Orbit Equivalence since Zimmer's Cocycle Superrigidity Theorem

Alex Furman University of Illinois at Chicago

September 8, 2007

Orbit Structures of II₁ Group Actions

II₁ actions (X, μ, Γ) :

- Γ discrete countable group
- (X, \mathcal{B}, μ) std prob space \cong ([0, 1], Borel, Lebesgue)

•
$$\Gamma \curvearrowright (X, \mu)$$
 – ergodic m.p. $(\gamma_* \mu = \mu, \quad \forall \gamma \in \Gamma)$

くほと くほと くほと

Orbit Structures of II₁ Group Actions

II₁ actions (X, μ, Γ) :

- Γ discrete countable group
- (X, \mathcal{B}, μ) std prob space \cong ([0, 1], Borel, Lebesgue)
- $\Gamma \frown (X, \mu)$ ergodic m.p. $(\gamma_* \mu = \mu, \forall \gamma \in \Gamma)$

Orbit Equivalence

$$(X,\mu,\Gamma) \stackrel{\textit{OE}}{\sim} (Y,\nu,\Lambda) \text{ if } \exists T: (X,\mu) \cong (Y,\nu) \text{ s.t. } T(\Gamma.x) = \Lambda.T(x)$$

Orbit Structures of II₁ Group Actions

II₁ actions (X, μ, Γ) :

- Γ discrete countable group
- (X, \mathcal{B}, μ) std prob space \cong ([0, 1], Borel, Lebesgue)
- $\Gamma \curvearrowright (X, \mu)$ ergodic m.p. $(\gamma_* \mu = \mu, \forall \gamma \in \Gamma)$

Orbit Equivalence

 $(X, \mu, \Gamma) \stackrel{OE}{\sim} (Y, \nu, \Lambda)$ if $\exists T : (X, \mu) \cong (Y, \nu)$ s.t. $T(\Gamma.x) = \Lambda.T(x)$ Denoting by $\mathcal{R}_{\Gamma,X} = \{(x, y) \in X \times X \mid \Gamma x = \Gamma y\}$ the orbit relation

$$T: (X, \mu, \Gamma) \stackrel{OE}{\sim} (Y, \nu, \Lambda) \qquad \Longleftrightarrow \qquad T imes T(\mathcal{R}_{\Gamma, X}) \cong \mathcal{R}_{\Lambda, Y}$$

Orbit Structures of II_1 Group Actions

II₁ actions (X, μ, Γ) :

- Γ discrete countable group
- (X, \mathcal{B}, μ) std prob space \cong ([0, 1], Borel, Lebesgue)
- $\Gamma \frown (X, \mu)$ ergodic m.p. $(\gamma_* \mu = \mu, \forall \gamma \in \Gamma)$

Orbit Equivalence

 $(X, \mu, \Gamma) \stackrel{OE}{\sim} (Y, \nu, \Lambda)$ if $\exists T : (X, \mu) \cong (Y, \nu)$ s.t. $T(\Gamma.x) = \Lambda.T(x)$ Denoting by $\mathcal{R}_{\Gamma,X} = \{(x, y) \in X \times X \mid \Gamma x = \Gamma y\}$ the orbit relation

$$T: (X, \mu, \Gamma) \stackrel{OE}{\sim} (Y, \nu, \Lambda) \qquad \Longleftrightarrow \qquad T imes T(\mathcal{R}_{\Gamma, X}) \cong \mathcal{R}_{\Lambda, Y}$$

Stable, or weak, OE: $(X, \mu, \Gamma) \stackrel{sOE}{\sim} (Y, \nu, \Lambda)$

 $X \supset A \xrightarrow{T} B \subset Y$ $T \times T(\mathcal{R}_{X,\Gamma}|_{A \times A}) \cong \mathcal{R}_{Y,\Lambda}|_{B \times B}$

< 🗗 🕨 🔸

æ

Fact

For ess. free II₁ actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is **amenable** or not.

47 ▶

Fact

For ess. free II₁ actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is **amenable** or not.

Theorem (Ornstein-Weiss, 1980)

All II_1 actions of all amenable groups are OE.

Fact

For ess. free II₁ actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is **amenable** or not.

Theorem (Ornstein-Weiss, 1980)

All II_1 actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

Let G_1, G_2 be center free simple Lie groups, $\operatorname{rk}(G_1) \geq 2$, $\Gamma_i < G_i$ lattices $\Gamma_i \curvearrowright (X_i, \mu_i)$ ess. free II₁ actions $(X_1, \mu_1, \Gamma_1) \stackrel{sOE}{\sim} (X_2, \mu_2, \Gamma_2)$.

くほと くほと くほと

Fact

For ess. free II₁ actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is **amenable** or not.

Theorem (Ornstein-Weiss, 1980)

All II_1 actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

Let G_1, G_2 be center free simple Lie groups, $\operatorname{rk}(G_1) \geq 2$, $\Gamma_i < G_i$ lattices $\Gamma_i \curvearrowright (X_i, \mu_i)$ ess. free II₁ actions $(X_1, \mu_1, \Gamma_1) \stackrel{sOE}{\sim} (X_2, \mu_2, \Gamma_2)$. Then

$$G_1 \cong G_2$$
, and

- 4 週 ト - 4 三 ト - 4 三 ト

Fact

For ess. free II₁ actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is **amenable** or not.

Theorem (Ornstein-Weiss, 1980)

All II_1 actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

Let G_1, G_2 be center free simple Lie groups, $\operatorname{rk}(G_1) \geq 2$, $\Gamma_i < G_i$ lattices $\Gamma_i \curvearrowright (X_i, \mu_i)$ ess. free II_1 actions $(X_1, \mu_1, \Gamma_1) \stackrel{sOE}{\sim} (X_2, \mu_2, \Gamma_2)$. Then

$$G_1 \cong G_2$$
, and $G \curvearrowright (G_1 \times_{\Gamma_1} X_1) \cong G \curvearrowright (G_2 \times_{\Gamma_2} X_2)$

- 3

イロト 不得下 イヨト イヨト

Fact

For ess. free II₁ actions $\mathcal{R}_{X,\Gamma}$ remembers whether Γ is **amenable** or not.

Theorem (Ornstein-Weiss, 1980)

All II_1 actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

Let G_1, G_2 be center free simple Lie groups, $\operatorname{rk}(G_1) \geq 2$, $\Gamma_i < G_i$ lattices $\Gamma_i \curvearrowright (X_i, \mu_i)$ ess. free II_1 actions $(X_1, \mu_1, \Gamma_1) \stackrel{sOE}{\sim} (X_2, \mu_2, \Gamma_2)$. Then

$$G_1 \cong G_2$$
, and $G \curvearrowright (G_1 \times_{\Gamma_1} X_1) \cong G \curvearrowright (G_2 \times_{\Gamma_2} X_2)$

For free II₁ actions of higher rank lattices $\Gamma < G$ any $\mathcal{R}_{X,\Gamma}$ remembers G !

Definition

 $c: G \times X \to H$ is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

```
c(g_2g_1,x)=c(g_2,g_1.x)\cdot c(g_1,x)
```

A 🖓

Definition

 $c: G \times X \to H$ is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

$$c(g_2g_1,x)=c(g_2,g_1.x)\cdot c(g_1,x)$$

any measurable $f : X \rightarrow H$ defines a **conjugate** cocycle

$$c^{f}(g, x) = f(gx) c(g, x) f(x)^{-1}$$

A 🖓 h

Definition

 $c: G \times X \to H$ is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

$$c(g_2g_1,x)=c(g_2,g_1.x)\cdot c(g_1,x)$$

any measurable $f : X \rightarrow H$ defines a **conjugate** cocycle

$$c^{f}(g, x) = f(gx) c(g, x) f(x)^{-1}$$

Example

Any Orbit Equivalence $T : (X, \mu, G) \rightarrow (Y, \nu, H)$ of free II₁actions, defines

$$c: G \times X \to H$$
 by $T(g.x) = c(g,x).T(x)$

Definition

 $c: G \times X \to H$ is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

$$c(g_2g_1,x)=c(g_2,g_1.x)\cdot c(g_1,x)$$

any measurable $f : X \rightarrow H$ defines a **conjugate** cocycle

$$c^{f}(g, x) = f(gx) c(g, x) f(x)^{-1}$$

Example

Any Orbit Equivalence $T : (X, \mu, G) \rightarrow (Y, \nu, H)$ of free II₁actions, defines

$$c: G \times X \to H$$
 by $T(g.x) = c(g,x).T(x)$

If $c^{f}(g, x) = \rho(g)$, then $\rho: G \to H$ is a group homomorphism,

Definition

c: G imes X o H is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

$$c(g_2g_1,x)=c(g_2,g_1.x)\cdot c(g_1,x)$$

any measurable $f : X \rightarrow H$ defines a **conjugate** cocycle

$$c^{f}(g, x) = f(gx) c(g, x) f(x)^{-1}$$

Example

Any Orbit Equivalence $T : (X, \mu, G) \rightarrow (Y, \nu, H)$ of free II₁actions, defines

$$c: G \times X \to H$$
 by $T(g.x) = c(g,x).T(x)$

If $c^{f}(g, x) = \rho(g)$, then $\rho : G \to H$ is a group homomorphism, and

T'(x) = f(x).T(x) satisfies $T'(g.x) = \rho(g).T'(x)$

Definition

c: G imes X o H is a measurable **cocycle** if for all $g_1, g_2 \in G$ a.e. on X

$$c(g_2g_1,x)=c(g_2,g_1.x)\cdot c(g_1,x)$$

any measurable $f : X \rightarrow H$ defines a **conjugate** cocycle

$$c^{f}(g, x) = f(gx) c(g, x) f(x)^{-1}$$

Example

Any Orbit Equivalence $T : (X, \mu, G) \rightarrow (Y, \nu, H)$ of free II₁actions, defines

$$c: G \times X \to H$$
 by $T(g.x) = c(g,x).T(x)$

If $c^{f}(g, x) = \rho(g)$, then $\rho: G \to H$ is a group homomorphism, and

$$T'(x) = f(x).T(x)$$
 satisfies $T'(g.x) = \rho(g).T'(x)$

Moreover, $T': (X, \mu) \cong (Y, \nu)$ is a measure space iso and ρ is a group iso.

Zimmer's Cocycle Superrigidity Theorem

Theorem (Zimmer, 1981)

Let G, H be (semi)simple Lie groups with $rk(G) \ge 2$, $G \curvearrowright (X, \mu)$ an (irr) erg. p.m.p. action, $\alpha : G \times X \to H$ a non-compact Zariski dense cocycle. Then α is conjugate to a homomorphism $\rho : G \to H$.

Same for cocycles $\Gamma \curvearrowright (X, \mu)$ where $\Gamma < G$ is a lattice.

A generalization of

Theorem (Margulis, 1973)

Let G, H be (semi)simple Lie groups, $rk(G) \ge 2$, $\Gamma < G$ an (irr) lattice, $\rho : \Gamma \rightarrow H$ a homomorphism with unbounded Zariski dense $\rho(\Gamma)$.

Then ρ extends to $G \rightarrow H$.

Measurable Group Theory

Definition (Gromov)

Let Γ_1,Γ_2 be two groups

- **3** Topological Equivalence is a loc cpt space Σ with cont action of $\Gamma_1 \times \Gamma_2$ with $\Gamma_i \curvearrowright \Sigma$ properly disc and cocompact.
- **2** Measure Equivalence is a measure space (Ω, m) with a m.p. action of $\Gamma_1 \times \Gamma_2$ s.t. $\Gamma_i \curvearrowright \Omega$ has a finite measure fundamental domain.

- 3

- 4 同 6 4 日 6 4 日 6

Measurable Group Theory

Definition (Gromov)

Let Γ_1,Γ_2 be two groups

- **3** Topological Equivalence is a loc cpt space Σ with cont action of $\Gamma_1 \times \Gamma_2$ with $\Gamma_i \curvearrowright \Sigma$ properly disc and cocompact.
- **2** Measure Equivalence is a measure space (Ω, m) with a m.p. action of $\Gamma_1 \times \Gamma_2$ s.t. $\Gamma_i \curvearrowright \Omega$ has a finite measure fundamental domain.

Theorem

1
$$\Gamma_1 \stackrel{TE}{\sim} \Gamma_2$$
 if and only if $\Gamma_1 \stackrel{qi}{\sim} \Gamma_2$ (Gromov).
2 $\Gamma_1 \stackrel{ME}{\sim} \Gamma_2$ if and only if \exists free $(X_1, \Gamma_1) \stackrel{sOE}{\sim} (X_2, \Gamma_2)$.

(日) (周) (三) (三)

Measurable Group Theory

Definition (Gromov)

Let Γ_1,Γ_2 be two groups

- **3** Topological Equivalence is a loc cpt space Σ with cont action of $\Gamma_1 \times \Gamma_2$ with $\Gamma_i \curvearrowright \Sigma$ properly disc and cocompact.
- **3** Measure Equivalence is a measure space (Ω, m) with a m.p. action of $\Gamma_1 \times \Gamma_2$ s.t. $\Gamma_i \curvearrowright \Omega$ has a finite measure fundamental domain.

Theorem

$$T_1 \stackrel{\text{ME}}{\sim} \Gamma_2 \text{ if and only if } \exists \text{ free } (X_1, \Gamma_1) \stackrel{\text{sOE}}{\sim} (X_2, \Gamma_2).$$

Example

1 Uniform lattices Γ_1, Γ_2 in a loc cpt group G: $\Gamma_1 \curvearrowright G \curvearrowleft \Gamma_2$

2 Arbitrary lattices Γ_1, Γ_2 in a loc cpt group G:

 $\Gamma_1 \curvearrowright G \curvearrowleft \Gamma_2$

Theorem (F. 1999)

Let G be simple $rk(G) \ge 2$, $\Gamma < G$ and Λ any group with $\Gamma \stackrel{ME}{\sim} \Lambda$

Theorem (F. 1999)

Let G be simple $rk(G) \ge 2$, $\Gamma < G$ and Λ any group with $\Gamma \stackrel{ME}{\sim} \Lambda$ Then $\Lambda \simeq$ a lattice in G.

Theorem (F. 1999)

Let G be simple $rk(G) \ge 2$, $\Gamma < G$ and Λ any group with $\Gamma \stackrel{ME}{\sim} \Lambda$ Then $\Lambda \simeq a$ lattice in G.

Theorem (F. 1999)

Let $\Gamma \curvearrowright (X, \mu)$ be a II₁action of lattice $\Gamma < G$, simple $rk(G) \ge 2$. Let $\Lambda \curvearrowright (Y, \nu)$ be any free II₁ action with $(X, \Gamma) \stackrel{sOE}{\sim} (Y, \Lambda)$. Then • If $X \not\rightarrow G/\Gamma'$, then $\Gamma \simeq \Lambda$ and $\Gamma \curvearrowright X \simeq \Lambda \curvearrowright Y$.

くほと くほと くほと

Theorem (F. 1999)

Let G be simple $rk(G) \ge 2$, $\Gamma < G$ and Λ any group with $\Gamma \stackrel{ME}{\sim} \Lambda$ Then $\Lambda \simeq$ a lattice in G.

Theorem (F. 1999)

Let $\Gamma \curvearrowright (X, \mu)$ be a II₁action of lattice $\Gamma < G$, simple $rk(G) \ge 2$.

Let $\Lambda \curvearrowright (Y, \nu)$ be any free II₁action with $(X, \Gamma) \stackrel{sOE}{\sim} (Y, \Lambda)$. Then

• If $X \not\rightarrow G/\Gamma'$, then $\Gamma \simeq \Lambda$ and $\Gamma \curvearrowright X \simeq \Lambda \curvearrowright Y$.

• Otherwise, for any $\pi: X \to G/\Gamma_{\pi}$ there is $(X_{\pi}, \Gamma_{\pi}) \stackrel{sOE}{\sim} (X, \Gamma)$

- 4 個 ト 4 国 ト - 4 国 ト - 三日

Theorem (F. 1999)

Let G be simple $rk(G) \ge 2$, $\Gamma < G$ and Λ any group with $\Gamma \stackrel{ME}{\sim} \Lambda$ Then $\Lambda \simeq$ a lattice in G.

Theorem (F. 1999)

Let $\Gamma \curvearrowright (X, \mu)$ be a II₁action of lattice $\Gamma < G$, simple $rk(G) \ge 2$.

Let $\Lambda \curvearrowright (Y, \nu)$ be any free II₁action with $(X, \Gamma) \stackrel{sOE}{\sim} (Y, \Lambda)$. Then

- If $X \not\rightarrow G/\Gamma'$, then $\Gamma \simeq \Lambda$ and $\Gamma \curvearrowright X \simeq \Lambda \curvearrowright Y$.
- Otherwise, for any π : X → G/Γ_π there is (X_π, Γ_π) ^{sOE} ∼ (X, Γ) and (Y, Λ) is ≃ to either (X, Γ) or to one of (X_π, Γ_π).

イロト イポト イヨト イヨト 二日

Theorem (F. 1999)

Let G be simple $rk(G) \ge 2$, $\Gamma < G$ and Λ any group with $\Gamma \stackrel{ME}{\sim} \Lambda$ Then $\Lambda \simeq$ a lattice in G.

Theorem (F. 1999)

Let $\Gamma \curvearrowright (X, \mu)$ be a II_1 action of lattice $\Gamma < G$, simple $rk(G) \ge 2$.

Let $\Lambda \curvearrowright (Y, \nu)$ be any free II₁action with $(X, \Gamma) \stackrel{sOE}{\sim} (Y, \Lambda)$. Then

- If $X \not\rightarrow G/\Gamma'$, then $\Gamma \simeq \Lambda$ and $\Gamma \curvearrowright X \simeq \Lambda \curvearrowright Y$.
- Otherwise, for any π : X → G/Γ_π there is (X_π, Γ_π) ^{sOE} ∼ (X, Γ) and (Y, Λ) is ≃ to either (X, Γ) or to one of (X_π, Γ_π).

Other applications

Feldman-Moore question, computations of ${\rm Out}\,({\cal R}_{X,\Gamma})={\rm Aut}\,/{\rm Inn}$, Enveloping grps for lattices

A.Furman ()

Theorem (Monod-Shalom 2005)

Let $\Gamma = \prod_{i=1}^{n} \Gamma_{i} \curvearrowright (X, \mu)$ free $n \ge 2$, where Γ_{i} are "hyperbolic-like" and $\Gamma_{i} \curvearrowright (X, \mu)$ erg. i = 1, 2.

- 3

(日) (周) (三) (三)

Theorem (Monod-Shalom 2005)

Let $\Gamma = \prod_{i=1}^{n} \Gamma_{i} \curvearrowright (X, \mu)$ free $n \ge 2$, where Γ_{i} are "hyperbolic-like" and $\Gamma_{i} \curvearrowright (X, \mu)$ erg. i = 1, 2. Then

• $\mathcal{R}_{X,\Gamma}$ remembers the number of factors: n.

< 回 ト < 三 ト < 三 ト

Theorem (Monod-Shalom 2005)

Let $\Gamma = \prod_{i=1}^{n} \Gamma_{i} \curvearrowright (X, \mu)$ free $n \ge 2$, where Γ_{i} are "hyperbolic-like" and $\Gamma_{i} \curvearrowright (X, \mu)$ erg. i = 1, 2. Then

- $\mathcal{R}_{X,\Gamma}$ remembers the number of factors: n.
- If Λ ∩ (Y, ν) is any free and mildly mixing, and R_{X,Γ} ~ R_{Y,Λ} then Γ ≅ Λ and Γ ∩ X ≅ Λ ∩ Y.

くほと くほと くほと

Theorem (Monod-Shalom 2005)

Let $\Gamma = \prod_{i=1}^{n} \Gamma_{i} \curvearrowright (X, \mu)$ free $n \ge 2$, where Γ_{i} are "hyperbolic-like" and $\Gamma_{i} \curvearrowright (X, \mu)$ erg. i = 1, 2. Then

- $\mathcal{R}_{X,\Gamma}$ remembers the number of factors: n.
- If Λ ∩ (Y, ν) is any free and mildly mixing, and R_{X,Γ} ~ R_{Y,Λ} then Γ ≅ Λ and Γ ∩ X ≅ Λ ∩ Y.

Theorem (Monod-Shalom 2005, Hjorth-Kechris 2004, Bader-F. 2007) Let $A = A_1 \times A_2$ acts on (X, μ) with both $A_i \curvearrowright (X, \mu)$ erg i = 1, 2 $\alpha : A \times X \to \Gamma$ a non-elementary cocycle into a "hyperbolic-like" Γ . Then α is cohom to a homomorphism $\rho : A \to A_i \to \Gamma$ for i = 1 or 2.

イロト 不得 トイヨト イヨト 二日

Theorem (Monod-Shalom 2005)

Let $\Gamma = \prod_{i=1}^{n} \Gamma_{i} \curvearrowright (X, \mu)$ free $n \ge 2$, where Γ_{i} are "hyperbolic-like" and $\Gamma_{i} \curvearrowright (X, \mu)$ erg. i = 1, 2. Then

- $\mathcal{R}_{X,\Gamma}$ remembers the number of factors: n.
- If Λ ∩ (Y, ν) is any free and mildly mixing, and R_{X,Γ} ~ R_{Y,Λ} then Γ ≅ Λ and Γ ∩ X ≅ Λ ∩ Y.

Theorem (Monod-Shalom 2005, Hjorth-Kechris 2004, Bader-F. 2007) Let $A = A_1 \times A_2$ acts on (X, μ) with both $A_i \curvearrowright (X, \mu)$ erg i = 1, 2 $\alpha : A \times X \to \Gamma$ a non-elementary cocycle into a "hyperbolic-like" Γ . Then α is cohom to a homomorphism $\rho : A \to A_i \to \Gamma$ for i = 1 or 2.

イロト 不得 トイヨト イヨト 二日

Mapping Class groups

Results of Kida 2006.+

For Γ Mapping Class Group

- Full rigidity: $ME(\Gamma) = \{\Gamma\}, OE = isom$ (up to finite)
- Γ is not a lattice in any loc comp G (except trivial)
- Computations of $Out(\mathcal{R}_{X,\Gamma})$

- 4 週 ト - 4 三 ト - 4 三 ト

Mapping Class groups

Results of Kida 2006,+

For **F** Mapping Class Group

- Full rigidity: $ME(\Gamma) = \{\Gamma\}$, OE=isom (up to finite)
- Γ is not a lattice in any loc comp G (except trivial)
- Computations of $\operatorname{Out}(\mathcal{R}_{X,\Gamma})$

Ingredients

- Boundary theory on Thurston's compactification (amenability,+)
- $\bullet~\mbox{Ivanov's}~\Gamma = {\rm Aut}\,(\mbox{Curve Cpx})$ for groupoids

- 3

- 4 同 6 4 日 6 4 日 6

Mapping Class groups

Results of Kida 2006,+

For **F** Mapping Class Group

- Full rigidity: $ME(\Gamma) = \{\Gamma\}$, OE=isom (up to finite)
- Γ is not a lattice in any loc comp G (except trivial)
- Computations of $\operatorname{Out}(\mathcal{R}_{X,\Gamma})$

Ingredients

- Boundary theory on Thurston's compactification (amenability,+)
- $\bullet~\mbox{Ivanov's}~\Gamma = {\rm Aut}\,(\mbox{Curve Cpx})$ for groupoids

- 3

- 4 同 6 4 日 6 4 日 6

• amenability,

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• amenability, property (T),

(日) (同) (三) (三)

• amenability, property (T), a-(T)-menability, ...

(日) (周) (三) (三)

- amenability, property (T), a-(T)-menability, ...
- $\operatorname{Sp}_{n,1}(\mathbf{R}) \not\sim^{ME} \operatorname{Sp}_{k,1}(\mathbf{R})$ (Cowling-Zimmer)
- Treeability, anti-treeability (Adams)
- $cost(\mathcal{R}_{X,F_n}) = n, \ldots$ (Levitt, Gaboriau)
- $\beta_n^{(2)}(\Gamma), \quad \chi(\Gamma)$ (Gaboriau)

- amenability, property (T), a-(T)-menability, ...
- $\operatorname{Sp}_{n,1}(\mathbf{R}) \not\sim^{ME} \operatorname{Sp}_{k,1}(\mathbf{R})$ (Cowling-Zimmer)
- Treeability, anti-treeability (Adams)
- $cost(\mathcal{R}_{X,F_n}) = n, \ldots$ (Levitt, Gaboriau)
- $\beta_n^{(2)}(\Gamma), \quad \chi(\Gamma)$ (Gaboriau)
- Homological invariants (Sauer)

- ▲ 同 ▶ ▲ 目 ▶ → 目 → のへの

- amenability, property (T), a-(T)-menability, ...
- $\operatorname{Sp}_{n,1}(\mathbf{R}) \not\sim^{ME} \operatorname{Sp}_{k,1}(\mathbf{R})$ (Cowling-Zimmer)
- Treeability, anti-treeability (Adams)
- $cost(\mathcal{R}_{X,F_n}) = n, \ldots$ (Levitt, Gaboriau)
- $\beta_n^{(2)}(\Gamma), \quad \chi(\Gamma)$ (Gaboriau)
- Homological invariants (Sauer)

Applications

• Descriptive Set Theory: Adams-Kechris, Hjorth, Thomas,...

Applications to QI of amenable groups

Shalom, Sauer

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let Γ have (T) and $\Gamma \curvearrowright X = (X_0, \mu_0)^{\Gamma}$ be a Bernoulli action. Λ any discrete, or cpt (or $\in U_{\text{fin}}$) group.

Then any cocycle $\alpha : \Gamma \times X \to \Lambda$ is conjugate in Λ to a homomorphism $\rho : \Gamma \to \Lambda$.

- 4 個 ト 4 国 ト - 4 国 ト - 三日

New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let Γ have (T) and $\Gamma \curvearrowright X = (X_0, \mu_0)^{\Gamma}$ be a Bernoulli action. Λ any discrete, or cpt (or $\in U_{\text{fin}}$) group.

Then any cocycle $\alpha : \Gamma \times X \to \Lambda$ is conjugate in Λ to a homomorphism $\rho : \Gamma \to \Lambda$.

Corollary

For $\Gamma \curvearrowright (X, \mu)$ as above, $\mathcal{R}_{X,\Gamma}$ remembers Γ and $\Gamma \curvearrowright X$.

New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let Γ have (T) and $\Gamma \curvearrowright X = (X_0, \mu_0)^{\Gamma}$ be a Bernoulli action. Λ any discrete, or cpt (or $\in U_{fin}$) group.

Then any cocycle $\alpha : \Gamma \times X \to \Lambda$ is conjugate in Λ to a homomorphism $\rho : \Gamma \to \Lambda$.

Corollary

For $\Gamma \curvearrowright (X, \mu)$ as above, $\mathcal{R}_{X,\Gamma}$ remembers Γ and $\Gamma \curvearrowright X$.

Theorem (loana 2007)

Let Γ have (T), $K = \lim \Gamma / \Gamma_i$ be a profinite completion. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any $\Lambda \in \mathcal{U}_{fin}$.

Then $\exists i, \text{ and } \rho : \Gamma_i \to \Lambda \text{ so that } \alpha|_{\Gamma_i \times K_i} \text{ is conjugate to } \rho, K_i = \overline{\Gamma_i} < K.$

ヘロト 人間ト 人間ト 人間

Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom ρ : $\Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K}' \to K' = \overline{\tau(\Gamma')}$ so that $\alpha : \Gamma' \times \hat{K'} \to \Lambda$ is conjugate to ρ .

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom ρ : $\Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K}' \to K' = \overline{\tau(\Gamma')}$ so that $\alpha : \Gamma' \times \hat{K'} \to \Lambda$ is conjugate to ρ .

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and II₁action $\Gamma \curvearrowright (X, \mu)$. Then close cocycles are conjugate:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom ρ : $\Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K}' \to K' = \overline{\tau(\Gamma')}$ so that $\alpha : \Gamma' \times \hat{K'} \to \Lambda$ is conjugate to ρ .

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and II₁action $\Gamma \curvearrowright (X, \mu)$. Then close cocycles are conjugate: $\exists S \subset \Gamma, \epsilon > 0$ so that if $\alpha, \beta : \Gamma \times X \to \Lambda$ satisfy

$$\mu\{x \in X \mid \forall s \in S: \ \alpha(s, x) = \beta(s, x)\} > 1 - \epsilon$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom ρ : $\Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K}' \to K' = \overline{\tau(\Gamma')}$ so that $\alpha : \Gamma' \times \hat{K'} \to \Lambda$ is conjugate to ρ .

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and II₁action $\Gamma \curvearrowright (X, \mu)$. Then close cocycles are conjugate: $\exists S \subset \Gamma, \epsilon > 0$ so that if $\alpha, \beta : \Gamma \times X \to \Lambda$ satisfy

$$\mu\{x \in X \mid \forall s \in S : \ \alpha(s,x) = \beta(s,x)\} > 1 - \epsilon$$

then $\exists f : X \to \Lambda \text{ s.t. } \beta = \alpha^f$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, $\tau : \Gamma \to K$ dense hom. $\alpha : \Gamma \times K \to \Lambda$ any cocycle into any discrete group.

Then \exists a hom ρ : $\Gamma' \to \Lambda$ from a fin ind $\Gamma' < \Gamma$, and a finite cover $\hat{K}' \to K' = \overline{\tau(\Gamma')}$ so that $\alpha : \Gamma' \times \hat{K'} \to \Lambda$ is conjugate to ρ .

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and II₁action $\Gamma \curvearrowright (X, \mu)$. Then close cocycles are conjugate: $\exists S \subset \Gamma, \epsilon > 0$ so that if $\alpha, \beta : \Gamma \times X \to \Lambda$ satisfy

$$\mu\{x \in X \mid \forall s \in S: \ \alpha(s, x) = \beta(s, x)\} > 1 - \epsilon$$

then $\exists f: X \to \Lambda$ s.t. $\beta = \alpha^f$ and $\mu\{x \mid f(x) = e\} > 3/4$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proof.

Deform
$$\alpha : \Gamma \times K \to \Lambda$$
 by $\alpha_t(\gamma, x) = \alpha(\gamma, xt^{-1})$ $(t \in K)$.

Proof.

Deform $\alpha : \Gamma \times K \to \Lambda$ by $\alpha_t(\gamma, x) = \alpha(\gamma, xt^{-1})$ $(t \in K)$.

For $t \in U$ small there is $f_t : K \to \Lambda$ so that

$$\alpha_t = \alpha^{f_t}$$
 and $\mu\{x \mid f(x) = e\} > 3/4.$

Proof.

Deform
$$\alpha : \Gamma \times K \to \Lambda$$
 by $\alpha_t(\gamma, x) = \alpha(\gamma, xt^{-1})$ $(t \in K)$.

For $t \in U$ small there is $f_t : K \to \Lambda$ so that

$$\alpha_t = \alpha^{f_t} \qquad \text{and} \qquad \mu\{x \mid f(x) = e\} > 3/4.$$

If $t, s, ts \in U$ then both

$$f_t(xs^{-1})f_s(x)$$
 and $f_{ts}(x)$

conjugate α to α_{ts} .

Proof.

Deform
$$\alpha: \Gamma \times K \to \Lambda$$
 by $\alpha_t(\gamma, x) = \alpha(\gamma, xt^{-1})$ $(t \in K)$.

For $t \in U$ small there is $f_t : K \to \Lambda$ so that

$$\alpha_t = \alpha^{f_t}$$
 and $\mu\{x \mid f(x) = e\} > 3/4.$

If $t, s, ts \in U$ then both

$$f_t(xs^{-1})f_s(x)$$
 and $f_{ts}(x)$

conjugate α to α_{ts} .

 $f_{ts}(x) = f_t(xs^{-1})f_s(x)$ on a set of meas > 0, hence a.e. Try to propagate to $K' = \langle U \rangle$. May need to lift to a finite cover $\hat{K}' \to K'$. On \hat{K}' we have $f_t(x) = \phi(xt^{-1})^{-1}\phi(x)$

$$\phi(\gamma x t^{-1}) \alpha(\gamma, x t^{-1}) \phi(x t^{-1}) = \phi(\gamma x) \alpha(\gamma, x) \phi(x)^{-1} = \rho(\gamma)$$

A.Furman ()

Proof of the Local Rigidity Statement $\Gamma \curvearrowright X \times \Lambda$ by $g: (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1}).$

3

- 4 ⊒ →

Proof of the Local Rigidity Statement $\Gamma \curvearrowright X \times \Lambda$ by $g: (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})$. In the Γ -rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = 1_{X \times \{e\}}$ satisfies

$$orall s \in S: \qquad \langle \pi(s)F_0,F_0
angle > 1-\epsilon,$$

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ

Proof of the Local Rigidity Statement $\Gamma \curvearrowright X \times \Lambda$ by $g: (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})$. In the Γ -rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = 1_{X \times \{e\}}$ satisfies

$$orall s \in S: \qquad \langle \pi(s)F_0,F_0
angle > 1-\epsilon,$$

There exists a $\pi(G)$ -invariant unit $F \in L^2(X \times \Lambda)$ with

$$\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x,\lambda) - 1|^2 dx\right)^{1/2} < 1/10.$$

Proof of the Local Rigidity Statement $\Gamma \curvearrowright X \times \Lambda$ by $g: (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})$. In the Γ -rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = \mathbb{1}_{X \times \{e\}}$ satisfies

$$orall s \in S: \qquad \langle \pi(s)F_0,F_0
angle > 1-\epsilon,$$

There exists a $\pi(G)$ -invariant unit $F \in L^2(X \times \Lambda)$ with

$$\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x,\lambda) - 1|^2 dx\right)^{1/2} < 1/10.$$

The peak value $p(x) = \max |F(x, -)|$ and its multiplicity $m : X \to \mathbf{N}$ are Γ -inv on (X, μ) , hence a.e. constants: $0 , <math>m \in \mathbf{N}$.

Proof of the Local Rigidity Statement $\Gamma \curvearrowright X \times \Lambda$ by $g: (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})$. In the Γ -rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = \mathbb{1}_{X \times \{e\}}$ satisfies

$$orall s \in S: \qquad \langle \pi(s)F_0,F_0
angle > 1-\epsilon,$$

There exists a $\pi(G)$ -invariant unit $F \in L^2(X \times \Lambda)$ with

$$\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x,\lambda) - 1|^2 dx\right)^{1/2} < 1/10.$$

The peak value $p(x) = \max |F(x, -)|$ and its multiplicity $m : X \to \mathbf{N}$ are Γ -inv on (X, μ) , hence a.e. constants: $0 , <math>m \in \mathbf{N}$.

m = 1, because $m \ge 2 \implies p \le 1/2$ and $\|F - F_0\| \ge 1/2$.

Proof of the Local Rigidity Statement $\Gamma \curvearrowright X \times \Lambda$ by $g: (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})$. In the Γ -rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = \mathbb{1}_{X \times \{e\}}$ satisfies

$$orall s \in S: \qquad \langle \pi(s)F_0,F_0
angle > 1-\epsilon,$$

There exists a $\pi(G)$ -invariant unit $F \in L^2(X \times \Lambda)$ with

$$\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x,\lambda) - 1|^2 dx\right)^{1/2} < 1/10.$$

The peak value $p(x) = \max |F(x, -)|$ and its multiplicity $m : X \to \mathbf{N}$ are Γ -inv on (X, μ) , hence a.e. constants: $0 , <math>m \in \mathbf{N}$.

m = 1, because $m \ge 2 \implies p \le 1/2$ and $||F - F_0|| \ge 1/2$. Let $f: X \to \Lambda$ denote the location of the peak: F(x, f(x)) = p.

$$f(g.x) = \alpha(g, x)f(x)\beta(g, x)^{-1}$$
 $\alpha = \beta^{f}$

Proof of the Local Rigidity Statement $\Gamma \curvearrowright X \times \Lambda$ by $g: (x, \lambda) \mapsto (gx, \alpha(g, x)\lambda\beta(g, x)^{-1})$. In the Γ -rep π on $L^2(X \times \Lambda)$ the unit vector $F_0 = 1_{X \times \{e\}}$ satisfies

$$orall s \in S: \qquad \langle \pi(s)F_0,F_0
angle > 1-\epsilon,$$

There exists a $\pi(G)$ -invariant unit $F \in L^2(X \times \Lambda)$ with

$$\|F - F_0\| = \left(\sum_{\Lambda} \int |F(x,\lambda) - 1|^2 dx\right)^{1/2} < 1/10.$$

The peak value $p(x) = \max |F(x, -)|$ and its multiplicity $m : X \to \mathbf{N}$ are Γ -inv on (X, μ) , hence a.e. constants: $0 , <math>m \in \mathbf{N}$.

m = 1, because $m \ge 2 \implies p \le 1/2$ and $||F - F_0|| \ge 1/2$. Let $f: X \to \Lambda$ denote the location of the peak: F(x, f(x)) = p.

$$f(g.x) = \alpha(g,x)f(x)\beta(g,x)^{-1}$$
 $\alpha = \beta^{f}$

Finally μ { $x \in X \mid f(x) = e$ } > 3/4.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙