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Outer automorphism groups of some ergodic equivalence
relations

Alex Furman∗

Abstract. Let R a be countable ergodic equivalence relation of type II1 on a standard prob-
ability space(X,µ). The group OutR of outer automorphisms of R consists of all invertible
Borel measure preserving maps of the space which mapR-classes toR-classes modulo those
which preserve almost everyR-class. We analyze the group OutR for relationsR generated by
actions of higher rank lattices, providing general conditions on finiteness and triviality of OutR

and explicitly computing OutR for the standard actions. The method is based on Zimmer’s
superrigidity for measurable cocycles, Ratner’s theorem and Gromov’s Measure Equivalence
construction.
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1. Introduction and statement of the main results

Let(X,B)be a standard Borel space with a non-atomic probability Lebesgue measure
and letR be a countable measurable relation of type II1 on(X,B, µ), i.e. measurable,
countable, ergodic and measure preserving equivalence relationR ⊂ X × X. For
the abstract definition of this notion the reader is referred to the fundamental work of
Feldman and Moore [1], which in particular demonstrates that any such equivalence
relation can be presented as the orbit relation

RX,� = {(x, y) ∈ X ×X | � · x = � · y}
of an ergodic, measure preserving action of some countable group� on the space
(X,B, µ). In most of the examples in this paper equivalence relations are defined
by ergodic measure-preserving actions of concrete countable groups�, namely irre-
ducible lattices in semi-simple connected higher rank real Lie groups.
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In the purely measure-theoretical context of this paper all objects are considered
modulo sets of zeroµ-measure, denoted (mod 0). Following this convention the
measure space automorphism group Aut(X,µ) is the group of all invertible Borel
mapsT : X → X with T∗µ = µ, where two such maps which agree on a set of
full µ-measure are identified. In a similar fashion two equivalence relationsR, R′ on
(X,µ) are identified if there exists a subsetX′ ⊆ X with µ(X′) = 1 on which the
restrictions ofR andR′ coincide.

Given an equivalence relationR on (X,µ) consider the group ofrelation auto-
morphisms

Aut R = {T ∈ Aut(X,µ) | T × T (R) = R}
and the subgroup InnR of inner automorphisms, also known as thefull group of R,
consisting of suchT ∈ Aut(X,µ) that(x, T x) ∈ R for µ-a.e.x ∈ X. The full group
InnR is normal in AutR and theouter automorphism group OutR is defined as the
quotient

1 −→ InnR −→ Aut R
ε−→ OutR −→ 1.

Elements of OutR represent measurable ways to permuteR-classes on(X,µ). The
full group InnR is always very large (see Lemma 2.1). For the uniqueamenable
equivalence relationRam of type II1 the outer automorphism group OutRam is also
enormous. The purpose of this paper is to analyze OutRX,� for orbit relationsRX,�
generated by m.p. ergodic actions of higher rank lattices, in particular presenting
many natural examples of relationsR with trivial Out R. Such examples were first
constructed by S. Gefter in [6], [7] (Theorem 1.5 below).

Prior to stating the results let us define two special subgroups in OutR, in the
case whereR is the orbit relationRX,� generated by some measure-preserving ac-
tion (X,µ, �) of some countable group�. In such a situation consider the group
Aut(X, �) of action automorphisms of the system(X,µ, �)

Aut(X, �) := {T ∈ Aut(X,µ) | T (γ · x) = γ · T (x) for all γ ∈ �}.
This is the centralizer of� in Aut(X,µ). For a group automorphismτ ∈ Aut �
define

Autτ (X, �) := {T ∈ Aut(X,µ) | T (γ · x) = γ τ · T (x)}
and let Aut∗(X, �) be the union of Autτ (X, �) over τ ∈ Aut �. (If the �-action
is faithful Aut∗(X, �) is the normalizer of� in Aut(X,µ)). We shall denote by
A(X, �) andA∗(X, �) the images of the groups Aut(X, �) and Aut∗(X, �) under
the factor map AutRX,�

ε−→ OutRX,�. Observe that theε-image in OutRX,� of the
coset Autτ (X, �) depends only on the outer class[τ ] ∈ Out� and therefore can be
denoted byA[τ ](X, �). The groupA(X, �) is normal inA∗(X, �)and the factor group
A∗(X, �)/A(X, �) is (a factor of) a subgroup of Out�. In general, the subgroups
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A(X, �) ⊆ A∗(X, �) of OutRX,� depend on the specific presentation of the relation
R as the orbit relationRX,� of an action(X,µ, �).

In this paper we are mostly interested in ergodic m.p. actions of higher rank lattices
and will be using the following terminology and notations:

• For locally compact, secondly countable groupG a left-invariant Haar measure
will be denoted bymG. If � ⊂ G is a discrete group so thatG/� carries a finite
G-invariant measure we say that� forms alattice inG and will denote bymG/�
the uniqueG-invariant probability measure onG/�.

• The termsemi-simple Lie group will mean semi-simple, connected, center-free,
real Lie groupG = ∏

Gi without non-trivial compact factors, unless stated
otherwise. A lattice� in a semi-simple Lie groupG = ∏

Gi is irreducible if
� does not contain a finite index subgroup�′ which splits as a direct product
of lattices in subfactors. Byhigher rank lattice hereafter we shall mean an
irreducible lattice in a semi-simple Lie groupG with rkR(G) ≥ 2.

• A measure-preserving action(X,µ, �) of a lattice� in a semi-simple Lie group
G = ∏

Gi is irreducible if the action of every simple factorGi in the induced
G-action on(G ×� X,mG/� × µ) is ergodic. Clearly, ifG is simple then any
lattice� ⊂ G is irreducible and any ergodic�-action is irreducible.

• For an arbitrary group� a m.p. action(X0, µ0, �) is a (�-equivariant)quotient
of another m.p. action(X,µ, �) if there exists a measurable mapπ : X → X0
with π∗µ = µ0 andπ(γ · x) = γ · π(x) for µ-a.e.x ∈ X and allγ ∈ �.

• A measure-preserving action(X,µ, �)of an arbitrary group� is calledaperiodic
if every finite atomic quotient of(X,µ, �) is trivial; equivalently if every finite
index subgroup�′ ⊂ � acts ergodically on(X,µ).

Remarks. (a) Everymixing ergodic action(X,µ, �) of an irreducible lattice� in a
semi-simple Lie groupG is irreducible and aperiodic.

(b) By the result of Stuck and Zimmer [14] any ergodic non-atomic m.p. action
of an irreducible lattice� in a semi-simple Lie groupG with property (T) isfree
(mod 0). Recall that a higher rank semi-simpleG has property (T) iff it does not have
simple factors locally isomorphic to SO(n,1) or SU(n,1).

(c) For any free, ergodic action(X,µ, �) of an irreducible lattice� in a semi-
simple Lie groupG the map

Aut(X, �)
ε−→ A(X, �)

is an isomorphism and the homomorphism

A∗(X, �)/A(X, �) −→ Out�

is an embedding (Lemma 2.3 below).
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(d) It follows from the Strong Rigidity (Mostow, Prasad, Margulis) that for an
irreducible lattice� ⊂ G �	 SL2(R) the automorphism group Aut� is isomorphic to
the normalizerNAutG(�) of � in AutG ⊇ AdG ∼= G. Since�∗ := NAutG(�) ⊇ �

is a closed subgroup properly contained in AutG, it forms a lattice in AutG, and
Out� = �∗/� is always finite.

Thus for an irreducible aperiodic free m.p. action of a higher rank lattice� the
analysis of OutRX,� reduces to the analysis of the quotient OutRX,�/A∗(X, �) and
the subgroupA∗(X, �)which, up to at most finite index, is isomorphic to Aut(X, �).

Theorem 1.1. Let G be a semi-simple, connected, center-free, real Lie group with-
out non-trivial compact factors and with rkR(G) ≥ 2. Let � ⊂ G be an irreducible
lattice and (X,µ, �) be a measure preserving, ergodic, irreducible, aperiodic, essen-
tially free �-action. Assume that (X,µ, �) does not admit measurable�-equivariant
quotients of the form (G/�′,mG/�′, �) where �′ ⊂ G is a lattice isomorphic to �
and � acts by γ : g�′ �→ γg�′. Then

OutRX,� = A∗(X, �)

while A∗(X, �) ∼= Aut(X, �)/�.

More generally, we have:

Theorem 1.2. Let � ⊂ G be a higher rank lattice as in Theorem 1.1and (X,µ, �)
be any measure preserving, ergodic, irreducible, aperiodic, essentially free �-action.
If A∗(X, �) has finite index n > 1 in OutRX,� then (X,µ, �) has an equivariant
measurable quotient

π : (X,µ) −→ (Gn−1/�n−1,mGn−1/�n−1) =
n−1∏
i=1

(G/�,mG/�)

where the �-action on (Gn−1/�n−1,mGn−1/�n−1) is given by

γ : (xi)n−1
i=1 �→ (γ τi · xi)n−1

i=1

for some fixed automorphisms τi ∈ AutG, 1 ≤ i < n.
If A∗(X, �) has infinite index in OutRX,� then (X,µ, �) has an infinite product

equivariant quotient space

π : (X,µ) −→
∞∏
i=1

(G/�,mG/�)

with a diagonal �-action on γ : (xi)∞i=1 �→ (γ τi xi)
∞
i=1 for some fixed sequence τi ∈

AutG, i = 1,2, . . . .
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Of course, Theorem 1.1 is just a particular case of 1.2 (contrapositive formulation
for n = 1) since aτ -twisted�-actionγ : g� �→ γ τg� on (G/�,mG/�) is measur-
ably isomorphic to the untwisted�-actionγ : g�′ �→ γg�′ where�′ = τ−1(�).

For and×dmatrixA letχ(A) := ∑
i log+ |λi(A)|, where log+ x = max{0, logx}

andλi(A) denote the eigenvalues ofA. Given a semi-simple groupG andd ∈ N con-
sider all linear representationsρ : G → GLd(C) (there are finitely many equivalence
classes for anyd) and let

WG(d) := max
dimρ=d inf

g∈G
χ(ρ(g))

χ(Ad (g))
.

Corollary 1.3. Let � ⊂ G and (X,µ, �) be as in Theorem 1.2. Denote by h(X, γ )
the Kolmogorov–Sinai entropy of the single measure-preserving transformation γ of
(X,µ). Then

[OutRX,� : A∗(X, �)] ≤ 1 + inf
γ∈�

h(X, γ )

χ(Ad (γ ))
. (1.1)

If X is a compact manifold with a C1-action of a higher rank lattice � ⊂ G which
preserves a probability measure µ on X so that (X,µ, �) is a free (mod 0)action
which is ergodic, irreducible and aperiodic, then

[OutRX,� : A∗(X, �)] ≤ 1 +WG(dim(X)). (1.2)

The function WG satisfies WG(d) ≤ d2/8.

Remark. Theorem 1.9 below shows that the inequality (1.1) is sharp. However
the estimate (1.2) is probably not optimal, with a more plausible one being 1+
dim(X)/dim Lie(G).

Remark. As we shall see below, groups OutRX,� andA(X, �) can be very large when
considered as abstract groups, but in all cases below the quotient OutRX,�/A∗(X, �)
is either finite or countable. This might be a general property of actions of higher rank
lattices. In fact, this property is known for essentially free ergodic actions(X, �) of
groups�with Kazhdan’s property (T). For such groups (and in a slightly more general
situation) Gefter and Golodets introduced a natural topology on OutRX,� with respect
to which OutRX,� is a Polish (i.e. complete separable) group andA(X, �) is an open
subgroup (see [8], Theorem 2.3, and references throughout Section 2).

In specific cases, in particular in the standard examples of algebraic lattice ac-
tions, it is possible to compute the groups OutRX,� explicitly as we shall do in The-
orems 1.4–1.9 below. In Theorems 1.4–1.8 the systems(X, �) do not haveG/�′ as
measurable quotients and therefore by Theorem 1.1 we have OutRX,� = A∗(X, �) =
Aut∗(X.�)/�. The latter groups are of algebraic nature, but their explicit descrip-
tions are cumbersome. Thus for readers convenience we have also presented the
groups Aut(X, �), which have a more transparent appearance and have at most finite
(≤ |Out�|) index inA∗(X, �).
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Theorem 1.4. Let G be a simple, connected real Lie group with finite center and
rkR(G) ≥ 2 and ρ : G ↪→ SLN(R) be an embedding such that ρ(G) does not
have non-trivial fixed vectors and assume that G has a lattice � ⊂ G such that
ρ(�) ⊆ SLN(Z). Then the natural �-action on the torus TN = RN/ZN is ergodic,
aperiodic and the orbit relation RTN ,� satisfies

OutRTN ,� = A∗(TN, �) ∼= NGLN(Z)(ρ(�))/ρ(�)

A(TN, �) ∼= Aut(TN, �) ∼= CGLN(R)(ρ(G)) ∩ GLN(Z).

In particular, for n > 2 the SLn(Z)-action on Tn gives an ergodic relation RTn,SLn(Z)
which has no outer automorphisms ifn is even, and a single outer automorphism given
by x �→ −x if n is odd.

Note that in the above theorem we allowed finite non-trivial centers to accommo-
date the standard example of� = SLn(Z) acting on the torusTn for evenn > 2.

To state the following results we recall the notion ofaffine transformations of a
homogeneous space (these are needed only for the precise description of OutRX,�),
however the spirit of the results is captured by the finite index subgroupA(X, �)
which does not require this notion.

Definition. Let
 be a subgroup of a groupH , and letN := ⋂
h∈H h−1
h denote

the maximal subgroup of
 which is normal inH . Given an automorphismσ of
H/N with σ(
/N) = 
/N andt ∈ H/N denote byaσ,t the map

aσ,t : h
 �→ tσ (h)


of H/
. Such maps will be calledaffine, and we shall denote by Aff(H/
) the
group of all affine maps ofH/
.

ReplacingH by H/N and
 by 
/N one does not change the homogeneous
space: H/
 ∼= (H/N)/(
/N). Thus hereafter we shall assume thatN is
trivial. Under this assumption the map(σ, t) �→ aσ,t defines an epimorphism
NAutH (
) � H −→ Aff (H/
) (which contains{(Ad λ, λ) | λ ∈ 
} in its ker-
nel) and which mapsH ∼= {Id} × H isomorphically onto its image in Aff(H/
).
This copy ofH in Aff (H/
) has index bounded by|OutH |.

We shall be interested in situations where some group (a higher rank lattice)
� is embedded inH , ρ : � → H , and acts on the homogeneous spaceH/
 by
left translations. Then the normalizerNAff (H/
)(ρ(�)) in Aff (H/
) of this action
consists of those affine mapsaσ,t for whichσ ∈ AutH andt ∈ H satisfy

σ(
) = 
 and σ(ρ(�)) = t−1ρ(�)t.

In any case this group containsNH(ρ(�)) as a subgroup of an index bounded by
|OutH |.
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Theorem 1.5 (cf. Gefter [7]). Let � be a higher rank lattice which admits a dense
embedding ρ : � → K into a compact connected Lie groupK . Then for every closed
subgroup {e} ⊆ L ⊂ K the �-action on (K/L,mK/L) is ergodic, irreducible and
aperiodic and the orbit relation RK/L,� satisfies

OutR(K/L,�) = A∗(K/L,�) ∼= NAff (K/L)(ρ(�))/ρ(�)

A(K/L,�) ∼= Aut(K/L,�) ∼= NK(L)/L.

In particular, if the compact group K has no outer automorphisms which normalize
L or if � has no outer automorphisms, then

OutRK/L,� ∼= NK(L)/L.

Remark. A variant of Theorem 1.5 was proved by S. Gefter in [7]. This gave the
first example of type II1 equivalence relations without outer automorphisms (see also
Corollary 1.8, Theorem 1.10 and the remarks that follow below). Indeed, by a well
known arithmetic construction (cf. [17], 5.2.12) certain lattices� ⊂ G := SO(p, q)
admit dense embeddings into the compact groupK := SO(n) wheren = p + q.
Takep > q ≥ 2 to ensure rkR(G) ≥ 2 and letL ∼= SO(n− 1) be the stabilizer of a
point inK = SO(n) action on the sphereSn−1. ThenNK(L) = L and since SO(n)
has no outer automorphisms, Aff(K/L) ∼= NK(L), which shows that OutR(K/L,�)
is trivial.

In Theorem 1.5 the compact groupK is taken to beconnected to guarantee
aperiodicity of the action. Higher rank lattices can also be densely embedded in
other compact groups, namely profinite ones. Such embeddings give rise to ergodic
actions which strongly violate aperiodicity condition – they are inverse limits of finite
quotients. A typical example is the standard embedding

� := PSLn(Z)
ρ−→ K := PSLn(Zp).

It was observed in [7] (Remark 2.8) that in this case OutRK,� contains a group
isomorphic to PSLn(Qp), in such a way that

A(K, �) ∼= K = PSLn(Zp) ⊂ PSLn(Qp) ⊆ OutRK,�

so thatA(K, �) has infinite index in OutRK,�. We claim that the last inclusion is
essentially an equality. More generally, the following result holds:

Theorem 1.6. Consider the natural dense embedding of � = PSLn(Z), n ≥ 3, in
the profinite groupK = ∏r

i=1 PSLn(Zpi )where {p1, . . . , pr} is a finite set of distinct
primes. Then OutRK,� is a Z/2 extension of

H =
r∏
i=1

PSLn(Qpi )
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with the transpose map (k1, . . . , kr ) �→ (kt1, . . . , k
t
r ) of K giving rise to the Z/2

extension.

Another family of standard examples is described by the following

Theorem 1.7. Let � ⊂ G be a higher rank lattice as in Theorem 1.1, H be a con-
nected Lie group,
 ⊂ H be a closed subgroup so thatH/
 carries anH -invariant
probability measure mH/
, and assume that H does not admit surjective homo-
morphisms σ : H → G with σ(
) ⊆ �. Suppose that there exists a homomor-
phism ρ : G → H such that each of the simple factors Gi of G acts ergodically on
(H/
,mH/
). Then for the �-action on (H/
,mH/
) one has

OutR(H/
,�) = A∗(H/
,�) ∼= NAff (H/
)(ρ(�))/ρ(�)

A(H/
,�) ∼= Aut(H/
,�) ∼= CAff (H/
)(ρ(�)).

Corollary 1.8. Let � ⊂ G be a higher rank lattice as in Theorem 1.1, H be a
connected semi-simple Lie group with trivial center, ρ : G ↪→ H be an embedding and
let
 ⊂ H be an irreducible lattice. Assume that either ρ is a proper embedding, i.e.
G �	 H , or that ρ : G → H is an isomorphism but
 is not abstractly isomorphic to a
subgroup of finite index in�. Then the�-action on (H/
,mH/
) by left translations
is ergodic, irreducible and aperiodic (in fact mixing) and the orbit relation RH/
,�
has

OutR(H/
,�) = A∗(H/
,�) ∼= NAff (H/
)(ρ(�))/ρ(�).

This group contains the centralizer CH(ρ(G)) as a normal subgroup of finite index
dividing |Out
| · |Out�|.
Remark. Corollary 1.8 also allows to construct ergodic equivalence relations with-
out outer automorphisms. Indeed if a simple Lie groupG �	 SL2(R) has no outer
automorphisms, then maximal lattices� in G have trivial Out� as well. Choosing
two non-commensurable maximal lattices�,
 in such aG one obtains an equiva-
lence relationRG/
,� without outer automorphisms. Similarly, one can find proper
embeddingsG ⊂ H whereG andH are simple higher rank Lie groups with OutG,
OutH , CH(G) all being trivial. Then for any choice of maximal lattices� ⊂ G,

 ⊂ H , the�-action onH/
 givesRH/
,� without outer automorphisms.

All the examples discussed so far had the property that the original system(X,µ, �)

did not admit measurable�-equivariant quotients of the form(G/�′,mG/�′, �); and
therefore Theorem 1.1 allowed to conclude that

OutRX,� = A∗(X, �) ∼= Aut∗(X, �)/�.

The following result analyzes what happens if this assumption is not satisfied.
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Theorem 1.9. Let � ⊂ G be a higher rank lattice as in Theorem 1.1and let �-act on
(G/�,mG/�) by left translations. Then for the corresponding orbit relation RG/�,�

[OutRG/�,� : A∗(G/�, �)] = 2

A(G/�, �) ∼= Aut(G/�, �) ∼= {1}
A∗(G/�, �) ∼= Out�

OutR(G/�,�) ∼= (Z/2Z)× Out�.

More generally, for any n ∈ N the diagonal left �-action on the product space
(Gn/�n,mGn/�n) satisfies

[OutR(Gn/�n,�) : A∗(Gn/�n, �)] = n+ 1

A(Gn/�n, �) ∼= Aut(Gn/�n, �) ∼= Sn

A∗(Gn/�n, �) ∼= Sn × Out�

OutR(Gn/�n,�) ∼= Sn+1 × Out�

where Sn denotes the permutation group on {1, . . . , n}.
For the diagonal �-action on the infinite product (X,µ) = (G/�,mG/�)

Z, the
index [OutR(X,�) : A∗(X, �)] is infinite countable

A(X, �) ∼= Aut(X, �) ∼= S∞
A∗(X, �) ∼= S∞ × Out�

OutR(X,�) ∼= S∞+1 × Out�

where S∞ denotes the full permutation group on Z, and S∞+1 the permutation group
of Z ∪ {pt} to suggest that the embedding A∗(X, �) ⊂ OutRX,� corresponds to the
natural embedding S∞ ⊂ S∞+1 direct product with Out�.

Let R be an ergodic II1-relation on a probability space(X,µ), andE ⊂ X be a
measurable subset withµ(E) > 0. The restrictionRE := R ∩ (E × E) of R toE is
a II1-ergodic relation with respect to the normalized measureµE := µ(E)−1 · µ|E .
Since InnR acts transitively on subsets of the same size (Lemma 2.1) for anyF ⊂ X

with µ(F) = µ(E) the relationRF on (F, µF ) is isomorphic toRE on (E,µE).
Hence given a II1-relationR, for every 0< t ≤ 1 there is a well defined, up to
isomorphism, ergodic II1-relationRt obtained fromR by restriction to a subset of
measuret . (Realizing(X,µ) as the unit interval[0,1] one may think ofRt as the
restriction ofR to the sub-interval[0, t]).

If R has an additional property thatRt �∼= Rs for all 0 < t �= s ≤ 1, one says
that R has atrivial fundamental group. Orbit relationsR = RX,� generated by
free, ergodic, irreducible m.p. actions of higher rank lattices� always have trivial
fundamental groups (cf. Gefter and Golodec [8]). Recent work [5] of Gaboriau gives
other classes of such relations.
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Regardless whether the fundamental group ofR is trivial or not, all restricted
relationsRt obtained from a given ergodic II1-relationR have the same outer auto-
morphism group: OutRt ∼= OutR (see Lemma 2.2). Hence

Theorem 1.10. Let� ⊂ G and (X,µ, �) be as in Theorem 1.2. For 0< t ≤ 1 let Rt
denote the (isomorphism class of ) equivalence relation obtained from R := RX,� by
a restriction to a subsetEt ⊂ X of measureµ(Et) = t . Then {Rt }0<t≤1 is a family of
mutually non-isomorphic ergodic equivalence relations of type II 1 with the same outer
automorphism group OutRt ∼= OutRX,� . In particular, there exist uncountably many
mutually non-isomorphic ergodic relations with trivial outer automorphism groups.

Remarks. (a) In [3], Theorems D (1)–(2), it is shown that for an ergodic action
(X,µ, �) of a lattice� in a simple higher rank Lie groupG, there is a countable set
MX,� ⊂ R so that fort ∈ (0,1) \MX,� the relationRt cannot be generated by afree
(mod 0) action ofany group. Therefore Theorem 1.10 provides a variety of examples
of such exotic relations without outer automorphisms.

(b) In a recent work [11] Monod and Shalom develop a new type of “higher rank”
superrigidity theorems for products of hyperbolic-like groups. Using this new tool and
the methods of the current paper Monod and Shalom construct uncountably manynon
weakly equivalent relationsR of type II1 with trivial Out R (see [11], Theorem 1.12).

Organization of the paper. Section 2 contains some general facts about II1-relations.
In Section 3 we discuss the Measure Equivalence point of view which provides a con-
venient framework for the study of OutRX,�/A∗(X, �). Special features of higher
rank lattices, especially superrigidity for cocycles, are used in Section 4 in a construc-
tion of �-equivariantstandard quotients π : (X,µ) → (G/�,mG/�) associated to
every[T ] ∈ OutRX,� \ A∗(X, �), which provide the proof of Theorem 1.1. In Sec-
tion 5 we recall some ergodic-theoretic applications of Ratner’s theorem for actions
on homogeneous spaces. These results are used in Section 6 to assemble the standard
quotients for the proof of Theorem 1.2, and in Sections 7 and 8 to compute the outer
automorphism groups for the standard examples. Section 9 contains the proof of
Theorem 1.6.

2. Generalities

LetR be an ergodic II1 relation on a non-atomic probability space(X,µ). For readers
convenience we include the proof of the following standard fact

Lemma 2.1. For every measurable E,F ⊆ X with µ(E) = µ(F) > 0 there exists
T ∈ InnR so that µ(T E�F) = 0.
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Proof. By [1], Theorem 1, there exists an action(X,µ, �) of some countable group
� so thatR = RX,�. Such an action is necessarily measure-preserving and ergodic.
For any measurable subsetsA,B ⊆ X let c(A,B) := supγ µ(γA ∩ B). Ergodicity
implies thatc(A,B) > 0 wheneverµ(A) > 0 andµ(B) > 0. LetE0 := E,F0 := F

and define by induction onn ≥ 1 measurable setsEn, Fn ⊆ X and elementsγn ∈ �
as follows: givenEn, Fn chooseγn so that

µ(γnEn ∩ Fn) ≥ c(En, Fn)/2

and letEn+1 := En \γ−1
n Fn,Fn+1 := Fn \γnEn. SetE∞ := ∩En,F∞ := ∩Fn. We

haveµ(E∞) = µ(F∞) becauseµ(En) = µ(Fn) for all finite n. In factµ(E∞) =
µ(F∞) = 0. Indeed, otherwise one would havec(En, Fn) ≥ c := c(E∞, F∞) > 0
for all n, contrary to the choice ofγn at the stage whereµ(En \En+1) < c/2. Hence
E′
n := En \ En+1 andF ′

n := Fn \ Fn+1 constitute measurable partitions ofE andF
respectively. DefiningT (x) to beγn · x if x ∈ E′

n andT (x) = x for x �∈ E, we get
the desiredT ∈ InnR. �

Given an ergodic II1-relationR on (X,µ), and a positive measure subsetE ⊆ X

we denote byRE the restricted relationR ∩ (E × E) on (E,µE), whereµE =
µ(E)−1 · µ|E .

Lemma 2.2. For a measurable set E ⊆ X with µ(E) > 0

OutRE ∼= OutR.

Proof. First observe that anyT ∈ Aut RE can be extended to aT ∈ Aut R. To see this
choose some measurable partitionX = E∪X1∪· · ·∪XN so that 0< µ(Xi) ≤ µ(E);
and choose measurable subsetsEi ⊆ E with µ(Ei) = µ(Xi). By Lemma 2.1 there
exist Si, Ri ∈ InnR so thatSi(Xi) = Ei andRi(Xi) = T (Ei). DefineT by
T (x) = R−1

i ◦ T ◦ Si(x) for x ∈ Xi andT (x) = T (x) for x ∈ E to get a desired

T ∈ Aut R.
This extension procedure is well defined on the level ofouter classes. In other

words ifT , S ∈ Aut R are some extensions of someT , S ∈ Aut RE , then[T ] = [S] ∈
OutRE iff [T ] = [S] ∈ OutR. Indeed forµ-a.e.x ∈ X choosey ∈ E so thatx ∼ y

and observe that

T (x) ∼ T (y) = T (y) and S(y) = S(y) ∼ S(x).

HenceT (x) ∼ S(x) for µ-a.e.x ∈ X iff T (y) ∼ S(y) for µE-a.e.y ∈ E.
Thus there is a well defined injective map OutRE → OutR, which is easily

seen to be a homomorphism of groups. To verify its surjectivity, note that given any
T ∈ Aut R there is anS ∈ InnR with S(T (E)) = E. ThusT ′ := S ◦ T mapsE to
itself, and[T ] = [T ′] ∈ OutR appears as an extension of[T ′|E] ∈ OutRE . �
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For the rest of the section we consider a free (mod 0) ergodic m.p. action(X,µ, �)

of some countable group�, denoting byRX,� the corresponding orbit relation.

Lemma 2.3 (Gefter [7], Lemmas 2.6, 3.2).Let (X,µ, �) be a free m.p. ergodic ac-
tion of a countable group �.

(a) If � has Infinite Conjugacy Classes then Aut(X, �)
ε−→ A(X, �) is an isomor-

phism.
(b) If � has the property that any τ ∈ Aut � with γ τ = γ on a finite index subgroup

γ ∈ �0 ⊆ � has to be the identity, then

Ker(Aut∗(X, �) ε−→ A∗(X, �)) = {x �→ γ · x}γ∈� ∼= �.

In particular, the conclusions of (a)and (b) hold for any free ergodic action (X,µ, �)
of an irreducible lattice � in a semi-simple Lie group G �	 SL2(R).

Proof. (a) Any T ∈ Aut(X, �) ∩ InnRX,� has the formT : x → ξx · x for some
measurablex �→ ξx ∈ � and satisfiesT (γ · x) = γ · T (x). Hence

γ ξx · x = γ · T (x) = T (γ · x) = ξγ ·xγ · x
which givesξγ ·x = γ ξxγ

−1 because the action is assumed to be free (mod 0).
Thus the distributionξ∗µ of ξx on � is conjugation invariant, and therefore is uni-
form on finite conjugacy classes of �, i.e. supported one. HenceT (x) = x and
Ker(Aut(X, �)

ε−→ A(X, �)) is trivial.
(b) Any T ∈ Autτ (X, �) ∩ InnRX,� satisfies

T (x) = ξx · x, T (γ · x) = γ τ · T (x)
which givesξγ ·x = γ τ ξxγ

−1. For ξ ∈ � let Eξ := {x ∈ X | ξx = ξ}. Then
γEξ = Eγτ ξγ−1. Observe that forξ �= ξ ′ ∈ � one hasµ(Eξ ∩ Eξ ′) = 0 because
the action is free (mod 0). Hence choosingξ0 ∈ � with µ(Eξ0) > 0 we have
γ τ ξ0γ

−1 = ξ0 (equivalentlyξ−1
0 γ τ ξ0 = γ ) for all γ in a finite index subgroup

�0 ⊆ �. It follows from the assumption thatγ τ = ξ0γ ξ
−1
0 for all γ ∈ �, so that

T : x �→ ξ0 · x.
Finally, for an irreducible lattice� ⊂ G �	 SL2(R) the ICC is a standard fact

(easy for the groupG itself and follows for� using Borel’s density theorem), while
the condition for (b) follows from the Strong Rigidity Theorem. �

GivenT ∈ Aut RX,� define a measurable mapαT : � ×X → � by

T (γ · x) = αT (γ, x) · T (x). (2.1)
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Note thatαT (γ, x) is well defined (mod 0) due to the freeness assumption on the
action. Furthermore, one easily verifies the cocycle property

αT (γ2γ1, x) = αT (γ2, γ1 · x)αT (γ1, x)

for all γ1, γ2 ∈ � andµ-a.e.x ∈ X. The cocycleαT : � × X → � will be called
therearrangement cocycle associated toT ∈ Aut RX,�. Rearrangement cocycles (as
opposed to general ones) have the following special property: forµ-a.e.x ∈ X the
correspondenceγ ∈ � �→ αT (γ, x) ∈ � is a permutation of� elements.

Two (general) cocyclesα, β : � × X → � are said to becohomologous in � if
there exists a measurable mapx �→ ξx ∈ �, such that

α(γ, x) = ξ−1
γ ·xβ(γ, x)ξx

for all γ ∈ � andµ-a.e.x ∈ X. We denote by[α]� the equivalence class of
all measurable cocycles cohomologous (in�) to α. Note the very special cocycle
c1 : �×X → � given byc1(γ, x) = γ , and for a generalτ ∈ Aut � letcτ : �×X →
� stand for the cocyclecτ (γ, x) = γ τ .

Proposition 2.4. Let T , S in Aut RX,� be relation automorphisms, [T ], [S] in
OutRX,� the corresponding classes, and let αT , αS : � × X → � denote the as-
sociated rearrangement cocycles. Then

(a) αT ◦S(γ, x) = αT (αS(γ, x), S(x)).
(b) αT = c1 ⇔ T ∈ Aut(X, �).
(c) αT = cτ ⇔ T ∈ Autτ (X, �).
(d) [αT ]� = [cτ ]� ⇔ [T ] ∈ A[τ ](X, �).

Proof. ForT , S ∈ Aut RX,� compute

T ◦ S(γ · x) = T (αS(γ, x) · S(x)) = αT (αS(γ, x), S(x)) · T (S(x)).
This proves (a). Statements (b) and (c) follow from the definitions.

Proof of (d). Any[T ] ∈ A[τ ](X, �) can be represented byT = A ◦ J where
A ∈ Autτ (X, �) andJ ∈ InnR� is given byJ : x �→ ξ−1

x · x. Then for allγ ∈ �

andµ-a.e.x ∈ X
T (γ · x) = A(ξ−1

γ ·xγ · x) = (
ξ−1
γ ·xγ

)τ · A(x)
= (

ξ−1
γ ·x

)τ
γ τ ξ τx · A(ξ−1

x · x) = ζ−1
γ ·xγ τ ζx · T (x)

whereζx = (ξx)
τ ∈ �. Hence

αT (γ, x) = ζ−1
γ ·xγ τ ζx (2.2)

and[αT ]� = [cτ ]�.
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On the other hand, assuming that the rearrangement cocycleαT associated with
T ∈ Aut R� satisfies (2.2) for someτ ∈ Aut � and a measurablex �→ ζx ∈ �, set
ξx = (ζx)

τ−1
and consider the mapA : X → X, defined byA(x) := ζx · T (x). We

have

A(γ · x) = ζγ ·x · T (γ · x) = ζγ ·xζ−1
γ ·xγ τ ζx · T (x)

= γ τ · (ζx · T (x)) = γ τ · A(x).
The pushforward measureA∗µ is absolutely continuous with respect toµ (recall that
� is countable) and�-invariant. Ergodicity of the action implies thatA∗µ = µ, so
thatA is invertible. ThusA ∈ Autτ (X, �), while the mapJ := A−1 ◦T is a measure
space automorphism. Since

ξx · J (x) = ξx · A−1(T (x)) = A−1(ζx · T (x)) = x

the mapJ (x) = ξ−1
x · x is an inner automorphism. �

3. Measure Equivalence point of view

The following notion of Measure Equivalence Coupling, introduced by Gromov in
[9], 0.5.E, and considered in [2] and [3] by the author, provides a very convenient
point of view on orbit relation automorphisms.

Definition. A Measure Equivalence Coupling of two (infinite) countable groups�
and
 is an (infinite) Lebesgue measure space(�,m) with two commuting, free,
measure preserving actions of� and
 , such that each of the actions has a finite
measure fundamental domain.

We shall use left and right notations for the� and
 actions

γ : ω �→ γω, λ : ω �→ ωλ

in order to emphasize that the actions commute. For our current purposes we shall only
needself ME-couplings (�,m) of �, i.e. Measure Equivalence Couplings of� with
itself. Given such a coupling(�,m) let X, Y ⊂ � be some fundamental domains
for the right and the left�-actions on(�,m) respectively. Define the associated
measurable maps

λ = λX : � ×X → �, ρ = ρY : Y × � → �

by requiring that for a.e.x ∈ X (resp. y ∈ Y ) one hasγ x ∈ Xλ(γ, x) (resp.
yγ ∈ ρ(y, γ )Y ). The left�-action on�/� (resp. the right�-action on�\�),
always denoted by a dot “·”, can be identified with the measure preserving�-action
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onX with the finite Lebesgue measuremX = m|X (resp. onY with mY = m|X)
defined by

γ · x = γ xλ(γ, x)−1, y · γ = ρ(y, γ )−1yγ.

With respect to these left and right�-actionsλX andρY become measurable left and
right cocycles respectively, namely satisfy:

λ(γ1γ2, x) = λ(γ1, γ2 · x)λ(γ2, x), ρ(y, γ1γ2) = ρ(y, γ1)ρ(y · γ1, γ2).

We shall say that a self ME-coupling(�,m) is ergodic if the �-action on(X,m|X)
is ergodic, which is equivalent to the ergodicity of the� × �-action on the infinite
space(�,m) (see [2], Lemma 2.2).

With the fundamental domainX ⊂ � for �/� being fixed, all fundamental
domainsX′ ⊂ � for �/� are in one-to-one correspondence with measurable maps
x �→ ξx ∈ �: given a fundamental domainX′ one setsξx = γ , if xγ ∈ X′, while
given a measurablex �→ ξx ∈ � one takes

X′ := {xξx | x ∈ X}.
The left�-actions onX′ andX are naturally identified viaθ : X → X′, θ : x �→ xξx ,
and the cocyclesλX : � ×X → �, λX′ : � ×X′ → � are conjugate

λX′(γ, θ(x)) = ξ−1
γ ·xλX(γ, x)ξx. (3.1)

Similar statements hold for the right actions, their fundamental domains and the
associated cocycles.

If X ⊂ � is a fundamental domain for both left and right�-actions, we shall say
thatX is atwo-sided fundamental domain.

Lemma 3.1 (see [3], Theorem 3.3).Let (�,m) be an ergodic self ME-coupling
of some group �, and let X, Y ⊂ � be right and left fundamental domains for
�/� and �\� respectively. Then � admits a two-sided fundamental domain Z iff
m(X) = m(Y).

Proof. Obviously all left fundamental domains have the samem-measure and the
same holds for right fundamental domains. Thus the existence of a two-sided funda-
mental domainZ impliesm(X) = m(Z) = m(Y). Now assume thatm(X) = m(Y).
It is well known that ergodic m.p. actions on finite or infinite Lebesgue spaces the full
group acts transitively on sets of the same measure (Lemma 2.1 for the finite measure
case). Using the ergodicity of the�×�-action on(�,m) the conditionm(X) = m(Y)

implies that there exist measurable partitionsX = ⋃
i,j Xi,j , Y = ⋃

i,j Yi,j , and el-

ementsγ ′
i ∈ � andγ ′′

j ∈ �, so thatYi,j = γ ′
i
−1
Xi,j γ

′′
j . Then⋃

i,j

Xi,j γ
′′
j and

⋃
i,j

γ ′
i Yi,j
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give the same setZ ⊂ �. Being formed by piecewise right�-translates ofX ∼= �/�,
the setZ is a right fundamental domain for�/�; and at the same time being formed
by piecewise left�-translates ofY ∼= �\�, the same setZ is a left fundamental
domain for�\�. �

Now consider a free m.p. action(X,µ, �) of some countable group� and let
RX,� be the corresponding orbit relation. GivenT ∈ Aut RX,� consider the infinite
measure space(�,m) := (X×�,µ×m�) with two commuting�-actions, as usual
written from the left and from the right:

γ1(x, γ ) := (γ1 · x, αT (γ1, x)γ ), (x, γ )γ2 := (x, γ γ2)

whereαT : �×X → � is the rearrangement cocycle associated withT ∈ Aut RX,�.
The space(�,m)with thus defined�×�-actions forms an ergodic self ME-coupling
of �, becauseX := X × {e�} ⊂ � is a two-sided fundamental domain. The fact
thatX is a right fundamental domain is obvious. To see thatX is a left fundamental
domain recall that for a.e.x ∈ X the mapγ �→ αT (γ, x) is a bijection of�, so for
m-a.e.(x, γ1) there is a uniqueγ ∈ � with αT (γ, x) = γ−1

1 which gives

γ (x, γ1) = (γ · x, αT (γ, x)γ1) ∈ X = X × {e}.
Also observe that

λ
X
(γ, x) = αT (γ, x). (3.2)

Lemma 3.2. Let (�,m) = (X×�,µ×m�) be a self ME-coupling corresponding to
T ∈ Aut RX,� . There is a one-to-one correspondence between two-sided fundamental
domains X′ ⊂ � and

T ′ ∈ Aut RX,� with [T ′] = [T ] ∈ OutRX,� (3.3)

where X′ = {(x, ξx) | x ∈ X} corresponds to T ′ : x �→ ξ−1
x · T (x). Moreover

αT ′(γ, x) = λ
X′(γ, (x, ξx)) = ξ−1

γ ·xλX(γ, (x, e))ξx = ξ−1
γ ·xαT (γ, x)ξx.

Proof. Suppose thatX′ ⊂ � = X × � is a two-sided fundamental domain. The
fact that bothX = X × {e} andX′ are right fundamental domains implies thatX′ is
of the form{(x, ξx) | x ∈ X} for some measurableξ : X → �. In order to verify
(3.3) for the mapT ′ : X → X, T ′ : x �→ ξ−1

x · T (x), it suffices to check thatT ′ is
one-to-one (mod 0), the relations between the cocyclesαT ′ , λ

X′ , λX andαT being
straightforward.

Assume thatT ′(x) = T ′(y) which meansξ−1
x · T (x) = ξ−1

y · T (y). ThenT (x)
andT (y) are on the same�-orbit inX, and so arex andy, i.e.y = γ · x for some
γ ∈ �. Thus

ξ−1
x · T (x) = ξ−1

γ ·x · T (γ · x) = ξ−1
γ ·xαT (γ, x) · T (x)



Vol. 80 (2005) Outer automorphism groups of some ergodic equivalence relations173

which means thatξγ ·x = αT (γ, x)ξx . In� we have

γ (x, ξx) = (γ · x, αT (γ, x)ξx) = (γ · x, ξγ ·x)

with both(x, ξx) and(γ ·x, ξγ ·x) inX′. SinceX′ is a two-sided fundamental domain,
in particular a left fundamental domain, it follows thatγ = e andx = y. Hence
T ′ is indeed a measure space automorphism of(X,µ) and the rest of its properties
follow automatically. The fact thatT ′ as in (3.3) gives rise to a two-sided fundamental
domainX′ is proved by back tracking the above argument. �

Next consider an equivariant quotient map� : (�,m) → (�0,m0) of self ME-
couplings of�, i.e. a measurable map� : � → �0 such that

�∗m = m0 and �(γ1ωγ2) = γ1�(ω)γ2.

Observe that the preimageX := �−1(X0) (resp.Y := �−1(Y0)) of any right fun-
damental domainX0 ⊂ �0 (resp. any left fundamental domainY0 ⊂ �0) is a right
(resp. left) fundamental domain in�. If X = �−1(X0)we shall say thatX ⊂ � and
X0 ⊂ �0 are�-compatible. Note also that if(�,m) is an ergodic coupling then so
is (�0,m0), and if(�,m) admits a two-sided fundamental domain then

m0(X0) = m(X) = m(Y) = m0(Y0)

so that(�0,m0) also admits a two-sided fundamental domainZ0, and takingZ :=
�−1(Z0)we obtain atwo-sided fundamental domain for (�,m)which is�-compat-
ible withZ0 ⊂ �0.

Observe that for�-compatible right fundamental domainsX ⊂ � andX0 ⊂ �0
one has

λX(γ, ω) = λX0(γ,�(ω)).

Realizing the natural left�-action on(�,m)/� by the�-action

γ : x �→ γ · x = γ xλX(γ, x)
−1

on a�-compatible fundamental domainX ⊂ �, one obtains a�-equivariant quo-

tient mapX
�−→ X0 which is a concrete realization of the left�-equivariant map

(�,m)/� → (�0,m0)/� defined by�. This discussion is summarized by the
following

Proposition 3.3. Let (X,µ, �) be a free, ergodic, measure preserving action, T ∈
Aut RX,� and let (�[T ],m) be the corresponding self ME-coupling of �. Assume that
(�[T ],m) has an equivariant quotient ME-coupling � : (�[T ],m) → (�0,m0). Fix
a two sided fundamental domain X0 ⊂ �0, denote by (X0, µ0, �) the left �-action
on (X0, µ0) ∼= (�0,m0)/�, and let

π : (X,µ, �) → (X0, µ0, �)
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denote the �-equivariant quotient map induced by �. Then there exists a T̂ ∈
Aut RX,� with [T ] = [T̂ ] ∈ OutRX,� so that

α
T̂
(γ, x) = λX0(γ, π(x)).

4. Superrigidity and standard quotients

In this section we specialize to actions of irreducible lattices� in higher rank semi-
simple Lie groupsG.

Proposition 4.1 (see [2], Theorem 4.1).Let G be a semi-simple, connected, center-
free, real Lie group without non-trivial compact factors and with rkR(G) ≥ 2. Let
� ⊂ G be an irreducible lattice and (X,µ, �) be a measure preserving, ergodic,
irreducible, essentially free �-action. Given any T ∈ Aut RX,� let (�[T ],m) be the
associated self ME-coupling as in Section 3. Then there exists a well defined class
[τ ] ∈ OutG so that given any representative τ of [τ ] there exists a measurable map
� : �[T ] → G defined uniquely (mod 0) so that

�(γ1ωγ2) = γ τ1�(ω)γ2 (γ1, γ2 ∈ �)
and one of the following two alternatives holds:

(a) either �∗m coincides with the Haar measure mG on G, normalized so that �
has covolume one, or

(b) �∗m is an atomic measure of the form

1

k

k∑
i=1

∑
γ∈�

δgiγ

where {gi}k1 ⊂ G are such that {g1�, . . . , gk�} is a single finite τ(�)-orbit on
G/�. In particular, � has a subgroup �1 of index k so that τ(�1) has index k
in g1�g

−1
1 , and τ(�) and � are commensurable.

If the �-action on (X,µ) is aperiodic, then either (a) holds or in alternative (b) we
have k = 1 which means that

(b′) �∗m coincides with the counting measure m�′ on �′ = τ(�) ⊂ G where
τ(�) = g�g−1 for some g ∈ G.

This proposition is essentially Theorem 4.1 in [2], the proof of which is based
on Zimmer’s superrigidity for cocycles and Ratner’s theorem. In [2] the statement
is formulated in a slightly different form and only for lattices in higher ranksimple
Lie groups. Since we need some details of the proof to be used later, we include the
main arguments here.
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Proof. Fix aT ∈ Aut RX,� representing[T ] and consider the rearrangement cocycle
αT : � × X → � ⊂ G as aG-valued cocycle. This cocycle is Zariski dense inG
(this is a form of Borel’s density theorem, see [17], p. 99, or [2], Lemma 4.2). Thus
the assumption that� is a higher rank lattice with anirreducible action on(X,µ)
allows to apply Zimmer’s superrigidity for measurable cocycles theorem [17] (in [2],
Theorem 4.1, we did not use irreducibility of the action and therefore had to restrict
the discussion to lattices in higher ranksimple groupsG). Hence there exists a Borel
mapφ : X → G and a homomorphismτ : � → G, so that

αT (γ, x) = φ(γ · x)−1γ τφ(x) (4.1)

for γ ∈ � andµ-a.e.x ∈ X. By Margulis’ superrigidityτ extends to aG-automor-
phism and we denote byτ ∈ AutG this extension. Defining the map

� : �[T ] = X × � → G

by
�(x, γ ) := φ(x)γ (4.2)

one verifies

�(γ1(x, γ )γ2) = �(γ1 · x, αT (γ1, x)γ γ2) = φ(γ1 · x)αT (γ1, x)γ γ2

= φ(γ1 · x)φ(γ1 · x)−1γ τ1 φ(x)γ γ2

= γ τ1�(x, γ )γ2.

ChooseF ⊂ G a Borel fundamental domain forG/� and letX′ := �−1(F ).
HenceX′ ⊂ �[T ] is a fundamental domain for�[T ]/� so thatm(X′) = 1. This im-
plies that the pushforward measurem0 := �∗monGhasm0(F ) = 1 (in particularm0
is finite on compact sets) while the restrictionm0|F defines a regular Borel probability
measureµ0 onG/�, which is invariant and ergodic for the leftτ(�)-action.

An application of Ratner’s theorem (see [2], Lemma 4.6, with an easy modification
needed to handle semi-simple rather simple Lie groups) implies thatµ0 is either (i)
µ0 = mG/� – the normalized Haar measuremG/�, or (ii) is an atomic measure.

In case (i) the map� defined in (4.2) clearly mapsm on�[T ] to the Haar measure
mG as in Proposition 4.1 (a). The uniqueness statements in Proposition 4.1 follow
from [2], Theorem 4.1.

In case (ii) the atomicτ(�)-invariant measureµ0 onG/� has to be concentrated
on a single finiteτ(�)-orbit {g1�, . . . , gk�} with equal weights 1/k. Let�1 be the
stabilizer ofg1� ∈ G/�. Then[� : �1] = k andτ(�1)g1� = g1� i.e. τ(�1) has
indexk in g1�g

−1
1 .

The preimage�1 = �−1(g1�) is �1 × �-invariant set which gives rise to a
measurable�1-invariant subsetX1 of X with µ(X1) = 1/k. If �-action on(X,µ)
is aperiodic, then necessarilyk = 1 andm0 = ∑

γ∈� δgγ andτ(�) = g�g−1. �
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Remark. The uniqueness of�[T ] in particular implies that the rearrangement cocycle
αT can be written in the form (4.1) with the measurable mapφ : X → G being
uniquely defined (mod 0) as soon as a representativeτ ∈ AutG of [τ ] ∈ OutG is
chosen. Hereafter this unique “straightening” mapφ will be denoted byφT,τ .

Theorem 4.2 (Standard Quotients).LetG be a semi-simple, connected, center-free,
real Lie group without non-trivial compact factors and with rkR(G) ≥ 2; � ⊂ G

an irreducible lattice and (X,µ, �) be a measure preserving, ergodic, irreducible,
essentially free �-action. Then every [T ] ∈ OutRX,� defines a unique class [τ ] ∈
OutG such that given any representative τ ∈ AutG of [τ ] there is a measurable
map π : X → G/�, defined uniquely (mod 0) and satisfying

π(γ · x) = τ(γ ) · π(x)
for µ-a.e. x ∈ X and all γ ∈ �. There are two alternatives.
Either the following equivalent conditions hold:

(a1) the distribution of φT,τ (x) on G is absolutely continuous with respect to the
Haar measure mG,

(a2) π∗µ = mG/� – the G-invariant probability measure on G/�,
(a3) there exists T̂ ∈ Aut RX,� with [T̂ ] = [T ] and π(x) = φ

T̂ ,τ
(x)�;

or the following equivalent conditions hold:

(b1) the distribution of φT,τ (x) on G is purely atomic,
(b2) π∗µ = k−1 ∑k

1 δgi� where {g1�, . . . , gk�} is a finite τ(�)-orbit on G/�, �
contains a subgroup �1 of index k so that τ(�1) is a subgroup of index k in
g1�g

−1
1 ; and X1 = π−1({g1�}) is a �1-ergodic components of (X,µ) with

µ(X1) = 1/k;
(b3) there exists T̂ ∈ Aut RX,� with [T̂ ] = [T ] and

φ
T̂ ,τ
(x) = g1 for µ-a.e.x ∈ X1 ⊂ X.

If �-action on (X,µ) is aperiodic then conditions (a1)–(a3)above are equivalent to

(a4) [T ] �∈ A∗(X, �),
while their alternatives (b1)–(b3)are equivalent to

(b4) [T ] ∈ A∗(X, �);
moreover in (b2)–(b3)one has k = 1 and these conditions take the following form:

(b2′) π∗µ = δg� where g ∈ G satisfies τ(�) = g�g−1;
(b3′) there exists T̂ ∈ Aut RX,� with [T̂ ] = [T ] and

φ
T̂ ,τ
(x) = g for µ-a.e. x ∈ X.
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Proof. Consider the self ME-coupling(�[T ],m) with the corresponding outer class
[τ ] ∈ OutG. Given a choiceτ ∈ AutG of [τ ] let

� : �[T ] → G

be theτ(�) × �-equivariant map as in Proposition 4.1. Then� uniquely defines a
measurable map

π : (X,µ, �) ∼= (�[T ],m)/� → G/�, π(γ · x) = γ τ · π(x).
Let us show that the alternatives (a) and (b) in Proposition 4.1 yield mutually exclusive
conditions (a1)–(a3) and (b1)–(b3) respectively.

In case (a) where�∗m = mG, (a1)–(a3) follow from Proposition 3.3 and the
construction (4.2) of�.

Case (b):�∗m = k−1 ∑k
i=1

∑
γ∈� δgiγ where{g1�, . . . , gk�} is a singleτ(�)-

orbit onG/�. Condition (b1) is clearly satisfied. Let

�i = {γ ∈ � | γ τgi� = gi�} and Xi = π−1({gi�}).
whereπ : X → {g1�, . . . , gk�} is the�-equivariant map above. Then conjugate
groups�i have indexk in�, and� permutes the disjoint setsXi (and soµ(Xi) = 1/k)
while eachXi is �i-invariant fori = 1, . . . , k. Moreover�i acts ergodically onXi
becauseRXi,�i = RX,� ∩ (Xi ×Xi). This proves (b2).

The setX0 = {g1, . . . , gk} forms a fundamental domain for theτ(�)× �-action
onG. The corresponding cocycleλX0 satisfies

λX0(γ1, g1) = g−1
1 γ τ1 g1 (γ1 ∈ �1).

Applying Proposition 3.3 we obtain̂T ∈ Aut RX,� with [T̂ ] = [T ] ∈ OutRX,� and

α
T̂
(γ, x) = λX0(γ, π(x)) = g−1

1 γ τg1 (4.3)

for all γ ∈ �1 and a.e.x ∈ X1 = π−1({g1�}) = �−1({g1}). We deduce that
φ
T̂ ,τ
(x) = g1 for x ∈ X1, proving (b3).

If the�-action(X,µ) is aperiodic, one hask = 1 so that (b2), (b3) take the form
of (b2’), (b3’). Condition (b3) follows from (4.3) and Proposition 2.4 (c). The latter
also explains why (b4) is incompatible with (a1)–(a3). �

Proof of Theorem 1.1. Forτ ∈ AutG the�-action onG/τ−1(�) is isomorphic to the
τ -twisted�-action onG/�, both with the Haar measure. Since(X,µ, �) is assumed
not to have these actions among its measurable quotients, anyT ∈ Aut RX,� fails
condition(a2) in Theorem 4.2, while satisfies the alternatives (b1-4), which means
that[T ] ∈ A∗(X, �). �
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5. Some applications of Ratner’s Theorem

In this section we recall some applications of Ratner’s Theorem (see [12] and refer-
ences therein). Note that in these results there are no restrictions on the rank of the
semi-simple groupG. In fact the results remain true wheneverG is a connected Lie
group generated by Ad -unipotent elements and� ⊂ G is a closed subgroup so that
G/� carries aG-invariant probability measure.

Theorem 5.1 (cf. Ratner, [12], Theorem E2).Let � be an irreducible lattice in a
semi-simple connected real Lie group G, 
 and 
′ be lattices in some connected
Lie groups H and H ′, ρ : G → H and ρ′ : G → H ′ be continuous homomorphisms
such that the �-actions

γ : h
 �→ ρ(γ )h
, γ : h′
′ �→ ρ′(γ )h′
′

on (H/
,mH/
) and (H ′/
′,mH ′/
′) are ergodic. Assume that there exists a
measurable �-equivariant quotient map

π : (H/
,mH/
) −→ (H ′/
′,mH ′/
′).

Then there exists a t ∈ H ′ and a surjective continuous homomorphism σ : H → H ′
such that

(i) σ(
) is a finite index subgroup of 
′,
(ii) π(h
) = tσ (h)
′ for a.e. h ∈ H ,

(iii) σ ◦ ρ(γ ) = tρ′(γ )t−1 for γ ∈ �.

Ifπ is one-to-one then σ : H → H ′ is an isomorphism and σ(
) = 
′. In particular,
for the above �-action on (H/
,mH/
)

Aut∗(H/
,mH/
, �) ∼= NAff (H/
)(ρ(�)).

In [15]Witte considers a more general question of a classification of all measurable
equivariant quotients(H/
,mH/
) → (Y, ν) showing that(Y, ν) has an algebraic
description (slightly more general thanH ′/
′ as above). However Theorem 5.1
suffices for our purposes. It is deduced from the more general Theorem 5.2 below
by considering the measureν onH/
×H ′/
′ obtained by the lift ofmH/
 to the
graph ofπ : H/
 → H ′/
′.

Theorem 5.2 (cf. Ratner [12], Theorem E3).Let � ⊂ G, 
 ⊂ H , 
′ ⊂ H ′,
ρ : G → H and ρ′ : G → H ′ be as in Theorem 5.1. Let ν be a probability measure
onH/
×H ′/
′ which projects ontomH/
 andmH ′/
′ , and is invariant and ergodic
for the diagonal �-action

γ : (h
, h′
′) �→ (ρ(γ )h
, ρ′(γ )h′
′).
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Then there exist closed normal subgroups N � H , N ′ � H ′, an element t ∈ H ′/N ′
and a continuous isomorphism σ1 from H1 := H/N to H ′

1 := H ′/N ′, so that

(i) 
1 := 
N ⊂ H1 and 
′
1 := 
′N ′ ⊂ H ′

1 are lattices;
(ii) there are finite index subgroups �1 ⊆ 
1, �′

1 ⊆ 
′
1 so that σ1(�1) = �′

1;
(iii) σ1 ◦ ρ(γ ) = tρ′(γ )t−1 for γ ∈ �;
(iv) the measure ν is N × N ′-invariant and its projection ν1 to H1/
1 × H ′

1/

′
1

can be obtained from the lift mf of mH1/�1 to the graph of H1/�1
f−→ H ′

1/�
′
1

where f (h�1) = tσ1(h)�2, by ν1 = p∗mf where p is a finite-to-one projection

(H1/�1)× (H ′
1/�

′
1)

p−→ (H1/
1)× (H ′
1/


′
1).

Theorem E3 in [12] and its corollary E2 were proved by M. Ratner as an application
of the main theorem ([12], Theorem 1). In all these results the acting group is assumed
to be generated by Ad -unipotent elements. In order to deduce the results for actions
of lattices� ⊂ G, needed for our purposes, one uses the suspension construction
replacing the�-invariant measureν onH/
×H ′/
′ by theG-invariant measurẽν
onG ×� H/
 × H ′/
′ and applying Ratner’s classification of invariant measures
([12], Theorem 1) to the action of the semi-simple groupG which is generated by
Ad -unipotents. The reader is referred to the paper [13] of Shah (Corollary 1.4) or
Witte ([15], proof of Corollary 5.8) for the precise argument.

6. Proofs of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2. Let � ⊂ G and(X,µ, �) be as in Theorem 1.2, and letn :=
[OutRX,� : A∗(X, �)] ∈ {1,2, . . . ,∞}. If n = 1 there is nothing to prove. If
1 < n ≤ ∞ setT0 = Id and choose representativesTi ∈ Aut RX,�, 1 ≤ i < n, for
the cosetsA∗(X, �)\OutRX,�. In other words chooseTi so that for 0≤ i �= j < n

we have

[Ti][Tj ]−1 �∈ A∗(X, �).

Since[Ti] �∈ A∗(X, �) for 1 ≤ i < n, by Theorem 4.2 (a) there areτi ∈ AutG and
measurable mapsπi : X → G/� satisfying

(πi)∗µ = mG/�, πi(γ · x) = γ τi · πi(x).
It remains to prove that the map

π : X −→
n−1∏
i=1

G/�, π(x) = (π1(x), π2(x), . . . )
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takesµ onto the product measuremGn−1/�n−1 = ∏n−1
i=1 mG/�. We shall prove by in-

duction onfinite k in the range 1≤ k < n that the mapπ(k)(x) := (π1(x), . . . , πk(x))

satisfies
π(k)∗ µ = mGk/�k . (6.1)

(Note that this is sufficient even ifn = ∞ because the infinite product measure
is determined by its values on finite cylinder sets). The casek = 1 is covered by
Theorem 4.2 (a2). Assuming (6.1) fork − 1 we apply Theorem 5.2 to

H := Gk−1 
 := �k−1 ρ := τ1 × · · · × τk−1

H ′ := G 
′ := � ρ′ := τk

and the probability measureν := π
(k)∗ µ on H/
 × H ′/
′ = Gk/�k. By the

induction hypothesisν projects ontomH/
 in the first factor, and as[Tk] �∈ A∗(X, �),
ν projects ontomH ′/
′ in the second factor. IfN = H = Gk−1 then necessarily
N ′ = H ′ = G, so that

ν = mH/
 ×mH ′/
′ = mGk/�k

proving the induction step.
It remains to show that the other alternative, namelyN �Gk−1 andN ′ �G being

proper normal subgroups, cannot occur. By Theorem 5.2 (i)
1 = �N ′ ⊂ G/N ′
forms a lattice inG/N ′ which is possible only ifN ′ = {e} because� ⊂ G is
irreducible. ThusN �Gk−1 is such thatGk−1/N ∼= G and�k−1N forms a lattice in
Gk−1/N ∼= G. This means that for somej ∈ {1, . . . , k − 1}

N = {(g1, . . . , gk−1) ∈ Gk−1 | gj = e}
σ1((g1, . . . , gk−1)N) = σ(gj )

whereσ ∈ AutG is such that for somet ∈ G, σ ◦τj (g) = tτk(g)t
−1 andσ(�) = �′

for some finite index subgroups�,�′ ⊆ �. In this case the distributionν1 of the
pairs(πj (x), πk(x)) onG/� ×G/� is a projection under the finite-to-one map

G/�×G/�′ −→ G/� ×G/�

of the measuremf which is a lift ofmG/� to the graph of

f : G/� −→ G/�′, f (g�) = tσ (g)�′.

By Theorem 4.2 (a3) there existT̂j andT̂k ∈ Aut RX,� with [T̂j ] = [Tj ], [T̂k] = [Tk]
so that fori = j, k the rearrangement cocycles

αi := α
T̂i

: � ×X −→ �
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satisfyαi(γ, x) = φi(γ · x)−1γ τiφi(x) with πi(x) = φi(x)�. The structure of
the distributionν1 of (πj (x), πk(x)) described above implies that the distribution of
(φj (x)

σ )−1φk(x) onG is purely atomic. Let S := T̂k ◦ T̂ −1
j ∈ Aut RX,� and let

σ ′ ∈ AutG andψ = φS,σ ′ : X → G be such that

αS(γ, x) = ψ(γ · x)−1γ σ
′
ψ(x).

Applying Proposition 2.4 (a) tôTk = S ◦ T̂j we obtain that for allγ ∈ � andµ-a.e.
x ∈ X
φk(γ · x)−1γ τkφk(x) = αk(γ, x) = αS

(
αj (γ, x), T̂j (x)

)
= ψ

(
αj (γ, x) · T̂j (x)

)−1
αj (γ, x)

σ ′
ψ(T̂j (x))

= ψ
(
T̂j (γ · x))−1(

φj (γ · x)−1γ τj φj (x)
)σ ′
ψ(T̂j (x))

= (
φj (γ · x)σ ′

ψ(T̂j (γ · x)))−1
γ σ

′◦τj (φj (x)σ ′
ψ(T̂j (x))

)
.

Replacingσ ′ by σ ∈ AutG (so thatτk = σ ◦ τj ) and changingψ = φS,σ ′ to φS,σ
accordingly, we deduce that

φk(x) = φj (x)
σφS,σ (T̂j (x))

(φj (x)
σ )−1φk(x) = φS,σ (T̂k(x)).

Since the distribution of(φj (x)σ )−1φk(x) is purely atomic, it follows from Theo-
rem 4.2 (b) that[S] ∈ A∗(X, �) and

[S] = [T̂k ◦ T̂ −1
j ] = [Tk][Tj ]−1 ∈ A∗(X, �)

contrary to the choice of[Ti]-s. Hence the induction step is verified and the proof of
Theorem 1.2 is completed. �

Proof of Corollary 1.3. Suppose that[OutRX,� : A∗(X, �)] ≥ n > 1. Theorem 1.2
provides a�-equivariant quotient map

π : (X,µ, �) −→ (Gn−1/�n−1,mGn−1/�n−1, �)

where in the right hand side� acts diagonally in each of the factors(G/�,mG/�, �τi ).
For diagonal actions the entropy is additive, so for everyγ ∈ � one has

h(X, γ ) ≥ h(Gn−1/�n−1,mGn−1/�n−1, γ )

=
n−1∑
i=1

h(G/�,mG/�, γ
τi ) = (n− 1) · χ(Ad γ )

which gives (1.1).
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In the context of smooth actions of� on a compactd-manifoldX another ap-
plication of superrigidity for cocycles allows to express the entropiesh(X,µ, γ ) of
elementsγ ∈ � via eigenvalues ofd-dimensionalG-representations. More precisely,
(see Furstenberg [4], Theorem 8.3, or Zimmer [17], 9.4.15) eitherh(X,µ, γ ) = 0
for all γ ∈ �, or h(X,µ, γ ) = χ(ρ(γ )), γ ∈ �, for some representationρ : G →
GLd(C). In particular one has

inf
γ

h(X,µ, γ )

χ(Ad γ )
≤ max

dimρ≤d inf
γ

χ(ρ(γ ))

χ(Ad γ )
. (6.2)

Let us point out that in the above cited references the�-action onX and the measure
µ were assumed to beC2-smooth, in order to apply Pesin’s formula. However for
theinequality (6.2) one only needs the upper bound

h(X,µ, γ ) ≤ max
dimρ≤d χ(ρ(γ )), γ ∈ �

which, being based on Margulis–Ruelle inequality, holds underC1-assumption on
the action and does not require any regularity assumptions on the measureµ.

Using Borel’s density theorem one may extend the inf in (6.2) fromγ ∈ � to
g ∈ G, obtaining the claimed estimate

[OutRX,� : A∗(X, �)] ≤ 1 +WG(d).

For a givenG the functionWG(d) can be computed explicitly in terms of the weights
of irreducible representations, but here let us confine the discussion to a general
estimateWG(d) ≤ d2/8, suggested to me by Dave Witte, whom I would like to
thank. Fork ≥ 2 letσk denote the (unique !) irreducible representationσk of SL2(R)
in dimensionk. If h denotes the element diag(e, e−1) ∈ SL2(R), then the eigenvalues
of σk(h) are{ek+1−2i | i = 1, . . . , k} so that

χ(σk(h)) =
∑
i≤k/2

(k + 1 − 2i) ≤ k2/4.

Given ad-dimensionalG-representationρ choose a subgroup SL2(R) 	 G0 ⊂ G,
and letg ∈ G correspond toh ∈ G0 above. The restrictionρ|G0 of ρ toG0 splits as
a direct sum of irreducibleG0-representationsσdi with

∑
di = d. Thus

χ(ρ(g)) =
∑

χ(σdi (h)) ≤ 1/4
∑

d2
i ≤ d2/4.

At the same timeχ(Ad G(g)) ≥ χ(Ad SL2(R)(h)) = 2, which gives

WG(d) ≤ d2/8. �
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7. Standard examples without G/� quotients

In this section we prove 1.4–1.8 applying Theorem 1.1.

Proof of Theorem 1.4. Let us first verify the ergodicity and aperiodicity of the�-
action onTN . Let f ∈ L2(TN) �→ f̂ ∈ �2(ZN) denote the Fourier transform. For
A ∈ SLN(Z) one haŝf ◦ A = At f̂ . Therefore iff ∈ L2(TN) is an invariant vector
for a subgroup
 ⊂ SLN(Z) then f̂ ∈ �2(ZN) is a
t -invariant vector, andf̂ is
supported on finite
t -orbits onZN . Thus if� fails to act ergodically onTN , then
ρ(�)t has a non-trivial finite orbit onZN , and for some finite index subgroup�′ ⊆ �

there is a non-trivial fixed vector forρ(�′)t in ZN ⊂ RN . Sinceρ : G → SLN(R)
is rational, Borel’s density theorem implies that all ofρ(G)t ⊂ SLN(R) has a non-
trivial fixed vector, and sinceρ(G) is totally reducibleρ(G) also has non-trivial fixed
vectors contrary to the assumption. Thus� acts ergodically onTN , and since the
arguments apply to any finite index subgroup of�, this action is aperiodic.

The �-action onTN can be assumed to be free. Indeed SLN(Z) acts freely
(mod 0) onTN and so doesρ(�) ∼= �.

Next we claim that the system(TN, �) does not have(AdG/�′,Ad�) as a
measurable quotient. In the case of� ⊂ SLn(Z) acting onTn, n > 2, this is easily
seen from the entropy comparison: forγ ∈ SLn(Z) with eigenvaluesλ1, . . . , λn one
has

h(Tn, γ ) =
∑
i

log+ |λi |, h(AdG/�′, γ ) =
∑
i,j

log+ |λi/λj |

where�′ is any lattice in AdG = PSLn(R). Since| detγ | = 1, i.e.
∑

log |λi | = 0,
one has a strict inequalityh(Tn, γ ) < h(AdG/�′, γ ) as soon asγ has at least one
eigenvalue off the unit circle. For the general case we resort to a more complicated
argument described below.

Now Theorem 1.1 (or rather its simple modification needed to handle finite center)
gives

OutRTN ,�
∼= A∗(TN, �) ∼= Aut∗(TN, �)/�.

Evidently anyσ ∈ GLN(Z) which normalizesρ(�) gives rise to the mapTσ : x �→
σ(x) of TN which lies in Aut∗(TN, �).

Claim 7.1. The correspondence σ → Tσ is an isomorphism

NGLN(Z)(ρ(�))
∼= Aut∗(TN, �).

The correspondenceσ → Tσ is clearly a monomorphism of groups. To show
its surjectivity consider a generalT ∈ Autτ (TN, �) and letν denote the lift of the
Lebesgue probability measuremTN onTN to the graph ofT . Thusν is a probability
measure onTN × TN = (RN × RN)/(ZN × ZN) which is invariant and ergodic for
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the(ρ×ρ◦τ)(�)-actionγ : (x, y) �→ (ρ(γ )(x), ρ(γ τ )(y)). Witte’s Corollary 5.8 in
[15] (based on Ratner’s theorem) allows to conclude thatν is ahomogeneous measure
for some closed subgroup

M ⊆ (ρ × ρ ◦ τ)(�)� (RN × RN).

The connected componentM0 of the identity ofM can be viewed as a subgroup of
RN×RN . The fact thatν is a lift ofmTN to a graph of a m.p. bijectionT : TN → TN ,
and the fact thatRN is connected whileZN is discrete, leads to the conclusion
thatM0 ⊂ RN × RN projects ontoRN in both factors in a one-to-one fashion.
HenceM0 = {(x, σ (x)) | x ∈ RN } whereσ ∈ Aut RN which preservesZN , i.e.
σ ∈ GLN(Z), andT has the form:T (x) = σ(x)+ t wheret ∈ TN is such that

σ ◦ ρ(γ )(x)+ t = ρ(γ τ )(σ (x)+ t).

The latter means thatt is ρ(�)-fixed andσρ(γ )σ−1 = ρ(γ τ ). An argument similar
to the one for aperiodicity of the action (based on the assumption thatρ(G) has no
non-trivial fixed vectors), implies thatt has to be trivial, so thatT is of the formTσ
whereσ ∈ NGLN(Z)(ρ(�)). The claim is proved.

It remains to show thatTN does not have AdG/�′ as a measurable�-equivariant
quotient. It follows from Witte’s Corollary 5.8 ([15]) that measurable�-equivariant
quotients ofTN = RN/ZN have the formK\RN/
 whereZN ⊆ 
 ⊆ RN is a
closed�-invariant subgroup andK is a closed subgroup of Aff(RN/
) centralizing
�; moreoverK is acting non-ergodically onRN/
. The latter space can be identified
with a quotient torusTn, n ≤ N , on which� still acts by automorphisms, so thatK
becomes a subgroup of GLn(Z) � Tn. We claim that the�-action onK\Tn cannot
be measurably isomorphic to the�-action on AdG/�′ because the former cannot
be extended to aG-action. In fact the�-action onK\Tn cannot be extended to a
measurable action of the smaller group – the commensurator

� := CommG(�) = {g ∈ G | [� : g−1�g ∩ �] < ∞}
which is a dense subgroup inG (this follows from Margulis’ arithmeticity results
[10]). Indeed, letg �→ Tg, g ∈ �, denote a hypothetical extension of the�-action
onK\Tn to some measure-preserving�-action. For anyg ∈ � there are finite index
subgroups�1, �2 ⊆ � so thatτg : γ �→ gγg−1 is an isomorphism�1 → �2. Thus
Tg satisfiesTg(γ · x) = τg(γ ) · Tg(x) for a.e.x ∈ K\Tn and allγ ∈ �1. Arguing as
in the proof of Claim 7.1 one shows that suchTg has to have an “algebraic” form, i.e.
to be induced by a linear mapρ(g) ∈ SLn(R) which has to preserve the latticeZn.
The fact that the embedding� → SLn(Z) cannot be extended to the commensurator
� ⊃ � gives the required contradiction. �

Proof of Theorem 1.5. By Margulis’ Normal Subgroup Theorem ([10], (4.10)) the
homomorphismρ : � → K is actually anembedding (recall thatG and hence�
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are assumed to be center free). Thus without loss of generality we can assume
that the proper subgroupL ⊂ K does not contain non-trivial normal factors ofK
(otherwise dividing by these factors we still remain in the same setup). This means
that theK-actionk1 : kL → k1kL is free (mod 0) and so is the ergodic�-action
(K/L,mK/L, �). This�-action is aperiodic: being connectedK admits no proper
closed subgroups of finite index, and therefore any subgroup�1 ⊂ � of finite index
has a dense imageρ(�1) in K and acts ergodically on(K,mK) as well as on its
quotient(K/L,mK/L). Furthermore, such an action is irreducible – see Zimmer
[16], Proposition 2.4. Clearly the discrete spectrum�-action onK/L cannot have
equivarient quotients of the formG/�. Hence Theorem 1.1 gives

OutR(K/L,�) = A∗(K/L,�).

In Theorem 1.5K/L is a homogeneous space (recall that being connectedK has
to be a Lie group). However, Theorem 1.7 (or Ratner’s theorem, in general) does
not apply to this situation because the acting group is not generated by Ad -unipotent
elements. Yet the following general result describing Aut∗(K/L,�) can easily be
obtained by direct methods.

Proposition 7.2. Let K be a compact group, � ⊂ K a dense subgroup and L ⊆ K

a closed subgroup. Then the left �-action on (K/L,mK/L) is ergodic and

Aut(K/L,�) ∼= NK(L)/L

Aut∗(K/L,�) ∼= NAff (K/L)(�).

Remark. In the particular case ofL = {e} the first assertion, i.e. the isomorphism
Aut(K, �) ∼= K, is easy seen as follows. AnyT ∈ Aut(K,mK) can be written as
T (k) = kt−1

k wherek �→ tk ∈ K is a measurable map. ThenT (γ · k) = γ · T (k)
translates into an a.e. identitytγ ·k = tk. Since� acts ergodically on(K,mK) the
mapk �→ tk is a.e. a constantt ∈ K, i.e. T (k) = kt . The correspondenceT ∈
Aut(K, �) �→ t ∈ K is easily seen to be an isomorphism of groups.

Proof of Proposition 7.2. GivenT ∈ Autτ (K/L, �) let ν be the lift ofmK/L to the
graph ofT onK/L×K/L, and let

R := {(k1, k2) ∈ K ×K | (k1, k2)∗ν = ν}.
R ⊆ K × K forms a closed (hence compact) group, containing{(γ, γ τ ) | γ ∈ �}.
The projectionspi(R) of R toK are closed and contain�. HenceR projects ontoK
in both coordinates. We claim that

R1 := {k ∈ K | (k, e) ∈ R}, R2 := {k ∈ K | (e, k) ∈ R}
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are closed normal subgroups inK. Indeed, forr1 ∈ R1 andk ∈ K there exists a
k2 ∈ K so that(k, k2) ∈ R, and

(k, k2)
−1(r1, e)(k, k2) = (k−1r1k, e) ∈ R

shows thatk−1r1k ∈ R1. ThusR1 �K and similarlyR2 �K.
Sinceν disintegrates into Dirac measures with respect tomK/L under the pro-

jectionspi : (K/L)× (K/L) → K/L, theRi-actions onK/L should fixmK/L-a.e.
point of K/L. This means thatRi ⊆ L, and sinceL is assumed not to contain
non-trivial normal factors ofK, Ri = {e} for i = 1,2. HenceR has the form

R = {(k, θ(k)) | k ∈ K}
for some bijectionθ : K → K which has to be a continuous isomorphism, because
R ⊂ K ×K is a closed subgroup.

By definition ofR for all k ∈ K andmK/L-a.e.k1L, the point(kk1L, θ(k)T (k1L))

is on the graph ofT , i.e.T (kk1L) = θ(k)T (k1L). ThusT has the formT (kL) =
θ(k)tL wheret ∈ K is such thatθ(L) = tLt−1. SuchT can also be written as
T (kL) = tσ (k)L whereσ(k) = t−1θ(k)t , in which caseσ ∈ NAutK(L). Thus
T comes from anaffine mapaσ,t ∈ Aff (K/L). We conclude that Aut∗(K/L,�)
coincides withNAff (K/L)(�).

Finally, an affine mapaσ,t is in Aut(K/L,�) if for all γ ∈ � and a.e.kL

γ tσ (k)L = tσ (γ k)L = tσ (γ )σ (k)L.

In view of the standing assumption thatLdoes not contain normal subgroups ofK this
means thatσ(γ ) = t−1γ t for γ ∈ �. Since� is dense inK we haveσ(k) = t−1kt for
all k ∈ K andσ(L) = L meanst ∈ NK(L). Henceaσ,t : kL �→ (tt−1)ktL = ktL

andt, t ′ ∈ NK(L) give rise to the same map of Aff(K/L) iff t ′t−1 ∈ L. This gives
the desired identification

Aut(K/L,�) ∼= NK(L)/L. �

This completes the proof of Theorem 1.5. �

Proof of Theorem 1.7. By Theorem 5.1 the system(H/
,mH/
, �) has a�-equi-
variant quotient map

π : (H/
,mH/
) −→ (G/�′,mG/�′)

only if there exists a surjective continuous homomorphismσ : H → Gwith σ(
) ⊆
�′ ∼= � andσ ◦ ρ(γ ) = tγ t−1 for somet ∈ G. An existence of such a homo-
morphismσ was explicitly excluded by the assumption, so that Theorem 1.1 gives
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OutRH/
,� = A(H/
,�) ∼= Aut∗(H/
,�)/�. To identify Aut∗(H/
,�) we
invoke Theorem 5.1 again to conclude that

Aut∗(H/
,�) = NAff (H/
)(ρ(�))

which presentsA∗(H/
,�) as the quotient ofNAff (H/
)(ρ(�)) by the image of

�
ρ−→ H ↪→ Aff (H/
). One also has Aut(H/
,�) ∼= CAff (H/
)(ρ(�)). �

Proof of Corollary 1.8. If ρ : G → H is an embedding (or isomorphism) ofG into
another semi-simple real Lie groupH (center free and without compact factors) and

 ⊂ H is an irreducible lattice, then theG-action on(H/
,mH/
) is free and
by Howe–Moore’s theorem is not only ergodic but actually mixing. Hence also the
restriction of this action to�-action is free and mixing, and in particular irreducible
and aperiodic. The assumptions of the Corollary guarantee that there does not exits
an epimorphismσ : H → G with σ(
) ⊆ �, so that Theorem 1.7 applies showing

OutRH/
,� = A∗(H/
,�) ∼= Aut∗(H/
,�)/� ∼= NAff (H/
)(ρ(�))/ρ(�).

Recall that Aff(H/
) containsH as a subgroup of finite index dividing|Out
|.
Hence, upon passing to a subgroup of index dividing|Out
|, the group OutRH/
,� ∼=
NAff (H/
)(ρ(�))/ρ(�) can be reduced toNH(ρ(�))/ρ(�), which contains the cen-
tralizerCH(ρ(�)) = CH(ρ(G)) as a subgroup of index dividing|Out�|. �

8. Proof of Theorem 1.9

Case (G/�, �). Choose a two-sided fundamental domainX ⊂ G for � and define
the transformationI : X → X by I : x �→ x−1� ∩X. Note that bothX andX−1 are
two-sided, in particular right, fundamental domains and thereforeI is a measurable
bijection ofX. Moreover,

I (γ · x) = I (γ xλ(γ, x)−1) = λ(γ, x)x−1� ∩X = λ(γ, x) · I (x)
which means thatI ∈ Aut R(G/�,�) and the corresponding rearrangement cocycleαI
is λ = λX : � ×X → �. Observe that

γ · x = γ xλ(γ, x)−1 means that λ(γ, x) = (γ · x)−1γ x

(with the usual multiplication inG on the right hand side), so that the embedding
X → G is precisely the “straightening map”φ corresponding to the cocycleαI = λX
and the trivial automorphismτ0 : γ �→ γ ; in other wordsφI,τ0(x) = x. From
Theorem 4.2 (a1) we conclude that[I ] �∈ A∗(G/�, �) and therefore

[OutR(G/�,�) : A∗(G/�, �)] ≥ 2 (8.1)
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while Theorem 1.2 (or Corollary 1.3) show that this index is at most two proving an
equality in (8.1). Theorem 5.1 gives

Aut∗(G/�, �) ∼= NAff (G/�)(�).

Note that an affine mapaσ,t ∈ Aff (G/�) (aσ,t : g� �→ tσ (g)�whereσ ∈ NAutG(�)

andt ∈ G) satisfies
aσ,t (γ · g�) = γ τ · aσ,t (g�)

iff σ(γ ) = t−1τ(γ )t , in particulart ∈ NG(�). Thus

Aut∗(G/�, �) ∼= NAff (G/�)(�) ∼= NAutG(�),

with g� �→ gτ�, τ ∈ NAutG(�) ∼= Aut �, giving all twisted action automorphisms.
HenceA∗(G/�, �) ∼= Aut �/� ∼= Out�. Since this group commutes with[I ], we
obtain

OutR(G/�,�) ∼= Z/2Z × Out(�)

as claimed.
Before turning to the systems(Gn/�n, �) for general finiten ≥ 1, observe that

G/� can be viewed as the factor ofG2
e := {(g, g−1) ∈ G×G | g ∈ G} modulo the

relation(g, g−1) ∼ (gγ1, γ
−1
1 g), γ1 ∈ �. With this identificationG/� ∼= (G2

e/ ∼)
the left�-action onG/� corresponds to the quotient of the actionγ : (g, g−1) �→
(γg, g−1γ−1)modulo∼, while the mapI arises from the flip(g, g−1) �→ (g−1, g).

Case (Gn/�n, �), n ∈ N. Given a general finiten consider the set

Gn+1
e := {(g0, . . . , gn) ∈ Gn+1

e | g0 · · · gn = e}
with the natural measure and an equivalence∼ defined by

(g0, g1, . . . , gn−1, gn) ∼ (g0γ
−1
1 , γ1g1γ

−1
2 , . . . , γn−1gnγ

−1
n , γngn)

for γ1, . . . , γn ∈ �. The mapp : Gn+1
e → (G/�)n = Gn/�n given by

p : (g0, . . . , gn) �→ (g0�, g0g1�, . . . , g0g1 · · · gn−1�)

factors through a bijectionq : (Gn+1
e / ∼) → Gn/�n. Note that the following�-

action onGn+1
e

γ : (g0, g1, . . . , gn−1, gn) �→ (γg0, g1, . . . , gn−1, gnγ
−1)

descends to an action on(Gn+1
e / ∼) which is isomorphic, viaq, to the diagonal

�-action onGn/�n

γ : (g1�, . . . , gn�) �→ (γg1�, . . . , γgn�).
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The cyclic permutatioñT of order(n+ 1)

T̃ : (g0, g1, . . . , gn−1, gn) �→ (g1, g2, . . . , gn, g0)

is easily seen to preserve the�-orbits on(Gn+1
e / ∼) ∼= Gn/�n and thereby defines

a relation automorphismT ∈ Aut RGn/�n,� with [T n+1] ∈ A(Gn/�n, �).
We would like to presentT as an explicit transformation of(Gn/�n,mGn/�n) as

follows. The cocycleλX : � ×X → � corresponding to the two-sided fundamental
domainX ⊂ G can be extended to a cocycle ofG, i.e.λ = λX : G × X → � still
defined bygx ∈ Xλ(g, x). The leftG-action onX ∼= G/� can thus be written as

g · x = gxλ(g, x)−1

where on the right hand side we use the usual multiplication inG. Using these
notations and viewingx ∈ X ⊂ G both as points of the spaceX and asG-elements
one obtains an explicit form forT :

T : (x1, . . . , xn) �→ (x−1
1 · x2, x

−1
1 · x3, . . . , x

−1
1 · xn, I (x1)).

Observe that

T (γ · (x1, . . . , xn)) = T (γ x1λ(γ, x1)
−1, . . . , γ xnλ(γ, xn)

−1)

= (λ(γ, x1)x
−1
1 · x2, λ(γ, x1)x

−1
1 · x3, . . . , λ(γ, x1) · I (x1))

= λ(γ, x1) · T (x1, . . . , xn).

HenceT ∈ Aut R(Gn/�n,�) with the rearrangement cocycle being

αT (γ, (x1, . . . , xn)) = λ(γ, x1).

A similar computation shows that for 1≤ k ≤ n one has

αT k (γ, (x1, . . . , xn)) = λ(γ, xk)

and therefore the corresponding “straightening” map is given by

φT k,τ0(x1, . . . , xn) = xk ∈ G.
It now follows from Theorem 4.2 (a1) thatT k �∈ A∗(Gn/�n, �) for k = 1, . . . , n. In
particular

[OutR(Gn/�n,�) : A∗(Gn/�n, �)] ≥ n+ 1

which is, in fact, an equality due to the upper bound(n+1) provided by Theorem 1.2
(or Corollary 1.3).

To identifyA∗(Gn/�n, �) we invoke the second part of Theorem 5.1 withH :=
Gn and
 := �n and note that affine maps ofGn/�n have the form

(g1�, . . . , gn�) �→ (t1g
τ1
p(1)�, . . . , tng

τn
p(n)�)
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wherep ∈ Sn is a permutation of{1, . . . , n}, τi ∈ NAutG(�) ∼= Aut � andti ∈ G.
One easily checks that such a map normalizes the diagonal�-action iff τ1 = · · · =
τn = τ andt1 = · · · = tn = t wheret ∈ NG(�). Hence Aut∗(Gn/�n, �) consists
of the maps

Sp,τ : (g1�, . . . , gn�) �→ (gτp(1)�, . . . , g
τ
p(n)�)

wherep ∈ Sn andτ ∈ NAutG(�)). The obvious relationSp,τ ◦ Sp′,τ ′ = Spp′,ττ ′
gives Aut∗(Gn/�n, �) ∼= Sn ×NAut (�) and

A∗(Gn/�n, �) ∼= Sn × (NAut (�)/�) ∼= Sn × Out(�).

OutR(Gn/�n,�) is generated by[T ] andA∗(Gn/�n, �), and the explicit form ofT
andSp,τ allows one to check that

OutR(Gn/�n,�) ∼= Sn+1 × Out(�)

as claimed.

Case (G∞/�∞, �). Finally, let us turn to the case ofn = ∞, i.e. the diagonal
�-action on(X,µ) := (G/�,mG/�)

Z. Choose a two-sided fundamental domain

X ⊂ G, so thatX = XZ, and letλ = λX : G×X → � andI : X → X be as before.
Consider the mapT : X → X defined by

T : (. . . , x−1, x0, x1, . . . ) �→ (. . . , x−1
1 · x0, I (x1), x

−1
1 · x2, . . . )

so that fork �= 0 {
(T kx̄)i := x−1

k · xi+k i �= 1 − k

I (xk) i = 1 − k

and observe that
T k(γ · x̄) = λ(γ, xk) · T k(x̄).

As before, fork �= 0 we haveαT k (γ, x̄) = λ(γ, xk) andφT k,τo(x̄) = xk so that

[T ]k �∈ A∗(X, �).

Claim 8.1. OutR
X,�

is generated by [T ] and A∗(X, �).

(Note that in previous cases similar statement followed immediately from the upper
bound provided by Corollary 1.3). Choose anS ∈ Aut R

X,�
\ A∗(X, �) and let

π : X → G/�, π∗µ = mG/�, π(γ · x̄) = γ τ · π(x̄)
be the standard quotient map provided by Theorem 4.2.

Lemma 8.2. π(x̄) = xτk for some k ∈ Z and τ ∈ NAutG(�).
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Proof. Denote byν the probability measure on(G/�)Z × (G/�) obtained by the
lift of µ to the graph ofπ . Fix anr ∈ N, let

H :=
r∏

−r
G 
 :=

r∏
−r
�

and letp : GZ → H be the projection on{−r, . . . , r}-coordinates. Denote byν(r)

thep× Id-projection ofν toH/
×G/�. Then one can deduce from Theorem 5.2
that either

(i) ν(r) = mH/
 ×mG/�, or
(ii) there existsk ∈ {−r, . . . , r}, τ ∈NAutG(�)so that for anyF ∈Cc(H/
×G/�)∫

Fdν(r) =
∫
F(x1, . . . , xk, . . . , xn, x

τ
k )dmG/�(x1) · · · dmG/�(xn).

As r → ∞ case (i) cannot persist forever, because that would imply thatν =
µ × mG/� which is impossible. On the other hand as soon as (ii) occurs, the index
k andτ ∈ NAutG(�) do not change. This proves the lemma. �

With the explicit form ofπ : X → G/� provided by Lemma 8.2 we invoke
Theorem 4.2 (a3) to conclude that there existsŜ ∈ Aut R

X,�
with [S] = [Ŝ], τ ∈

NAutG(�) andk �= 0 ∈ Z so that

φ
Ŝ,τ
(x̄)� = (xk)

τ�.

Recalling that also forT k we haveφT k,τ0(x̄) = xk one concludes that[S] = [Ŝ] ∈
[T k]A∗(X, �)using the same argument as in the proof ofTheorem 1.2. This completes
the proof of Claim 8.1. �

Any permutationp of Z and anyτ ∈ NAutG(�) give rise to the mapSp,τ ∈
Autτ (X, �)

Sp,τ : (gi�)i∈Z �→ (gτp(i)�)i∈Z.

On the other hand ifS ∈ Aut∗(X, �) let ν onX × X be the lift ofµ to the graph
of S and letνr be the projection of this measure to

∏r
−r G/� × ∏r

−r G/�. Then
applying the Joining Theorem 5.2 to thisfinite dimensional situation successively for
r → ∞, one concludes that suchS has to be of the formSp,τ . Hence

Aut∗
(
X,�

) ∼= S∞ × NAutG(�)

A∗(X,�) ∼= S∞ × Out�.

Finally, the explicit form of[T ] and[Sp,τ ] allows to conclude that

OutR(X, �) ∼= S∞+1 × Out�
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where the symbolsS∞ andS∞+1 can be interpreted as the inclusion of the permutation
group ofZ in the permutation group ofZ ∪ {pt}.

9. Proof of Theorem 1.6

Throughout this section� = PSLn(Z), G = PSLn(R) and n ≥ 3. Let S0 =
{p1, . . . , pr} be a given finite set of primes and consider the ergodic�-action on the
compact profinite groupK = ∏

p∈S0
PSLn(Zp). We denoteH = ∏

p∈S0
PSLn(Qp)

and
 = PSLn(Z[S−1
0 ]) ⊂ H . Then
 is a dense countable subgroup of locally

compact totally disconnected groupH and� = 
 ∩K.
Following Gefter [7] we first observe that OutRK,� containsH . Indeed restricting

the type II∞ relationRH,
 toK we obtain a type II1 relationRK,� = RH,
∩(K ×K)

and
OutRK,� ∼= OutRH,
 ⊇ A(H,
) ∼= H

using the straight forward II∞-type generalizations of Lemmas 2.2, 2.3(a) and the
remark following 7.2 respectively.

We need to find explicit representativesTh ∈ Aut RK,� for h ∈ H , so that
h �→ [Th] is the above imbedding. SinceK is open and
 is dense inH , given any
h ∈ H , there existλ0 ∈ 
 andk0 ∈ K so thath = λ0k0. The maps

T̃h : x �→ xh and T̃ ′
h : x �→ λ−1

0 xh (x ∈ H)
are in AutRH,
 and[T̃h] = [T̃ ′

h] ∈ OutRH,
. Denoting the open compact subgroup
λ0Kλ

−1
0 ∩K byK1, note that

T̃ ′
h(K1) ⊂ K becausẽT ′

h(x) = λ−1
0 xλ0k0 ∈ (λ−1

0 K1λ0)k0 ⊂ K.

Thus forx, y ∈ K1 we have

(x, y) ∈ RK,� = RH,
|K iff (T̃ ′
h(x), T̃

′
h(y)) ∈ RH,
|K = RK,�.

ThereforeT̃ ′
h|K1 is a restriction of someTh ∈ Aut RK,�, with its outer class[Th] ∈

OutRK,� being uniquely defined by the initialh ∈ H . Denoting�1 := λ0�λ
−1
0 ∩ �

a finite index subgroup of� which is dense inK1, we observe that the restriction of
the rearrangement cocycleαTh to �1 ×K1 is

αTh(γ1, x1) = λ−1
0 γ1λ0 (γ1 ∈ �1, a.e. x1 ∈ K1). (9.1)

The automorphismγ1 �→ λ−1
0 γ1λ0 of the lattice�1 ⊂ G extends to an inner (given

by λ0 ∈ G) automorphism ofG, so in terms of the Standard Quotients Theorem 4.2
the class[τ ] ∈ OutG associated to such[Th] ∈ OutRK,� is always trivial. On
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the other hand the transpose mapT0 : (k1, . . . , kr ) �→ (kt1, . . . , k
t
r ) which is clearly

in Aut RK,� defines the unique outer element[τ ] ∈ OutG (takeτ(g) = (gt )−1).
One easily checks that the group generated by[T0] and[Th], h ∈ H , in OutRK,� is
Z/2-extension ofH .

We shall now prove that the latter group is all of OutRK,�. Take any[T ] ∈
OutRK,�. Possibly composing withT0 we may assume that[τ ] ∈ OutG ∼= Z/2
associated with[T ] is trivial, and will show that such[T ] is [Th] for someh ∈ H .
Applying the Standard Quotients Theorem we may takeτ to be the identity onG.
Since(K, �) cannot have(G/�,mG/�, �) among its measurable quotients, we de-
duce the following:

(1) There exists a finite�-orbit F = {g1�, . . . , gk�} ⊂ G/�, and a measurable
�-equivariant mapπ : K → F with

π(γ x) = γπ(x) (γ ∈ �, x ∈ K).
(2) Let�i = � ∩ gi�g−1

i , i = 1, . . . , k – these are conjugate subgroups of indexk

in �; the setsXi = π−1({gi�}) ⊂ K are�i-invariant and ergodic measurable
subsets withµ(Xi) = 1/k; if Ki is the closure of�i in K thenXi = Kiyi
(mod 0) – cosets ofKi-s; as the latter are open and compact subsets ofK we
obtain an open partition into disjoint sets which we still denote byXi . Up to
reordering we may assume thatX1 contains the identity ofK, i.e.X1 = K1.

(3) There existŝT ∈ Aut RK,� with [T̂ ] = [T ] ∈ OutRK,� so that

α
T̂
(γ1, x1) = g−1

1 γ1g1 (γ1 ∈ �1, x1 ∈ X1).

Note that the last formula resembles (9.1). Property (1) means thatg1 ∈ CommG(�) =
PSLn(Q).

Claim 9.1. g1 ∈ 
 = PSLn(Z[1/p1, . . . , 1/pr ]) = PSLn(Z[S−1
0 ]).

Proof. Let us expand the notations slightly: for an arbitrary finite setS of primes let

KS =
∏
p∈S

PSLn(Zp), 
S = PSLn(Z[S−1])

and letµS denote the normalized Haar measure onKS . We shall denote by� S
1 the

closure of the indexk subgroup�1 = � ∩ g1�g
−1
1 ⊂ � in KS . The�1-ergodic

componentX1 ⊂ K = KS0 is a coset of the open compact subgroup�
S0

1 of K and
by (2)

1

k
= µ(X1) = µS0(�

S0
1 ).

Let S1 be the set of primes appearing in the denominators ofg1 ∈ PSLn(Q), i.e.S1
is the smallest set of primes (possibly empty) such thatg1 ∈ 
S1.
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It follows from the StrongApproximation Theorem that ifS = S′ �S′′ is a disjoint
union of two finite sets of primes, then

� S
1 = � S′

1 × � S′′
1 ⊆ KS′ ×KS′′ = KS,

and� S′′
1 = KS′′ if and only if S′ ∩ S1 = ∅. On the other hand ifS1 ⊂ S′ then it is

easy to see that

µS′(� S′
1 ) = 1

[� : �1] = 1

k
.

Writing S = S0 ∪ S1 = S0 � S2 whereS2 = S1 \ S0 we have

1

k
= µS0(�

S0
1 ) ≥ µS0(�

S0
1 ) · µS2(�

S2
1 ) = µS(�

S
1 ) = 1

[� : �1] = 1

k
.

SoµS2(�
S2

1 ) = 1, that is� S2
1 = KS2, which means thatS2 = ∅ andS1 ⊆ S0 as

claimed. �

Having proved thatg1 ∈ 
, we recall that by (3) the originalT ∈ Aut RK,� can
be replaced bŷT with [T ] = [T̂ ] ∈ OutRK,� so that

T̂ (γ1x1) = g−1
1 γ1g1T̂ (x1) (9.2)

for all γ1 ∈ �1 andµ-a.e.x1 ∈ X1. We have also made sure thatX1 = K1 – the
closure of�1 = � ∩ g1�g

−1
1 in K.

Claim 9.2. T̂ (k) = g−1
1 kg1z1 for some fixed z1 ∈ K and a.e. k ∈ K1.

Proof. The mapγ1 �→ g−1
1 γ1g1 is an isomorphism between finite index subgroups

�1 → �′
1 := g−1

1 �g1 ∩ � of �. It extends to an isomorphismK1 → K ′
1 between

open compact subgroups ofK, whereK ′
1 is the closure of�′

1 in K. (Note that
K1 = K ∩ g1Kg

−1
1 andK ′

1 = g−1
1 Kg1 ∩K as subsets ofH ).

LetX′
1 = T̂ (X1) ⊂ K. In view of (9.2),X′

1 is one of the�′
1-ergodic components

ofX1, and therefore is a singleK ′
1-coset,X′

1 = K ′
1y for somey ∈ X′

1. LetR : K1 →
K1 be the composition of the following maps

K1 = X1 → X′
1 → K ′

1 → K1, R(k) = g1T̂ (k)y
−1g−1

1 .

In view of (9.2) we have for allγ ∈ �1 andµ-a.e.k ∈ K1:

R(γ k) = g1g
−1
1 γg1T̂ (k)y

−1g−1
1 = γR(k).

Since�1 is dense in the compact groupK1, we haveR(k) = kk0 for some fixed
k0 ∈ K1 and a.e.k ∈ K1 (see Proposition 7.2 and the following remark). This allows
us to compute

T̂ (k) = g−1
1 kk0g1y = g−1

1 kg1z1 wherez1 = (g−1
1 k0g1)y ∈ K. �
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Takingh = g1z1 ∈ H we observe that the mapTh ∈ Aut RK,�, discussed in the
first part of this section, agrees witĥT on a positive measure subsetK1 ⊂ K, and
therefore (as in the proof of Lemma 2.2)

[T ] = [T̂ ] = [Th] ∈ OutRK,�

which completes the proof of the theorem.
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