Superrigidity and Measure Equivalence, Part I

Alex Furman
University of Illinois at Chicago
Institut Henri Poincaré, Paris, June 202011

Poincaré disc and surfaces

Poincaré disc and surfaces

The simplest simple Lie group G

- $\mathrm{SL}_{2}(\mathbb{R})$
- $\operatorname{PSL}_{2}(\mathbb{R})=\operatorname{Isom}_{+}\left(\mathbf{H}^{2}\right)$
- $\mathrm{PGL}_{2}(\mathbb{R})=\operatorname{Isom}\left(\mathbf{H}^{2}\right)$

Poincaré disc and surfaces


```
The simplest simple Lie group \(G\)
    - \(\mathrm{SL}_{2}(\mathbb{R})\)
    - \(\mathrm{PSL}_{2}(\mathbb{R})=\operatorname{lsom}_{+}\left(\mathbf{H}^{2}\right)\)
    - \(\mathrm{PGL}_{2}(\mathbb{R})=\operatorname{Isom}\left(\mathbf{H}^{2}\right)\)
with \(\mathbf{H}^{2}=G / K\) where \(K \simeq \mathrm{SO}_{2}(\mathbb{R})\)
```


Poincaré disc and surfaces


```
The simplest simple Lie group \(G\)
    - \(\mathrm{SL}_{2}(\mathbb{R})\)
    - \(\mathrm{PSL}_{2}(\mathbb{R})=\operatorname{lsom}_{+}\left(\mathbf{H}^{2}\right)\)
    - \(\mathrm{PGL}_{2}(\mathbb{R})=\operatorname{Isom}\left(\mathbf{H}^{2}\right)\)
with \(\mathbf{H}^{2}=G / K\) where \(K \simeq \mathrm{SO}_{2}(\mathbb{R})\)
```

Fix a closed surface Σ be of genus ≥ 2
By uniformization, \exists (many) Riemannian g on Σ with $K \equiv-1 . \quad$ (up to $\left.\operatorname{Diff}(\Sigma)^{0}\right)$

Poincaré disc and surfaces


```
The simplest simple Lie group \(G\)
    - \(\mathrm{SL}_{2}(\mathbb{R})\)
    - \(\operatorname{PSL}_{2}(\mathbb{R})=\operatorname{lsom}_{+}\left(\mathbf{H}^{2}\right)\)
    - \(\mathrm{PGL}_{2}(\mathbb{R})=\operatorname{Isom}\left(\mathbf{H}^{2}\right)\)
with \(\mathbf{H}^{2}=G / K\) where \(K \simeq \mathrm{SO}_{2}(\mathbb{R})\)
```

Fix a closed surface Σ be of genus ≥ 2
By uniformization, \exists (many) Riemannian g on Σ with $K \equiv-1$. (up to $\left.\operatorname{Diff}(\Sigma)^{0}\right)$ \rightsquigarrow a Riemannian covering $p: \mathbf{H}^{2} \rightarrow(\Sigma, g)$, unique up to $G=\operatorname{Isom}\left(\mathbf{H}^{2}\right)$

Poincaré disc and surfaces

The simplest simple Lie group G

- $\mathrm{SL}_{2}(\mathbb{R})$
- $\operatorname{PSL}_{2}(\mathbb{R})=\operatorname{lsom}_{+}\left(\mathbf{H}^{2}\right)$
- $\mathrm{PGL}_{2}(\mathbb{R})=\operatorname{Isom}\left(\mathbf{H}^{2}\right)$
with $\mathbf{H}^{2}=G / K$ where $K \simeq \mathrm{SO}_{2}(\mathbb{R})$
Fix a closed surface Σ be of genus ≥ 2
By uniformization, \exists (many) Riemannian g on Σ with $K \equiv-1$. (up to $\left.\operatorname{Diff}(\Sigma)^{0}\right)$ \rightsquigarrow a Riemannian covering $p: \mathbf{H}^{2} \rightarrow(\Sigma, g)$, unique up to $G=\operatorname{Isom}\left(\mathbf{H}^{2}\right)$
\rightsquigarrow an embedding $\Gamma=\pi_{1}(\Sigma, *) \rightarrow G$, unique up to G-conjugation

Poincaré disc and surfaces

The simplest simple Lie group G

- $\mathrm{SL}_{2}(\mathbb{R})$
- $\operatorname{PSL}_{2}(\mathbb{R})=\operatorname{lsom}_{+}\left(\mathbf{H}^{2}\right)$
- $\mathrm{PGL}_{2}(\mathbb{R})=\operatorname{Isom}\left(\mathbf{H}^{2}\right)$
with $\mathbf{H}^{2}=G / K$ where $K \simeq \mathrm{SO}_{2}(\mathbb{R})$
Fix a closed surface Σ be of genus ≥ 2
By uniformization, \exists (many) Riemannian g on Σ with $K \equiv-1$. (up to $\left.\operatorname{Diff}(\Sigma)^{0}\right)$ \rightsquigarrow a Riemannian covering $p: \mathbf{H}^{2} \rightarrow(\Sigma, g)$, unique up to $G=\operatorname{Isom}\left(\mathbf{H}^{2}\right)$
\rightsquigarrow an embedding $\Gamma=\pi_{1}(\Sigma, *) \rightarrow G$, unique up to G-conjugation
Defn: Teichmüller space $=$ moduli of hyperbolic metrics on Σ
Teich $(\Sigma)=\{$ lattice embeddings $\rho: \Gamma \rightarrow G\} / G$

Flexibility of lattices in $\mathrm{SL}_{2}(\mathbb{R})$

Theorem (Riemann ?, Poincaré, Teichmüller ?)

For a closed surface of genus $g \geq 2$ one has

$$
\operatorname{Teich}(\Sigma) \cong \mathbb{R}^{6 \cdot g-6}
$$

Flexibility of lattices in $\mathrm{SL}_{2}(\mathbb{R})$

Theorem (Riemann ?, Poincaré, Teichmüller ?)

For a closed surface of genus $g \geq 2$ one has

$$
\operatorname{Teich}(\Sigma) \cong \mathbb{R}^{6 \cdot g-6}
$$

There are $\mathbb{R}^{6 g-6}$ many G-conjugacy classes of lattice embeddings

$$
\Gamma \rightarrow G=\mathrm{PSL}_{2}(\mathbb{R})
$$

where

$$
\Gamma=\left\langle a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1\right\rangle
$$

Flexibility of lattices in $\mathrm{SL}_{2}(\mathbb{R})$

Theorem (Riemann ?, Poincaré, Teichmüller ?)

For a closed surface of genus $g \geq 2$ one has

$$
\operatorname{Teich}(\Sigma) \cong \mathbb{R}^{6 \cdot g-6}
$$

There are $\mathbb{R}^{6 g-6}$ many G-conjugacy classes of lattice embeddings

$$
\Gamma \rightarrow G=\mathrm{PSL}_{2}(\mathbb{R})
$$

where

$$
\Gamma=\left\langle a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1\right\rangle
$$

Remarks

- $\forall \rho_{1}, \rho_{2}: \Gamma \rightarrow \mathrm{PSL}_{2}(\mathbb{R})$ lattice embeddings

$$
\exists!f \in \operatorname{Homeo}\left(S^{1}=\partial \mathbf{H}^{2}\right) \quad \rho_{2}(\gamma)=f^{-1} \circ \rho_{1}(\gamma) \circ f
$$

- Similar results apply to non-uniform lattices.

Mostow's strong rigidity

Mostow's strong rigidity

Theorem 1 (Mostow '68)

- A closed manifold M^{n} of $\operatorname{dim} n \geq 3$ admits at most one hyperbolic metric.

Mostow's strong rigidity

Theorem 1 (Mostow '68)

- A closed manifold M^{n} of $\operatorname{dim} n \geq 3$ admits at most one hyperbolic metric.
- $G=\operatorname{Isom}\left(\mathbf{H}^{n}\right), n \geq 3$, and $\Gamma, \Gamma^{\prime}<G$ uniform lattices Given $j: \Gamma \cong \Gamma^{\prime}$ there $\quad \exists!g \in G$ with $\quad \mathbf{j}(\gamma)=\mathbf{g}^{-1} \gamma \mathbf{g}$.

Mostow's strong rigidity

Theorem 1 (Mostow '68)

- A closed manifold M^{n} of $\operatorname{dim} n \geq 3$ admits at most one hyperbolic metric.
- $G=\operatorname{Isom}\left(\mathbf{H}^{n}\right), n \geq 3$, and $\Gamma, \Gamma^{\prime}<G$ uniform lattices Given $j: \Gamma \cong \Gamma^{\prime}$ there $\quad \exists!g \in G$ with $\quad \mathbf{j}(\gamma)=\mathbf{g}^{-1} \gamma \mathbf{g}$.

Theorem 2 (Mostow)

$G=\operatorname{Isom}(\mathbf{H}), G^{\prime}=\operatorname{Isom}\left(\mathbf{H}^{\prime}\right)$ where $\mathbf{H}, \mathbf{H}^{\prime} \in\left\{\mathbf{H}^{n}, \mathbf{H}_{\mathbb{C}}^{n}, \mathbf{H}_{\mathbb{H}}^{n}, \mathbf{H}_{\mathbb{O}}^{2}\right\} \backslash \mathbf{H}^{2}$. Let $\Gamma<G, \Gamma^{\prime}<G^{\prime}$ be uniform lattices and $j: \Gamma \cong \Gamma^{\prime}$ an isomorphism.
Then $j: \Gamma \cong \Gamma^{\prime}$ extends to an isomorphism $G \cong G^{\prime}$.

Mostow's strong rigidity

Theorem 1 (Mostow '68)

- A closed manifold M^{n} of $\operatorname{dim} n \geq 3$ admits at most one hyperbolic metric.
- $G=\operatorname{Isom}\left(\mathbf{H}^{n}\right), n \geq 3$, and $\Gamma, \Gamma^{\prime}<G$ uniform lattices Given $j: \Gamma \cong \Gamma^{\prime}$ there $\quad \exists!g \in G$ with $\quad \mathbf{j}(\gamma)=\mathbf{g}^{-1} \gamma \mathbf{g}$.

Theorem 2 (Mostow)

$G=\operatorname{Isom}(\mathbf{H}), G^{\prime}=\operatorname{Isom}\left(\mathbf{H}^{\prime}\right)$ where $\mathbf{H}, \mathbf{H}^{\prime} \in\left\{\mathbf{H}^{n}, \mathbf{H}_{\mathbb{C}}^{n}, \mathbf{H}_{\mathbb{H}}^{n}, \mathbf{H}_{\mathbb{O}}^{2}\right\} \backslash \mathbf{H}^{2}$. Let $\Gamma<G, \Gamma^{\prime}<G^{\prime}$ be uniform lattices and $j: \Gamma \cong \Gamma^{\prime}$ an isomorphism.
Then $j: \Gamma \cong \Gamma^{\prime}$ extends to an isomorphism $G \cong G^{\prime}$.

Theorem 3 (Mostow '73)

Same for any (semi)-simple $G, G^{\prime} \not 千 \mathrm{SL}_{2}(\mathbb{R})$ and uniform (irreducible) lattices $\Gamma<G, \Gamma^{\prime}<G^{\prime}$.

Sketch of Mostow's proof of Theorem 1

Given:

$-\Gamma, \Gamma^{\prime} \curvearrowright \mathbf{H}^{n}$ properly discontinuous cocompact isometric actions.

- An isomorphism of abstract groups $j: \Gamma \cong \Gamma^{\prime}$

Sketch of Mostow's proof of Theorem 1

Given:

$-\Gamma, \Gamma^{\prime} \curvearrowright \mathbf{H}^{n}$ properly discontinuous cocompact isometric actions.

- An isomorphism of abstract groups $j: \Gamma \cong \Gamma^{\prime}$

Show:

(1) \exists a homeomorphism $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$ so that $f(\gamma \xi)=j(\gamma) f(\xi)$.

Sketch of Mostow's proof of Theorem 1

Given:

$-\Gamma, \Gamma^{\prime} \curvearrowright \mathbf{H}^{n}$ properly discontinuous cocompact isometric actions.

- An isomorphism of abstract groups $j: \Gamma \cong \Gamma^{\prime}$

Show:

(1) \exists a homeomorphism $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$ so that $f(\gamma \xi)=j(\gamma) f(\xi)$.
(2) Show that f is quasi-conformal and improve to conformal (using $n \geq 3$).

Sketch of Mostow's proof of Theorem 1

Given:

$-\Gamma, \Gamma^{\prime} \curvearrowright \mathbf{H}^{n}$ properly discontinuous cocompact isometric actions.

- An isomorphism of abstract groups $j: \Gamma \cong \Gamma^{\prime}$

Show:

(1) \exists a homeomorphism $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$ so that $f(\gamma \xi)=j(\gamma) f(\xi)$.
(2) Show that f is quasi-conformal and improve to conformal (using $n \geq 3$).

Quasi-isometry: $\operatorname{a~map~} q: X \rightarrow Y$ s.t. $\exists K, A, C$

- $K^{-1} \cdot d_{X}\left(x, x^{\prime}\right)-A<d_{Y}\left(q(x), q\left(x^{\prime}\right)\right)<K \cdot d_{X}\left(x, x^{\prime}\right)+A$

Sketch of Mostow's proof of Theorem 1

Given:

$-\Gamma, \Gamma^{\prime} \curvearrowright \mathbf{H}^{n}$ properly discontinuous cocompact isometric actions.

- An isomorphism of abstract groups $j: \Gamma \cong \Gamma^{\prime}$

Show:

(1) \exists a homeomorphism $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$ so that $f(\gamma \xi)=j(\gamma) f(\xi)$.
(2) Show that f is quasi-conformal and improve to conformal (using $n \geq 3$).

Quasi-isometry: $\operatorname{a~map~} q: X \rightarrow Y$ s.t. $\exists K, A, C$

- $K^{-1} \cdot d_{X}\left(x, x^{\prime}\right)-A<d_{Y}\left(q(x), q\left(x^{\prime}\right)\right)<K \cdot d_{X}\left(x, x^{\prime}\right)+A$
- $\forall y \in Y, \quad \exists x \in X, \quad d(q(x), y)<C$.

Sketch of Mostow's proof of Theorem 1

Given:

$-\Gamma, \Gamma^{\prime} \curvearrowright \mathbf{H}^{n}$ properly discontinuous cocompact isometric actions.

- An isomorphism of abstract groups $j: \Gamma \cong \Gamma^{\prime}$

Show:

(1) \exists a homeomorphism $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$ so that $f(\gamma \xi)=j(\gamma) f(\xi)$.
(2) Show that f is quasi-conformal and improve to conformal (using $n \geq 3$).

Quasi-isometry: a map $q: X \rightarrow Y$ s.t. $\exists K, A, C$

- $K^{-1} \cdot d_{X}\left(x, x^{\prime}\right)-A<d_{Y}\left(q(x), q\left(x^{\prime}\right)\right)<K \cdot d_{X}\left(x, x^{\prime}\right)+A$
- $\forall y \in Y, \quad \exists x \in X, \quad d(q(x), y)<C$.

Step 1 of Mostow's proof

- \exists quasi-isometry $q: \mathbf{H}^{n} \rightarrow \operatorname{Cayley}(\Gamma, S)=\operatorname{Cayley}\left(\Gamma^{\prime}, j(S)\right) \rightarrow \mathbf{H}^{n}$

Sketch of Mostow's proof of Theorem 1

Given:

$-\Gamma, \Gamma^{\prime} \curvearrowright \mathbf{H}^{n}$ properly discontinuous cocompact isometric actions.

- An isomorphism of abstract groups $j: \Gamma \cong \Gamma^{\prime}$

Show:

(1) \exists a homeomorphism $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$ so that $f(\gamma \xi)=j(\gamma) f(\xi)$.
(2) Show that f is quasi-conformal and improve to conformal (using $n \geq 3$).

Quasi-isometry: a map $q: X \rightarrow Y$ s.t. $\exists K, A, C$

- $K^{-1} \cdot d_{X}\left(x, x^{\prime}\right)-A<d_{Y}\left(q(x), q\left(x^{\prime}\right)\right)<K \cdot d_{X}\left(x, x^{\prime}\right)+A$
- $\forall y \in Y, \quad \exists x \in X, \quad d(q(x), y)<C$.

Step 1 of Mostow's proof

- \exists quasi-isometry $q: \mathbf{H}^{n} \rightarrow \operatorname{Cayley}(\Gamma, S)=\operatorname{Cayley}\left(\Gamma^{\prime}, j(S)\right) \rightarrow \mathbf{H}^{n}$
- Any quasi-isometry $q: \mathbf{H}^{n} \rightarrow \mathbf{H}^{n}$ extends to a qc-homeo $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$

Sketch of Mostow's proof of Theorem 1

Given:

$-\Gamma, \Gamma^{\prime} \curvearrowright \mathbf{H}^{n}$ properly discontinuous cocompact isometric actions.

- An isomorphism of abstract groups $j: \Gamma \cong \Gamma^{\prime}$

Show:

(1) \exists a homeomorphism $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$ so that $f(\gamma \xi)=j(\gamma) f(\xi)$.
(2) Show that f is quasi-conformal and improve to conformal (using $n \geq 3$).

Quasi-isometry: a $\operatorname{map} q: X \rightarrow Y$ s.t. $\exists K, A, C$

- $K^{-1} \cdot d_{X}\left(x, x^{\prime}\right)-A<d_{Y}\left(q(x), q\left(x^{\prime}\right)\right)<K \cdot d_{X}\left(x, x^{\prime}\right)+A$
- $\forall y \in Y, \quad \exists x \in X, \quad d(q(x), y)<C$.

Step 1 of Mostow's proof

- \exists quasi-isometry $q: \mathbf{H}^{n} \rightarrow \operatorname{Cayley}(\Gamma, S)=\operatorname{Cayley}\left(\Gamma^{\prime}, j(S)\right) \rightarrow \mathbf{H}^{n}$
- Any quasi-isometry $q: \mathbf{H}^{n} \rightarrow \mathbf{H}^{n}$ extends to a qc-homeo $f: \partial \mathbf{H}^{n} \rightarrow \partial \mathbf{H}^{n}$
- f is j-equivariant

More on Mostow rigidity

Theorem (Mostow's strong rigidity for non-uniform lattices)
Any isom $G>\Gamma \cong \Gamma^{\prime}<G^{\prime} \nsucceq S L_{2}(\mathbb{R})$ between lattices extends to $G \cong G^{\prime}$.

More on Mostow rigidity

Theorem (Mostow's strong rigidity for non-uniform lattices)

Any isom $G>\Gamma \cong \Gamma^{\prime}<G^{\prime} \nsucceq S L_{2}(\mathbb{R})$ between lattices extends to $G \cong G^{\prime}$.
Main difficulty - boundary maps.

More on Mostow rigidity

Theorem (Mostow's strong rigidity for non-uniform lattices)

Any isom $G>\Gamma \cong \Gamma^{\prime}<G^{\prime} \not 千 S L_{2}(\mathbb{R})$ between lattices extends to $G \cong G^{\prime}$.
Main difficulty - boundary maps.

- Prasad ('73): $G \simeq \operatorname{SO}(n, 1), \mathrm{SU}(n, 1), \mathrm{Sp}(n, 1), \mathrm{F}_{4}$, but $G \nsim \mathrm{SL}_{2}(\mathbb{R})$. More precisely lattice of \mathbb{Q}-rank one.

More on Mostow rigidity

Theorem (Mostow's strong rigidity for non-uniform lattices)

Any isom $G>\Gamma \cong \Gamma^{\prime}<G^{\prime} \nsucceq S L_{2}(\mathbb{R})$ between lattices extends to $G \cong G^{\prime}$.
Main difficulty - boundary maps.

- Prasad ('73): $G \simeq \operatorname{SO}(n, 1), \mathrm{SU}(n, 1), \mathrm{Sp}(n, 1), \mathrm{F}_{4}$, but $G \nsim \mathrm{SL}_{2}(\mathbb{R})$. More precisely lattice of \mathbb{Q}-rank one.
- Margulis ('75): higher rank semi-simple G.

More on Mostow rigidity

Theorem (Mostow's strong rigidity for non-uniform lattices)

Any isom $G>\Gamma \cong \Gamma^{\prime}<G^{\prime} \nsucceq S L_{2}(\mathbb{R})$ between lattices extends to $G \cong G^{\prime}$.
Main difficulty - boundary maps.

- Prasad ('73): $G \simeq \operatorname{SO}(n, 1), \mathrm{SU}(n, 1), \mathrm{Sp}(n, 1), \mathrm{F}_{4}$, but $G \nsim \mathrm{SL}_{2}(\mathbb{R})$. More precisely lattice of \mathbb{Q}-rank one.
- Margulis ('75): higher rank semi-simple G. Now usually deduced from Margulis superrigidity (below).

More on Mostow rigidity

Theorem (Mostow's strong rigidity for non-uniform lattices)

Any isom $G>\Gamma \cong \Gamma^{\prime}<G^{\prime} \not 千 S L_{2}(\mathbb{R})$ between lattices extends to $G \cong G^{\prime}$.
Main difficulty - boundary maps.

- Prasad ('73): $G \simeq \operatorname{SO}(n, 1), \mathrm{SU}(n, 1), \mathrm{Sp}(n, 1), \mathrm{F}_{4}$, but $G \nsim \mathrm{SL}_{2}(\mathbb{R})$. More precisely lattice of \mathbb{Q}-rank one.
- Margulis ('75): higher rank semi-simple G. Now usually deduced from Margulis superrigidity (below).

Problem (Mostow-Margulis rigidity with locally compact targets)

G - semi-simple Lie group, H - general locally compact.
If $G>\Gamma \cong \Gamma^{\prime}<H$, what is H ?

More on Mostow rigidity

Theorem (Mostow's strong rigidity for non-uniform lattices)

Any isom $G>\Gamma \cong \Gamma^{\prime}<G^{\prime} \nsucceq S L_{2}(\mathbb{R})$ between lattices extends to $G \cong G^{\prime}$.
Main difficulty - boundary maps.

- Prasad ('73): $G \simeq \operatorname{SO}(n, 1), \mathrm{SU}(n, 1), \mathrm{Sp}(n, 1), \mathrm{F}_{4}$, but $G \nsim \mathrm{SL}_{2}(\mathbb{R})$. More precisely lattice of \mathbb{Q}-rank one.
- Margulis ('75): higher rank semi-simple G. Now usually deduced from Margulis superrigidity (below).

Problem (Mostow-Margulis rigidity with locally compact targets)

G - semi-simple Lie group, H - general locally compact.
If $G>\Gamma \cong \Gamma^{\prime}<H$, what is H ?

- Furman ('01): simple $\operatorname{rk}(G) \geq 2$, or $G=\operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$ and H / Γ^{\prime} compact.
- Bader-Furman-Sauer ('12): all cases (including $\mathrm{SL}_{2}(\mathbb{R})$) and more...

Margulis' super-rigidity

Margulis' super-rigidity

Theorem (Margulis ~74).

G a simple Lie, $\operatorname{rk}(G) \geq 2, \Gamma<G$ lattice $\rho: \Gamma \rightarrow H$ a homomorphism into a simple H

Margulis' super-rigidity

Theorem (Margulis ~74).
G a simple Lie, $\operatorname{rk}(G) \geq 2, \Gamma<G$ lattice $\rho: \Gamma \rightarrow H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded.

Margulis' super-rigidity

Theorem (Margulis ~74).

G a simple Lie, $\operatorname{rk}(G) \geq 2, \Gamma<G$ lattice $\rho: \Gamma \rightarrow H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded.
Then ρ extends to isomorphism $\bar{\rho}: G \cong H$.

Margulis' super-rigidity

Theorem (Margulis ~74).
G a simple Lie, $\operatorname{rk}(G) \geq 2, \Gamma<G$ lattice $\rho: \Gamma \rightarrow H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded.

Then ρ extends to isomorphism $\bar{\rho}: G \cong H$.

Margulis' super-rigidity

Theorem (Margulis ~74).

G a simple Lie, $\operatorname{rk}(G) \geq 2, \Gamma<G$ lattice $\rho: \Gamma \rightarrow H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded.
Then ρ extends to isomorphism $\bar{\rho}: G \cong H$.

Margulis' Superrigidity Theorem (~74)

Let $G=\prod G_{i}$ semi-simple, $\sum \operatorname{rk}\left(G_{i}\right) \geq 2 ; \quad H$ - simple, center-free. $\Gamma<G$ an irreducible lattice, and $\rho: \Gamma \rightarrow H$, with Z-dense unbdd image.
Then $\rho: \Gamma \cong \Gamma^{\prime}$ extends to an epimorphism $G \rightarrow H$.

Margulis' super-rigidity

Theorem (Margulis ~74).

G a simple Lie, $\operatorname{rk}(G) \geq 2, \Gamma<G$ lattice $\rho: \Gamma \rightarrow H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded.
Then ρ extends to isomorphism $\bar{\rho}: G \cong H$.

Margulis' Superrigidity Theorem (~74)

Let $G=\prod G_{i}$ semi-simple, $\sum \operatorname{rk}\left(G_{i}\right) \geq 2 ; \quad H$ - simple, center-free. $\Gamma<G$ an irreducible lattice, and $\rho: \Gamma \rightarrow H$, with Z-dense unbdd image. Then $\rho: \Gamma \cong \Gamma^{\prime}$ extends to an epimorphism $G \rightarrow H$.

Margulis' Arithmeticity Theorem ('75)

All (irreducible) lattices in higher rank (semi)-simple Lie groups are arithmetic.

Margulis' super-rigidity

Theorem (Margulis ~74).

G a simple Lie, $\operatorname{rk}(G) \geq 2, \Gamma<G$ lattice $\rho: \Gamma \rightarrow H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded.
Then ρ extends to isomorphism $\bar{\rho}: G \cong H$.

Margulis' Superrigidity Theorem (~74)

Let $G=\prod G_{i}$ semi-simple, $\sum \operatorname{rk}\left(G_{i}\right) \geq 2 ; \quad H$ - simple, center-free. $\Gamma<G$ an irreducible lattice, and $\rho: \Gamma \rightarrow H$, with Z-dense unbdd image. Then $\rho: \Gamma \cong \Gamma^{\prime}$ extends to an epimorphism $G \rightarrow H$.

Margulis' Arithmeticity Theorem ('75)

All (irreducible) lattices in higher rank (semi)-simple Lie groups are arithmetic.

Arith lattice?

Something like $S L_{n}(\mathbb{Z})<S L_{n}(\mathbb{R})$

How to prove Margulis' superrigidity theorem

How to prove Margulis' superrigidity theorem
Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{z}
$$

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{Z}
$$

- L is an algebraic subgroup of $G \times H$.

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{z}
$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\bar{\Gamma}^{Z}=G$.

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{z}
$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\bar{\Gamma}^{Z}=G$.

Lemma/Exercise

Given:

subgroup $L<G \times H$ $p r_{G}(L)=G, p r_{H}(L)=H$
H - simple group.

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{z}
$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\bar{\Gamma}^{Z}=G$.

Lemma/Exercise

Given:
subgroup $L<G \times H$ $p r_{G}(L)=G, p r_{H}(L)=H$
H - simple group.

Prove:

\exists epimorphism $\rho: G \rightarrow H$
so that $L=(\operatorname{id} \times \rho)(G)$,

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{z}
$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\bar{\Gamma}^{Z}=G$.

Lemma/Exercise

Given:
subgroup $L<G \times H$ $p r_{G}(L)=G, p r_{H}(L)=H$
H - simple group.

Prove:

\exists epimorphism $\rho: G \rightarrow H$
so that $L=($ id $\times \rho)(G)$,
unless $L=G \times H$.

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{Z}
$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\bar{\Gamma}^{Z}=G$.

Lemma/Exercise

Given:
subgroup $L<G \times H$ $p r_{G}(L)=G, p r_{H}(L)=H$
H - simple group.

Prove:

\exists epimorphism $\rho: G \rightarrow H$
so that $L=($ id $\times \rho)(G)$,
unless $L=G \times H$.

Problem: show $L \neq G \times H$.

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{Z}
$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\bar{\Gamma}^{Z}=G$.

Lemma/Exercise

Given:
subgroup $L<G \times H$ $\operatorname{pr}_{G}(L)=G, p r_{H}(L)=H$ H - simple group.

Prove:

\exists epimorphism $\rho: G \rightarrow H$
so that $L=($ id $\times \rho)(G)$,
unless $L=G \times H$.

Problem: show $L \neq G \times H$.
Solution: impose one non-trivial algebraic condition on (id $\times \rho)(\Gamma)<G \times H$.

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{z}
$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\bar{\Gamma}^{Z}=G$.

Lemma/Exercise

Given:
subgroup $L<G \times H$ $p r_{G}(L)=G, p r_{H}(L)=H$ H - simple group.

Prove:

\exists epimorphism $\rho: G \rightarrow H$
so that $L=($ id $\times \rho)(G)$,
unless $L=G \times H$.

Problem: show $L \neq G \times H$.
Solution: impose one non-trivial algebraic condition on (id $\times \rho)(\Gamma)<G \times H$.
Actual solution (Margulis)
(1) Construct boundary map $f: G / P \rightarrow H / Q$ so that $f(\gamma \xi)=\rho(\gamma) f(\xi)$

How to prove Margulis' superrigidity theorem

Take $L<G \times H$ be the Z-closure of the graph of ρ

$$
\Lambda_{\rho}=\{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \quad L=\bar{\Lambda}^{z}
$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\bar{\Gamma}^{Z}=G$.

Lemma/Exercise

Given:
subgroup $L<G \times H$ $p r_{G}(L)=G, p r_{H}(L)=H$ H - simple group.

Prove:

\exists epimorphism $\rho: G \rightarrow H$
so that $L=(i d \times \rho)(G)$,
unless $L=G \times H$.

Problem: show $L \neq G \times H$.
Solution: impose one non-trivial algebraic condition on (id $\times \rho)(\Gamma)<G \times H$.
Actual solution (Margulis)
(1) Construct boundary map $f: G / P \rightarrow H / Q$ so that $f(\gamma \xi)=\rho(\gamma) f(\xi)$
(2) Prove that f is a rational map.

Remarks on the proof

Theorem (1 - Boundary maps)

$\Gamma<G$ lattice, G^{\prime} - simple, $\rho: \Gamma \rightarrow G^{\prime}$ hom with Z-dense unbounded image. Then \exists a measurable Γ-map $f: G / P \rightarrow G^{\prime} / Q^{\prime}$ with $Q^{\prime} \lesseqgtr G$ parabolic.

Remarks on the proof

Theorem (1 - Boundary maps)

$\Gamma<G$ lattice, G^{\prime} - simple, $\rho: \Gamma \rightarrow G^{\prime}$ hom with Z-dense unbounded image. Then \exists a measurable Γ-map $f: G / P \rightarrow G^{\prime} / Q^{\prime}$ with $Q^{\prime} \lesseqgtr G$ parabolic.

Proofs:

Remarks on the proof

Theorem (1 - Boundary maps)

$\Gamma<G$ lattice, G^{\prime} - simple, $\rho: \Gamma \rightarrow G^{\prime}$ hom with Z-dense unbounded image. Then \exists a measurable Γ-map $f: G / P \rightarrow G^{\prime} / Q^{\prime}$ with $Q^{\prime} \lesseqgtr G$ parabolic.

Proofs:

- Margulis, using Oseledets theorem
- Zimmer, using amenable actions
- Furstenberg, using random walks

Remarks on the proof

Theorem (1 - Boundary maps)

$\Gamma<G$ lattice, G^{\prime} - simple, $\rho: \Gamma \rightarrow G^{\prime}$ hom with Z-dense unbounded image. Then \exists a measurable Γ-map $f: G / P \rightarrow G^{\prime} / Q^{\prime}$ with $Q^{\prime} \lesseqgtr G$ parabolic.

Proofs:

- Margulis, using Oseledets theorem
- Zimmer, using amenable actions
- Furstenberg, using random walks

Remarks on the proof

Theorem (1 - Boundary maps)

$\Gamma<G$ lattice, G^{\prime} - simple, $\rho: \Gamma \rightarrow G^{\prime}$ hom with Z-dense unbounded image. Then \exists a measurable Γ-map $f: G / P \rightarrow G^{\prime} / Q^{\prime}$ with $Q^{\prime} \lesseqgtr G$ parabolic.

Proofs:

- Margulis, using Oseledets theorem
- Zimmer, using amenable actions

$$
G / P \longrightarrow \operatorname{Prob}\left(G^{\prime} / P^{\prime}\right)
$$

- Furstenberg, using random walks

Theorem (2 - Regularity, uses $\operatorname{rk}(G) \geq 2$ and $\Gamma<G$ irr lattice)

A measurable Γ-equivariant map $f: G / P \rightarrow G^{\prime} / Q^{\prime}$ is a.e. equal to a rational map.

Remarks on the proof

Theorem (1 - Boundary maps)

$\Gamma<G$ lattice, G^{\prime} - simple, $\rho: \Gamma \rightarrow G^{\prime}$ hom with Z-dense unbounded image. Then \exists a measurable Γ-map $f: G / P \rightarrow G^{\prime} / Q^{\prime}$ with $Q^{\prime} \lesseqgtr G$ parabolic.

Proofs:

- Margulis, using Oseledets theorem
- Zimmer, using amenable actions
- Furstenberg, using random walks

$$
G / P \longrightarrow \operatorname{Prob}\left(G^{\prime} / P^{\prime}\right)
$$

A measurable Γ-equivariant map $f: G / P \rightarrow G^{\prime} / Q^{\prime}$ is a.e. equal to a rational map.

Theorem 1 can be strengthened to

$G / P \longrightarrow G^{\prime} / Q^{\prime}$

Variants of Superrigidity

Special case of Margulis' superrigidity
$\Gamma<G=\prod G_{i}$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \geq 2$.
$\rho: \Gamma \rightarrow H$ a homomorphism into a simple H with $\operatorname{rk}(H)=1$.

Variants of Superrigidity

Special case of Margulis' superrigidity

$\Gamma<G=\prod G_{i}$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \geq 2$.
$\rho: \Gamma \rightarrow H$ a homomorphism into a simple H with $\operatorname{rk}(H)=1$.

- Either $\rho(\Gamma)$ is elementary $(\Longrightarrow \quad \rho(\Gamma)$ precpct $)$

Variants of Superrigidity

Special case of Margulis' superrigidity

$\Gamma<G=\prod G_{i}$ irr lattice in a semi-simple Lie $\operatorname{group}, \operatorname{rk}(G) \geq 2$.
$\rho: \Gamma \rightarrow H$ a homomorphism into a simple H with $\operatorname{rk}(H)=1$.

- Either $\rho(\Gamma)$ is elementary $(\Longrightarrow \quad \rho(\Gamma)$ precpct $)$
- Or $\exists i$ with $G_{i} \cong H$ and $\rho: \Gamma \xrightarrow{C} G \xrightarrow{p r_{i}} G_{i} \cong H$.

Variants of Superrigidity

Special case of Margulis' superrigidity

$\Gamma<G=\prod G_{i}$ irr lattice in a semi-simple Lie $\operatorname{group}, \operatorname{rk}(G) \geq 2$.
$\rho: \Gamma \rightarrow H$ a homomorphism into a simple H with $\operatorname{rk}(H)=1$.

- Either $\rho(\Gamma)$ is elementary $(\Longrightarrow \quad \rho(\Gamma)$ precpct $)$
- Or $\exists i$ with $G_{i} \cong H$ and $\rho: \Gamma \xrightarrow{\subset} G \xrightarrow{p r_{i}} G_{i} \cong H$.

Theorem (Margulis '81)

Let $\Gamma<G=\prod G_{i}$ be an irr lattice in a real semi-simple Lie $\operatorname{group}, \operatorname{rk}(G) \geq 2$. Then Γ is not an amalgam $A *_{c} B$ on an HNN extension.

Variants of Superrigidity

Special case of Margulis' superrigidity

$\Gamma<G=\prod G_{i}$ irr lattice in a semi-simple Lie $\operatorname{group}, \operatorname{rk}(G) \geq 2$.
$\rho: \Gamma \rightarrow H$ a homomorphism into a simple H with $\operatorname{rk}(H)=1$.

- Either $\rho(\Gamma)$ is elementary $(\Longrightarrow \quad \rho(\Gamma)$ precpct $)$
- Or $\exists i$ with $G_{i} \cong H$ and $\rho: \Gamma \xrightarrow{\subset} G \xrightarrow{p r_{i}} G_{i} \cong H$.

Theorem (Margulis '81)

Let $\Gamma<G=\prod G_{i}$ be an irr lattice in a real semi-simple Lie $\operatorname{group}, \operatorname{rk}(G) \geq 2$. Then Γ is not an amalgam $A{ }_{c} B$ on an HNN extension.

If Γ is an S-arithmetic lattice, it has only "obvious" amalgam decompositions.

Variants of Superrigidity

Special case of Margulis' superrigidity

$\Gamma<G=\prod G_{i}$ irr lattice in a semi-simple Lie $\operatorname{group}, \operatorname{rk}(G) \geq 2$.
$\rho: \Gamma \rightarrow H$ a homomorphism into a simple H with $\operatorname{rk}(H)=1$.

- Either $\rho(\Gamma)$ is elementary $(\Longrightarrow \quad \rho(\Gamma)$ precpct $)$
- Or $\exists i$ with $G_{i} \cong H$ and $\rho: \Gamma \xrightarrow{\subset} G \xrightarrow{p r_{i}} G_{i} \cong H$.

Theorem (Margulis '81)

Let $\Gamma<G=\prod G_{i}$ be an irr lattice in a real semi-simple Lie $\operatorname{group}, \operatorname{rk}(G) \geq 2$. Then Γ is not an amalgam $A{ }_{c} B$ on an HNN extension.

If Γ is an S-arithmetic lattice, it has only "obvious" amalgam decompositions.
Proof by superrigidity for $\Gamma \rightarrow$ Aut(Tree).

Variants of Superrigidity

Special case of Margulis' superrigidity

$\Gamma<G=\prod G_{i}$ irr lattice in a semi-simple Lie $\operatorname{group}, \operatorname{rk}(G) \geq 2$.
$\rho: \Gamma \rightarrow H$ a homomorphism into a simple H with $\operatorname{rk}(H)=1$.

- Either $\rho(\Gamma)$ is elementary $(\Longrightarrow \quad \rho(\Gamma)$ precpct $)$
- Or $\exists i$ with $G_{i} \cong H$ and $\rho: \Gamma \xrightarrow{\subset} G \xrightarrow{p r_{i}} G_{i} \cong H$.

Theorem (Margulis '81)

Let $\Gamma<G=\prod G_{i}$ be an irr lattice in a real semi-simple Lie group, $\operatorname{rk}(G) \geq 2$. Then Γ is not an amalgam $A * c B$ on an HNN extension.

If Γ is an S-arithmetic lattice, it has only "obvious" amalgam decompositions.
Proof by superrigidity for $\Gamma \rightarrow$ Aut(Tree).

Further superrigidity phenomena (long list of names...)

- Other H: CAT(-1), Gromov-hyp, $\operatorname{Homeo}\left(S^{1}\right), \operatorname{MCG}(\Sigma), \mathcal{C}_{\text {reg }}, \mathcal{S}, \ldots$
- Other G : products $G=G_{1} \times \cdots \times G_{n}, n \geq 2$, of general Icsc grps, \tilde{A}_{2} groups

Cocycles

$G \curvearrowright(X, \mu)$ probability measure preserving actions of a Icsc group.

Cocycles

$G \curvearrowright(X, \mu)$ probability measure preserving actions of a Icsc group.

- cocycle $c: G \times X \rightarrow H$ to a Polish group H is a measurable map

$$
c\left(g_{1} g_{2}, x\right)=c\left(g_{1}, g_{2} \cdot x\right) \cdot c\left(g_{2}, x\right) \quad\left(g_{1}, g_{2} \in G, x \in X\right)
$$

Cocycles

$G \curvearrowright(X, \mu)$ probability measure preserving actions of a Icsc group.

- cocycle $c: G \times X \rightarrow H$ to a Polish group H is a measurable map

$$
c\left(g_{1} g_{2}, x\right)=c\left(g_{1}, g_{2} \cdot x\right) \cdot c\left(g_{2}, x\right) \quad\left(g_{1}, g_{2} \in G, x \in X\right)
$$

- conjugation: given $c: G \times X \rightarrow H$ and $\operatorname{anap} f: X \rightarrow H$

$$
c^{f}(g, x):=f(g \cdot x)^{-1} c(g, x) f(x)
$$

Cocycles

$G \curvearrowright(X, \mu)$ probability measure preserving actions of a Icsc group.

- cocycle $c: G \times X \rightarrow H$ to a Polish group H is a measurable map

$$
c\left(g_{1} g_{2}, x\right)=c\left(g_{1}, g_{2} \cdot x\right) \cdot c\left(g_{2}, x\right) \quad\left(g_{1}, g_{2} \in G, x \in X\right)
$$

- conjugation: given $c: G \times X \rightarrow H$ and $\operatorname{anap} f: X \rightarrow H$

$$
c^{f}(g, x):=f(g \cdot x)^{-1} c(g, x) f(x)
$$

- straight cocycles $c(g, x)=f(g \cdot x)^{-1} \pi(g) f(x)$ for some $\pi: \operatorname{Hom}(G, H)$.

Cocycles

$G \curvearrowright(X, \mu)$ probability measure preserving actions of a Icsc group.

- cocycle $c: G \times X \rightarrow H$ to a Polish group H is a measurable map

$$
c\left(g_{1} g_{2}, x\right)=c\left(g_{1}, g_{2} \cdot x\right) \cdot c\left(g_{2}, x\right) \quad\left(g_{1}, g_{2} \in G, x \in X\right)
$$

- conjugation: given $c: G \times X \rightarrow H$ and $\operatorname{anap} f: X \rightarrow H$

$$
c^{f}(g, x):=f(g \cdot x)^{-1} c(g, x) f(x)
$$

- straight cocycles $c(g, x)=f(g \cdot x)^{-1} \pi(g) f(x)$ for some $\pi: \operatorname{Hom}(G, H)$.

Cohomology of $G \curvearrowright X$ with values in H

$$
\begin{aligned}
& Z^{1}(G \curvearrowright X, H)=\{\text { cocycles } c: G \times X \rightarrow H\} \\
& H^{1}(G \curvearrowright X, H)=Z^{1}(G \curvearrowright X, H) / c \sim c^{f} .
\end{aligned}
$$

Cocycles

$G \curvearrowright(X, \mu)$ probability measure preserving actions of a Icsc group.

- cocycle $c: G \times X \rightarrow H$ to a Polish group H is a measurable map

$$
c\left(g_{1} g_{2}, x\right)=c\left(g_{1}, g_{2} \cdot x\right) \cdot c\left(g_{2}, x\right) \quad\left(g_{1}, g_{2} \in G, x \in X\right)
$$

- conjugation: given $c: G \times X \rightarrow H$ and a map $f: X \rightarrow H$

$$
c^{f}(g, x):=f(g \cdot x)^{-1} c(g, x) f(x)
$$

- straight cocycles $c(g, x)=f(g \cdot x)^{-1} \pi(g) f(x)$ for some $\pi: \operatorname{Hom}(G, H)$.

Cohomology of $G \curvearrowright X$ with values in H

$$
\begin{aligned}
& Z^{1}(G \curvearrowright X, H)=\{\text { cocycles } c: G \times X \rightarrow H\} \\
& H^{1}(G \curvearrowright X, H)=Z^{1}(G \curvearrowright X, H) / c \sim c^{f} .
\end{aligned}
$$

* Everything is measurable, taken up to null sets !

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

(1) $\rho: \Gamma \rightarrow H$ up to H-conj \leftrightarrow cocycle $c: G \times G / \Gamma \rightarrow H$ up to conj

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

(1) $\rho: \Gamma \rightarrow H$ up to H-conj \leftrightarrow cocycle $c: G \times G / \Gamma \rightarrow H$ up to conj
(2) ρ extends to $\bar{\rho}: G \rightarrow H \quad \leftrightarrow \quad c(g, x) \sim \rho(g)$

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

(1) $\rho: \Gamma \rightarrow H$ up to H-conj \leftrightarrow cocycle $c: G \times G / \Gamma \rightarrow H$ up to conj
(2) ρ extends to $\bar{\rho}: G \rightarrow H \quad \leftrightarrow \quad c(g, x) \sim \rho(g)$

Proof of (1). Choose a Borel cross-section $\sigma: G / \Gamma \rightarrow G$ of $g \mapsto g \Gamma$.

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

(1) $\rho: \Gamma \rightarrow H$ up to H-conj \leftrightarrow cocycle $c: G \times G / \Gamma \rightarrow H$ up to conj
(2) ρ extends to $\bar{\rho}: G \rightarrow H \quad \leftrightarrow \quad c(g, x) \sim \rho(g)$

Proof of (1). Choose a Borel cross-section $\sigma: G / \Gamma \rightarrow G$ of $g \mapsto g \Gamma$.

- $\sigma(x) \Gamma \sigma(x)^{-1}=\operatorname{Stab}_{G}(x)$ for $x \in G / \Gamma$

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

(1) $\rho: \Gamma \rightarrow H$ up to H-conj \leftrightarrow cocycle $c: G \times G / \Gamma \rightarrow H$ up to conj
(2) ρ extends to $\bar{\rho}: G \rightarrow H \quad \leftrightarrow \quad c(g, x) \sim \rho(g)$

Proof of (1). Choose a Borel cross-section $\sigma: G / \Gamma \rightarrow G$ of $g \mapsto g \Gamma$.

- $\sigma(x) \Gamma \sigma(x)^{-1}=\operatorname{Stab}_{G}(x)$ for $x \in G / \Gamma$
- $c(g, x)=\sigma(g \cdot x)^{-1} g \sigma(x) \in \Gamma$.

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

(1) $\rho: \Gamma \rightarrow H$ up to H-conj \leftrightarrow cocycle $c: G \times G / \Gamma \rightarrow H$ up to conj
(2) ρ extends to $\bar{\rho}: G \rightarrow H \quad \leftrightarrow \quad c(g, x) \sim \rho(g)$

Proof of (1). Choose a Borel cross-section $\sigma: G / \Gamma \rightarrow G$ of $g \mapsto g \Gamma$.

- $\sigma(x) \Gamma \sigma(x)^{-1}=\operatorname{Stab}_{G}(x)$ for $x \in G / \Gamma$
- $c(g, x)=\sigma(g \cdot x)^{-1} g \sigma(x) \in \Gamma$. Note $c: G \times G / \Gamma \rightarrow \Gamma$ is a cocycle.

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

(1) $\rho: \Gamma \rightarrow H$ up to H-conj \leftrightarrow cocycle $c: G \times G / \Gamma \rightarrow H$ up to conj
(2) ρ extends to $\bar{\rho}: G \rightarrow H \quad \leftrightarrow \quad c(g, x) \sim \rho(g)$

Proof of (1). Choose a Borel cross-section $\sigma: G / \Gamma \rightarrow G$ of $g \mapsto g \Gamma$.

- $\sigma(x) \Gamma \sigma(x)^{-1}=\operatorname{Stab}_{G}(x)$ for $x \in G / \Gamma$
- $c(g, x)=\sigma(g \cdot x)^{-1} g \sigma(x) \in \Gamma$. Note $c: G \times G / \Gamma \rightarrow \Gamma$ is a cocycle.
$\downarrow \rho: \Gamma \rightarrow H$ a hom $\quad \rightsquigarrow \quad \rho \circ c: G \times G / \Gamma \rightarrow \Gamma \rightarrow H$ is a cocycle

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma<G$ and any H

(1) $\rho: \Gamma \rightarrow H$ up to H-conj \leftrightarrow cocycle $c: G \times G / \Gamma \rightarrow H$ up to conj
(2) ρ extends to $\bar{\rho}: G \rightarrow H \quad \leftrightarrow \quad c(g, x) \sim \rho(g)$

Proof of (1). Choose a Borel cross-section $\sigma: G / \Gamma \rightarrow G$ of $g \mapsto g \Gamma$.

- $\sigma(x) \Gamma \sigma(x)^{-1}=\operatorname{Stab}_{G}(x)$ for $x \in G / \Gamma$
- $c(g, x)=\sigma(g \cdot x)^{-1} g \sigma(x) \in \Gamma$. Note $c: G \times G / \Gamma \rightarrow \Gamma$ is a cocycle.
- $\rho: \Gamma \rightarrow H$ a hom $\rightsquigarrow \quad \rho \circ c: G \times G / \Gamma \rightarrow \Gamma \rightarrow H$ is a cocycle
- $\alpha: G \times G / \Gamma \rightarrow H \quad \rho_{x}(\gamma)=\alpha\left(\sigma(x) \gamma \sigma(x)^{-1}, x\right)$ is a hom.

Zimmer's cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer '81)

Let G (semi)-simple, H be simple Lie groups, $\operatorname{rk}(G) \geq 2$
$G \curvearrowright(X, \mu)$ (irred) ergodic p.m.p. c: $G \times X \rightarrow H$ cocycle where c is Zariski-dense, not compact.
Then \exists epimor $\pi: G \rightarrow H$ and measurable map $f: X \rightarrow H$

$$
c(g, x)=f(g \cdot x)^{-1} \pi(g) f(x)
$$

Zimmer's cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer '81)

Let G (semi)-simple, H be simple Lie $\operatorname{groups}, \operatorname{rk}(G) \geq 2$
$G \curvearrowright(X, \mu)$ (irred) ergodic p.m.p. c: $G \times X \rightarrow H$ cocycle where c is Zariski-dense, not compact.
Then \exists epimor $\pi: G \rightarrow H$ and measurable map $f: X \rightarrow H$

$$
c(g, x)=f(g \cdot x)^{-1} \pi(g) f(x)
$$

Remark

Γ-cocycles are also superrigid, by $\Gamma \curvearrowright X \rightsquigarrow G \curvearrowright\left(G \times_{\Gamma} X\right)$.

Zimmer's cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer '81)

Let G (semi)-simple, H be simple Lie groups, $\operatorname{rk}(G) \geq 2$
$G \curvearrowright(X, \mu)$ (irred) ergodic p.m.p. c: $G \times X \rightarrow H$ cocycle where c is Zariski-dense, not compact.
Then \exists epimor $\pi: G \rightarrow H$ and measurable map $f: X \rightarrow H$

$$
c(g, x)=f(g \cdot x)^{-1} \pi(g) f(x)
$$

Remark

Γ-cocycles are also superrigid, by $\Gamma \curvearrowright X \rightsquigarrow G \curvearrowright\left(G \times_{\Gamma} X\right)$.

Strategy of the proof

- Boundary map: $f: X \times G / P \rightarrow H / Q$ s.t. $f_{g . x}(g \xi)=c(g, x) f_{x}(\xi)$.
- Ergodicity vs. smoothness of algebraic actions
- Regularity as in Margulis' proof.

Cocycles in nature

(stable) Orbit Equivalence

$\Gamma \curvearrowright(X, \mu)$ and $\wedge \curvearrowright(Y, \nu)$ freely, and $T: X \cong Y$ with $T(\Gamma . x)=\Lambda . T(x)$ Then $T(\gamma \cdot x)=c(\gamma, x) . T(x)$ defines a cocycle $c: \Gamma \times X \rightarrow \Lambda$.

Cocycles in nature

(stable) Orbit Equivalence

$\Gamma \curvearrowright(X, \mu)$ and $\wedge \curvearrowright(Y, \nu)$ freely, and $T: X \cong Y$ with $T(\Gamma . x)=\Lambda . T(x)$ Then $T(\gamma \cdot x)=c(\gamma, x) . T(x)$ defines a cocycle $c: \Gamma \times X \rightarrow \Lambda$.

Volume preserving actions on manifolds

$\Gamma \rightarrow \operatorname{Diff}_{+}\left(M^{n}\right.$, vol $)$ defines the derivative cocycle $c: \Gamma \times(M$, vol $) \rightarrow \mathrm{SL}_{n}(\mathbb{R})$.

Cocycles in nature

(stable) Orbit Equivalence

$\Gamma \curvearrowright(X, \mu)$ and $\wedge \curvearrowright(Y, \nu)$ freely, and $T: X \cong Y$ with $T(\Gamma . x)=\Lambda . T(x)$
Then $T(\gamma \cdot x)=c(\gamma, x) . T(x)$ defines a cocycle $c: \Gamma \times X \rightarrow \Lambda$.

Volume preserving actions on manifolds

$\Gamma \rightarrow$ Diff $_{+}\left(M^{n}\right.$, vol $)$ defines the derivative cocycle $c: \Gamma \times(M$, vol $) \rightarrow \mathrm{SL}_{n}(\mathbb{R})$.
Zimmer's program: classify volume preserving actions of higher rank Γ on mflds

Cocycles in nature

(stable) Orbit Equivalence

$\Gamma \curvearrowright(X, \mu)$ and $\wedge \curvearrowright(Y, \nu)$ freely, and $T: X \cong Y$ with $T(\Gamma . x)=\Lambda . T(x)$
Then $T(\gamma \cdot x)=c(\gamma, x) . T(x)$ defines a cocycle $c: \Gamma \times X \rightarrow \Lambda$.

Volume preserving actions on manifolds

$\Gamma \rightarrow$ Diff $_{+}\left(M^{n}\right.$, vol $)$ defines the derivative cocycle $c: \Gamma \times(M$, vol $) \rightarrow \mathrm{SL}_{n}(\mathbb{R})$.
Zimmer's program: classify volume preserving actions of higher rank Γ on mflds
Other geometric cocycles
G connected and simply connected $\curvearrowright M \rightsquigarrow$ a cocycle $c: G \times M \rightarrow \pi_{1}(M)$.

Cocycles in nature

(stable) Orbit Equivalence

$\Gamma \curvearrowright(X, \mu)$ and $\wedge \curvearrowright(Y, \nu)$ freely, and $T: X \cong Y$ with $T(\Gamma . x)=\Lambda . T(x)$
Then $T(\gamma \cdot x)=c(\gamma, x) . T(x)$ defines a cocycle $c: \Gamma \times X \rightarrow \Lambda$.

Volume preserving actions on manifolds

$\Gamma \rightarrow$ Diff $_{+}\left(M^{n}\right.$, vol $)$ defines the derivative cocycle $c: \Gamma \times(M$, vol $) \rightarrow \mathrm{SL}_{n}(\mathbb{R})$.
Zimmer's program: classify volume preserving actions of higher rank Γ on mflds

Other geometric cocycles

G connected and simply connected $\curvearrowright M \rightsquigarrow$ a cocycle $c: G \times M \rightarrow \pi_{1}(M)$. Gromov's rigid geometric structures \rightsquigarrow a linear rep $\pi_{1}(M) \rightarrow H$.

Cocycles in nature

(stable) Orbit Equivalence

$\Gamma \curvearrowright(X, \mu)$ and $\wedge \curvearrowright(Y, \nu)$ freely, and $T: X \cong Y$ with $T(\Gamma . x)=\Lambda . T(x)$
Then $T(\gamma \cdot x)=c(\gamma, x) . T(x)$ defines a cocycle $c: \Gamma \times X \rightarrow \Lambda$.

Volume preserving actions on manifolds

$\Gamma \rightarrow$ Diff $_{+}\left(M^{n}\right.$, vol $)$ defines the derivative cocycle $c: \Gamma \times(M$, vol $) \rightarrow \mathrm{SL}_{n}(\mathbb{R})$.
Zimmer's program: classify volume preserving actions of higher rank Γ on mflds

Other geometric cocycles

G connected and simply connected $\curvearrowright M \rightsquigarrow$ a cocycle $c: G \times M \rightarrow \pi_{1}(M)$. Gromov's rigid geometric structures \rightsquigarrow a linear rep $\pi_{1}(M) \rightarrow H$.

Popa's cocycle superrigidity

Invest in the action $\Gamma \curvearrowright(X, \mu)$ rather than in $\Gamma \mathrm{s}$ and $G s$ (program in flux - follow the arXiv closely...)

