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Poincaré disc and surfaces

The simplest simple Lie group G
I SL2(R)

I PSL2(R) = Isom+(H2)

I PGL2(R) = Isom(H2)

with H2 = G/K where K ' SO2(R)

Fix a closed surface Σ be of genus ≥ 2

By uniformization, ∃ (many) Riemannian g on Σ with K ≡ −1. (up to Diff(Σ)0)
 a Riemannian covering p : H2 → (Σ, g), unique up to G = Isom(H2)
 an embedding Γ = π1(Σ, ∗)→ G , unique up to G -conjugation

Defn: Teichmüller space = moduli of hyperbolic metrics on Σ

Teich(Σ) = {lattice embeddings ρ : Γ→ G}/G
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Poincaré disc and surfaces

The simplest simple Lie group G
I SL2(R)

I PSL2(R) = Isom+(H2)

I PGL2(R) = Isom(H2)

with H2 = G/K where K ' SO2(R)

Fix a closed surface Σ be of genus ≥ 2

By uniformization, ∃ (many) Riemannian g on Σ with K ≡ −1. (up to Diff(Σ)0)
 a Riemannian covering p : H2 → (Σ, g), unique up to G = Isom(H2)
 an embedding Γ = π1(Σ, ∗)→ G , unique up to G -conjugation

Defn: Teichmüller space = moduli of hyperbolic metrics on Σ

Teich(Σ) = {lattice embeddings ρ : Γ→ G}/G

2/14



Flexibility of lattices in SL2(R)

Theorem (Riemann ?, Poincaré, Teichmüller ?)

For a closed surface of genus g ≥ 2 one has

Teich(Σ) ∼= R6·g−6

There are R6g−6 many G -conjugacy classes of lattice embeddings

Γ→ G = PSL2(R)

where
Γ = 〈a1, . . . , ag , b1, . . . , bg | [a1, b1] · · · [ag , bg ] = 1〉

Remarks
I ∀ ρ1, ρ2 : Γ→ PSL2(R) lattice embeddings

∃!f ∈ Homeo(S1 = ∂H2) ρ2(γ) = f −1 ◦ ρ1(γ) ◦ f

I Similar results apply to non-uniform lattices.
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Mostow’s strong rigidity

Theorem 1 (Mostow ’68)

I A closed manifold Mn of dim n ≥ 3 admits at most one
hyperbolic metric.

I G = Isom(Hn), n ≥ 3, and Γ, Γ′ < G uniform lattices
Given j : Γ ∼= Γ′ there ∃!g ∈ G with j(γ) = g−1γg.

Theorem 2 (Mostow)

G = Isom(H), G ′ = Isom(H′) where H,H′ ∈ {Hn,Hn
C,H

n
H,H

2
O} \H2.

Let Γ < G , Γ′ < G ′ be uniform lattices and j : Γ ∼= Γ′ an isomorphism.
Then j : Γ ∼= Γ′ extends to an isomorphism G ∼= G ′.

Theorem 3 (Mostow ’73)

Same for any (semi)-simple G , G ′ 6' SL2(R)
and uniform (irreducible) lattices Γ < G , Γ′ < G ′.

Γ
∼= //

⊂
��

Γ′

⊂
��

G
∼= // G ′
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Sketch of Mostow’s proof of Theorem 1

Given:

I Γ, Γ′ y Hn properly discontinuous cocompact isometric actions.

I An isomorphism of abstract groups j : Γ ∼= Γ′

Show:

1 ∃ a homeomorphism f : ∂Hn → ∂Hn so that f (γξ) = j(γ)f (ξ).

2 Show that f is quasi-conformal and improve to conformal (using n ≥ 3).

Quasi-isometry: a map q : X → Y s.t. ∃ K , A, C

I K−1 · dX (x , x ′)− A < dY (q(x), q(x ′)) < K · dX (x , x ′) + A

I ∀y ∈ Y , ∃x ∈ X , d(q(x), y) < C .

Step 1 of Mostow’s proof
I ∃ quasi-isometry q : Hn → Cayley(Γ,S) = Cayley(Γ′, j(S))→ Hn

I Any quasi-isometry q : Hn → Hn extends to a qc-homeo f : ∂Hn → ∂Hn

I f is j-equivariant
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More on Mostow rigidity

Theorem (Mostow’s strong rigidity for non-uniform lattices)

Any isom G > Γ ∼= Γ′ < G ′ 6' SL2(R) between lattices extends to G ∼= G ′.

Main difficulty - boundary maps.

I Prasad (’73): G ' SO(n, 1),SU(n, 1),Sp(n, 1),F4, but G 6' SL2(R).
More precisely lattice of Q-rank one.

I Margulis (’75): higher rank semi-simple G .
Now usually deduced from Margulis superrigidity (below).

Problem (Mostow-Margulis rigidity with locally compact targets)

G - semi-simple Lie group, H - general locally compact.
If G > Γ ∼= Γ′ < H, what is H ?

I Furman (’01): simple rk(G ) ≥ 2, or G = Isom(Hn
K ) and H/Γ′ compact.

I Bader-Furman-Sauer (’12): all cases (including SL2(R)) and more...
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Margulis’ super-rigidity

Theorem (Margulis ∼74).

G a simple Lie, rk(G ) ≥ 2, Γ < G lattice

ρ : Γ→ H a homomorphism into a simple H
ρ(Γ) Zariski-dense, unbounded.

Then ρ extends to isomorphism ρ̄ : G ∼= H.

Γ
ρ //

��

H

G

ρ̄
??

Margulis’ Superrigidity Theorem (∼74)

Let G =
∏

Gi semi-simple,
∑

rk(Gi ) ≥ 2; H - simple, center-free.
Γ < G an irreducible lattice, and ρ : Γ→ H, with Z-dense unbdd image.
Then ρ : Γ ∼= Γ′ extends to an epimorphism G → H.

Margulis’ Arithmeticity Theorem (’75)

All (irreducible) lattices in higher rank (semi)-simple Lie
groups are arithmetic.

Arith lattice ?
Something like
SLn(Z) < SLn(R)
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How to prove Margulis’ superrigidity theorem

Take L < G × H be the Z-closure of the graph of ρ

Λρ = {(γ, ρ(γ)) ∈ G × H | γ ∈ Γ}, L = Λ
Z

I L is an algebraic subgroup of G × H.

I By Borel’s density theorem Γ
Z

= G .

Lemma/Exercise

Given:
subgroup L < G × H
prG (L) = G , prH(L) = H
H - simple group.

Prove:
∃ epimorphism ρ : G → H
so that L = (id×ρ)(G ),
unless L = G × H.

Problem: show L 6= G × H.

Solution: impose one non-trivial algebraic condition on (id×ρ)(Γ) < G × H.

Actual solution (Margulis)
1 Construct boundary map f : G/P → H/Q so that f (γξ) = ρ(γ)f (ξ)
2 Prove that f is a rational map.
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Remarks on the proof

Theorem (1 - Boundary maps)

Γ < G lattice, G ′ - simple, ρ : Γ→ G ′ hom with Z-dense unbounded image.
Then ∃ a measurable Γ-map f : G/P → G ′/Q ′ with Q ′ � G parabolic.

Proofs:

I Margulis, using Oseledets theorem

I Zimmer, using amenable actions

I Furstenberg, using random walks

G/P //

��

Prob(G ′/P ′)

StabG ′(µ0) //

77ooooooooooo
G ′/Q ′

Theorem (2 - Regularity, uses rk(G ) ≥ 2 and Γ < G irr lattice)

A measurable Γ-equivariant map f : G/P → G ′/Q ′ is a.e. equal to a rational map.

Theorem 1 can be strengthened to
I µ0 is Dirac, Q ′ = P ′ minimal parabolic.

I Γ-equiv. msbl f : G/P → G ′/P ′ is unique.

G ′/P ′

��
G/P

;;

// G ′/Q ′
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Variants of Superrigidity

Special case of Margulis’ superrigidity

Γ < G =
∏

Gi irr lattice in a semi-simple Lie group, rk(G ) ≥ 2.
ρ : Γ→ H a homomorphism into a simple H with rk(H) = 1.

I Either ρ(Γ) is elementary (=⇒ ρ(Γ) precpct)

I Or ∃i with Gi
∼= H and ρ : Γ

⊂−→G
pri−→Gi

∼= H.

Theorem (Margulis ’81)

Let Γ < G =
∏

Gi be an irr lattice in a real semi-simple Lie group, rk(G ) ≥ 2.
Then Γ is not an amalgam A ∗C B on an HNN extension.

If Γ is an S-arithmetic lattice, it has only ”obvious” amalgam decompositions.

Proof by superrigidity for Γ→ Aut(Tree).

Further superrigidity phenomena (long list of names...)

I Other H: CAT(-1), Gromov-hyp, Homeo(S1), MCG(Σ), Creg , S,...

I Other G : products G = G1 × · · · × Gn, n ≥ 2, of general lcsc grps, Ã2 groups
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Cocycles

G y (X , µ) probability measure preserving actions of a lcsc group.

I cocycle c : G × X → H to a Polish group H is a measurable map

c(g1g2, x) = c(g1, g2.x) · c(g2, x) (g1, g2 ∈ G , x ∈ X )

I conjugation: given c : G × X → H and a map f : X → H

c f (g , x) := f (g .x)−1c(g , x) f (x)

I straight cocycles c(g , x) = f (g .x)−1π(g) f (x) for some π : Hom(G ,H).

Cohomology of G y X with values in H

Z 1(G y X ,H) = {cocycles c : G × X → H}
H1(G y X ,H) = Z 1(G y X ,H)/c ∼ c f .

* Everything is measurable, taken up to null sets !
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Cocycles as representations of virtual groups

Proposition/observation. For a lattice Γ < G and any H

Hom(Γ,H)/H
∼= // H1(G y G/Γ,H)

Hom(G ,H)/H

hhQQQQQQQQQQQQ

66lllllllllllll

1 ρ : Γ→ H up to H-conj ↔ cocycle c : G × G/Γ→ H up to conj

2 ρ extends to ρ̄ : G → H ↔ c(g , x) ∼ ρ(g)

Proof of (1). Choose a Borel cross-section σ : G/Γ→ G of g 7→ gΓ.

I σ(x)Γσ(x)−1 = StabG (x) for x ∈ G/Γ

I c(g , x) = σ(g .x)−1g σ(x) ∈ Γ. Note c : G × G/Γ→ Γ is a cocycle.

I ρ : Γ→ H a hom  ρ ◦ c : G × G/Γ→ Γ→ H is a cocycle

I α : G × G/Γ→ H  ρx(γ) = α(σ(x)γ σ(x)−1, x) is a hom.
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Zimmer’s cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer ’81)

Let G (semi)-simple, H be simple Lie groups, rk(G ) ≥ 2
G y (X , µ) (irred) ergodic p.m.p. c : G × X → H cocycle

where c is Zariski-dense, not compact.
Then ∃ epimor π : G → H and measurable map f : X → H

c(g , x) = f (g .x)−1π(g) f (x).

Remark

Γ-cocycles are also superrigid, by Γ y X  G y (G ×Γ X ).

Strategy of the proof
I Boundary map: f : X × G/P → H/Q s.t. fg .x(gξ) = c(g , x)fx(ξ).

I Ergodicity vs. smoothness of algebraic actions

I Regularity as in Margulis’ proof.

13/14



Zimmer’s cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer ’81)

Let G (semi)-simple, H be simple Lie groups, rk(G ) ≥ 2
G y (X , µ) (irred) ergodic p.m.p. c : G × X → H cocycle

where c is Zariski-dense, not compact.
Then ∃ epimor π : G → H and measurable map f : X → H

c(g , x) = f (g .x)−1π(g) f (x).

Remark

Γ-cocycles are also superrigid, by Γ y X  G y (G ×Γ X ).

Strategy of the proof
I Boundary map: f : X × G/P → H/Q s.t. fg .x(gξ) = c(g , x)fx(ξ).

I Ergodicity vs. smoothness of algebraic actions

I Regularity as in Margulis’ proof.

13/14



Zimmer’s cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer ’81)

Let G (semi)-simple, H be simple Lie groups, rk(G ) ≥ 2
G y (X , µ) (irred) ergodic p.m.p. c : G × X → H cocycle

where c is Zariski-dense, not compact.
Then ∃ epimor π : G → H and measurable map f : X → H

c(g , x) = f (g .x)−1π(g) f (x).

Remark

Γ-cocycles are also superrigid, by Γ y X  G y (G ×Γ X ).

Strategy of the proof
I Boundary map: f : X × G/P → H/Q s.t. fg .x(gξ) = c(g , x)fx(ξ).

I Ergodicity vs. smoothness of algebraic actions

I Regularity as in Margulis’ proof.

13/14



Cocycles in nature

(stable) Orbit Equivalence

Γ y (X , µ) and Λ y (Y , ν) freely, and T : X ∼= Y with T (Γ.x) = Λ.T (x)
Then T (γ.x) = c(γ, x).T (x) defines a cocycle c : Γ× X → Λ.

Volume preserving actions on manifolds

Γ→ Diff+(Mn, vol) defines the derivative cocycle c : Γ× (M, vol)→ SLn(R).
Zimmer’s program: classify volume preserving actions of higher rank Γ on mflds

Other geometric cocycles

G connected and simply connected y M  a cocycle c : G ×M → π1(M).
Gromov’s rigid geometric structures  a linear rep π1(M)→ H.

Popa’s cocycle superrigidity

Invest in the action Γ y (X , µ) rather than in Γs and G s
(program in flux - follow the arXiv closely...)
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