v be a p-stationary probability measure on Q). Denote by Y1,Ys, ... a sequence of
G-valued independent random variables with distribution . Then for P-a.e. sequence
w= (Y1,Ys,...) the measures Y1Ys---Y, - v converge in the weak topology to a limit
probability measure v, € P(Q), while v is the average of these random measures

y:/yde(w) ie. /Qfdy:/Q/Qfdyde(w) (f €C(@))
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Moreover, with P-probability one the same limit v, is obtained by
E}/Q"'Yng'y_)yw
for p-a.e. g € G, where p, =Y 27PpP.

Note the order of applied transformations Y Y5---Y,, g - v, and the fact that the
limit Y3 ---Y, g -v = v, depends only on w = (Y3,Y5,...), but not on g. Applying
this general fact to the projective action of G = SL/x(R) on @ = P*! one obtains:

Theorem 1.34 ([27]). Let p be a probability measure on G = SL/ (R) so that the

semi-group T}, = sgr(u) (equivalently the algebraic group H, = grp(u) ) are contract-
ing and strongly irreducible. Then there is a unique p-stationary measure v on P¥~1;
for P-a.e. w € Q the limit measure
v, = lim Yi(w) - Yp(w) - v
n—oo

is a Dirac measure v = 0,(,, where the random point z(w) € P*~! has distribution
v. The set L = supp(v) C P! is the unique minimal set for the T,-action on PF~1
and T}, acts minimally and strongly proximally on L.

Proof. Let v be some p-stationary measure on P*~!. Lemma 1.33 and Fubini theorem
ensure that for all w from a subset o C Q2 with P(Qy) = 1, one has

Yiw) - Ya(w)g-v — v, as n — 0o

for u*-a.e. g € G. Fix an w € p, and let b be a QP-limit of some subsequence
Zy, of Z,, = Yi(w)...Y,(w). Since p is strongly irreducible, v is a proper measure
(Lemma 1.7) and so are g - v, for every g € G. Hence for y*-a.e. g € G one has

z/wzl_lirglong-Vzbg-V

The relation bg - v = v, clearly holds for all g € supp(p*) = T),. Since T}, contains
contracting sequences g, with g, - v — 05 one concludes that v, = d,. is a Dirac
measure v, = 0,(,) at some z(w) € P*~1. In particular b- v = v, = 0,(,), and since
v is proper, one has My(b) = {z(w)}. This argument applies to all QP-limits b of
the sequence Z,, = Yj(w) - - - Y, (w), which means that {Z,,} is a contracting sequence
with Z, - vy — 0,(,)- In particular z(w) is determined by w € Q only (and not by the
choice of the p-stationary measure v); and since v satisfies

V:/z/de /5z(w dP(w

the measure v is just the distribution of z(w), and hence is unique.

Let L' C P*~! be a non-empty closed 7, 1nvar1ant set. Then L' supports a u-
stationary probability measure v/, which by uniqueness coincides with v. Hence
L C L'. This proves that L is the unique 7),-minimal set. The strong proximality
assertion for the projective action of T, on L follows from the contraction property.
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We shall also use the following general fact from ergodic theory:

Lemma 1.35 (Kesten [40], also Guivarc’h-Raugi [26]). Let T be a measure preserv-
ing transformation of a probability space (X, m) and assume that a function f €
LY(X,m) satisfies Y4y f(T*z) = —oo for m-a.e. x € X. Then Jx fdm <0 and
lim,, o0 %Zz;é (T*z) < 0, for m-a.e. T € X.

This Lemma allows to translate a qualitative divergence to a divergence with a
speed. In the context of Markov processes this gives the following

Proposition (*) 1.36 (Guivarc’h - Raugi [27]). Let M be a compact metric space,
o: M — R a continuous function, and P a Markov operator on M. Let § € P(M)
be a P-stationary measure, and let {Z% n > 0} denote the corresponding stationary
Markov process on M. Suppose that with probability one

n

lim ZJ(Z}g) = —00 (1.20)

n—00
k=0

Then with probability one lim, o n™'Y p_,0(Z%) < 0. Furthermore, if (1.20) holds
for all P-stationary measures 6, then there exists a v < 0 so that

: 1~
nh_)rgo zsgﬂg n;P o(z) =v<0
1.11. From contractions to the simplicity of the spectrum. With these pre-
liminaries we can present the proof of Theorem 1.23, following Guivarc’h and Raugi
[27].

If Apy1(pe) > Ap(p) then T), is p-contracting as follows from the discussion after
Remark 1.22. The main content of the theorem is the sufficiency of p-contracting for
Ap(1) > Apt1(p). Clearly, the case of p > 1 can be reduced to the case p = 1 by passing
to the G-action on the p-th exterior power APR¥. Hence, it is enough to show that if p
has finite first moment and 7}, = sgr(u) is contracting and strongly irreducible, then
A(p) > Aa(u). To avoid estimates we shall assume that p is compactly supported.

Denote Y,, = X!. Then {Y,} is a sequence of independent random variables with
common distribution u', where du'(g) = du(g'). Let v and ¢/ be stationary measures
on Fpuy = P*! for p and p' respectively. Since T), is strongly irreducible and con-
tracting the same applies to 7« = T, (Remark 1.31) and Theorem 1.34 shows that v
and v/ are uniquely determined and proper (Lemma 1.7).

For P-a.e. w € Q random walk {S, = X,,--- X2X;} the transposed sequence is
{8t = (X,---X1)! =Y;---Y,}, and Theorem 1.34 implies that
St -l/'=Y1---Yn-l/'—>52(w)

n
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is a Dirac measure at zZ(w) € P*~!. By Lemma 1.30 the sequence {S!} is contracting.
Since the distribution ¢/ of z(w) is proper, for any fixed non-zero vector u € R*¥ with
P-probability one u ¢ z(w)t, and therefore by Lemma 1.32 for any projective line
element £ € F(1 9

0(Sn, &) =a((Y1---Y,)H ) — —o0 (1.21)

with P-probability one, where 0 = 09 — 20 was defined by (1.19).
Now consider the cocycle o as a function on the compact (!) space M = supp(u) X
F(1,2), equipped with the Markov operator P

Pilg,€) = / F(d's g - €) dulg)

All P-stationary measures on M are of the form p x 7 where 7 is a p-stationary
measure on Fq o) (Lemma 1.4). Fix such 7 and denote by {Z] = (X,,§,),n > 0}
the corresponding stationary Markov process on M. Then (1.21) implies that with
probability one

|
—

n—1 n

o(Z]) = Y 0(Xj1, 5; - €) = 0(S,,6) = —00

0 0

I

<.
Il

J

and this property holds for all p-stationary . Proposition 1.36 gives

lim sup ZPJ (9,6)=~v<0

which, in view of the cocycle property of o, yields

lim sup l/Ga(g,af) du™(g) =7<0 (1.22)

"m0 g€ T T

Denoting by v the K = SO(k)-invariant probability measure on F{; 2 one can
check that there exists a constant C', so that for any g € G

logllg A gl < C+ / o2(g,€) duo(€)

Since obviously log||g|| = sup; 01(g,&) > [ 01(g,€) dvg, one has

/G (logllg A gll — 2log lgl)du"(s) < C+ / / o(9,€) duo(€) dpi™(g)
< C+ s / o(9,€) d™(g)

§€F(1,2)
Dividing by n and taking n — oo, one finally obtains from (1.22) that

Aa(p) — A (p) = (A1 (p) + Ao(p)) — 201 () <7 <0
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Thereby proving the theorem. 0

The contraction property A; > Ay, established by the theorem, has the following
quantitative form

Proposition 1.37 (LePage [46]). Under the assumption of Theorem 1.23 one has

1 5(a- . q- 1
lim sup —/log g1, 9 - z) du"(g) <0
G

n—00 al;ﬁa?e]}mk—l n 5(7,_1,1, ﬂQ)

where 6(-,-) is the natural metric on PE=1, given by 6(u1, Us) = |Jus Ausl|/||u1l| - |Juzl|.

Proof. The Proposition follows from (1.22) and the following identity, satisfied by
all 4; # i, € P*~! and all g € G = SL/k(R)

log 0(g-u1,g-ta) _ o llgur A gus|| - [lual] - [[uall _ o(g,&) +0(9g,&2)
(1, Ug) lguall - llgual| - [Jur A usl| 2
where & = (u;,u; Aug), i =1,2. O

1.12. Zariski closures and the contraction properties. This section contains
an outline of the proof of Theorem 1.25. For the details the reader is referred to the
original paper [23] (see also [21]).

Real algebraic groups have the property that algebraic closure of a sub-semigroup
forms an algebraic subgroup. Thus Theorem 1.25 can be deduced from

Theorem 1.38 (Goldsheid-Margulis, [23]). Let H be an algebraic closure of a semi-
group T C SLi(R). If H is p-strongly irreducible and p-contracting, then the same
applies to the semigroup T'.

Passing to the p-th exterior power, the Theorem is reduced to the case p = 1. Since
(strong) irreducibility is preserved by algebraic closures, it suffices to prove that if a
semigroup T' C SL,(R) is strongly irreducible and its algebraic closure H contains
contracting sequences then so does 7' itself. The proof of this fact is based on the
analysis of QP-limits (on P¥~1)) of sequences in 7. In general, given a semigroup
T C G = SLi(R) we shall denote by T" the collection of all QP-limits (on P*~') of
sequences in 7. The set T will be called the QP-closure of T.

Lemma 1.39 ([23] 2.7, 2.10). The QP-closure T of a semigroup T C SL(R) forms
a semigroup, which is closed with respect to pointwise convergence.

In order to show that 7" contains a contracting sequence, it is enough (Lemma 1.30)
to find a QP-limit b € T™ with My(b) C P*~! being a point. Assuming that this is
not the case, let d > 0 denote the minimal (projective) dimension of the spaces My(b)
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as b varies over T%; and let Q@ C T consist of all b € T™ with M;(b) achieving this
minimal dimension d.

Claim (*) 1.40. For any b € Q either My(b) C M;(b) or My(b) N My(b) = 0.
Claim (*) 1.41. There exist b € Q with Mo(b) N M;(b) = 0.
QP-transformations b with My(b) N M;(b) = () enjoy the following useful property

Lemma 1.42 ([23] 2.9). Let b be a QP-transformation with My(b) N M1(b) = (. De-
note by V' the linear subspace generated by the lines in Moy(b). Then the restriction
of b to V' is an invertible projective transformation 3(b) € PGL(V).

Now fix a QP-transformation b € @ with disjoint My(b) and M;(b), and consider

the set
H(b) = {h € H | My(bh) N M;(bh) = 0}

Let ® and ®, denote the semi-groups of all QP-transformations generated by {bh |
h € H(b)} and {bh | h € H(b) N'T?} respectively, and denote by V' C R* the subspace
spanned by the directions of My(b), i.e. My(b) = V. By Lemma 1.42, for each ¢ in
the generating set of ®, there is a uniquely defined element 3(¢) € PGL(V) such that
the actions of ¢ and 3(¢) agree on My(b) = V. Extending 3 to the whole semigroup
® one obtains a homomorphism 3 : & — PGL(V'). The next crucial claim is:

Claim (*) 1.43. The (semigroup) homomorphism 3 : & — PGL(V) maps &y C &
to a relatively compact semigroup B(®g) of PGL(V).

Hence the closure K of 3(®q) in PGL(V) forms a compact semigroup of the real
algebraic group PGL(V). It is therefore a real algebraic subgroup of PGL(V'), due
to the following general facts: (i) any compact sub-semigroup of a topological group
forms a (compact) subgroup, and (ii) any compact subgroup of a real algebraic group
is a real algebraic subgroup.

The correspondence h + B(bh) of H(b) to PGL(V) is a rational map. It maps
T N H(b) into the algebraic subgroup K C PGL(V). Since T is Zariski dense in H,
one concludes that 5(bh) € K for all h € H(b). This is used to reach a contradiction
to the assumption that H is contracting, by showing that H(b) contains a sequence
h, with a QP-limit &' = lim,_,. h, such that My(bb’) has strictly smaller dimension
than the dimension d > 0 of My(b), contradicting the minimality of d. This completes
the sketch of the proof of Theorem 1.25. For the proofs of the claims 1.40-1.43 see
section 4.

1.13. Regularity of the Lyapunov spectrum. Consider the regularity properties
of the maps

pr M(p) e (Aap), Aep), -5 Ae(pe)
which are defined for all u € P(SL,(R)) with finite first moments. It is not difficult
to see that there is a lower semi-continuity in the following sense
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Lemma 1.44. Let yu, — p be a weakly convergent sequence of probability measures
on G = SLg(R), such that p and u, have finite first moments. Then

lim sup A (1) < i (12)

n—oo

Proof. By Kingman’s subadditive ergodic theorem, one has

. 1
M) = inf SLGP)  where () = /G log lgll dys()

For every fixed p € N, one has L(u?) — L(uP) as n — oo, hence the lemma follows
from the general inequality limsup,,_, ., inf, L(p2) <inf, lim,_,. L(12). 0

However, in general, one should not expect the map p — A;(u) to be continuous:

Example 1.45. Let G = SLy(R) and consider the matrices

AZ((Q)192> F:<—01(1)>

For 0 < t < 1 let p; be defined by u({A}) =t and w({F}) = 1 —t. Obviously
A1(p1) = log2, but one can check that A;(u;) = 0 for any ¢t < 1. To see the latter
fact intuitively, observe that while A expands and contracts the vectors ey, e5 by the
factor of 2, F flips their directions. Applying long random product S, = X, - - - X1,
which contains many A-s and some roughly equally spaces flips F', to vectors e;
and ey, each of these vectors experiences long alternating periods of expansion and
contraction resulting in a sub-exponential growth.

Note that in the above example the group G, is reducible.

Theorem 1.46 (Furstenberg - Kifer, [19]). Let u, — p be a weakly convergent se-
quence of probability measures on G = SLg(R), such that u, have uniformly bounded
first moments

sup /Glog||g|| diin(g) < 00

Assume that G, = grp(u) has at most one invariant subspace in its linear action on
RF. Then A (pn) — A1 (1)-

Proof. Here we shall give the proof for the case of an irreducible G, and refer to
[19] for the case of a single invariant subspace and further results.

Theorem 1.11 in particular implies that for each n there exists a u,-stationary
measure v, € P(P¥~!) such that A\ (u,) = @y, 1,. Due to the compactness of P(P*!)
one can assume that some subsequence v,, converges weakly to a probability measure
v on P¥~1. This limit measure v is necessarily u-stationary, because

v=limuy, = lim p,, *v, =pu*xv
1—00 1—00
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The uniform bound on the first moments of y,, enables to apply Lebesgue dominated
convergence theorem to deduce that

llm A1(/‘1/77/1) = llm auni,l/ni = a:“‘a“
1—>00 12— 00

In general the right hand side gives just a lower bound for A;(x) (cf. Lemma 1.44); but
under the assumption of irreducibility of the G ,-representation on R¥, Theorem 1.11
states that A;(x) = «y,, and therefore Ay (un;) — A1(p). This argument shows that
any subsequence of {u,} contains a sub-subsequence with )‘l(ﬂmj) — A1(p), which

means that lim, oo A1 (pn) = A (p). O

There exists a variety of results on regularity of the Lyapunov spectrum under vari-
ous assumptions on y (cf. LePage [45], Ruelle [61] etc.) Let us mention the following
regularity result, due to Y. Peres, for measures with a fized finite support:

Theorem 1.47 (Peres, [57]). Let S = {Ai,..., A} be some fized finite set of ma-
trices in G = SLg(R). Consider all probability measures g with supp(p) = S and
weights pg(Ai) = w; > 0 where w = (wy, ..., w,) is a probability vector. If Ap(pg) is a
simple Lyapunov exponent, i.e. Ap_1(ftw) > Ap(ba) > Apt1(tw), then locally Ap(p1g) is
a real analytic function of the weights (w1, - . ., wy). In particular, if S = {Ay, ..., A}
generates a Zariski dense subgroup of G, then all \p(pw), p=1,...,k—1, are locally
real analytic functions of the weights .

The proof of this theorem relies on Theorem 1.49 below.

1.14. Further Limit Theorems. So far the discussion of py-random products S, =
X, - - - X1 focused on forms of Laws of Large Numbers for matrix products. Other clas-
sical limit theorems such as (Functional) Central Limit Theorem, Iterated Logarithm
Law, Large Deviation results etc. were also proved in the setting of matrix products.
Main results in this direction were obtained by the works of LePage, Guivarc’h, Rau-
gi, Bougerol, Goldsheid ([46], [27], [22]) after earlier results of Furstenberg-Kesten
[18], Tutubalin [64] and Virtzer [68]. Here we shall briefly state some of these results
and refer the reader to [27], [22], [4], [46] for details and further results.

Finer Limit theorems typically require stronger integrability assumption than Laws
of Large Numbers. In the context of random matrices we shall impose the following
condition: a probability measure p on G = SL',(R) is said to have finite exponential
moment if for some € > 0

/Gllgllcdu(g) < oo (1.23)

Theorem 1.48 (LePage, [46]). Let u be a probability measure on G = SLg(R). As-
sume that p has finite exponential moment, is strongly irreducible and contracting on
P*~1. Then there exists a constant o > 0 so that for any fived u € R* \ {0} one has
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Central Limit Theorem: The random variables
log [|Sn (W)l = nAs log || Sn(w)ull = nAs
and
oy/n oy/n
converge in distribution to the standard Gaussian distribution N(0,1) on R.

Functional CLT: The linear interpolation functions ¥,(w,t), t € [0, 1], determined
by the discrete values

log ||Sm — mA
Yo(w,m/n) = 08 [|Sm (@)ull = mAs (m=0,...,n)
o\/n
converge in distribution to the canonical Wiener measure on C([0,1]).
Joint Distribution: The R x P*~1-random variables

1 -
( og || Snul| n)\l’ S, u)
o\/n
converge in distribution to N(0,1) x v with an error estimate of C//n.
Iterated Logarithm Law: With P-probability one the sequences
log [Su(@)l| ~mhy 1 log|Su(w)ull —n,
ov/nloglogn ov/nloglogn

have the interval [—1,1] as the set of cluster points.

Proofs of these results go far beyond the scope of this paper. Here let us just point
out the main ideas linking these results on products of random matrices to, by now
well established, techniques in the classical probability theory, and refer the reader to
the above mentioned papers for the full exposition of these ideas. The main device
used in the proof of Theorem 1.48 is the family

P,g () = /" $(g - 1) dp(g)

of operators acting on a certain space L, of Holder functions ¢ on P*~*. (The relevance
of these operators become clear from the fact that P'1(@) is the Fourier transform
of the distribution of log ||.S,,(w)u||/||«]|). The finite exponential moment assumption
(1.23) is needed for the following key result

Theorem 1.49 (LePage, [46]). Let p be a strongly irreducible and contracting prob-
ability measure on SL/k(R), satisfying (1.23). Then there ezists an oy > 0 such that
for any o € (0, ) one has

5 _ _ o 1/n
lim sup / ( (gqul’“(_]'uﬁ)) du"(g) =p<l
n=00 \ gy 2upePk-1J @ (s, tg)

This Theorem is a strengthening of Proposition 1.37, and it follows from the cor-
responding strengthening of (1.22) which can be proved under condition (1.23).
Second major ingredient is the following
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Theorem 1.50 (see Guivarc’h-Raugi [27] pp. 44-45, Goldsheid-Guivarc’h [22] section 4).
Let p satisfy the assumptions of Theorem 1.49. If a function i € L, satisfies the e-
quation

'+ @) = e (g . 1) /op(a)
for some 5,0 € R and all g € supp(u), then s =0, € =1 and v is a constant.

Theorems 1.49 and 1.50 together allow to prove certain spectral gap properties of
the operators P; acting on the Hélder space L, (see [27] and [4] Chapter V), and this
spectral gap property is used to derive the limit theorems.

Similar techniques allow to prove multidimensional Limit Theorems (replacing pro-
jective spaces by more general flag varieties). More precisely, if S, = X, - - - X7 is writ-
ten in a polar form as S,, = U, A, V,, where U,, V,, € @(k) and 4,, = diag[e®™, ... %]
with a; >+ -+ > ay, consider the full flags U,,,V, € F = F15,..x) defined by

Z/{n = Un-(@,ek/\ek_l,...,ek/\---/\el)
V, = Vl(er,erNeg,...,et A Aeg)

n

These flags are well defined if a;(n) > as(n) > --- > ag(n) as it will be the case
in the theorem below, due to Theorem 1.25 which guarantees the simplicity of the
Lyapunov spectrum

A= (A(p) > Aap) > -+ > Ae(p))

Theorem 1.51 (Goldsheid - Guivarc’h [22], see also Guivarc’h -Raugi [27] ). Let p be
a probability measure on SLi(R). Assume that p has finite exponential moment (1.23)
and supp(p) generates a Zariski dense subgroup in SL(R). Then
1. With probability one: lim,_,.,n~'log A, = A.
2. The random vectors ¢, = n~'/?(log A, — nA) converge in distribution to a
Gaussian distribution N with the full support on RE={z e R¥ | z1+---+ 1, =
0}.

3. The sequence of flags {V,} converges with probability one to a flagV in F. The
distribution of the limit point V is the unique fi-stationary measure v' on F.

4. The sequence of flags {Uy,} converges in law to the unique p-stationary measure

vonF.

5. The three random variables V,,, €,, U, are asymptotically independent, i.e.

nh_)rgo P{U, € E, ¢, € F, V, € G} =v(E)-N(F)-V(G).

Part (a) in the theorem is the conclusion of Theorem 1.25 which is stated here for
completeness. Statements (c¢) and (d) are deduced from the Oseledec Theorem and
the multidimensional analogues of Theorem 1.34. The main assertions of the Theo-
rem are (b), stating that the limit Gaussian distribution is non degenerate, i.e. is not
supported on a proper subspace of R, and (d) which describes the limit joint distri-
bution. In [22] Goldsheid and Guivarc’h further prove that if y has finite exponential
moment and the algebraic closure H, of G, is semisimple (but is possibly smaller
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than SLi(R)) then the dimension of the limit Gaussian distribution of the diagonal
part A, is the real rank of H,. A cohomological equation as in Theorem 1.50 plays
a crucial role in the analysis of the dimension of the Gaussian distribution (see [22]
section 4).

1.15. Additional Remarks. The phenomena discussed in this section depend heav-
ily on the assumption that {X,} is a sequence of independent identically distributed
matrices, rather than a general stationary sequence of matrices. In a recent paper
[44] Kifer studied a mixed model, where {p,,} is some stationary process taking values
in P(SLk(R)), and X,, are matrices chosen independently according to the “random”
distribution pu,. Kifer has generalized many of the results of this section to this more
general setting.

Some of the techniques and ideas in the study of products of random matrices found
applications in other areas unrelated to random transformations. Let us mention here
some of these applications.

e The important phenomenon behind Lemma 1.27 led Furstenberg to a short and
elegant proof [16] of Borel’s Density Theorem.

e Similar phenomena were exploited by Zimmer to prove the very important prop-
erty of tameness of group actions on spaces of probability measures, arising from
algebraic actions on projective varieties ([72] section 3.2).

e Non-vanishing of Lyapunov exponents, using a spectral approach similar to to
the one described in section 1.6, was used in the original proof of Margulis’
superrigidity (see [54] V.4).

e There exist “random walk” approaches to the proofs of superrigidity theorems
of Margulis and Zimmer (see Furstenberg [17] and Margulis [54] chapter VI).

e In [24] Guivarc’h used random walks on SL (R) to investigate properties of linear
groups, in particular giving a shorter proof of the Tits alternative.

e Recently, Abels, Margulis and Soifer [1] applied quasi-projective transformations
(in a quantitative form) to an investigation of affine linear groups in the context
of Auslander conjecture.
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2. RANDOM WALKS ON GENERAL GROUPS

We turn now to a discussion of random walks S,, = X, - - - X; on general countable
discrete and locally compact groups G.

2.1. Recurrence of random walks. Let [' be a countable discrete group with a
generating symmetric probability measure y. Let S, = X, ... X; denote a path of
pu-generated random walk. If S, = e for some n > 1 with probability one then S,
returns to e infinitely often with probability one. In this case the y-random walk is
called recurrent. Otherwise, the probability of infinitely many returns to e is zero and
the p-random walk is called transient. It is well known that the simple random walk
on Z* is recurrent iff k = 1 or k = 2. The following is a far reaching generalization of
this classical fact:

Theorem 2.1 (Varopoulos, [65]). Let p be a symmetric finitely supported generating
probability measure on a countable discrete group I'. The p-random walk is recurrent
on I if and only if I' contains a subgroup of finite index I'y which is isomorphic to
either Z or to Z2.

Hence for most infinite discrete groups symmetric random walks are transient. One
may consider the quantitative characteristics of the transience behavior. One of such
characteristics is the (exponential) rate of decay of the return probabilities

Pn = P{w | Sn(w) = 6} = Mn({e})

Clearly pyim > DPp - Pm for all n,m € N, which allows to consider the limit of (p,)'/"
as n — oo, provided p,, do not vanish. For a symmetric measure p one always has
Pon, > 0 and therefore the limit

R(F7 ,l,l,) = ll)m (an)l/Qn

is a well defined quantity R(T, ) € (0, 1].

Theorem 2.2 (Kesten, [38], [39]). Let u be a symmetric generating probability mea-
sure on a countable discrete group I'. Then R(T', ) = [|Treq ()|l = ||7reg(10)]lp, where

Tireg denotes the regular T-representation on 1*(T). In particular, R(T, u) < 1 if and
only if the group I is non-amenable.

Proof. Consider the semi-contraction P = m,¢,(1) on (*('). Since p is symmetric P
is self-adjoint and ||P|| = [|P||,,. Note that for any v € T', the action of P on the
Dirac function 4, € (*(T) satisfies
[P"6,|* = (P"d,, P"d,) = (P*"dy, 8,) = (P™d¢, be) = Don
Hence
R(T, p) = lim (ps,)"/*" = lim [|P"[|''™ < || P|
n—r0oQ n—0o0
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On the other hand for any finitely supported f = Zfi | Gi0; one has

N 1/n
: ng(|l/n < 1 . —
Tim [P £ < lim (ZI|GZ|\/p2n> R(T, p)

which implies ||P|| < R(T, i) using the spectral theorem. 0

Kesten’s theorem can also be stated for locally compact groups, in which case one
should consider the probabilities p™(V') of the returns to bounded neighborhoods V'
of the identity. In the statement of Kesten’s theorem we have used the fact that
condition [[meg ()|, = 1 is equivalent to amenability of the group, generated by u.
The following is a more standard definition of amenability of a locally compact group
G: there exists a (left) invariant mean (i.e. positive, normalized, finitely additive
functional) on the space BC(G) of bounded continuous functions on G.

Theorem 2.3 (Derriennic-Guivarc’h [7]). Let G be a locally compact group and u be
a probability measure on G with grp(n) = G. Then G is amenable if and only if

[17reg (1), = 1-

Note that in this result the generating measure y is not assumed to be symmetric.
The proof is similar to that of Proposition 1.17 and Theorem 3.17 below (actually, in
the proofs of the latter facts we used an idea from [7] of Derriennic-Guivarc’h).

Returning to the context of discrete countable groups, let I' be a finitely generated
group and S be a generating set. The associated left invariant word metric on I' is
defined by

ds(g1,92) = min{n € N | g;'g; € ({e} USUS™)"}

The corresponding growth function is Vg(n) = [{g € T' | ds(g,e) < n}|. It is well
known (exercise) that if S and T" are two finite generating sets for I' then the metrics
dr and dg are bi-Lipschitz equivalent, i.e. there exists a constant 0 < ¢ < oo so that
cl-ds < dr < c-dg. Let us say that two functions ¢,¢' : N — R are roughly
equivalent (notation ¢ ~ ¢') if there exists a constant 0 < ¢ < oo so that

¢ ([n/c]) < ¢'(n) < c-¢([en))
The above bi-Lipschitz equivalence of word metrics implies that the growth functions
Vs(n) and Vp(n) are roughly equivalent, and their rough equivalence class can be
denoted by Vr(n).
In a recent paper Pittet and Saloff-Coste [58], in particular, proved that return
probability functions ¢,(n) = p*>"({e}) are also independent of , up to rough equiv-
alence. More precisely,

Theorem 2.4 (Pittet Saloff-Coste, [58]). For any finitely generated group T and any
two symmetric finitely supported generating probability measures p, (' on I the return
probability functions ¢,(n) and ¢, (n) are roughly equivalent: ¢, >~ ¢,.
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Remarks 2.5. (a) Non amenable groups I' have exponential growth Vp(n) ~ e
(but there exist many amenable, even polycyclic, groups of exponential growth).
Kesten’s theorem states that I is non-amenable iff ¢r(n) ~ e ™.

(b) Polycyclic groups which are not virtually nilpotent have exponential growth
Vi(n) ~ e" (Milnor - Wolf), and have ¢ ~ e~™"* (Varopoulos).

(c) Virtually nilpotent groups I' are characterized (Gromov) by polynomial growth
Vr(n) =~ n?. For these groups Varopoulos showed that ¢r(n) ~ n=%2

(d) Grigorchuck constructed groups with intermediate growth Vi(n) (which is slower
than any exponential, but faster than any polynomial). For these groups the
above result is particularly interesting since the type ¢r(n) is still unknown.

(e) Pittet and Saloff-Coste also prove that the rough equivalence class of the return
probability function is a quasi-isometric invariant of groups.

2.2. Harmonic functions and (G, p)-spaces. Let G be a locally compact group,
and p be a probability measure on G. It will be convenient, although not necessary,
to impose the following regularity assumption on p

Definition 2.6. We shall say that a probability measure u on a locally compact
second countable group G is admissible if sgr(u) = G and p is spread out, which
means that some convolution power p? of 4 is not singular with respect to the Haar
measure on G.

Given a a locally compact group G with an admissible probability measure p on
it, one can study the Markov operator P

(Pf)(g) = /G £(99") dulg')

on various spaces of functions on G (subject to an appropriate integrability condition).
Functions f fixed by P are called pu-harmonic, and are characterized by the u-mean
value property:

f(g) = /G fag) duld), (g€ G) (2.1)

We shall be especially interested in bounded p-harmonic functions on G. It turns
out that due to the assumption that u is admissible, any bounded p-harmonic function
is necessarily continuous on G. The space of all bounded p-harmonic functions on G
will be denoted by H*>(G, p).

We shall also have an occasion to consider the space Bj,(G) consisting of all
bounded left uniformly continuous functions on G. Recall that a function f on G is
lLu.c. if for any € > 0 there is a neighborhood of the identity V = V(€) in G s.t.

flgg) — flg)|<e for g€V, g€

The subspace of l.u.c. bounded p-harmonic functions on G will be denoted by
H° (G, p). Any bounded p-harmonic function is a pointwise limit of l.u.c. bounded
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p-harmonic functions. Indeed one can verify that for any f € H*°(G,p) and any
non-negative compactly supported continuous h € C.(G), the convolution function
h = f, defined by

(h*fxm::[juynuflmdmaww

is in H;2.(G, p). Taking a sequence h, € C.(Q) with h, >0, [ h, =1 and supp(h,)
shrinking to the identity, one obtains A, * f — f.

The following Lemma provides a connection between H*°(G, u) and the right p-
random walks on G

Lemma 2.7. For every f € H*®(G, u) the limits

flg,w) = lim f(gwws---wy) (2.2)
exist for all g € G and P-a.e. sequence w. We shall denote f(w) = f(e,w).

Proof. Fix f € H*(G,u) and ¢ € G and consider the random variables W,, =
fgwr - -wy) on (2, P). Observe that the sequence {W,} forms a bounded martingale
with respect to the increasing sequence A, of the o-algebras generated by wy, ..., w,.
Indeed

EM%MAMZ/ﬂwm~%MWWF#@m~wﬁzmz

By the martingale theorem W,, converge pointwise on (£2,P) to some measurable
bounded function W, which we have denote by f(g,w). O

Remark 2.8. In view of the preceding lemma, we shall throughout this chapter focus
on the right p-random walks wy - - - w, rather than previously considered left random
walks S,, = wy, - - -w;. Clearly these two settings are equivalent by g — ¢~!. See also
section 2.3 for a better perspective.

Proposition 2.9 below describes an important construction of bounded p-harmonic
functions on (G, i), using (G, u)-spaces. Let (M, v) be a Lebesgue probability space
with a measurable G-action such that v is p-stationary in the sense that pxv = v
where the convolution measure p * v is the image of y X v under the action map
G x M — M. Such a space (M, v) with the G-action will be called a (G, u)-space.

A natural source for (G, p)-spaces are compact (metric) G-spaces, i.e. compact
(metric) spaces M with a continuous action G x M — M. Any such G-space M has
at least one pu-stationary probability measure v, which gives rise to a (G, u)-space
(M, v). Since one can restrict the continuous G-action to the compact G-invariant
set My = supp(v), we shall always assume that the considered p-stationary measure
v has full support on the compact G-space M. Such a pair (M,v) will be called a
compact (G, p)-space.
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Proposition 2.9 (Furstenberg). Given a measurable (G, p)-space (M,v) consider
the transform Fi,) : ¢ — fy defined for all ¢ € L (M, v) by

/qsg 7) dv(z /¢dgu—/ e (@) (23)

where 11(g, x) = dgv/dv(x) is the Radon-Nikodym cocycle. Then
(a) fo € H®(G, p) for all p € L>®(M,v).
(b) fs are constant functions on G for all $ € L>(M,v) iff v is G-invariant.
If (M,v) is a compact (G, p)-space, then
(@) fo € H2.(G, ) for all $ € C(M).
(b’) fs are constant functions on G for all ¢ € C(M) iff v is G-invariant.

Proof. Given ¢ € L*°(M,v) the function f,; is bounded by ||@|| and satisfies

/f¢gg du(g // ¢(g-x)dpxv(z) = fs(9)

Hence f; € H*(G, i), proving statement (a). Statement (b) is obvious from the
definition. If M is a compact G-space and ¢ € C(M), then for any € > 0 there
is an open neighborhood V' of the identity in G so that for all g € V and x € M
|6(gx) — ¢(x)| < €, and therefore for all ¢’ € G

folgg't) — fs(g")| < /M [9(gy) — o(y)| dg'v(y) < e

Hence fy is a L.u.c. function, which proves (a’), while (b’) is immediate. O

2.3. (G, p)-boundaries. Consider a compact (G, pu)-space (M, v). Lemma 1.33 (the
proof of which basically consists of Lemma 2.7 and Proposition 2.9), states that for
P-a.e. path w = (w;,ws,...) of a (right) p-random walk on G there exists a limit
probability measure v,, on M

V= lim wy---wy -V

n—oo
In the notation of Lemma 2.7 and 2.9 one has
f¢ g,w / ¢ dgu, and f¢(w) :/ ¢ du,, (2.4)
M

Definition 2.10. A compact (G, u)-space (M, v) is a compact (G, p)-boundary if v,
is a Dirac measure v, = d,(,) for P-a.e. w € 2. An abstract measurable (G, p)-
space (M,v) is a (G, p)-boundary, if the transform Fiu,y : L°(M,v) = H®(G, i),
F(M,v): ¢ — f, satisfies

Fop(w) = fo(w) - fu(w) (2.5)
for any ¢, € L*°(M,v) and for P-a.e. w.
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It is straightforward to see that if (M,v) is a (G, u)-boundary then the transform
Fiyy : L®(M,v) — H*(G, p) is an isometric embedding, and if (M, v) is a compact
(G, p)-boundary then also Fiar,) : C(M) — H2.(G, 1) is an (isometric) embedding.

Note that any (G, p)-boundary (M, v) gives rise to a measurable map of Lebesgue
spaces bndyr,) : (€2,P) — (M, v), defined via its action on the commutative von
Neumann algebra L*® (M, v)

d(bnd(rr)(w)) = fo(w) = lim fo(wy---wy) (2.6)

n—oo

In the setup of compact (G, jt)-boundaries one has bnd(r,)(w) = z(w) € M where
Ve = 0yw)-

To fu(rt)her clarify the above concepts consider the skew-product construction (£ x
M,Pxv,T), T : (w,z) — (w,w;-z), discussed in Proposition 1.3. The transformation
T of (2 x M,P x v) is measure-preserving but not invertible. Let § denote the two-
sided shift (§@); = @;y1, i € Z, acting on the space (Q,P) = (G%, u%). This is the
natural extension of the one-sided shift § on (€2, P). The natural extension of the
skew-product (2 x M,P x v,T) can be realized in the form (Q x M, m,T) with

T:(@z) (0, - )
and m being the unique T-invariant measure which extends P x v from B(2 x M) to
B(2 x M), where B denotes the Borel o-algebra of the corresponding spaces. Note
that the projection 2 x M — € maps m to P, because P is the only f-invariant
probability measure which extends P from B(Q) to B(Q). Let {mg € P(M)}5eq be
the disintegration of /m with respect to P. The T invariance of 7 translates into the

identity wimg = my,, and the fact that m extends P x v to the o-algebra of Q x M
means that

/mw P (@) = v

and that m, depends only on (..., w0_1,@).

In fact, every T-invariant measure 7 on € x M which projects onto P and has the
property that the fiber measures mg depend only on @;, ¢ < 0, defines a measure on
Q x M of the form P x v, where v is a u-stationary measure.

Hence the conditional measure of m with respect to {@y, | K > —n}is@oiw_1-- -0 _,v.
As n — oo this conditional measure converges to mg, but the same limit measure
was also described in Lemma 2.7 as

Vwow_1,...) = nlglolowowfl CeeW v

Using this description, one can say

Proposition 2.11. A (G, u)-space (M,v) forms a (G, u)-boundary if and only if in
the natural extension (Q x M,m,T) of the non-invertible measure-preserving skew-
product (Qx M,P xv,T) the measure m disintegrates into Dirac measures with respect
to P, or equivalently if m is a lift of P to a graph of a measurable function Q — M.
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The following idea of Furstenberg allows to construct (G, u)-boundaries from arbi-
trary compact metric G-spaces M.

Proposition 2.12 (Furstenberg [14]). Let M be an arbitrary compact metric G-space
and p be an (admissible) probability measure on G. Then the G-action on the compact
space V.= P(M) contains a (G, u)-boundary.

Proof. Consider V = P(M) as a compact convex set in C(M)*. Consider also the
space P(V) = P(P(M)), elements of which will be denoted by o. Let § : V' — P(V)
stand for the natural embedding 0 : v — ¢, which has the set of extremal points
Ext(P(V)) of P(V) as its image §(V'). Let us denote by bar(v) the natural barycenter
map, which is a continuous extension of the affine map

bar() " pidy,) = D pivi
=1 1

Since M is a G-space, there exists a u-stationary measure v on M, and according to
Lemma 1.33 there is a disintegration v = [, v, dP. Let 7 € P(V) be defined as

= / 8,, dP (2.7)
Q

which implies that bar(#) = v and that © is a p-stationary measure on V. Observe
that for a.e. w one has

bar(wy -+ wy V) =wy - wy -V — 1, (2.8)

Since §,, are extremal points in P(V), the two facts (2.7) and (2.8) imply that
Wy Wy - U — 0,,, which means that supp() C V = P(M) together with 7 form a
(G, p)-boundary. .

2.4. The Poisson boundary. It is easy to see that any measurable G-equivariant
quotient (M', V') of a (G, pu)-boundary (M, v) is a (G, p)-boundary. It turns out that
given a pair (G, p) there exists a uniquely defined mazimal and universal (G, u)-
boundary, associated to (G, ).

Theorem 2.13 (Furstenberg). Given a locally compact group G with an admissible
probability measure p, there exists a uniquely defined mazimal measurable (G, p)-
boundary (B, v), called the Poisson boundary of (G, ), which is uniquely characterized
by each of the following properties:
Poisson Representation: The transform Fig,y : L*(B,v) — H>®(G, p) is an iso-
metric bijection. In particular every bounded p-harmonic function f can be
presented as fo = F(p,,)(¢) for a unique ¢ € L*(B,v), which can be defined by

Bbnd(s.) (@) = F(w) = lim flwrws - w,)
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Universality: The Poisson boundary (B, v) is the maximal measurable (G, p)-boundary:

any measurable (G, p)-boundary (B', V') is a G-equivariant measurable quotient
p: (B,v) — (B',V') of the Poisson boundary (B,v). The quotient map p is
uniquely defined, up to sets of v-measure zero.

Combined with Proposition 2.12, the universality of the Poisson boundary gives
the following important

Corollary 2.14 (Furstenberg). Let (B,v) be the Poisson boundary for a locally com-
pact group G with respect to some admissible measure p on G. Then for any compact
metric G-space M, there exists a measurable, with respect to v, G-equivariant map

f:B—P(M).

Remark 2.15. This is one of the variants of the so called boundary maps which play
an important role in rigidity results for group actions. In [70] Zimmer introduced the
notion of amenability of an action of a group G on a measure space (X,v) with a
quasi-invariant measure v. Amenability of a G-action on (X, ) (which is basically
characterized by the existence of a measurable G-equivariant maps f : X — P(M) for
any G-space M) can often be verified by other more convenient means. For example,
an action of a lattice I" in a locally compact group G on a homogeneous space G/H
is amenable iff H is an amenable group. Poisson boundaries are amenable G-spaces.
Boundary maps play a crucial role in the superrigidity results (see Zimmer [72] and
Margulis [54]).

There are several ways to construct the Poisson boundary (B,v) for (G,u). In
the following construction, due to Furstenberg (the form described below is borrowed
from Glasner’s [20]), one exhibits a compact G-space B with a p-stationary measure
v for which the transform F{p ,) gives isometric isomorphisms

C(B)—Hp(G.p)  and  L¥(B,v)—H™(G, ).
Denote by A the collection of all f € By, (G) such that for all ¢ € G for P-a.e.
w € Q the limit f(g,w) = limy_e0 f(gw: - - - wy) exists. A forms a commutative C*-
algebra with respect to pointwise operations and the sup norm. Let Z denote the
closed ideal in A consisting of those f € A for which the f(g,w) =0, and by B the
Gelfund dual of the quotient commutative C*-algebra A/Z, so that C(B) becomes
identified with A/ Z. The natural G-action by left translations on A preserves Z and
descends to A/Z = C(B). This G-action preserves the C*-algebra operations and
norms, and the fact that all functions involved are l.u.c. corresponds to continuity of
the action. This defines a continuous G-action on B. Next note that for each g € G
the functional Ly : f € A — [, f(g,w) dP(w) is a positive normalized functional
on A, which vanishes on Z, and hence descends to a positive normalized functional
on A/Z = C(B). Thus L, corresponds to a probability measure v, on B. It follows
from the construction that: (i) v, = gv, for every g € G; (ii) the measure v = v, is
p-stationary; (iii) (B, v) is a (topological) (G, u)-boundary (due to multiplicativity).
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By Lemma 2.7, H = H*(G, 1) C Bj(G) is a closed subspace of A, and we claim
that in fact A = Z @ H. Indeed, the martingale theorem shows that for f € H one
has

f(g) = / f(g,w) dP(w)

and therefore Z N‘H = {0}. To show that H + Z = A, take an arbitrary h € A
and denote by ¢ € C(B) its image in A — A/Z = C(B). Then ¢ defines a function
fs € M, which has the same “boundary values” f¢(w) = limy, 00 fo(wi---wp) =
limy, 0 h(w1 -+ -wy) as h, so that h — f, € Z.

Hence we have a natural bijection H = (H @ Z)/Z = A/Z = C(B), ie. Fp,) :
C(B) — H2.(G, p) is an isomorphism.

Finally, observe that this fact implies the universality (and thereby the uniqueness)
of (B,v) in the topological sense. Indeed, if (B’,7') is a compact G-space and forms
a (G, p)-boundary, then the linear operator

n FB e Fiau

preserves positivity, maps 1z to 15, and respects multiplication (basically due to the
fact that both (B,v) and (B',v') are (G, u)-boundaries !). Hence it is induced by
a uniquely defined continuous map p : B — B’. It is not hard to deduce from the
construction that p is G-equivariant and satisfies p,v = v/ (in particular p is onto,
assuming v has full support on B').

The fact that every bounded p-harmonic function is a limit of l.u.c. bounded u-
harmonic ones, mentioned at the beginning of the section, can be used to deduce that
as a measurable (G, y)-boundary (B, v) defines a bijection

F(B,u) : LOO(B: V) — HOO(G: ,U') (29)

This fact implies the universality property (and hence the uniqueness) in this measur-
able setup, due to the fundamental correspondence between subalgebras of L*°(B,v)
and measurable factors of (B, v).

Remarks 2.16. (i) Observe, that for a discrete group G any bounded function is
automatically lL.u.c., so that C(B) coincides with L>(B,v). This means that for
a discrete G with a non-trivial Poisson boundary the compact Hausdorff space B
described above is non metrizable. (We have ignored some technical difficulties
caused by this fact in the above arguments). However, measure-theoretically the
Poisson boundary is always a Lebesgue space.

(ii) This is one of the reasons to consider the Poisson boundary as a measure-
theoretical rather than topological object. A more significant, but related, reason
is the fact that in many cases as a measurable G-space the Poisson boundary
can be realized on some nice familiar compact (metric) G-spaces naturally asso-
ciated to G. Typically these spaces are much smaller than somewhat monstrous
universal topological G-space B (cf. sections 2.6, 2.10).
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(iii) The pair (G, p) gives rise yet to another topological G-space - the so called Martin
boundary - which is the universal object responsible for the representation of all
positive p-harmonic functions f on G in terms of associated positive measures
vy on A. The Poisson boundary for (G, 1) can be identified with (A, ), where
1 is the constant function on G. Interested reader is referred to the paper [33]
of Kaimanovich for a discussion of the Martin boundary in this context, and to
the monograph [25] by Guivarc’h, Ji and Taylor for a detailed analysis of Martin
boundaries for semisimple Lie groups and symmetric spaces.

The following is one of several purely measure-theoretical construction of the Pois-
son boundary, described by Kaimanovich and Vershik [36] (see also a more recent
paper Kaimanovich [33] for more details and discussion). Given a pair (G, p) consid-
er an auxiliary probability measure p on G and let y = (yo,%1,...) be a path of a
(right) random walk

Yo, Yn = Yn—1Wn = YoWi * - - Wp, (TL > 1)

where yo has distribution p and ws,... are chosen independently with distribution
p. Let Q, denote the resulting distribution of the paths y = (y,)n>0 on the path
space Y = {y = (yn)}- If p is a Dirac measure at g € G denote the corresponding
Q, by Qg. The group G acts on Y by left multiplication coordinate-wise, so that
g takes Q. to Qg, and one has Q, = [Q,dp(g) for every p. Let T denote the
shift (Ty), = Yns1. It commutes with the G-action. If p is in the measure class of
the Haar measure on G, then Q, is quasi-invariant with respect to 7" and one can
consider the space (X, v,) of T-ergodic components of (Y,Q,), which comes equipped
with the G-action induced by the G-action on Y. Denote by v, the image of Qg
under the factor map ¥ — X and set v = v, (one can use the assumption that
p is admissible to verify that v, are indeed well defined). Then v, = gv and since
TQ. = [ 9Qcdu(g) one has v = [ gvdu(g), i.e. v is p-stationary. It also follows from
the construction that (X,v) is a (G, p)-boundary. In order to show that (X, v) is the
Poisson boundary, observe that for any f € H*(G, 1) and Qe-a.e. y = (y,) there
exists a finite limit lim, o f(yn) = lim, o0 f(ws - - -wy), which is clearly T-invariant
and therefore defines a unique function f € L*(X,v), and one has f(e) = [ X fdv.
The equivariant G-action gives

f(g)=/devg=/degv

so that (X,v) gives Poisson representation as described in Theorem 2.13, and is
therefore the (unique up to measurable isomorphism) Poisson boundary for (G, p).
In [70] Zimmer described the the Poisson boundary as (a version of) the Mackey
range of of the measurable cocycle o : N x (2,P) — G given by a(n,w) = wy, -+ - w;.
This is basically the same construction as the above one (the space of the ergodic
components of the shift 7") considered from a different point of view. In this paper
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Zimmer introduced the above mentioned important notion of amenable actions, in
particular illustrated by the G-action on the Poisson boundary /ies.

2.5. Semi-simple Lie groups and their lattices. The following fundamental re-
sults of Furstenberg are naturally formulated for semisimple Lie groups G' (which are
always assumed to be connected, to have finite center and no non-trivial compact
factors), rather than for the special case of SLi(R) which has been our focus so far.
Semisimple Lie groups G admit Iwasawa decomposition G = KAN, where K is a
maximal compact subgroup, /V is nilpotent, A is Cartan subgroup. Let P = M AN,
where M is the centralizer of A in K, and denote by B(G) = G/P. This is a compact
homogeneous G-space. In the case of G = SLg(R), one can take K = SO(k), P -
the subgroup of upper triangular matrices, and B(G) = F = F(,..x) - the full flag
variety.

Theorem 2.17 (Furstenberg, [12]). Let G be a semisimple Lie group as above, and
let u be an absolutely continuous probability measure on G, which contains the identity
in the interior of its support. Then there is a unique p-stationary probability measure
v on B(G), which belongs to the Lebesque class, and (B(QG), v) is the Poisson boundary
for (G,p). Moreover, B(G) is the universal topological (G, p)-boundary, i.e. the
Poisson representation Fip(a), defines isometric isomorphisms

L®(B(G),v)—H*(G,p)  C(B(G)—Hjs(G, p)

The G-equivariant factors G/Q of B(G) = G/P with P C @, provide the complete
list of all (G, u)-boundaries.

Remark 2.18. The theorem in particular states that semisimple groups G act tran-
sitively on their Poisson boundaries (under mild assumptions on x). One should not
expect this to be the case for general groups. However Raugi [59] and more recently
Jaworski [30], [31] proved that under certain conditions other classes of groups G
and measures y have the property that G' acts transitively on the associated Poisson
boundary, so that the latter can be presented as a homogeneous space G/H.

Consider the particular case of absolutely continuous measures p which satisfy
my * p = p, where K C G is a maximal compact. For such p one has ku = p for all
k € K, and this implies that the unique K-invariant probability measure v = vy on
B(G) = G/P is the only p-stationary measure, because v = pxv = kuxv = kv for all
k € K. Hence all K-invariant p on G as in Theorem 2.17 give rise to the same space
H*®(G, ) of bounded p-harmonic functions. Such bounded p-harmonic functions
are also left K-invariant, and can be considered as lifts of bounded functions on
the symmetric space K\G. In [12] Furstenberg showed that in these cases H*(G, p)
(resp. H;?.(G, p)) coincide with the spaces of bounded (resp. L.u.c. bounded) classical
harmonic functions on the symmetric space K\G, i.e. solutions of the Laplace-
Beltrami equation. Hence the Poisson representation in Theorem 2.17 describes all
classical bounded (l.u.c. bounded) harmonic functions on symmetric spaces in terms
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of their boundary values on B(G). This generalizes the classical Poisson representation
of bounded harmonic functions on the unit disc in terms of bounded functions on its
boundary - the circle (this case corresponds to G = SLy(R)). The space B(G) is
often referred to as the Furstenberg boundary, or Satake-Furstenberg boundary, of a
semi-simple group G.

Remark 2.19. The space B(G) is one of the compactifications of the symmetric
space K\G of G. The subject of the recent book [25] by Guivarc’h, Ji and Taylor is
the connections between various compactifications of the symmetric spaces. Random
walks in the form of Brownian motion on the symmetric space and Martin boundaries
play a central role in their analysis.

An important theme in the theory of semisimple Lie groups is understanding the
relationship between a semisimple group G and lattices I' contained in it. Recall that
a lattice I' in G is a discrete subgroup of (generally locally compact group) G which
has a measurable fundamental domain of finite Haar measure (standard example is
I' = SLk(Z) in G = SLg(R)). Furstenberg introduced the use of random walks as a
tool relating lattices to the ambient semisimple groups. One of such connections is
given by the following:

Theorem 2.20 (Furstenberg, [15] 5.1). Let I' C G be a lattice in a semisimple Lie
group G, and let vy be the K-invariant probability measure on B(G). Then there
erists a probability measure p on on I' with supp(u) = [ so that (B(G),w) is the
Poisson boundary for (T, u).

One of the constructions of such a measure y on I, discussed in [15], is based on a
certain discretization procedure applied to the continuous time Markov process - the
Brownian motion - on the symmetric space X = K\G. (Relevance of the Brownian
motion is clear from the fact that (B(G),v,) defines all harmonic functions on X,
which are closely related to the Brownian motion). This discretization, in particular,
allows to associate a bounded p-harmonic function f on I' to every bounded harmonic
function h on X = K\G.

In [52] Lyons and Sullivan studied similar questions in a more general geometric
situation. In particular they consider a regular cover X of a compact Riemannian
manifold M = X/T" where I" is a discrete group of isometries of X. In this, and
more general context (see [52]), a discretization of Brownian motion on X allows to
construct a probability measure g on I' with supp(u) = T, so that every bounded
harmonic function ~ on X defines a bounded p-harmonic function A on I'. On the
other hand Lyons and Sullivan describe a natural projection p from L*°(X) to the
space H*(X) of bounded harmonic functions on X. Roughly speaking, the projection
of f € L*(X) is obtained by applying a fixed invariant mean ¢ on the abelian semi-
group R, to the function P, f(z) = [, P(t,z,y)f(y) dy where P(t,z,y) denotes the
transition density of the Brownian motion. In [52] it is shown that

AP f] = ¢[P s f] = $[PP,f] and P,¢[P,f]
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are equal, which means that the bounded function f(z) = ¢[P,f(x)] is harmonic.

The combination of the discretization procedure and the projection gives a bijection
between the spaces H*(X) and H>(I', ). This in particular allowed Lyons and
Sullivan to conclude that (i) a non-amenable cover X of a compact manifold M
always has non-trivial bounded harmonic functions, while (ii) nilpotent covers X of
compact manifolds (and more generally w-nilpotent covers of recurrent Riemannian
manifolds) admit only constant bounded harmonic functions (see 2.35 and 2.37.(b)
below).

2.6. The Poisson boundary for discrete linear groups. Let us return to random
walks on (subgroups of) the simple Lie group G = SLi(R). Let u be a probability
measure with finite first moment. Denote G, = grp(p), and let A;(p) > Ao(p) >

- > Me(p) be the Lyapunov exponents of p. Let 1 < 74 < 7 < --- < 7, = k be
the indices of strict inequalities: A, (u) > As+1(1), and consider the flag variety F;
of type 7 = (7, ..., 7,) consisting of the flags

{0ycEiCE,C---CE,=R* with dimE; = 7;
Recall the cocycles o, : G x F, — R defined in (1.18) by

I Aj=1 gus

0:(9,€) = log
|| /\j:I J”

where {u;}¥ are any vectors such that the i-th subspace of the flag £ € F, is spanned
by u1,...,u; fori=1,...,7r.

Theorem 2.21 (Ledrappier [47], Kaimanovich [32], [34]). There ezists a unique prob-
ability measure v on F, such that

// 0.,(g,&) dv(€) du(g Z)\ for 1=1,...,7 2.10)
2.10

Let B C F, be the support of v. Then (B,l/) is a (G, p)-boundary. Moreover, if
grp(p) is a discrete subgroup T' in SLg(R), then (B,v) is the Poisson boundary for

(T, ).
Remarks 2.22. Let p be supported on a discrete subgroup I' = G, of SL;(R).

(a) Theorem 2.21 was proved independently by Kaimanovich [32] and Ledrappier
[47]. Both proofs are based on the entropy criterion 2.31.(c), due to Kaimanovich
and Vershik, for a (I, u)-boundary to be the maximal, i.e. the Poisson boundary.
Kaimanovich’ version of the result (the precise statement of which slightly dif-
fers from the above) concerns random walks on discrete groups in semisimple Lie
groups with the generating measure p satisfying finite logarithmic moment con-
dition: [loglog||gl| du(g) < co. On the other hand, Ledrappier’s proof, which
is based on Oseledec theorem requiring finite first moment, provides addition-
al important information linking the Hausdorff-type dimension of the stationary
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measure v on JF;, the Lyapunov exponents and the random walk entropy A(T', u)
(see Remark 2.34).

(b) Assuming that p is symmetric and has finite first moment, amenability of the

group G, is equivalent to the triviality of the Lyapunov spectrum: A;(p) =

- = A(p) = 0. By Theorem 2.21 this is also equivalent to the triviality of the

Poisson boundary of (G, ). Compare this with Proposition 2.35, Theorem 2.36
and Remarks 2.37.

Here we shall prove only the first part of the Theorem, and will follow Ledrappier’s
[47]. Section 2.10 indicates Kaimanovich’ argument showing that (B, v) is the Poisson
boundary for a discrete I'.

Let (£2, P) denote the bi-infinite product (G%, u*) with the (right) shift transforma-
tion # and its inverse ! i.e. (071w ) = W;_1, © € Z. Applying Oseledec theorem to
the matrix valued function A(@) = @~] on (€, P,0~1), which describes the asymptotic
of the sequences of matrices

Ay (@) =A@ @) AT A@) =@ 0T = (@ @,) T

—n
one obtains

v

(a) Lyapunov exponents A > --- > )\ defined by P-a.e. constant limits

V v | -
A4+ A = lim —-log|| AV An(@)]]
n—oo N

which are easily seen to satisfy 5\ = /\;C ]( ), i=1,...k.
(b) The measurable splitting R* = W, (0) & - - - & W, (@) 1nto subspaces such that a
non-zero vector v belongs to W;(w) iff
.1 N e e TR _
lim Log|[ 4@ = Jim g @) +-5H = Ak, = An ()
.1 _ 1 B - ‘
lim ~log [ A_y(@)] = lim loglon---@oll = —Ne_r, = Ar (1)
n—o0o 7, n—oo N

These subspaces have dimensions dim W;(@) = 7; — 7;_; and satisfy W;(0~'@) =
@-1W;(@), or equivalently woW;(@) = W;(0@), for i =1,...,7.
(c) Denote by &(@) the flag in F, corresponding to the filtration

{0} C Ey(@) C By(@) C---C E (@) =R*
where E;(@) = @!_,W;i(@). The correspondence @ + £(@) is in fact measurable
with respect to negative coordinates {...,w_o,w_1}.

Consider the transformation T of the space Q x F, defined by T'(w,£) = (6w, wof)
and denote by s; : 2 x F; — R the functions s;(w, ) = o, (w0, §). Let v denote the
measure on 2 X F, defined by

(@, ) = /Q 55 X Se(o) dP(@)
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that is 7 is the lifting of the measure P to the graph of @ — £(@). Using Oseledec
theorem one can verify that ¥ is the unique T-invariant probability measure on Q x F,
which projects onto P on Q and satisfies

/ sidv = A (@) + -+ A (p) for i=1,...,m (2.11)
QxFr

The invertible system (Q,P,0) with the shift (w); = w;,1, i € Z, is the natural
extension of the one-sided shift (fw); = w;t1, © € N, on (2, P). Consider the non-
invertible transformation 7T'(w, &) = (Qw, we€) of Q x F,, and the projection

axId: (Ax F) = (Q,F)

corresponding to the projection 7 : 2 — €2 and the identity map in the F, coordinate.
One clearly has (m x Id) o T =T o (7 x Id), and it is easy to see that the projection
(m x1d),7 of the above defined 7 is a product measure P x v where v is a u-stationary
measure on J,. The constructions are summarized by the following commutative
diagram of ergodic transformations

= wxId

Qx F,0,T) —= (Qx F,,Pxv,T)

J l

Q,P,0) —— (92,P,0)

where the systems on the left hand sides are the natural extensions of the non-
invertible systems on the right hand sides.

It follows from the construction that v satisfies the relation (2.10). On the other
hand, any ,u—stationary probability measure v/ on F, gives rise to a T-invariant mea-
sure P x v/ on (2 x F,), the natural extension of which can be uniquely realized as
(QOxF,, T, V') where ¢/ is a T-invariant probability measure o/ with (7 x1d),»’ = Px /.
Since the measure 7 is the unique T-invariant probability measure satisfying (2.11),
the uniqueness of v as in the proposition is established.

Finally, the fact the disintegration of 7 with respect to P consists of Dirac measures
at {(w) means precisely (Proposition 2.11) that (B,v) is a (G, u)-boundary. O

2.7. Boundary entropy. Let us return to the general setup of an admissible prob-
ability measure p on a locally compact group G. Consider a measurable (G, u)-space
(M, v), which is not necessarily assumed to be a (G, u)-boundary.

As we have already mentioned, the assumption that p is admissible implies that v
is G-quasi-invariant, which enables to define the following notion of boundary entropy:

(M, v) // —log d (x) dv(x) du(g) (2.12)
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provided the integral is defined. The boundary entropy (also known as Furstenberg
entropy) was introduced by Furstenberg [13] as a quantity measuring the extent of
non-invariance of a p-stationary measure v. Indeed, h,(M,v) takes non-negative
values

0<h,(M,v)<oo

with h,(M,v) = 0 iff v is G-invariant. This follows from the strict convexity of
—log x, because

hu(M,v) Z/G—log (/M dgd:y(x) dV(l")) du(g):/Glogldu(g)=0

with the equality corresponding to p,(g,z) = —logdg 'v/dv(x) being v-a.e. constant
for pu-a.e. g € GG, which is equivalent to v being G-invariant.

Remark 2.23. The quantity (2.12) can be defined for quasi-invariant probability
measure v, which are not necessarily u-stationary. The computed value remains con-
stant over all measures (with a suitable integrability condition) from a given measure
class precisely if this measure class contains a p-stationary measure (see Nevo-Zimmer
[55]).

Proposition 2.24 ([36]). Let (M,v) be a (G, pu)-space. Then for any convolution
power [P of pi the measure v is piP-stationary and hiey(M,v) =p- h,(M,v).

Proof. The function p, : G x M — R is a cocycle, i.e. satisfies p,(gh,z) = p,(g,h -
z) + pu(h,z). Thus for every p € N one has

b (M, v) = / / pu(g, ) dv(x) dis? (g)

- //p,,g,h z) dv(z) du(h) dpP = (g) //pyhxdv z) dp(h)

= /G/Mpu(g,y)dl/(y)du”‘l(g)+hu(M,V)
= h(up_l)(M7V)+hu(M7V):"':p'hM(M:V)

Proposition 2.25 ([36]). Let p : (M,v) — (My,1vy) be a G-equivariant measurable
map of (G, pu)-spaces, then h,(M,v) > h,(My,vy), with the equality achieved iff the
quotient is relatively measure-preserving, i.e. gv, = vg, for vy-a.e. © € My where
v={ M Vo dvg(x) is the disintegration of v with respect to vy.

This statement follows from the cocycle property of Radon-Nikodym derivatives,
relations p * v = v and p * vy = vy and strong convexity of —log(+).
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Given a (G, p)-space (M, v) one can consider the quasi-regular G-representation ,
of G on L?>(M,v). Then one has the estimate

mt) = [ [ <10g @) dvta) duto)

> —2log ( L[ \/%ch/(w)du(g)>

= —2log (1, m,(fi)1) = —2log (m, ()1, 1) > 2log —

1
[l (1)

which can be further improved by replacing ||, (1) | by the spectral radius ||, (1) ||, =

lim,, 0 ||, (4P)||*/P. This estimate together with Proposition 1.17 gives
Proposition 2.26. Let M be a compact metric G-space which has no G-invariant
probability measures. Then for any admissible measure p on G
inf h,(M,v)>0

uxv=v
Remark 2.27. Recall Proposition 1.3 describing the measure-preserving skew-product
system (€ x M,P x M,T). Assume that the logarithmic Radon-Nikodym derivative
ou(g,2) = —logdg~'v/dv(z) is in L*(P x v). Since T-invariant sets can be only of
the form Q2 x E, E C M, the Ergodic Theorem implies that for P-a.e. w:

h,(M,v) = /QMp,,dqu—hm Z/ py(0Fw,wy, - - - wiz) dv ()
X

n—oo N

= lim l/ pu(wn - - -wy, x) dv(x)
M

n—oo N
o1 d(wp - w) v
= JLIEOH/M_IOg 7 (z) dv(x)

If the skew-product is ergodic then one has pointwise convergence

-1
lim —llog dlwn )7 v
n—00 n dv
Observe the similarity between these expressions and the formulae for the Lyapunov
exponents (Theorem 1.8 and (1.12)). In particular, if G is a strongly irreducible
subgroup of SL,(R), i - a probability measure on G with finite first moment, such

that the Lebesgue measure vy on M = P¥~! is y-stationary, then

A(p) = / /Pk 1 log ||gu|| dvo(@) du(g)

_ gL / / Vo(ﬂ)dvo(ﬂ)du(g)
= R (P 1)

(x) = hy(M, v)
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One can check that these equalities remain true if there is a y-stationary measure in
the Lebesgue class [v].

2.8. Random Walk Entropy. In this section it will be more convenient to restrict
our attention to discrete groups which will be denoted by I'. For u to be admissible
on I' just means that ' = sgr(u), however in the current context this assumption can
be relaxed to I' = grp(u). Furthermore, some of the statements and proofs can be
reformulated for general locally compact groups.

Given an arbitrary probability measure 7 on I' define the entropy of n to be

H(n) =Y -n(y) -logn(v)

yer

with the usual convention 0 - log0 = 0. We shall say that n has finite entropy if
H(n) < oco. Given two probability measures 71,7, on I' the convolution probability
measure 7; * 1, is the image of n; x 7o € P(I' x I') under the map (g1, 92) — g19o-
The fact that the function —x - log x is strictly convex, implies that

H(m*n2) < H(m)+H(nz)  for  m,me € P(T) (2.13)

and if both 7, 7, have finite entropies then the equality in (2.13) is achieved iff every
g € supp(m * 12) has a unique factorization g = g1g» with g; € supp(n;), i = 1, 2.

Now consider the sequence of convolutions y™ of the given probability measure i on
. The subadditivity property (2.13) allows to define (Avez [2], Kaimanovich-Vershik
[36]) the following random walk entropy

A R R
(L', p) = lim — H(u") = inf — H(4")

where p™ is the n-th convolution power of u. Note that if H(u) < oo then A(L, p) <
H(p) and the the equality is achieved iff for each n > 1 every g € supp(p™) has a
unique factorization g = ¢y - - - g, with g1,..., 9, € supp(u). Thus A(T, u) describes
the average information about the steps Xi,..., X,, of a typical random walk, given
its position of the product X ---X,,.

The following analogue of Shannon-McMillan-Breiman theorem states that the p"-
weights assigned to py-random walks at time n are asymptotically equal, on the loga-
rithmic scale. More precisely

Theorem 2.28 (Kaimanovich-Vershik [36], Derriennic [6]). Let T be a discrete count-
able group, and p be a probability measure with H(u) < oo. Denote by y,(w) =
Wy - Wp, w € Q, the path of the (right) p-random walk on T'. Then

. 1 n _
Jim —— log p" (yn(w)) = h(g, p)
the convergence being both pointwise w.r.to P and in L'(Q, P).

Proof. Observe that for every n,m € N and every sequence z = (z;)2, in I" one
has p™ " (x1 -+« Toam) > p"(21 - Tn) - W™ (Tpe1 -+ Tnam)- Therefore the sequence of
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functions f,(w) = —log u"(y,(w)) satisfies frim(w) < fu(w) + f(0"w), ie. {fn}is
a subadditive sequence over the ergodic system (€2,P,#). The finite entropy condi-
tion gives f; € L'(Q,P) and Kingman’s subadditive ergodic theorem completes the
proof. n

Remark 2.29. One might view this result as the statement that the p-random walk
on I' has the number A(G, i) as its “large scale Hausdorff dimension”, by which we
mean the following. Denoting h = h(T, p)
(a) There exists a sequence of subsets A, C I with log|A,| < (h + €)n, such that
with P-probability one g, (w) € A, for all, but finitely many, n-s.
(b) For any sequence of subsets B,, C I' with log|B,,| < (h — €)n, with P-probability
one g,(w) € B, for at most finitely many n-s.

Remark 2.30. In [49] (see also [50]) Ledrappier introduced the notion of entropy
profile for a symmetric probability measure p on I' with finite entropy. Assume that
u"(e) > 0 for all n (this is always true for ' = pu * p when p is symmetric). Given
such a p consider the paths of y-random walk y,(w) = w; - - -w,. Ledrappier proves
that there exists a conver function g, : Ry — Ry such that for P-a.e. w for every
t > 0 one has

lim —log " (ym)(w)) = Bu(?) (2.14)

Observe that the entropy profile connects the spectral radius to the random walk
entropy in a very natural way:

Bu(0) = —log [[mreg(p)||  and  Bu(1) = h(T, u)
See Theorem 2.33 below for further properties.

The following fundamental facts relate the entropy of random walk to the boundary
entropy:

Theorem 2.31 (Kaimanovich-Vershik, [36]). Let u be a probability measure on a dis-
crete countable group I' with finite entropy. Then
(a) For any (I, u)-space (M, v) one has the inequality h,(M,v) < h(L', p).
(b) For the Poisson boundary (B,v) the equality holds h,(B,v) = h(T, p).
(¢) If a (T, p)-boundary (B', V') satisfies h,(B',v') = h(I', ), then (B',V') is (mea-
surably isomorphic to) the Poisson boundary (B, v).
(d) The Poisson boundary of (I', u) is trivial if and only if h(T', u) = 0.

Proof. Since v = pxv = Y . u(g) - gv one has dgv/dv(z) < p(g)~" for v-a.e.
xr € M. Thus the cocycle p,(g,z) = —logdg~'v/dv(z) satisfies for every g € T' and
v-a.e. xt € M

_ dgv
pu(g,2) = —pu(g™",g- ) = log —"(g - 2) < ~log u(9)
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so that hy,(M,v) <> . —p(g)log u(g) = H(p) and

1

1
hu(M7 V) = ﬁh(u")(Ma 1/) S EH(/'L”) — h(Falu)

which proves (a).

For the proof of (b) recall the Kaimanovich-Vershik construction of the Poisson
boundary (B, v) as the space of ergodic components of the shift 7 on (Y, Q) (sec-
tion 2.4). One can also view (B,v) as the factor (Y, Q.)/7 of (Y,Q.) defined by the
limit o-algebra 7lim,_,. 7, of the decreasing sequence of measurable partitions 7,,,
where y ~ ¢ mod (7,) iff yp = y}, for all & > n, or equivalently if T"y = T"y'.
Denote by oy the partition of Y defined by the value of y;. Let a4(y), 7,(y) denote
the equivalence classes containing y with respect to the corresponding partitions. The
computation of the conditional probabilities

Qe{ar(y) | ()} = plyr) - 1™ (yy "yn) /10" ()

gives the following relation on conditional entropies

Hion | ) = /Y 10g Qe {0a(y) | Ta(®)} dQuly) = H(w) + H(™) — H(u")

Since 7,41 < T, one has H(ay | 7,) < H(oy | Ty41) which means that the sequence
H (™) — H(p™) is decreasing. Therefore

n

WO, = lim SH(") = lim =37 (H(u) — H(g"))

n—oo M n—oo 1
k=1

= lim (H(p") - H(u"™))

n—0o0

so that

H(ay | 7) = lim H(ay | 1) = H(p) — lim (H(p""') — H(p")) = H(p) — M(T, )

n—00 n—oo
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In the following computation we shall denote by b € B the image of y € Y under the
projection (Y,Q.) — (Y, Qe)/7 = (B, V).

h(T,p) = H(u)—H(allT)
= > —ulg)logu(g) + Y _ ulg) /long(m:g\T(y))dQe(y)

= 3 -wiotognlo) + e [ 1o (o) 30
- Yuto [ 108 %22 6) vt
- S [~ 108220y

- S [ i) <5

proving (b).
Claim (c). By the universality of the Poisson boundary (B, v) there is a measurable
[-equivariant map p : (B,v) — (B','). Hence (a) and Proposition 2.25 imply

W, 1) = hu(B,v) 2 hy(B', V') = W', )

i.e. all the quantities are equal. Thus p : (B,v) — (B',V') is relatively measure-
preserving, and using the fact that (B, ) is a boundary one concludes that the disin-
tegration of v with respect to ' consists of Dirac measures, i.e. p is an isomorphism.

Claim (d). If A(T", ) = 0 then h,(B,v) = 0 by (a) and hence (B, v) is trivial. The
opposite implication follows from (b). O

We conclude with some general inequalities.

Proposition (*) 2.32 ([36]). Let T" be a finitely generated with a left invariant met-
ric d, and let p be a probability measure on I' with finite first moment. Then p has
finite entropy and

BT, 1) < 6(T, d) - A (1)
where §(T',d) = lim,_,,on""log|{g € T | d(g,e) < n}| denotes the growth exponent of
I, and X9 (p) = lim,_,o d(Sn, €)/n - the escape rate.

Theorem 2.33 (Ledrappier, [49] see also [50]). Let i be a symmetric probability mea-
sure p with finite entropy on I'. Denote r, = ||mreg(t)||. Then

4(1 = ry) < (T, p)
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If, furthermore, there is a semigroup i, t > 0, of symmetric measures so that p; = p,
then

4log(1/r,) < h(T, p)

The entropy profile B,(t), defined in 2.80, is asymptotic to log(1/r,) - t + cnst as
t — 00.

Remark 2.34. Let I' = grp(u) be a discrete subgroup of SLi(R) where p is a prob-
ability measure with finite first moment. In [47] Ledrappier established a relation-
ship between Lyapunov exponents, the entropy hA(I', z) and Hausdorff-like dimension
dim(v) of the p-stationary measure v on the natural boundary F,. In the simplest
case of k = 2 where F, = P! (unless \;() = 0) the “dimension” of the stationary
measure 1s
dim(v) = lim lim sup w
60 0 log(1/€)

where N (e, d,v) is the minimal number of e-intervals needed to cover (1 — ) mass of
v on P!. In this case Ledrappier proves the inequalities

h(T, 1) < 2X;(p) - dim(v) < h, (P, v) (2.15)

where the discreteness assumption on I' = grp(u) € SLo(R) is used only in the proof
of the first inequality. Since one always has h(T', u) > h,(P',v), there is an equality
throughout in (2.15) which in particular shows that (B, v) is the Poisson boundary
for (T, ) where B = supp(v) C P.

2.9. Triviality of the Poisson boundary. Let G be a non-amenable locally com-
pact group, and let p be an admissible probability measure on G. Non-amenability
of G is equivalent to the existence of a compact (metric) G-space M which has no
G-invariant probability measures on it. Any such space supports a u-stationary mea-
sure v, and by Proposition 2.9 the transform F{;,) gives rise to a family of lL.u.c.
bounded p-harmonic functions on G, not all of which are constant. This proves:

Proposition 2.35 (Furstenberg). For any admissible (or just generating) probabili-
ty measure p on a locally compact non-amenable group G, there exist non-constant
bounded l.u.c. p-harmonic functions.

There exist many examples of amenable groups (as small as two-step solvable) with
probability measures p which have non-constant p-harmonic functions. Furstenberg
conjectured that for any amenable group G there exists a probability measure p with
supp(p) = G, so that G has no non-constant bounded p-harmonic functions. This
conjecture was proved independently by Kaimanovich-Vershik and Rosenblatt:

Theorem 2.36 (Kaimanovich-Vershik [36], Rosenblatt [60]). Let G be a locally com-
pact amenable group. Then there exists a symmetric admissible probability measure
w with supp(p) = G such that any bounded p-harmonic function on G is constant.
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In [36] Kaimanovich and Vershik give very interesting examples of finitely generated
solvable groups (certain wreath products) for which any generating symmetric p
with finite support has h(I', u) > 0, i.e. admits non constant bounded p-harmonic
functions.

Remarks 2.37. Let us point out some situations where a group I' has no non-
constant bounded p-harmonic functions, i.e. the Poisson boundary of (I, ) is trivial:

(a) Groups I' of sub-exponential growth (i.e. those with 6(T',d) = 0) and measures
p with a finite first moment (Proposition 2.32). Recall that besides finitely gen-
erated nilpotent groups, which have polynomial growth, there are many finitely
generated groups, constructed by Grigorchuck, with so called intermediate which
is faster than polynomial but slower than exponential.

(b) Groups of polynomial growth and any probability measure pu. By the famous
theorem of Gromov such groups are virtually nilpotent. For nilpotent groups
the Poisson boundary is known to be trivial (cf. Furstenberg [14] 11.2, see also
Margulis [53] for the corresponding results on positive y-harmonic functions).

(¢) General finitely generated groups I' and measures p with finite entropy, finite
fist moment and zero escape rate: A9 (u) = 0 (Proposition 2.32). In fact,
Varopoulos proved in [66] that for finitely supported symmetric measures p on
a general discrete group T', the condition A(¥(x) = 0 not only implies, but is
actually equivalent to A(T, u) = 0.

2.10. Identification of the Poisson boundary. As we have seen, the Poisson
boundary (B, v) associated to a pair (G, u) allows to describe all bounded p-harmonic
functions on G. In order to make this description tangible one seeks to realize this
abstract measurable G-space (B, v) on some concrete (topological) G-spaces naturally
associated to GG. Theorems 2.17 and Theorem 2.21 are examples of such realizations.
In these examples the Poisson boundary is realized on some boundary 0G = G \ G
associated to an appropriate compactification G of G, i.e. a compact G-space which
has an open dense GG-orbit homeomorphic to G.

In many examples a locally compact (or discrete) group G with, say an admissible,
probability measure y, has a natural compactification G such that 0G = G \ G sup-
ports a unique stationary measure v on 0G, so that (0G,v) forms a (G, u)-boundary.
In such a situation a.e. path of py-random walk wqws - w, on G converges in G
to a unique point £ = {(w) € 0G, where X+ X,v — 6¢) € P(0G). (Observe
also that, by Lemma 1.33, the same limit point £ = £(w) is obtained as the lim-
it wy---wpg = &, € 0G for every g € G). In such a situation one would like to
know whether (0G,v) is (measurably) the mazimal (G, p)-boundary, i.e. the Poisson
boundary. In [34] and [33] Kaimanovich developed very powerful geometric criteri-
a for maximality of such a (G, p)-boundaries. Consider the discrete situation. Let
[’ be a finitely generated group with a left invariant word metric d. For r > 0 let
B, ={g €T |d(g,e) <r} denote the centered ball of radius r in T'.
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Theorem 2.38 (Strip Approximation, Kaimanovich [34] 14.4). Let u be a finite
entropy probability measure on ' as above. Assume that (By,v,) and (B_,v_) are
boundaries for (T, p) and (T, 1) respectively, where ji(g) = u(g~'). Assume that there
exists a I'-equivariant map S, assigning to v_ X vy-a.e. pair (€-,£.) € B_ x B, a
non-empty subset S(€_,&,) of I', such that for v_ X vi-a.e. (£-,&4)

1
108 [S(€-€4) N Buguwye)| = 0

in probability with respect to P, where g,(w) = wy -+ -wy. Then (B_,v_) and (B4, vy)
are the Poisson boundaries for (I', u) and (T, i) respectively.

The proof of this criterion is based on Theorem 2.31.(c). Applicability of the criteri-
on depends on the existence of the “strips” S(£_, £, ) with sub-exponential intersection
with the centered balls By, (w.e))- If 4 has a finite first moment then d(g,(w),e) has
a linear growth. Hence if one can find “strips” S(£_, ;) with sub-exponential growth
the condition of the theorem would be satisfied. However, if one can find “strips”
S(&_, &) with a polynomial growth, the condition applies to a larger class of measures
1, namely those with a finite first logarithmic moment:

) "logd(g, e) du(g) < oo

In [34] Kaimanovich used this strip approximation criterion (and other related tech-
niques) to realize the Poisson boundaries (B, v) for several classes of groups I' on
certain boundaries OI" associated to some natural compactifications I' of I'. Here is a
brief list of such results (see [34] for details):

1. Word hyperbolic groups [' and g with finite entropy, finite first logarithmic
moment and non-elementary I', = grp(x). The relevant “geometric boundary”
OT is the hyperbolic (ideal) boundary.

2. Groups I' with infinitely many ends, and measures p with finite entropy, fi-
nite first logarithmic moment and non-elementary I', = grp(x). The relevant
“geometric boundary” OI is the the space of ends £(T').

3. Cocompact discrete groups I' of isometries of rank one Cartan-Hadamard man-
ifolds, and measures p with finite first logarithmic moment, finite entropy and
grp(u) = T'. The relevant “geometric boundary” 0T is the the visual boundary,
homeomorphic to a sphere (see also Ballmann-Ledrappier [4]).

4. Non elementary subgroups in the Mapping Class Groups (joint work of Kaimanovich
and Masur [35]). The “geometric boundary” in this context is Thurston’s com-
pactification of the Teichmiiller space. This identification of the Poisson bound-
ary allowed Kaimanovich and Masur to prove that a non-elementary subgroup
of a mapping class group cannot be isomorphic to a higher rank lattice.

5. Discrete subgroups I' of SLi(R) and measures p with finite entropy, finite first
logarithmic moments and grp(u) = I'. The relevant boundary is an appropriate
flag variety (Stake-Furstenberg compactification) (see Theorem 2.21 and the
following remarks).



58 ALEX FURMAN

In [34] one can also find descriptions of the Poisson boundary for several other classes
of groups, including polycyclic groups, some solvable groups and wreath products.

2.11. Towards a Structure Theory for (G, u)-spaces. Measures, especially in-
variant ones, have proved to be an important tool in the study of group actions on
topological spaces, and manifolds in particular. Since actions of non-amenable groups
GG on compact spaces do not always have invariant probability measures, but always
admit stationary measures (for any probability measure on the group), it is highly
desirable to develop a structure theory for (G, u)-spaces, at least in the measurable
category. This goal is still beyond reach, but one can speculate that (G, u)-boundaries
and measure-preserving systems are the potential building blocks of such a structure
theory.

Let (M,v) be a (measurable) (G, u)-space where y is an admissible measure on a
locally compact group G. Let B denote the Lebesgue (complete) o-algebra of (M, v)
and let Bry denote the smallest complete sub-o-algebra Bgry of B with respect to
which the Radon-Nikodym derivatives r,(g,-) = dg 'v/dv(-), g € G, are all mea-
surable. This o-algebra Bry is G-invariant (this basically follows from the cocycle
property of r,) and therefore gives rise to a measurable G-equivariant factor (G, u)-
space

p: (M,v) = (Mg, VeN)
which is called the Radon-Nikodym factor. Radon-Nikodym factor was introduced
by Kaimanovich and Vershik in [36] in the discrete groups setting. For the details of
the construction in general case see Nevo and Zimmer in [55]. The Radon-Nikodym
factor has the following nice properties with respect to boundary entropy:

Proposition 2.39 (Kaimanovich-Vershik [36], Nevo-Zimmer [55]). Let (M,v) be a
(G, p)-space with finite boundary entropy, and let (Mgry,vry) denote the Radon-
Nikodym factor. Then
(i) hy(M,v) = hy(Mgn,ven) sothatp: (M,v) — (Mgn, vrn) is relatively measure-
preserving extension of G-spaces.
(ii) Ewvery non-trivial G-equivariant factor (My,vy) of the Radon-Nikodym factor
(Mgn,vrN) has strictly smaller boundary entropy: h,(My,vo) < h,(M,v).

In a sense the Radon-Nikodym factor filters out (the outer layer of) the measure-
preserving part of the action.

Recently Nevo and Zimmer studied the structure of (G, u)-spaces (M, v) where G
is a semisimple Lie group, u is an admissible measure y on G, and (M, v) has finite
positive boundary entropy, i.e. v is not G-invariant. Let us just mention the following
(the reader is referred to Nevo-Zimmer [55], [56] for further results):

(i) If G is a simple Lie group with rkg(G) = 1, there exists a (G, u)-space (M, v)
with h,(M,v) > 0 which does not have any non-trivial (G, u)-boundary as a
factor. In particular, for such spaces the Radon-Nikodym factor is not a (G, p)-
boundary (compare with [36] 3.6).
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(ii) For (semi)simple Lie group G with rkg(G) > 2 any (G, p)-space (M,v) with
h,(M,v) > 0 has a non-trivial measurable boundary factor (M,v) = (G/Q,va/q);
moreover under some necessary assumptions (M, v) has a boundary factor G/Q
with the full boundary entropy h,(M,v) = h,(G/Q,va)q), in which case the
G-action on (M, v) is an induced G-action from G/Q by a measure-preserving
Q-action on some space (Y, 7).

These results turn out to be closely related to Margulis’ Normal Subgroup Theorem !
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3. RANDOM TRANSFORMATIONS

Let ® be a family of transformations of a space X, u a probability measure on ,
and {¢,,n > 0} a sequence of independent ®-valued p-distributed random variables
defined on the product probability space (Q2,P) = (®Y, uV). Let

Sn(w) = @n(w) 0+ 0 ga(w) 0 1 (w)

be the corresponding product of transformations. The subject of our discussion will
be the typical (with respect to P) behavior of the sequence {S, (w),n > 0} of transfor-
mations of the space X. (To make this setup precise, a measurable structure should
be introduced on ® and X so that the action ® x X — X is measurable). If the
transformations ¢ € ® are invertible, as we shall assume for convenience, one can talk
about the group G of transformations of X, generated by the family ®. Thus {S,(w)}
become paths of u-random walks on G. In the previous chapters we focused on the
connections between the structure of the group G and properties of the random walks
Sy, on it, while here we shall be interested in understanding the action of G on X
using the properties of random transformations S,.

3.1. The Random Ergodic Theorem. Let (X, ) be a probability space, ® = {¢}
a family of measure class preserving transformations of (X,v), u - a probability
measure on ® such that (¢,z) — ¢(z) is measurable map mapping p X v onto v
(in other words (X,v) is a (G, u)-space where G is the group generated by ®). For
1 < p < oo consider the Markov operator P acting on LP(X,v) by

0= [ 1)

Consider the product space (Q,P) = (®Y, uN) with the shift , (fw); = w;,1, and
the skew-product measure-preserving transformation 7' of (2 x X, P x v) defined by
T(wa .’E) = (9&), wl(x))'

Theorem 3.1 (Random Ergodic Theorem). With the notations as above, the follow-
ing conditions are equivalent:
(a) Every measurable set E C X for which m(¢~*EAE) = 0 for p-a.e. ¢ € ®, is
measurably trivial, i.e. v(E) =0 orv(X \ E) = 0.
(b) The Markov operator P on LP(X,v), 1 < p < o0, is ergodic, i.e. Pf = f for
feLP(X,v) iff f(x) = c constant v-a.e.
(¢) The skew-product (2 x X,P x v,T) is ergodic.
If these conditions are satisfied then for every function f € L'(X,v) with P-probability
one the sequence of random products {Sp(w) = wp 00w}, satisfies

JE&NZf o)) = [ g

the convergence being pointwise w.r.to v and in L'(X, v).
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Remarks 3.2. (a) The case of v being invariant, rather than u-stationary measure,
is known as Kakutani’s Random Ergodic Theorem [37]. The proof of the theorem
in the general case below is borrowed from Kifer [41] pp. 19-21.

(b) If the skew-product (2x X, Pxwv, T) is not ergodic, the T-invariant measure P x v
can be disintegrated into a family of T-ergodic probability measures, which can
be shown to have a form P x v, where v; is a u-stationary ergodic measure (see
Kifer [41] A1). If X is a compact G-space (G-is a group generated by ®) then
this decomposition is precisely the presentation of the p-stationary measure v
as a convex (integral) combination of the set of extremal p-stationary measures
V.

(c) Let G be a locally compact group, M a compact metric G-space, u - an admissi-
ble probability measure on GG, then the Random Ergodic Theorem implies that
for a p-stationary measure v on M the G-action on (M, v) is ergodic iff v is an
extremal point in the convex compact set of u-stationary measures on M.

(d) In the measure preserving case, where v is an invariant measure, under fairly
general conditions on y (p is symmetric or ™ and ™! are not mutually singular
for some n > 1) the skew-product (2 x X,P x v,T) is not merely ergodic
but is ezact, i.e. its natural extension is a K-automorphism ([10] Appendix
B). However, in general the skew-product is not Bernoullian (Kalikow’s T, T~'-
theorem).

Proof of Theorem 3.1.

The implications (¢) = (b) = (a) are evident. To show that (a) = (b) let f €
LP(X,v) be P-invariant. Then |f| = |Pf| < P|f|so that P|f|—|f| is a non-negative
function in L”(X,v), and since P*v = v one has

[ @isi=imdr= [ 11aP- [ 1f1dv=0

which means that v-a.e. P|f|(z) = |f(z)|, i.e. |f|is P-invariant. Hence f*(z) =
max{ f(z),0} = (|f(x)| 4+ |f(z)|)/2 is also a P-invariant function, so the set E = {z |
f(x) > 0} satisfies v(¢p"'EAE) = 0 for p-a.e. ¢ € ® and is therefore measurably
trivial by (a). Repeating this argument for the P-invariant function f(z) — ¢, where
c is a constant, one concludes that all sets {z | f(z) > ¢} are measurably trivial, i.e.
f is a constant function, proving (b).

Now assume (b), and let h(w,z) € L*(Q2 x X,P x v) be a T-invariant function,
so that h(fw,w; - £) = h(w,z). For n > 0 let B, denote the o-algebra generated
by x, w1, ..., w, and let hg(x), hy(wi, - - -, wn, z) denote the projections of h to H, =
L*(B,) C H = L*(P x v). In probabilistic terms

hn(wi, ... wn,x) = E(h(w,x) | wi,.-.,wn)
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are the conditional expectations of h with respect to wi,...,w,. Since h(w,z) =
h(0"w,wy, - - -w; - £) we have

hn(Wiy ey Wny &) = hpoy(wWay . .oy Wpywy - T) = -+ = ho(wy - - w1 - T)
(3.1)

In particular ho(x) = EE(h(w,z) | w1) = Ehi(wy,2) = Ehy(w; - £) = Pho(x),
which by (b) means that ho(xz) = c is a constant v-a.e. In view of (3.1) all func-

tions hp(wi,...,wp, ) = c are constant. Since H, increase to the whole space
H = L?(P x v) the limit function h(w,z) has to be constant ¢, and assertion (c)
follows. a

The following is a topological analogue of the Random Ergodic Theorem. Recall,
that a continuous action G x X — X of a locally compact group G on a metric
compact X is minimal iff every orbit G -z, € X, is dense in X.

Theorem (*) 3.3. Let G be a locally compact group with a continuous minimal ac-
tion G x X — X on a compact metric space X. Let p be a probability measure on
G so that G = sgr(u), and let S,(w) = fu(w) - - - fi(w) denote the random products of
the p-generated random walk on G. Then there exists a set Qy C Q with P(y) =1
so that for all w € Qy and every x € X the sequence {S,(w)-z,n > 0} is dense in X.

3.2. Strong ergodicity and Rate of convergence. Consider a measure-preserving
action (X, m,G) of a locally compact group G, i.e. a jointly measurable action G X
X — X where each g € (G acts as a measure-preserving transformation of the standard
probability space (X,m). As usual such an action is called ergodic if if there are no
measurable sets £ C X with 0 < m(E) < 1 such that m(¢g"*EAFE) = 0 for every
g € G. Random Ergodic Theorem 3.1 (in this case Kakutani’s Theorem) implies

Corollary 3.4 (Kakutani’ Random Ergodic Theorem). Let (X, m,G) be an ergodic
measure-preserving system and pu a measure on G with grp(u) = G. Then for every
function f € LY(X,m) P-a.e. path {S, = wy---wi} of the u-random walk on G

N
. 1
nggoﬁz_‘;f(sn-x)—/xfdm
in L'(X,m) and for m-a.e. v € X.

Proof. Tt suffices to show that any measurable set £ C X with m(¢~'EAFE) = 0 for
p-a.e. g € G has m(FE) € {0,1}. The unitary G-representation 7 on L?(X,m)

(m(9)f)@)=flg™ -2)  (f€L*(X,m), g€G)

is continuous (in the weak topology), and the indicator function 15 € L*(X,m) is a
fixed vector for p-a.e. g € G. By continuity, it is fixed by all of grp(u) = G. As the
system (X, m, Q) is ergodic, the only 7(G)-invariant vectors are constant functions,
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which means that F is measurably trivial. 0

Note the following features of the corollary:

Representative behavior: The ergodicity of the G-action forces a.e. paths of the
p-random walk on G to become equidistributed on (X, m).

One dimensional behavior: The paths of a random walk are indexed by N and there-
fore allow to obtain “random walk” analogues of the classical ergodic theorems
for single transformations.

The dependence on u: The random walks are defined using an auxiliary distribu-
tion y on G, but the equidistribution phenomenon obtained is independent of
i, provided p is generating G.

Let (X, m, G) be a measure-preserving system and 7 denote the unitary G-representation
on L*(X,m). As the constant functions form an invariant subspace, the orthogonal

complement
/ fdm = 0}
X

is m(G)-invariant as well, and we shall denote by m, the restriction of w to LZ(X,m).
Given a probability measure p on G form the average operator mo(u) on L3 (X, m).
Then mo(p) is a semi-contractions, i.e. ||mo(u)|| < 1, and if u is symmetric then
mo(p) is self adjoint. In any case, mo(fi * ) = mo(p)*mo (1) is a positive self-adjoint
semi-contraction.

Suppose that y is generating, i.e. grp(u) = G. The following conditions are well
known to be equivalent to ergodicity of the system (X, m,G):

LY(X,m) = {f € L*(X,m)

(a) The G-representation my on LZ(C,m) has no non-trivial invariant vectors.
(b) The operator my(p) has no non-trivial fixed vectors in L3(X, m).
(¢) m is the unique G-invariant mean on LP(X, m) for 1 < p < oc.

(Recall that a mean on LP(X,m) for 1 < p < oo is a positive, finitely additive
functional, normalized by m(1) = 1.)

We shall say that a probability measure p on a locally compact group G is aperiodic
if it is not supported on a coset of a proper closed subgroup of G, equivalently if
grp(ft * ) = G. Observe that if u is aperiodic on G, then condition (b) above can be
replaced by

(b’) The semi-contraction mo(x) has no eigenvalues on the unit circle.

The following result describes natural strengthennings of conditions (a), (b’), (c).
We shall formulate it for actions of discrete countable groups I'.

Theorem 3.5 (Schmidt [62], Furman-Shalom [10]). Let (X, m, ") be a measure-preserving
system, where " is a discrete countable group, and let p be an aperiodic probability
measure on I'. Then the following conditions are equivalent:

(a) [[mo(p)ll < 1.
(b) The T-representation my on L3(X,m) does not have almost invariant vectors.
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(c) m is the unique I'-invariant mean on L*®(X,m).

If the above conditions are satisfied the system (X, m,I") will be called strongly
ergodic.

Remarks 3.6. (i) Theorem 3.5 has a partial generalization to actions of locally
compact groups, in which case the implications (¢) = (b) = (a) hold assuming
certain regularity of u (see [10]), but the equivalence of these conditions ceases
to hold in general.

(ii) Strong ergodicity is a feature of non-amenability. In fact, a group I" is amenable
iff I' has no strongly ergodic actions. On the other hand a group I" has Kazhdan’s
property (T) iff all its ergodic actions are strongly ergodic (Connes-Weiss [5]).

(iii) There are many natural examples of strongly ergodic actions beyond those of
Kazhdan groups. For example, any subgroup I" C SL,,(Z), which is not virtually
abelian and acts irreducibly on R", acts strongly ergodically on the torus T" =
R"/Z"™ (see Furman-Shalom [10] for details and further examples).

It is well known that in the classical ergodic theorems for Z or N, von Neumann’s
mean ergodic theorem or Birkhoff’s pointwise ergodic theorem, no uniform rate of
convergence can be achieved for all L? or even L™ functions in any non-trivial ac-
tion. However, the following result shows that strongly ergodic actions exhibit certain
universal rate of convergence in the context of Kakutani’s Random Ergodic Theorem:

Theorem 3.7 (Furman-Shalom [10]). Let (X, m, Q) be a measure-preserving ergodic
system and p a probability measure on G so that the unitary G-representation on
L(X,m) has a spectral gap ||mo(p)|| < 1. Given an arbitrary measurable function f
on (X, m) form the sequence of partial sums

F.(f,w,z) = zn:f(Sk(w) - 1) where Sp(w) = wg -+ w1
k=1

Then, for any f € L*(X,m) and any € > 0, for P-a.e. w € Q one has

log"/*™ (3.9)
=o| —>—— .
L2(X,m) vn

Random Pointwise Ergodic Theorem: for m-a.e. x € X

3/2+e
‘%Fn(f,w,x)—/fdm‘:0(¥>

Functional CLT: If f € LP(X, m) for some p > 2, and f is not a constant function,
then there exists a o > 0 so that the linear approzimation ¥, (w,x,t), t € [0,1],

Random Mean Ergodic Theorem:

ahre) = [ fam
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determined by the discrete values

i3, /) = (Fk(f,w,w =

converge in distribution (w.r.to P X m) to the canonical Wiener measure on

C([0,1]).

fdm), (k=0,...,n)

Remarks 3.8. (i) The spectral gap assumption in the Theorem is essential: if mg
has almost invariant vectors in L3(X,m) then for every sequence a, — 0 one
can find an f € L*(X,m) so that |F,(f,w, ) — [ fdm]| > a, infinitely often
with P-probability one.

(ii) Recall that for a measure-preserving system (X, m,G) to be weakly mizing (i.e.
not to have finite dimensional G-invariant subspaces in L?(X, m)) is equivalent to
ergodicity of the diagonal action (X x X, mxm, G). If the latter diagonal action
has a spectral gap ||my @ mo()|| < 1 then random walks on G have exponentially
fast mixing properties for the original G-action on (X, m) (see [10]).

3.3. Entropy for random transformations. Let ® be a family of invertible mea-
surable transformations of a probability measure space (X, v), u - a probability mea-
sure on ® so that v is a u-stationary measure. As before we denote by G the group
generated by @, (Q,P) = (®", uN) and denote by S, = w, ---w; the product (ac-
tually composition) of u-distributed independent ®-valued variables, which we call
pu-random transformations.

In [41] Kifer introduced the following notion of entropy for this setting of random
transformations. Given a finite measurable partition P of (X, v), define

1
h*(P,G) = lim — [ H(S;2,PV---V S{'PV P)dP
n—0o N Jo
and let 2*(X, Q) = supp h*(P,G) over all finite measurable partitions P of (X, v).
One can verify that the limit exists. In fact, h*(X, ®) is precisely the relative, or
fiber, entropy introduced by Abramov and Rohlin for the computation of an entropy

of a skew-product relative to the base system. In our setup the skew-product is
Qx X,Pxv,T), T:(w,x)— (w,w;(x)) and the base is (2,P, ). So one has
hQ x X,T) = h(Q,0) + k*(X, G)
but 2#(X, G) is well defined (finite or infinite) even when the other two entropies are
infinite. ~
It is clear from the definition that A*(X, G) is an invariant with respect G-equivariant

measurable isomorphisms, and it does not increase when (X, v) is replaced by a mea-
surable equivariant factor. One also has

R¥N(X,G) =p-h*(X,Q) (3.3)

for every convolution power p” of p.
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If v is not only stationary, but rather invariant measure for p-a.e. ¢ € GG, then for
every finite partition P the functions

fo(w)=H(S, [ (W)PV---VSi(w) PV P)
satisfy
farm(@) = HVELS,(w) PV VIZES;(w) ' P)
H(VE18(w) ™ P) + H(VIZ) S (w) ™' P)
H(Su(w)™" V%' Si(0"w) ™' P) + H(V}ZS;(w) ™' P)
fm(0"w) + fr(w)

Thus { f,(w)} form a bounded (f, < H(P) < oo) subadditive cocycle over the ergodic
system (€2, P,#), and by Kingman’s subadditive ergodic theorem for P-a.e. w

VANRVAN

lim SH(S, 1(w)"' PV -V P) = B(P,G) (3.4)

n—oo N

In this case one also has h#*(X,G) = h*(X,G), where ji denotes the reflected measure
dji(g) = dp(g™").

In some cases h*(X,G) can be related to the usual entropy. For example, if y is a
distribution on powers {T",n € Z} of a single measure-preserving transformation 7’
(or on an R-flow T%) of a measures space (X, v), then assuming that p has finite first
moment

/\x| du(z) < oo

one can prove that

h(X,Z) = |bar(u)| - h(X,T)
where h(X,T) is the Kolmogorov-Sinai entropy and bar(x) € R is the barycenter of
of u, defined by bar(u) = [z du(z). In particular, in the case of a measurable action
of I' = Z (or R) the entropy of y-random transformations vanishes for all symmetric
4 with finite first moment.

3.4. Lyapunov exponents and non-random filtration. Let (X,v) be a proba-
bility measure and G a group of measurable transformations endowed with a Borel
structure and a probability measure y on G so that v is u-stationary. Let D : Gx X —
GLi(R) be a measurable cocycle, i.e. D(gh,z) = D(g,h-x)D(h,z) for v-a.e. z and
pu-a.e. g, h € G. Impose the following integrability condition on D

| [ tog 1D(0.2)11+ 105" 100, ) 1) dvl@) dute) <0 .5)

where logt ¢ = max{0, logt}.
Consider the skew-product (2 x X,P x v,T) and the matrix-valued measurable
function A : Q x X — GLg(R) defined by A(w,z) = D(wy,z). For n > 1 set

Ap(w,2) = (AoT" v AoT - A)(w,x) = D(wy - - - wowi, &) = D(Sy,(w), )
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Then A,y = ApoT™A,, for all m,n € N. Finite first moment condition (3.5) means
that both log™ ||A|| and log™ ||A7|| are in L}(P x v).

Assume for convenience that the skew-product transformation 7T is ergodic (see
Remark 3.2.(b)). Then the matrix-valued function A :  x X — GLg(R) gives rise
to the Lyapunov exponents Ay > Ay > --- > )\, defined inductively by

1
Mty = i sl A Anle )l P
X
1 n
— lim / / log | A D(g, 2)l| dv(z) du"(g)
n—=o N JaJx

forp=1,2,...,k. Since these exponents are associated to the cocycle D : G x X —
GLk(R) and the measure p, we shall denote them by

Al(Dau) > 2 )\k(D7IU/)
By Oseledec theorem there exists a measurable filtration
{0} = Espq(w,x) C Ey(w,z) C -+ C Ey(w,z) C Ey(w,z) =R"

of R" by nested subspaces of dimensions dim F;(w,z) = 73, i = 1,...,s, where 7; are
precisely the indices of strict inequalities A\,,_1(D, p) > A, (D, u), and E;(w,x) are
characterized by the property that u € E;(w,z) \ Ejt1(w, z) iff

1 1
lim —log [ An(w, z)ull = lim —log||D(Sy(w), #)ull = A (D, )
n—0oQ

n—oo 1N
Moreover the subspaces F;(w, x) are related by A(w, z)E;(w,z) = E;(T(w, x)), i.e.
D(wi, z)Ei(w, z) = Ei(fw,w: - )
However, besides the Oseledec filtration, which depends on both z € X and w € ,
there is a non-random filtration analogous to the one described in section 1.4, which

describes the P-a.e. constant growth rate n~'log||D(S,.(w),z) u|| in terms of z and
u € R* only. More precisely

Theorem 3.9 (Kifer, [41], chapter III). Let G, pu, (X,v) be as above and let D : G x
X — GLg(R) be a measurable cocycle satisfying (3.5). Assume that v is an ergodic
wu-stationary measure. Then there exist integers k = ky > ko > --- > k. > k.41 =0,
constants

M(D,p) > M(D,p) > >M(D,p)  with  A\(D, p) = M\ (D, )
and a measurable map X — F, . r,) which assigns to v-a.e. x € X a flag
{0} = Lyy1(z) C -+ C Ly(x) C Ly(z) =R” dim E;(z) = k;
so that for each v =1,...,7r one has for v-a.e. x € X

D(g,z)Ei(x) = Ei(g-x)  for  p—aeg
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and u € E;(z) \ Fiy1(x) iff for P-a.e. w

lim —log || D(S, (), 2)ull = (D, p)

n—oo

Remarks 3.10. (a) This non-random filtration can also be described in terms of

(e)

the supports of p-stationary measures on X x P¥~! which project onto v, where
G acts on X x P*" 1 by g : (z,4) — (g-z,D(g,7) - u). See Kifer [41] for the
precise statements which generalize the ones in Theorem 1.11, where the latter
corresponds to the case of trivial X = {pt}.

As in Theorem 1.11 let us point out that the exponents A (D, ), ..., A\(D, p)
form a subset of the Lyapunov exponents A (D, ), ..., \e(D, u), and typically
the former is a proper subset of the latter.

If the cocycle D : G x X — GLg(R) is measurably irreducible in the sense that
there does not exist a measurable B : X — GLg(R) (it is sufficient to consider
B : X — SO(k)) so that the cocycle Di(g,z) = B(g-x)"'D(g,z) B(x) takes
values in a reducible subgroup of GLg(R), then 7 = 1 and every u # 0 satisfies

Llog ]| D(S, (), 7)ull = (D, ) = (D, )

for P-a.e. w and v-a.e. x € X.

One of the applications of Theorem 3.9 is in the study of regularity of A1(D, u)
as u varies (compare Theorem 1.46). For example, one can show that if v is
an invariant measure and p, — p are measures on a fixed, say locally compact
group G, so that p is generating, p, satisfy a uniform first bound condition (3.5)
and D is measurably irreducible, then Ai(D, p,) — Ai(D, p). See Kifer [41] for
further results.

If v is p-stationary but not ergodic, then one can apply the theorem to the
ergodic components to obtain a non-random filtration where r, the dimensions
k; = dim F;, and the corresponding exponents i might depend on z but not on
w.

One of the natural situations where a cocycle G : G x X — GLi(R) appears
naturally is when X is a (compact) Riemannian manifold and G is a group of diffeo-
morphisms of X, with D representing the derivative cocycle (under some measurable
trivialization of the tangent bundle 7X). The non-random filtration, described in
Theorem 3.9 gives in this context a measurable family of G-invariant subbundles of

TX,

which describe the (non-random) growth of the tangent vectors to X under

P-a.e. random product of diffeomorphisms from G.

3.5. Entropy for random diffeomorphisms. Let X be a compact Riemannian
k-manifold and g be a probability measure on G C Diff?(X), considered with the
Borel structure defined by the C%-topology. Let v be a p-stationary measure on X.
Choosing a measurable trivialization of the tangent bundle 7°X one can consider the
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derivative cocycle
D:G x X — GLg(R) D(gh,z) = D(g,h - x)D(h,z)

Assume that g on G has finite first moment in the sense of (3.5), and consider the
case where p-stationary measure v is in the Lebesgue class on the manifold X.

Theorem 3.11 (Kifer, [41] p. 160). With the notations as above, assume that the
pu-stationary measure v is in the Lebesgue class on X. Then

k
Z )‘Z(D’ M) <0
1=1

and the equality holds if and only if v is invariant, i.e. gv = g for p-a.e. g € G.

The next result requires a technical assumption of integrability of the C2-norms
|gle2 of the elements g € G C Diff*(X)

/ log" |glc2 du(g) + log* g~ |2 diu(g) < o
G

Theorem 3.12 (Ledrappier-Young, [51]). Let G, pu, (X,v) be as above where the -
stationary measure v on X s in Lebesgue class. Then

WX,G) = > XND,p

Ai(D,)>0

This is a random version of Pesin’s formula for a single diffeomorphisms preserving
a smooth measure. In the case of v being invariant it can be deduced from the relative
version of Pesin’s formula on the skew-product. However, in Theorem 3.12 the individ-
ual diffeomorphisms are not assumed to preserve a smooth measure. Ledrappier and
Young [51] further prove that if A;(D, ) > 0 then the limit measures v, = wy - - - wyV
are SRB measures with respect to a random (i.e. w-dependent) stable foliation.

3.6. Measure-preserving K*-property. Let us return to a general measurable
setting, focusing on measure-preserving actions. Consider, say locally compact, group
G acting ergodically by measure-preserving transformations on a probability space
(X, m) (we use m for the measure to emphasize that it is invariant). Take a generating
probability measure  on G. We shall consider y and p-random walks on G as an
auxiliary tool for the study of the G-action on (X, m). The entropy h*(X,G) is an
invariant of the action (X, m,G) which depends on p.

The definition of entropy for p-random transformations, is quite similar to the
Kolmogorov-Sinai definition of the entropy of a single transformation. In particu-
lar, one has a natural random (i.e. path-dependent) analogues of the time direction,
past and future, which allow to generalize many classical results to the random en-
tropy setup. For example, the theory of K-automorphisms for actions of Z admits a
generalization to actions of general groups G in the the random walk setting.
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Theorem 3.13 ([9]). Let (X, m, Q) be an ergodic measure preserving system, and let
1 be a generating probability measure on G. The following conditions are equivalent:

(a) Any non-trivial measurable G-equivariant factor system (Xo, mo, G) has positive
p-entropy h*(Xo, G) > 0.
(b) For any finite partition P of (X, m) the tail partition

Po(w) = Ay Vit Sk(w)™'P
s measurably trivial for P-a.e. w.
(¢) For any non-trivial partition P for P-a.e. w € §2 one has
lim sup Im(ANB) —m(A)-m(B)| =0

N0 AeP,BeV.  Sk(w)~1P
A system (X, m,G) satisfying the above conditions can be called K#-system.

Remark 3.14. Condition (c) describes a phenomenon of strong (uniform) mixing
along p-random walks, taking place in p-K-systems. However, this type of mixing, in
general, does not imply that the I'-action on (X, m) is mixing in the usual sense.

Example 3.15. Let I' C SL(Z) act on the k-torus T* = R¥/Z*, whose action on R*
is strongly irreducible. Then (T™,T') is a K"-system for any generating probability
measure 4 on I' with finite first moment.

3.7. Cocycle growth along p~-random walks. Let (X, m,G) be an ergodic measure-
preserving system. The value of the numeric invariant h#*(X, G) of the action typically
depends on the auxiliary generating measure y on G (observe the relation (3.3)). It
is natural, however, to ask to what extent the positivity of iz“(X ,G) depends on y ?

In the smooth setup, where X is a compact Riemannian k-manifold with the Rie-
mannian volume m and G C Diff2,(X) is a group of volume preserving diffeomor-
phisms, positivity of the p-entropy h#(X,G) > 0 is equivalent, by Theorem 3.12, to
the condition

)\1(D, ,U,) >0

where D : G x X — SL/x(R) is the derivative cocycle (the target group is SL'x(R)
rather than GL,(R) because we assume that elements of G preserves the volume m).
So the question becomes: under what conditions on (X, m,G) and D : G x X —
SL'k(R) the alternative Ay (D, ) > 0 or A1 (D, i) = 0 does not depend on an auxiliary
measure 4 !

One can consider the following general setting: G is a group acting ergodically
by measure-preserving transformations on an abstract probability space (X, m), and
D : G x X — SL/x(R) is a measurable cocycle with

/ log||D(g,z)|| dm(z) < 00 Vg eG
X

(this is automatically satisfied in the context of diffeomorphisms). Let u be a gen-
erating probability measure on G' and assume that y has finite first moment in the
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following sense

/G /X log | D(g, 2)|| dm(z) dys(g) < oo (3.6)

Let A\;(D,u) > -+ > A\(D, ) denote the corresponding Lyapunov exponents.

Observe that if (X,m) is the trivial space (single point) then any cocycle D :
G x{pt} — SL'k(R) is just a homomorphism D : G — SL/x(R). Condition (3.6) in this
case is equivalent to the finite first moment condition for the push-forward measure
D,y on SL'k(R), and A\p(D, u) = A\p(Dypt), p = 1,2,..., k. Recall that Furstenberg’s
condition 1.14 for A\;(D,u) > 0 is stated in terms of the group grp(D,u) C SL'k(R)
rather than the measure D,y itself. For every generating u on G one has grp(D,u) =
D(G@) and assuming that the latter is not compact, and is strongly irreducible one
has )\1(D, ,LL) = )\1(D*/,L) > 0.

In the framework of measurable cocycles D : G x X — SL/x(R) we shall use the
following:

Definition 3.16. Let G be a group acting by measure-preserving transformations
on a probability space (X, m). Two cocycles C,D : G x X — L = SL',(R) are said
to be (measurably) cohomologous if there exists a measurable function B : X — L
so that D(g,z) = B(g - z) 'C(g,z)B(x) for every ¢ € G and m-a.e. € X. A
cocycle D : G x X — L is said to be non-compact/strongly irreducible | Zariski dense
respectively if it is not measurably cohomologous to a cocycle C': G x X — Ly C L,
taking values in a compact/virtually reducible/proper algebraic subgroup Ly in L =
SL'k(R), respectively.

With these definitions we can formulate a cocycle generalization of Furstenberg’s
condition for non-triviality of the Lyapunov spectrum, for measurable cocycles over
strongly ergodic systems. To avoid certain technicalities assume that G is a discrete
countable group.

Theorem 3.17 ([9]). Let (X, m,G) be a strongly ergodic system and D : G x X —
L = SL/k(R) be a measurable cocycle. Assume that the cocycle D is strongly irreducible
and non-compact. Then for any generating measure u on G with finite first moment
(8.6) one has M\ (D, ) > 0.

We postpone the proof of this result to the end of the section.

Remarks 3.18. (a) The assumption that (X, m,G) is strongly ergodic is used in
the proof below, but it might be unnecessary for the result.

(b) It is conceivable that Theorems 1.23 and 1.25 can also be extended to the cocycle
setting. In particular, it is plausible that the cocycle Lyapunov spectrum is
simple, i.e. A(D,p) > Ao(D,pu) > -+ > M\(D, ), provided D : T' x X —
SL/k(R) is Zariski dense (and possibly assuming the action (X, m,I") is strongly
ergodic).
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Theorem 3.17 can be used in the analysis of not strongly-irreducible cocycles as well
(for that one needs to consider certain finite extensions of the original G-action and
reducible cocycles over these extensions). For a general cocycle D : G x X — SL/x(R)
over a strongly ergodic system (X, m,G) it can be proved that for all symmetric
generating measures p on G satisfying finite first moment condition either Ay (D, u) =
0 or A\ (D, p) > 0 for all symmetric measures p with finite first moment (the first case
corresponds to the algebraic hull of the cocycle D being amenable). This gives the
following

Corollary 3.19. Let X be a compact Riemannian manifold, T C Diff? (X) a count-
able group of volume-preserving diffeomorphisms such that the T'-action on (X, m)
s strongly ergodic. Then the entropy /Nz“(X ,T') either vanishes or is strictly positive
stmultaneously for all symmetric generating measures p on I' with finite first moment

(3.6).

In other words, under the above assumptions of smoothness and strong ergodicity
the positivity of random entropies h*(X,I') is an invariant of the action (X, m,I)
which is independent of the choice of the symmetric generating p on T'.

In the special case of G being a discrete group I' with Kazhdan’s property T, a
sharper dichotomy can be proved, namely

Theorem 3.20 ([9], [71]). Let T be a discrete group with Kazhdan property T acting
by C diffeomorphisms on a compact manifold X preserving a smooth measure m.
Then either ﬁ“(X, ') > 0 for all aperiodic probability measures p on T', or the system
(X, m,T") has a discrete spectrum, i.e. the I'-action on (X, m) is measure-theoretically
isomorphic to an action of I' on K/ K, given by v : kKo — p(7y)kKy where p: ' - K
s a homomorphism into a compact group K and Ky C K is a closed subgroup.

The last theorem combines two results. The first ([9]) states that for groups I" with
property T any measurable cocycle D : T' x X — SL/t(R) over an ergodic system
(X, m,T) either has A\{(D, u) > e(u) > 0, where (i) > 0 depends only on T, or D is
a compact cocycle. The second result, due to Zimmer [71], states that for C*°-smooth
actions of groups I' with Kazhdan’s property T if the derivative cocycle is compact
(equivalently T" preserves a measurable Riemannian structure on the manifold) then
the underlying system (X, m, I') has discrete spectrum. Note that this last implication
does not hold for Z-actions (see Gunesch and Katok [29]; the appendix to this paper
grew out of only partially successful attempt of the author to generalize Zimmer’s
result [71] to a group G C Diff'(X) which acts strongly ergodically on (X, m)).

Let us also point out that for higher rank lattices I" one can deduce the above results
(and further information on entropies of individual elements of I') using superrigidity
for measurable cocycles (Zimmer [72]).

Sketch of the Proof of Theorem 3.17. We shall use a cocycle analogue of
the unitary representation approach discussed in section 1.6. Consider the product
measure space (X,m) = (X x P*~1 m x 1), where v, denotes the Lebesgue measure
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on the projective space P*~!. The measurable G-action defined by g : (z,%) —
(9-z,D(g,z)-u) leaves the measure m quasi-invariant, and therefore defines a quasi-
regular ['-representation @ on L?(X,m) by

#(9)F(z,2) = \/p(g,z,0) F(g~" -z, D(g™",2) - 0)
where p is the multiplicative Radon-Nikodym cocycle

o _dgm .~ dD(g, )
p(gaxau) - d?’h (IE,U) - dl/() (U)

We claim that under the assumptions of the theorem there is a spectral gap |7 (1) ||, <
1.

Assume that [|7(p)||;, = 1. Then (see analogous argument in the proof of Propo-
sition 1.17) for T = 7(u) or for T* = 7(j1) there exists a complex number z with
|z| = 1 which is either an eigenvalue for T', or an approximate eigenvalue for T', or Z
is an eigenvalue for T*. In any case, taking ' = p or fi, and 2z’ = z or Z one can find
a sequence of unit vectors F, € L*>(X,7) so that

|7 (1) E, — 2'F,|| — 0 (3.7)

Consider the measures 7, on X defined by din,(x, @) = |F,(z,%)|* dm(z) dv(7) and
their disintegrations 1, = [y 7o dm(z) with respect to (X, m). The total masses
of [zl = Mnz(PF1) of the positive measures 7, , are given by the non-negative
functions

fn(ﬂf) = nn,x(Pkil) = ||Fn($, ')”%2(]?’“715”0)

which are unit vectors in L'(X,m) because || f,||1 = ||Fn||3 = 1. Passing to a subse-
quence, one can assume that f, weakly converge to some ¢ - a positive normalized
functional on L*(X,m), i.e. a mean on L*(X, m). Cauchy-Schwartz inequality gives
for every g € G

1 fa0g™" = falls
flL ('“ P PO ) 1,0 ) )

// F,—2'F,|-|7(9)F, + Z'F,| dvgdm
Pk-1
< 2-||7(g)Fn — 2'Fnll2

dm(z)

VAN

which, in view of (3.7) converge y'-a.e. to 0. Thus the mean ¢ is g-invariant for y/'-a.e.
g € G, so that ¢ is G by continuity and therefore ¢ = m. Thus f,(z) = g | — 1
for m-a.e. x.

Passing, if necessary to a further subsequence, one can assume that 7, , converge
weakly to probability measures: 7, , — 7, € P(P¥~1), and (3.7) and Cauchy-Schwartz
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inequality can be used to show that that the measure [, 0, X 7, dm(z) on X x P+~!
is G-invariant, which means that

D(g, x) Nz = Ng-x (3.8)
for m-a.e. z € X.

The following argument is known as Zimmer’s “Cocycle Reduction Lemma”. The
natural action of L = SL/;(R) on the space of probability measures P(P*!) is tame,
which (by definition) means that there exists a countable collection {M; C P(P*1)}
of L-invariant Borel sets, which separates points of P(P*~!). Let X; ={z € X | n, €
M;}. By (3.8) each X; is a G-invariant set, and by ergodicity it has m-measure 0 or
1. Intersecting those X; which have m(X;) = 1 and the complements of the others,
gives a measurable subset X’ C X for which {7, | z € X'} lie in a single L-orbit L-nq
on P(P¥1) ie. n, = A(x) - np for some measurable A : X’ — L and ny € P(PF1).
Let Ly denote the stabilizer of 7 in L, then the cocycle

C(g,z) = A(g,z)"'D(g,z)A(x)
satisfies C(g, ) - My = 1o, i.e. takes values in Ly C L. If ny is a proper measure, then
Ly is a compact subgroup in L = SL'k(R); while if 7y is not proper then Ly is not
strongly irreducible. Both cases contradict the assumption on D). Hence there is a

spectral gap ||7(u)|| < 1.
Recall that for A € SL';(R) one has

dA-1y
log [|4]| > ——log( A 2 (@) dug (i )

which gives, using the convexity of —log() the following estimate

;/G/X log [|D(g, )| dm(x) d"(g)

> [ R Ve mdn(@) ant) dio)
> ——log<///ﬁpklmd7/0 du())
= —Elog (7(p™)1, 1) > Elogm

so that A, (D, ) > 2/klog (1/ [#(w)]l,,) > 0. .
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4. SELECTED PROOFS

This section contains the proofs of the statements marked by a star in the paper.
We use the notations of the corresponding statements.

Proof of Lemma 1.7. Suppose that u is a probability measure on G = SL'x(R) and
v a p-stationary measure on P~ Assume that v is not proper, and let {0} C W C R

be a proper subspace of minimal dimension, such that v(W) > 0. The function
f: G —0,1] defined by f(g) = gv(W) =v(g ‘W) satisfies

| ramyauty = [ o) aute

= guxv(W)=gv(W) = f(g)
By minimality of dim W, one has v(gW N g W) = 0, whenever gW # ¢'W. Hence
the set of gW with f(g) = v(gW) > e is finite for any ¢ > 0. Thus f reaches its
maximum value f(go) = max{f(g) | ¢ € G}, while the relation above yields that
f(goh) = f(go) for p-a.e. h € G. Thus there exists a finite collection E of proper
subspaces, s.t. h gy 'W belongs to F for p-a.e. h, and therefore the whole group
G, = grp(1) permutes the finite collection E of proper subspaces. Consequently, / is
not strongly irreducible.

On the other hand, assuming that p is not strongly irreducible there is a finite col-
lection E = W, U---UW, C P¥=! of proper projective subspaces, which is invariant
under p-a.e. ¢ € G. Being a compact invariant subset of P¥~! the set E supports
pu-stationary measures v which are not proper. 0

Proof of Proposition 1.17. Let X be a compact metric space, H a locally compact
group acting continuously on X, and p - a generating probability measure on H. Let
{vn} be a sequence of H-quasi-invariant probability measures on X, such that the
unitary quasi-regular H-representations 7, on L?*(X,v,) defined by

m(W)f(@) = G @) (0 )

satisfy ||, (1)|ly, — 1. Denote by T,, = m,, () the (semi)contractions on the Hilbert
spaces H, = L?(X,v,).
For a bounded operator 7" on a Hilbert space H, ||T||;, = max,eq(r) [p|, where o(T)

denotes the spectrum of T'. Recall that p € o(T) if (i) p is an eigenvalue for 7', or (ii)
p is an approximate eigenvalue for 7', i.e.

dfr € H: I fell =1 and T fr — pfell = 0

or (iii) Im (T — p) is not dense in A, in which case Im (T — p)* = Ker(T — p)* =
Ker(T* — p) # {0}, i.e. p is an eigenvalue for T*.
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Therefore there always exists a complex number p with |p| = [|T'[|,, and unit vectors
fk in ‘H such that ||Tfk; — pfk“ — 0 or ||T*fk — pfk” — 0.

Recall that if 7, = m,, (u) then T = m,, (i1). Using the above argument about
the spectrum, and assuming ||7;||,, — 1 one concludes that for 4’ = p or fi and an

appropriate subsequence of v,, one can find functions f, € L*(X,v,), and numbers
pn With [pn| = [[{[l;, Tn} — 1, so that

||fn||2 =1 and ||7Tvn(,ul)fn_pnfn”2 — 0

Passing to a further subsequence, one can assume that ||7(h),, fn — pufal| — O for
w-a.e. h € H.

Now consider the measures 7, on X defined by dn,(z) = |f.(z)* dv,(z). These
are probability measures because ||f,||2 = 1. Since P(X) is compact, passing to a
subsequence one can assume 7, — 1 € P(X) in weak-* topology. Let us verify that
n is H-invariant. Fix ¢ € C(X) and € > 0, then for n > n(¢,¢) for every h € H one

has
/cbdhn—/cbn‘é [ .~ [ om,

@) (10 2P R 22 0) = ) ) diaa)

< ||¢||oo 170 (R) fo = Pofull2 - (170, (R) fo 4 pnfull2 + €
< 2@lloo - 170, (B) fr = pufull2 + €

Hence for y/-a.e. h € H one has h-n = 7, and by continuity, » is invariant under
grp(u') = H. 0

+e€

+e€

Proof of Lemma 1.18. Take ¢ > 0 and consider the non-negative series h(w) =
Yoo Ul ()] + €)™ (m(Sn(w)) f1, fo). Term-by-term integration gives

fpetP = Sl + 7w 1 < -1 e <o
Hence for P-a.e. w
limsup ~ log ()1, 2) < log(lx () + ¢ (@)

and taking ¢ — 0 one obtains log||7(x)|| as an upper bound for the LHS for P-a.e.
w. Repeating this argument with the convolution power p? one has P-a.e.

. 1 1
lim sup —log (m(Sn(w)) fi, fo) > —logIm(u”)Il = log || (1)? |/ — log 17 ()l

noo
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as p — oo. This completes the proof of the Lemma. 0

Proof of Lemma 1.33. Given any ¢ € C(Q) consider the bounded continuous
function F, on G defined by Fy(g) = [¢dgrv. Note that F, satisfies the following
p-mean value property:

Lramann = [ [ otonwariwuce
- /¢<g-v>du*u<u)=/Q</>du=F¢(g>

so that the sequence of random variables w,, = F,(Y; - --Y,) on (€2, P) forms a bounded
martingale, i.e. the conditional expectations satisfy

E(wn—H | E,,Yn) = Wy

The martingale convergence theorem implies that with probability one w, converge
to some value

w(p,w) = lim [ ¢dY;---Yv
n—oQ Q

Repeating this argument for a countable dense family of functions ¢; € C(Q), one
obtains for P-a.e. w a positive normalized functional ¢; — w(¢;,w), which can be
extended to all of C(Q), and is therefore given by a probability measure, which we
denote by v,. The fact that v is the average of v, follows from Lebesgue dominated
convergence theorem.

Denote Z, =Y ---Y,,. We need to show Z,gv — v, for u,-a.e. g, and it suffices to
show that for any ¢ € C(Q) for all £ > 0 one has P x y*-a.e. |Fy(Z,9) — Fy(Z,)| — 0.
Note that

[1FoZug) = Fol2)F du(9) dP (o)

= / Fjdp™* + / Fjdy" —2 / Fy(hg)Fy(h) dp" (k) du*(g)

where the last equality uses the p-mean value property of F,. Hence

/G / S 1 Fy(Zng) — Fo(Z)|2 dP(w) dii¥(g) < 2k][6]oo

for every k > 0. Hence the series Y |Fy(Z,g) — Fy(Z,)|* converge P x p*-a.e., and
in particular |Fy(Z,9) — F4(Z,)| — 0, and the proof is completed. 0
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Proof of Proposition 1.36.

The first statement follows directly from Lemma 1.35 by realizing the real-valued
stationary process {o(Z?%)} as values {f(T"x)} of a measurable function f on a
measure-preserving system (X, m,7T) along a random orbit 7"z.

To prove the second statement consider the set Sp = {0 € P(M) | P*0 = 0} and
let v =sup{[,,0df | @ € Sp}. By compactness the sup is attained by some 6y € Sp,
and the first assertion gives 7 < 0. Consider the subadditive sequence

n
Uy, = SUp ZPkJ(x)
reEM b1
and for each n denote by =, € M a point which attains this sup. Any cluster point

0 of the sequence 1, =n ' > p_,(P*)¥4,, of probability measures is easily seen to be
P-stationary. Since u, are subadditive, u,/n converges and one has

Un

_:/adnn—>/ad9§7<0
n M M

Proof of Claim 1.40. Let {B; : L, — R*}’_, represent the QP-transformation b.
By Lemma 1.29 one has M, (b) = L; and My(b) = Im By. The square b? is also in T
(Lemma 1.39). Assuming the claim is wrong, one has that Im By does not contain
L, = Ker By, but dim(Im By N Ker By) > 0, so that Bg # 0 and dim Bg < dim B,.
This would imply that dim My(b*) = dimIm B2 < dim My(b) = d, contrary to the
assumption that b € Q). O

Proof of Claim 1.41. Observe that 7Q) = @ because Q) C T and for every pro-
jective transformation g one has M;j(gb) = M;(b) while dim My(gb) = dim gMy(b) =
dim My(b). Since T is (strongly) irreducible, for every b € @Q with My(b) C M;(b),
one can find a ¢ € T so that

Mo(gb) £ M, (b) = Mi(gb)
so that claim (1) implies My(gb) N M (gb) = 0. O

Proof of Claim 1.43. Given a sequence ¢, = bg, in ®; one needs to find a
convergent subsequence for the projective transformations 3(¢,) C PGL(V'). Passing
to a subsequence one can assume that ¢, converge to a QP-limit ¢ € T* on RF 1.
Since My(bg,) = My (b) the QP-limit ¢ is in ). Repeating the argument of Claim 1.40
one shows that there is a g € T such that ¢' = ¢g € T" satisfies My(¢') N My (¢') = 0.
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Note that ¢!, = ¢,,g converge to ¢’ pointwise in P*~! (because ¢,, — ¢), and since
V= My(¢) CPFT\ Mi(¢)

for every u € P(V'), one has ¢, u — ¢'u. In other words 3(¢!,) — B(¢') € PGL(V) is
a convergent sequence with a projective (rather than quasi-projective) limit. Hence
B(pn) = B(hg ') is also a convergent sequence in PGL(V), and the claim is proved.

Proof of Remark 2.29.

Define A, = {g € T | logu™(g) > (—h — €)n}. Since pu"(A,) < 1 we have the bound
log|A,| < (h+ €)n, while pointwise convergence in Theorem 2.28 implies that for P-
a.e. w one has g,(w) € A, for all but finitely many n-s. This proves (a).

Now suppose that B, C I' are sets of size log|B,| < (h —€)n. Let , = {w |
log ™ (gn(w)) < (h — €/2)n}. The pointwise convergence in Theorem 2.28 implies
that P-a.e. w belongs to €2, for all but finitely many n-s. Observe that

P{w €, | gn(w) € Bn} < plh=en | (=hte/2n _ —c/2n

The easy direction of Borel-Cantelli lemma implies that for P-a.e. w the event
{w € Q| gn(w) € By} occurs only finitely many times, proving (b). O

Proof of Proposition 2.32.

Let Sy = {g € ' | d(g,e) = k}, k > 0, denote the k-sphere in ', p, = u(Sk)
and p = p,' - pls, denote the normalized restrictions of u to Sy. If a denotes
the partition of (I', u) into elements and 8 < « the partition into spheres, then the
standard formula H(«) = H(«a) + H(a | B) gives

H(y) = > —prlogpr+ Y pr- H(m)
k=0 k=0

< Zpk -max{Vk, —logps} + Zpk - log |Sk|
k=0 k=0
As the function —tlog(t) is increasing on (0,e '), one has for k£ > 1
Zpk -max{Vk, —logpi} < Z\/Epk +VkeVE
1 1

Since Y- Vke V¥ = C < 00, log |Si|/¥ — 6§ = 6(T", d) and
Y VEp < kpe = _d(g,e) puly)
9

one concludes that H(u) is finite, provided p has finite first moment.



80 ALEX FURMAN
Next take an € > 0 and choose K large enough so that for all £ > K
log S| < (6+¢€¢) and  Vk<ek

Since the finite set Bx = {g | d(g,e) < K} contributes at most log|Bg| to the
entropy of any measure on ' one has

1 n
WT,p) = lim —H(u")
. 1 C + log | Bk|
< (04 2¢) 1 — d " _—
< @6+ e)nggo(nz (9,€) u"(9) + ——
= (6+2¢)- 2@
and since € > 0 can be taken arbitrarily small the proof is completed. 0

Proof of Theorem 3.3.

We need to show that there is a set €' C Q of full P-measure, so that for every
w € Q' every x € X and any non-empty open U C X, one has S, (w) -z € U for some
n > 0, or equivalently, for every w € €)' and any open non-empty U

Since X has a countable base of open sets, it suffices to show that for any fixed set
U the event

By ={w € Q| UpZySn(w)”'U = X}
has P-probability one. The minimality of the original G-action implies that X =
UgecgU, and since X is compact there exists a finite sub-cover gyU U---UghU = X.
By continuity of the G-action on X there exists a small neighborhood V' of the identity
in GG, so that

gOUU...gNU:X

(4.2)
for any go, ..., gn satisfying g; € V;, where V; = ¢g/V, i =0,..., N. In fact, for (4.2)
it suffices to have g; € gV;, 0 =1,..., N, for any fixed g € G; in particular, (4.2) is
satisfied for an arbitrary gy, provided

G €Wy =Vi Vit for i=1,2,...,N (4.3)

Therefore to show that P(Ey) = 1 it suffices to show that for P-a.e. w the se-
quence S,(w) = wy---w; contains an N-long subsequence satisfying (4.3). Since
G = sgr(p) and W; are open non-empty subsets of G, there are integers k; > 0 so that
wki(W;) > 0. Denoting n; = ki + - - - + k; one observes that g; = S,,,(w),i=1,..., N,
satisfies (4.3) with positive probability, and therefore with P-probability one a se-
quence g; = Spin;(w), @ = 1,..., N, satisfies (4.3) for some ¢ € N. This proves
P(Ey) = 1 and the proof is complete. O
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