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Orbit Structures of II1 Group Actions

II1 actions (X , µ, Γ):

Γ – discrete countable group

(X ,B, µ) – std prob space ∼= ([0, 1],Borel,Lebesgue)

Γ y (X , µ) – ergodic m.p. (γ∗µ = µ, ∀γ ∈ Γ)

Orbit Equivalence

(X , µ, Γ)
OE∼ (Y , ν,Λ) if ∃T : (X , µ) ∼= (Y , ν) s.t. T (Γ.x) = Λ.T (x)

Denoting by RΓ,X = {(x , y) ∈ X × X | Γx = Γy} the orbit relation

T : (X , µ, Γ)
OE∼ (Y , ν,Λ) ⇐⇒ T × T (RΓ,X ) ∼= RΛ,Y

Stable, or weak, OE: (X , µ, Γ)
sOE∼ (Y , ν,Λ)

X ⊃ A
T−→B ⊂ Y T × T (RX ,Γ|A×A) ∼= RY ,Λ|B×B
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What does the Orbit Structure RX ,Γ know about Γ?

Fact
For ess. free II1 actions RX ,Γ remembers whether Γ is amenable or not.

Theorem (Ornstein-Weiss, 1980)

All II1 actions of all amenable groups are OE.

Theorem (Zimmer, 1981)

Let G1,G2 be center free simple Lie groups, rk(G1) ≥ 2, Γi < Gi lattices

Γi y (Xi , µi ) ess. free II1 actions (X1, µ1, Γ1)
sOE∼ (X2, µ2, Γ2). Then

G1
∼= G2, and G y (G1 ×Γ1 X1) ∼= G y (G2 ×Γ2 X2)

=⇒
For free II1actions of higher rank lattices Γ < G any RX ,Γ remembers G !
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Cocycles and Orbit Equivalence

Definition
c : G × X → H is a measurable cocycle if for all g1, g2 ∈ G a.e. on X

c(g2g1, x) = c(g2, g1.x) · c(g1, x)

any measurable f : X → H defines a conjugate cocycle

c f (g , x) = f (gx) c(g , x) f (x)−1

Example

Any Orbit Equivalence T : (X , µ,G )→ (Y , ν,H) of free II1actions, defines

c : G × X → H by T (g .x) = c(g , x).T (x)

If c f (g , x) = ρ(g), then ρ : G → H is a group homomorphism, and

T ′(x) = f (x).T (x) satisfies T ′(g .x) = ρ(g).T ′(x)

Moreover, T ′ : (X , µ) ∼= (Y , ν) is a measure space iso and ρ is a group iso.
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Zimmer’s Cocycle Superrigidity Theorem

Theorem (Zimmer, 1981)

Let G , H be (semi)simple Lie groups with rk(G ) ≥ 2, G y (X , µ) an (irr)
erg. p.m.p. action, α : G × X → H a non-compact Zariski dense cocycle.

Then α is conjugate to a homomorphism ρ : G → H.

Same for cocycles Γ y (X , µ) where Γ < G is a lattice.

A generalization of

Theorem (Margulis, 1973)

Let G , H be (semi)simple Lie groups, rk(G ) ≥ 2, Γ < G an (irr) lattice,
ρ : Γ→ H a homomorphism with unbounded Zariski dense ρ(Γ).

Then ρ extends to G → H.
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Measurable Group Theory

Definition (Gromov)

Let Γ1, Γ2 be two groups

1 Topological Equivalence is a loc cpt space Σ with cont action of Γ1 × Γ2

with Γi y Σ properly disc and cocompact.

2 Measure Equivalence is a measure space (Ω,m) with a m.p. action of
Γ1 × Γ2 s.t. Γi y Ω has a finite measure fundamental domain.

Theorem

1 Γ1
TE∼ Γ2 if and only if Γ1

qi∼ Γ2 (Gromov).

2 Γ1
ME∼ Γ2 if and only if ∃ free (X1, Γ1)

sOE∼ (X2, Γ2).

Example

1 Uniform lattices Γ1, Γ2 in a loc cpt group G : Γ1 y G x Γ2

2 Arbitrary lattices Γ1, Γ2 in a loc cpt group G : Γ1 y G x Γ2
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Measure Equivalence and Higher Rank Lattices

Theorem (F. 1999)

Let G be simple rk(G ) ≥ 2, Γ < G and Λ any group with Γ
ME∼ Λ

Then Λ ' a lattice in G .

Theorem (F. 1999)

Let Γ y (X , µ) be a II1action of lattice Γ < G , simple rk(G ) ≥ 2.

Let Λ y (Y , ν) be any free II1action with (X , Γ)
sOE∼ (Y ,Λ). Then

If X 6→ G/Γ′, then Γ ' Λ and Γ y X ' Λ y Y .

Otherwise, for any π : X → G/Γπ there is (Xπ, Γπ)
sOE∼ (X , Γ)

and (Y ,Λ) is ' to either (X , Γ) or to one of (Xπ, Γπ).

Other applications

Feldman-Moore question, computations of Out (RX ,Γ) = Aut /Inn ,
Enveloping grps for lattices
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Rigidity for Products of Hyperbolic-like groups

Theorem (Monod-Shalom 2005)

Let Γ =
∏n

i Γi y (X , µ) free n ≥ 2, where Γi are “hyperbolic-like” and
Γi y (X , µ) erg. i = 1, 2.

Then

RX ,Γ remembers the number of factors: n.

If Λ y (Y , ν) is any free and mildly mixing, and RX ,Γ ∼ RY ,Λ

then Γ ∼= Λ and Γ y X ∼= Λ y Y .

Theorem (Monod-Shalom 2005, Hjorth-Kechris 2004, Bader-F. 2007)

Let A = A1 × A2 acts on (X , µ) with both Ai y (X , µ) erg i = 1, 2
α : A× X → Γ a non-elementary cocycle into a “hyperbolic-like” Γ.

Then α is cohom to a homomorphism ρ : A→ Ai → Γ for i = 1 or 2.
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then Γ ∼= Λ and Γ y X ∼= Λ y Y .

Theorem (Monod-Shalom 2005, Hjorth-Kechris 2004, Bader-F. 2007)

Let A = A1 × A2 acts on (X , µ) with both Ai y (X , µ) erg i = 1, 2
α : A× X → Γ a non-elementary cocycle into a “hyperbolic-like” Γ.

Then α is cohom to a homomorphism ρ : A→ Ai → Γ for i = 1 or 2.
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Mapping Class groups

Results of Kida 2006,+

For Γ Mapping Class Group

Full rigidity: ME(Γ) = {Γ}, OE=isom (up to finite)

Γ is not a lattice in any loc comp G (except trivial)

Computations of Out (RX ,Γ)

Ingredients

Boundary theory on Thurston’s compactification (amenability,+)

Ivanov’s Γ = Aut (Curve Cpx) for groupoids
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Invariants of groups

amenability,

property (T), a-(T)-menability, . . .

Spn,1(R)
ME

6∼ Spk,1(R) (Cowling-Zimmer)

Treeability, anti-treeability (Adams)

cost(RX ,Fn ) = n, . . . (Levitt, Gaboriau)

β
(2)
n (Γ), χ(Γ) (Gaboriau)

Homological invariants (Sauer)

Applications

Descriptive Set Theory: Adams-Kechris, Hjorth, Thomas,...

Applications to QI of amenable groups

Shalom, Sauer
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New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.
Λ any discrete, or cpt (or ∈ Ufin) group.

Then any cocycle α : Γ× X → Λ is conjugate in Λ to a
homomorphism ρ : Γ→ Λ.

Corollary

For Γ y (X , µ) as above, RX ,Γ remembers Γ and Γ y X .

Theorem (Ioana 2007)

Let Γ have (T), K = lim Γ/Γi be a profinite completion.
α : Γ× K → Λ any cocycle into any Λ ∈ Ufin.

Then ∃ i , and ρ : Γi → Λ so that α|Γi×Ki
is conjugate to ρ, Ki = Γi < K .

A.Furman () Zimmer’s 60th birthday conference September 8, 2007 11 / 14



New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.
Λ any discrete, or cpt (or ∈ Ufin) group.

Then any cocycle α : Γ× X → Λ is conjugate in Λ to a
homomorphism ρ : Γ→ Λ.

Corollary

For Γ y (X , µ) as above, RX ,Γ remembers Γ and Γ y X .

Theorem (Ioana 2007)

Let Γ have (T), K = lim Γ/Γi be a profinite completion.
α : Γ× K → Λ any cocycle into any Λ ∈ Ufin.

Then ∃ i , and ρ : Γi → Λ so that α|Γi×Ki
is conjugate to ρ, Ki = Γi < K .

A.Furman () Zimmer’s 60th birthday conference September 8, 2007 11 / 14



New Cocycle Superrigidity (after Sorin Popa)

Theorem (Popa 2006)

Let Γ have (T) and Γ y X = (X0, µ0)Γ be a Bernoulli action.
Λ any discrete, or cpt (or ∈ Ufin) group.

Then any cocycle α : Γ× X → Λ is conjugate in Λ to a
homomorphism ρ : Γ→ Λ.

Corollary

For Γ y (X , µ) as above, RX ,Γ remembers Γ and Γ y X .

Theorem (Ioana 2007)

Let Γ have (T), K = lim Γ/Γi be a profinite completion.
α : Γ× K → Λ any cocycle into any Λ ∈ Ufin.

Then ∃ i , and ρ : Γi → Λ so that α|Γi×Ki
is conjugate to ρ, Ki = Γi < K .

A.Furman () Zimmer’s 60th birthday conference September 8, 2007 11 / 14



One Proof

Theorem (F. after Ioana, 2007)

Let Γ have (T), K compact, τ : Γ→ K dense hom.
α : Γ× K → Λ any cocycle into any discrete group.

Then ∃ a hom ρ : Γ′ → Λ from a fin ind Γ′ < Γ, and a finite cover
K̂ ′ → K ′ = τ(Γ′) so that α : Γ′ × K̂ ′ → Λ is conjugate to ρ.

Proof using deformation - rigidity ideas

Proposition (Local Rigidity, after Popa, Hjorth)

Let Γ have (T), Λ discrete, and II1action Γ y (X , µ). Then close cocycles are
conjugate: ∃ S ⊂ Γ, ε > 0 so that if α, β : Γ× X → Λ satisfy

µ{x ∈ X | ∀s ∈ S : α(s, x) = β(s, x)} > 1− ε

then ∃ f : X → Λ s.t. β = αf and µ{x | f (x) = e} > 3/4.
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Proof of the Theorem

Proof.

Deform α : Γ× K → Λ by αt(γ, x) = α(γ, xt−1) (t ∈ K ).

For t ∈ U small there is ft : K → Λ so that

αt = αft and µ{x | f (x) = e} > 3/4.

If t, s, ts ∈ U then both

ft(xs−1)fs(x) and fts(x)

conjugate α to αts .

fts(x) = ft(xs−1)fs(x) on a set of meas > 0, hence a.e.

Try to propagate to K ′ = 〈U〉. May need to lift to a finite cover K̂ ′ → K ′.

On K̂ ′ we have ft(x) = φ(xt−1)−1φ(x)

φ(γxt−1)α(γ, xt−1)φ(xt−1) = φ(γx)α(γ, x)φ(x)−1 = ρ(γ)
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Proof of the Local Rigidity Statement
Γ y X × Λ by g : (x , λ) 7→ (gx , α(g , x)λβ(g , x)−1).

In the Γ-rep π on L2(X × Λ) the unit vector F0 = 1X×{e} satisfies

∀s ∈ S : 〈π(s)F0,F0〉 > 1− ε,

There exists a π(G )-invariant unit F ∈ L2(X × Λ) with

‖F − F0‖ =

(∑
Λ

∫
|F (x , λ)− 1|2 dx

)1/2

< 1/10.

The peak value p(x) = max |F (x ,−)| and its multiplicity m : X → N
are Γ-inv on (X , µ), hence a.e. constants: 0 < p ≤ 1, m ∈ N.

m = 1, because m ≥ 2 =⇒ p ≤ 1/2 and ‖F − F0‖ ≥ 1/2.
Let f : X → Λ denote the location of the peak: F (x , f (x)) = p.

f (g .x) = α(g , x)f (x)β(g , x)−1 α = βf

Finally µ{x ∈ X | f (x) = e} > 3/4.
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