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We study vanishing results for L2-cohomology of countable groups under the presence

of subgroups that satisfy some weak normality condition. As a consequence, we show

that the L2-Betti numbers of SLn(R) for any infinite integral domain R vanish below

degree n− 1. Another application is the vanishing of all L2-Betti numbers for Thomp-

son’s groups F and T .

1 Introduction

An important application of the algebraic theory of L2-Betti numbers [10] (see Farber [8]

for an alternative approach) is that the L2-Betti numbers β(2)i (Γ ) of a group Γ vanish

if it has a normal subgroup whose L2-Betti numbers vanish. With regard to the first

L2-Betti number, one can significantly relax the normality condition to obtain similar

vanishing results [14]. Peterson and Thom prove in [14] that the first L2-Betti number

of a group vanishes if it has a s-normal subgroup (defined below) with vanishing first

L2-Betti number.

The aim of this article is to extend such vanishing results to arbitrary degrees

and to present some applications. Next, we describe the main notions and results in

greater detail.
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3178 U. Bader et al.

We denote the γ -conjugate γ−1Λγ of a subgroup Λ<Γ by Λγ . Unless stated

otherwise, all groups are discrete and countable, and all modules are left modules.

Definition 1.1. A subgroup Λ of a group Γ is called

(1) n-step s-normal if for every (n+ 1)-tuple ω= (γ0, . . . , γn) ∈ Γ n+1 the

intersection

Λω :=Λγ0 ∩ · · · ∩Λγn

is infinite.

(2) s-normal if it is one-step s-normal. �

Example 1.2. The subgroup of upper triangular matrices

(
∗ ∗
0 ∗

)
< SL2(Z[1/p])

inside SL2(Z[1/p]) is one-step s-normal but not two-step s-normal. The fact that it is

s-normal can be verified directly or is a special case of the more general results in

Section 4.1. The fact that it is not two-step s-normal can again be verified directly; it

is also a consequence of Corollary 1.5 below and the nonvanishing

β
(2)
2 (SL2(Z[1/p])) �= 0 (1.1)

of the second L2-Betti number of SL2(Z[1/p]). The group SL2(Z[1/p]) is an irreducible

lattice in SL2(R)× SL2(Qp). The latter locally compact group contains a product of non-

abelian free groups as a (reducible) lattice. Hence, SL2(Z[1/p]) is measure equivalent to

a product of nonabelian free groups. By an important theorem of Gaboriau [9], the non-

vanishing of β(2)n is an invariant under measure equivalence, and the second L2-Betti

number of a product of nonabelian free groups is nonzero by the Kuenneth formula for

L2-cohomology. �

The following is our main result. Recall that the zeroth L2-Betti number of a

group is zero if and only if the group is infinite.

Theorem 1.3. Let Λ<Γ be a subgroup. Assume that

β
(2)
i (Λω)= 0,
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for all integers i,k≥ 0 with i + k≤n and every ω ∈ Γ k+1. In particular, Λ is an n-step

s-normal subgroup of Γ . Then

β
(2)
i (Γ )= 0 for every i ∈ {0, . . . ,n}. �

Recall that Λ<Γ is called commensurated if Λ ∩Λγ is of a finite index in Λ and

Λγ for every γ ∈ Γ . The corollary follows from the preceding theorem and the fact that

one has the relation β(2)i (Γ ′)= [Γ : Γ ′] · β(2)i (Γ ) for a subgroup Γ ′ <Γ of a finite index.

Corollary 1.4. Let Λ<Γ be a commensurated subgroup. If β
(2)
i (Λ)= 0 for every

i ∈ {0, . . . ,n}, then also β(2)i (Γ )= 0 for every i ∈ {0, . . . ,n}. �

The theorem above implies together with the vanishing of L2-Betti numbers of

infinite amenable groups [5] the following.

Corollary 1.5. Let Λ<Γ be an n-step s-normal and amenable subgroup. Then the

L2-Betti numbers of Γ vanish up to degree n, that is, β(2)i (Γ )= 0 for every i ∈ {0, . . . ,n}.�

By taking a suitable subgroup Λ inside the special linear group Γ = SLn(R) over

a ring R, Theorem 1.3 yields the following application (proved in Section 4.1).

Theorem 1.6. Let R be an infinite integral domain. Let n≥ 2. Then

β
(2)
i (SLn(R))= 0 for every i ∈ {0, . . . ,n− 2}. �

In addition, we have a statement about degree n− 1.

Theorem 1.7. Assume that a ring R satisfies at least one of the following properties:

(1) R is an infinite field.

(2) R is a subring of the field F (t) of rational functions over a finite field F and

R contains an invertible element α that is not a root of unity.

(3) R is a subring of the field Q̄ of algebraic numbers, and R contains an invert-

ible element α that is not a root of unity.

Then one has

β
(2)
n−1(SLn(R))= 0. �
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3180 U. Bader et al.

If SLn(R) is a lattice in a semisimple Lie group, for example, in the case R=Z or,

more generally, R being a subring of algebraic integers, then much more is known than

in the preceding theorems. It follows from results of Borel, which rely on global analysis

on the associated symmetric space, that the L2-Betti numbers vanish except possibly in

the middle dimension of the symmetric space [3, 13]. However, the interesting and new

case of the preceding theorems is the one where SLn(R) is not a lattice in a semisim-

ple Lie group; take, for example, R=Z[x1, x2, . . . , xd]. According to results of Shalom [17]

and Vaserstein the so-called universal lattice SLn(Z[x1, . . . , xd]) has property (T) provided

that n≥ 3; Mimura [12] showed that for n≥ 4 the universal lattice has even property FL p,

p∈ (1,∞), as defined by Bader–Furman–Gelander–Monod. Ershov and Jaikin-Zapirain

showed property (T) for the groups ELn(Z〈x1, . . . , xd〉), n≥ 3, of noncommutative univer-

sal lattices [7].

Of course, property (T) implies the vanishing of the first L2-Betti number, but

nothing was known before about the L2-Betti numbers of universal lattices in higher

degrees.

The following application of Theorem 1.3 (proved in Section 4.2) was kindly

pointed to us by Monod remarking on an earlier draft of this paper.

Theorem 1.8. All L2-Betti numbers of Thompson’s groups F and T vanish. �

The groups F and T were invented by Thompson in 1965. In unpublished work

Thompson proved that the group T is a finitely presented, infinite, and simple group. The

vanishing of L2-Betti numbers for Thompson’s group F was proved before in a different

way by Lück [11, Theorem 7.10., p. 298].

Remark 1.9. In a forthcoming paper [1], we show that, if a locally compact group G has

a noncompact amenable radical, then every lattice of G has an infinite amenable com-

mensurated subgroup. In particular, every lattice of G has vanishing L2-Betti numbers

by a theorem of Cheeger and Gromov [5] and Corollary 1.4. �

Example 1.10. The subgroup Z∼= 〈x〉 of the Baumslag–Solitar group

BS(p,q)= 〈x, t | txpt−1 = xq〉

is commensurated but not normal. Corollary 1.4 yields that the L2-Betti numbers of

BS(p,q) vanish. This result is part of earlier work of Dicks and Linnell [6] about L2-Betti

numbers of one-relator groups. �
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2 L2-Cohomology

Our background reference for L2-Betti numbers is Lück [11]. L2-Betti numbers have var-

ious definitions with different levels of generality. A modern and algebraic description

that applies to arbitrary groups was given by Lück [10]. He introduced a dimension func-

tion for arbitrary modules over the group von Neumann algebra L(Γ ) and showed that

the ith L2-Betti number β(2)i (Γ ) in the sense of Cheeger and Gromov [5] can be expressed

as follows:

β
(2)
i (Γ )= dimL(Γ ) Hi(Γ, L(Γ )).

The dimension function dimL(Γ ) extends to a dimension function dimU(Γ ) for modules

over the algebra U(Γ ) of densely defined, closed operators affiliated to L(Γ ) in the

sense that

dimL(Γ )(M)= dimU(Γ )(U(Γ )⊗L(Γ ) M),

for every L(Γ )-module M [15, Proposition 3.8]. One has [15, Proposition 5.1]

β
(2)
i (Γ )= dimU(Γ ) Hi(Γ,U(Γ )). (2.1)

We refer to [11, chapter 8] for more information about this way of defining L2-Betti

numbers. The algebra U(Γ ) of affiliated operators is a self-injective ring, that is, the

functor M �→ homU(Γ )(M,U(Γ )) is exact [2]. Thom firstly exploited this property for the

computation of L2-invariants [18]. Later we need the following lemma.

Lemma 2.1. Let Λ<Γ be a subgroup. If β(2)i (Λ)= 0, then

Hi(Λ,U(Γ ))= 0. �

Proof. The ring U(Λ) is von Neumann regular [11, Theorem 8.22, p. 327]. Thus, U(Γ ) is

a flat U(Λ)-module [11, Lemma 8.18, p. 326]. So we have

Hi(Λ,U(Γ ))∼= U(Γ )⊗U(Λ) Hi(Λ,U(Λ)).

The uniqueness of dimU(Λ)-dimension [15, Theorem 3.11] and the flatness of the functor

U(Γ )⊗U(Λ) yield that for any U(Λ)-module M we have

dimU(Γ )(U(Γ )⊗U(Λ) M)= dimU(Λ)(M).
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In particular, it follows that

dimU(Γ )(Hi(Λ,U(Γ )))= dimU(Λ)(Hi(Λ,U(Λ))) (2.1)= β
(2)
i (Λ)= 0.

By Thom [18, Corollary 3.3], this yields that

homU(Γ )(Hi(Λ,U(Γ )),U(Γ ))= 0.

Since U(Γ ) is self-injective, as mentioned above, the latter module is isomorphic to

Hi(Λ,U(Γ )). �

3 Proof of Theorem 1.3

For a CΓ -module M, we use the notation

MΓ = {m ∈M | γm=m for every γ ∈ Γ }.

For a subgroup Λ<Γ and a CΛ-module M, the CΓ -module

coindΓΛ(M) := homCΛ(CΓ,M)

given by the Γ -action

(γ0 f)(x)= f(xγ0) for f ∈ coindΓΛ(M) and γ ∈ Γ

is called the co-induced CΓ -module [4, III.5]. For a CΓ -module N, we denote the restric-

tion of N to a CΛ-module by resΓΛ(N). We use the notation for the restriction only for

emphasis; we often drop the resΓΛ-notation.

3.1 A sequence of modules for dimension shifting

In the sequel let Γ be a group, Λ<Γ a subgroup, and let

M0 = U(Γ )

regarded as a CΓ -module. Starting with M0, consider the following inductively defined

sequence of CΓ -modules, whose study is motivated by the use of dimension shifting in

the proof of Theorem 1.3.

Mi+1 := coker(Mi→ coindΓΛ(resΓΛ(Mi))). (3.1)
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The homomorphism Mi→ homCΛ(CΓ,Mi) for the cokernel is m �→ (γ �→ γm); it is

CΓ -equivariant. So this declares inductively the CΓ -module structure on Mi.

Lemma 3.1. Assume that for all integers j,k≥ 0 with j + k≤n and for every ω ∈ Γ k+1

one has
β
(2)
j (Λ

ω)= 0.

Then for all integers i, j,k≥ 0 with i + j + k≤n and for every ω ∈ Γ k+1 one has

H j(Λω, resΓΛω(Mi))= 0, (3.2)

H j(Λω, resΓΛω(coindΓΛ(Mi−1)))= 0 if i ≥ 1. (3.3)
�

Proof. We run an induction over i ≥ 0. By Lemma 2.1, the basis i = 0 is equivalent

to our assumption. Assume the statement is true for a fixed i ≥ 0 and all j,k≥ 0 with

i + j + k≤n. We show that the assertion holds for i + 1 and all j,k≥ 0 with i + 1+ j +
k≤n.

The short exact sequence of CΛω-modules

0→ resΓΛω(Mi)→ resΓΛω(coindΓΛ(Mi))→ resΓΛω(Mi+1)→ 0

induces a long exact sequence in cohomology for which we consider the following part:

· · ·→ H j(Λω, resΓΛω(coindΓΛ(Mi)))→ H j(Λω, resΓΛω(Mi+1))→ H j+1(Λω, resΓΛω(Mi))→· · ·

The homology group on the right vanishes by induction hypothesis. It remains to show

that the homology group on the left vanishes. Mackey’s double coset formula [4, III.5]

says that after a choice of a set E of representatives of the double coset space Λω\Γ/Λ,

we obtain an isomorphism of CΛω-modules as follows:

resΓΛω(coindΓΛ(Mi))∼=
∏
γ∈E

coindΛ
ω

Λω∩Λγ−1 (resΛ
γ−1

Λω∩Λγ−1 (γMi)).

Applying the Shapiro lemma and the induction hypothesis yields

H j(Λω, resΓΛω(coindΓΛ(Mi)))=
∏
γ∈E

H j(Λω, coindΛ
ω

Λω∩Λγ−1 (resΛ
γ−1

Λω∩Λγ−1 (γMi)))

=
∏
γ∈E

H j(Λω ∩Λγ−1
, resΛ

γ−1

Λω∩Λγ−1 (γMi))
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=
∏
γ∈E

H j(γ−1Λωγ ∩Λ, resΛγ−1Λωγ∩Λ(Mi))

= 0. �

3.2 Conclusion of proof of Theorem 1.3

Retain the setting of Theorem 1.3. It suffices to verify that the restriction homomorphism

res: Hi(Γ,M0)→ Hi(Λ,M0)

is injective for every i ∈ {1, . . . ,n}. We employ the technique of dimension shifting

[4, III.7]:

For i, j ≥ 0 with i + j ≤n, the Shapiro lemma and (3.2) yield that

H j(Γ, coindΓΛ(Mi))∼= H j(Λ,Mi)= 0.

From the long exact sequence

· · ·→ H j(Γ, coindΓΛ(Mi))→ H j(Γ,Mi+1)
∂−→ H j+1(Γ,Mi)→ H j+1(Γ, coindΓΛ(Mi))→· · ·

one obtains, for any i ∈ {0, . . . ,n}, natural isomorphisms

Hi(Γ,M0)
∼=←− Hi−1(Γ,M1)

∼=←− · · · ∼=←− H1(Γ,Mi−1)
∼=←− H0(Γ,Mi).

Using 3.3, we argue similarly to see that there is a sequence of injective homomorphisms

Hi(Λ,M0)←↩ Hi−1(Λ,M1)←↩ · · ·←↩ H1(Λ,Mi−1)←↩ H0(Λ,Mi),

for any i ∈ {0, . . . ,n}. In particular, we obtain, for i ∈ {0, . . . ,n}, the following commutative

square with an upper horizontal isomorphism and a lower horizontal monomorphism:

H0(Γ,Mi)

res

��

∼=
�� Hi(Γ,M0)

res

��

H0(Λ,Mi)
� � �� Hi(Λ,M0)
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So it is enough to show that the left restriction map is injective. Since it is given by the

inclusion MΓ
i ↪→MΛ

i , this is obvious.

4 Applications

4.1 The groups SLn and ELn over general rings

The subgroup of GLn(R) that is generated by elementary matrices is denoted by ELn(R).

Theorem 4.1. Let R be an infinite integral domain and K be its field of fractions. For

some n≥ 2, let Γ <GLn(K) be a countable group which contains a finite index subgroup

of ELn(R).

Then there exists a subgroup Λ<Γ such that for every k<n and every ω ∈ Γ k,

Λω contains an infinite amenable normal subgroup.

Assume in addition that Γ contains a finite index subgroup of SLn(R) and

for every ideal {0} �= I � R, there exist infinitely many invertible elements x∈ R such

that xn− 1 ∈ I . Then also for every ω ∈ Γ n, Λω contains an infinite amenable normal

subgroup. �

Proof. We let V = Kn, and e1, . . . , en be the standard basis. We denote by Q<GLn(V)

the stabilizer of the line V1 = span{e1} ∈ P(V) and S � Q be the kernel of the obvious

homomorphism Q→ PGL(V/V1). Clearly, S is two-step solvable, thus amenable. We let

V2 = spanK{e2, . . . , en}, thus V = V1 ⊕ V2.

Let Λ= Γ ∩ Q. For given k and ω= (γ0, . . . , γk−1) ∈ Γ k, we consider the group Λω.

Examining whether it contains an infinite amenable normal subgroup, we may and will

assume that γ0 = e. For i ∈ {1, . . . ,k− 1}, we let ti ∈ K and ui ∈ V2 be defined by

γ−1
i e1 =ui + tie1.

We set U = span{u1, . . . ,uk−1}< V2.

Assume U � V2. Then there exists a nontrivial functional φ ∈ V∗2 which vanishes

on U . Multiplying φ by the common denominator of φ(e2), . . . , φ(en) ∈ K, we may assume

that {φ(e2), . . . , φ(en)} ⊂ R. For r ∈ R, we define Tr : V→ V by

Tr(v)= v + rφ ◦ p2(v) · e1,

where p2 : V→ V2 is the projection. Observe that r �→ Tr is an injection of the additive

group of R into ELn(R), whose image (up to a finite index) is in Λω ∩ S. We deduce that

Λω ∩ S is infinite. This is an infinite amenable normal subgroup of Λω, as required.
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If k<n, looking at the dimensions yields that U � V2, thus proving the first part

of the theorem.

We now consider the case k=n. We assume further that Γ contains SLn(R) up to

finite index and that for every ideal {0} �= I � R, there exist infinitely many invertible ele-

ments x∈ R such that xn− 1 ∈ I . Again we will show that the amenable normal subgroup

Λω ∩ S is infinite.

By the argument above, it remains to deal with the case U = V2. Hence, we will

assume that U = V2, thus {u1, . . . ,un−1} forms a basis of V2. We let ψ ∈ V∗2 be the functional

defined by ψ(ui)= ti. We let r ∈ R\{0} be such that {rψ(e2), . . . , rψ(en)} ⊂ R, and we set

I = (r) to be the ideal generated by r. Fixing an invertible element x∈ R such that xn− 1 ∈
I , and letting qx ∈ R be an element satisfying x−(n−1) − x= qxr, we define Sx : V→ V by

setting for t∈ K and u∈ V2

Sx(te1 + u)= (x−(n−1)t− qxrψ(u))e1 + xu.

It is clear that, for every such x, Sx is in SLn(R) ∩ S and stabilizes γiV1 for every i =
0, . . .n− 1, thus Λω ∩ S is infinite. �

Our next goal will be to show that some integral domains satisfy the condition

appearing in the previous theorem.

Proposition 4.2. Assume that a ring R satisfies at least one of the following

properties:

(1) R is an infinite field.

(2) R is a subring of the field F (t) of rational functions over a finite field F , and

R contains an invertible element α that is not a root of unity.

(3) R is a subring of the field Q̄ of algebraic numbers, and R contains an invert-

ible element α that is not a root of unity.

Then for every n∈N and for every ideal {0} �= I � R, there exist infinitely many invertible

elements x∈ R such that xn− 1 ∈ I . �

The proof of the proposition in case R is a ring of algebraic numbers will depend

on the following elementary lemma.

Lemma 4.3. Given α ∈ Q̄ and 0 �= k∈N, the ring Z[α]/(k) is finite. �
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Proof. By the general version of the Chinese remainder theorem (for the ring Z[α]),

for coprime k1,k2 ∈N, the two ideals (k1k2) and (k1) ∩ (k2) coincide and Z[α]/(k1k2)�
Z[α]/(k1)× Z[α]/(k2). It follows that we may assume that k= pj is a prime power. We

now prove the statement that Z[α]/(pj) is finite by induction on j. For j = 1 the state-

ment is clear, as this is a finite dimensional vector space over Z/(p). For the induction

step, observe that the statement is equivalent to the statement that in Z[α], for some i,

αi − 1 is in the ideal (pj). For this statement induction applies easily; αi = 1+ pjr implies

αip= (1+ pjr)p= 1+ pj+1r′. �

Proof of Proposition. The case that R is an infinite field is trivial.

Assume R< F (t) and that α ∈ R is an invertible element which is not a root of

unity. We assume (as we may upon replacing F by F ∩ R) that R is an F -algebra, thus

F [α, α−1]< R. Let {0} �= I � R be given. We claim that the image of α in (R/I )× is torsion.

We first observe that I ∩ F [α, α−1] �= {0}. Indeed, F (t) is a finite field extension of F (α) (it is

finitely generated and of transcendental degree 0), so if
∑

aiβ
i is a minimal polynomial

over F (α) for some nonzero function β ∈ I with ai ∈ F [α] then a0 ∈ I . The claim follows

from the obvious fact that F [α, α−1]/(I ∩ F [α, α−1]) is a finite extension of F , hence, finite.

Now, if αm − 1 ∈ I , then the set {α jm | j ∈Z} contains, for every n, infinitely many invert-

ible elements x with xn− 1 ∈ I .

Assume now that R< Q̄. Again, we claim that the image of α in (R/I )× is torsion,

for any given {0} �= I � R. We first observe that I ∩ Z �= {0}. Indeed, if
∑

aiβ
i is a minimal

polynomial for some nonzero algebraic number β ∈ I with ai ∈Z then a0 ∈ I . Thus, in

order to prove the claim it is enough to show that the image of α is torsion in (R/(k))× for

every k∈N. This follows from Lemma 4.3. As before, if αm − 1 ∈ I , then the set {α jm | j ∈
Z} contains, for every n, infinitely many invertible elements x with xn− 1 ∈ I . �

Proofs of Theorems 1.6 and 1.7. By a theorem of Cheeger and Gromov [5] all L2-Betti

numbers of a group vanish if the group has an infinite normal amenable subgroup.

Hence, Theorem 1.3 and the first part of Theorem 4.1 yield Theorem 1.6. Similarly and

using Proposition 4.2 in addition, one obtains Theorem 1.7. �

4.2 Thompson’s groups

Thompson’s group T is defined as the group of piecewise linear homeomorphisms of the

circle R/Z that are differentiable except at finitely many dyadic rational numbers, that

is, points in Z[ 1
2 ]/Z, and such that the slopes on intervals of differentiability are powers
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of 2 with respect to the obvious flat structure on R/Z. Thompson’s groups F is defined

to be the stabilizer of 0 ∈R/Z in T .

Proof of Theorem 1.8. Let n≥ 1. Let Λ⊂ F be the stabilizer subgroup inside F of a

finite set of (n+ 1) many dyadic rational points. For any ω ∈ F m with m≥ 1, the sub-

group Λω ⊂ F is the stabilizer subgroup of a finite set of d dyadic rational points with

some d∈ {n+ 1, . . . ,m(n+ 1)}. By the description above, it is evident that Λω ∼= F d. The

L2-Betti numbers of any d-fold product of infinite groups, thus of Λω, vanish up to

degree d− 1≥n by repeated application of the Kuenneth formula in L2-cohomology [11,

Theorem 6.54., p. 265]. Now Theorem 1.3 implies that the L2-Betti numbers of F van-

ish up to degree n, and since n was arbitrary, Theorem 1.8 for the group F is proved.

For the group T , we run the almost the same argument, taking Λ to be the stabilizer

inside T and considering ω ∈ Tm. We again obtain that Λω ∼= F d and finish the argument

as above. �

4.3 Permutation group theoretic criterion

Theorem 4.4. Let Γ be a countable group, Λ<Γ be an amenable subgroup such that

the closure of the image of Γ in the Polish group Sym(Γ /Λ) is not discrete. Then

β(2)n (Γ )= 0 for every n≥ 0. �

Proof. We apply Corollary 1.5. We will be done by showing that for any n and any

ω ∈ Γ n, Λω is infinite. Assume otherwise that for some n and some ω ∈ Γ n, Λω is finite.

Then for some n′ and ω′ ∈ Γ n′ , Λω′ is the core of Λ,
⋂
γ∈Γ Λ

γ . That is, the identity element

of the image of Γ in Sym(Γ /Λ) could be expressed as the intersection of finitely many

open subgroups, contradicting the nondiscreteness of this image. �
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