Superrigidity and Measure Equivalence, Part I

Alex Furman

University of Illinois at Chicago

Institut Henri Poincaré, Paris, June 20 2011

The simplest simple Lie group G

- ▶ SL₂(ℝ)
- ▶ $\mathsf{PSL}_2(\mathbb{R}) = \mathsf{Isom}_+(\mathbf{H}^2)$
- ▶ $\mathsf{PGL}_2(\mathbb{R}) = \mathsf{Isom}(\mathbf{H}^2)$

The simplest simple Lie group G

▶ $SL_2(\mathbb{R})$

•
$$\mathsf{PSL}_2(\mathbb{R}) = \mathsf{Isom}_+(\mathbf{H}^2)$$

▶ $PGL_2(\mathbb{R}) = Isom(\mathbf{H}^2)$

with $\mathbf{H}^2 = G/K$ where $K \simeq SO_2(\mathbb{R})$

The simplest simple Lie group G

► SL₂(ℝ)

•
$$\mathsf{PSL}_2(\mathbb{R}) = \mathsf{Isom}_+(\mathbf{H}^2)$$

▶
$$\mathsf{PGL}_2(\mathbb{R}) = \mathsf{Isom}(\mathbf{H}^2)$$

with $\mathbf{H}^2 = G/K$ where $K \simeq SO_2(\mathbb{R})$

Fix a closed surface Σ be of genus ≥ 2

By uniformization, \exists (many) Riemannian g on Σ with $K \equiv -1$. (up to Diff $(\Sigma)^0$)

The simplest simple Lie group G

► SL₂(ℝ)

•
$$\mathsf{PSL}_2(\mathbb{R}) = \mathsf{Isom}_+(\mathbf{H}^2)$$

▶
$$\mathsf{PGL}_2(\mathbb{R}) = \mathsf{Isom}(\mathbf{H}^2)$$

with $\mathbf{H}^2 = G/K$ where $K \simeq SO_2(\mathbb{R})$

Fix a closed surface Σ be of genus ≥ 2

By uniformization, \exists (many) Riemannian g on Σ with $K \equiv -1$. (up to Diff $(\Sigma)^0$) \rightsquigarrow a Riemannian covering $p : \mathbf{H}^2 \to (\Sigma, g)$, unique up to $G = \text{Isom}(\mathbf{H}^2)$

The simplest simple Lie group G

► SL₂(ℝ)

▶
$$\mathsf{PSL}_2(\mathbb{R}) = \mathsf{Isom}_+(\mathbf{H}^2)$$

•
$$PGL_2(\mathbb{R}) = Isom(\mathbf{H}^2)$$

with $\mathbf{H}^2 = G/K$ where $K \simeq SO_2(\mathbb{R})$

Fix a closed surface Σ be of genus ≥ 2

By uniformization, \exists (many) Riemannian g on Σ with $K \equiv -1$. (up to Diff $(\Sigma)^0$) \rightsquigarrow a Riemannian covering $p : \mathbf{H}^2 \to (\Sigma, g)$, unique up to $G = \text{Isom}(\mathbf{H}^2)$ \rightsquigarrow an embedding $\Gamma = \pi_1(\Sigma, *) \to G$, unique up to G-conjugation

The simplest simple Lie group G

► SL₂(ℝ)

▶
$$\mathsf{PSL}_2(\mathbb{R}) = \mathsf{Isom}_+(\mathbf{H}^2)$$

▶
$$\mathsf{PGL}_2(\mathbb{R}) = \mathsf{Isom}(\mathbf{H}^2)$$

with $\mathbf{H}^2 = G/K$ where $K \simeq SO_2(\mathbb{R})$

Fix a closed surface Σ be of genus ≥ 2

By uniformization, \exists (many) Riemannian g on Σ with $K \equiv -1$. (up to Diff $(\Sigma)^0$) \rightsquigarrow a Riemannian covering $p : \mathbf{H}^2 \to (\Sigma, g)$, unique up to $G = \text{Isom}(\mathbf{H}^2)$ \rightsquigarrow an embedding $\Gamma = \pi_1(\Sigma, *) \to G$, unique up to G-conjugation

Defn: Teichmüller space = moduli of hyperbolic metrics on Σ

 $\mathsf{Teich}(\Sigma) = \{ \text{lattice embeddings} \quad \rho : \Gamma \to G \} / G$

Flexibility of lattices in $SL_2(\mathbb{R})$

Theorem (Riemann ?, Poincaré, Teichmüller ?)

For a closed surface of genus $g \ge 2$ one has

 $\mathsf{Teich}(\Sigma) \cong \mathbb{R}^{6 \cdot g - 6}$

Flexibility of lattices in $SL_2(\mathbb{R})$

Theorem (Riemann ?, Poincaré, Teichmüller ?)

For a closed surface of genus $g \ge 2$ one has

 $\mathsf{Teich}(\Sigma)\cong \mathbb{R}^{6\cdot g-6}$

There are \mathbb{R}^{6g-6} many *G*-conjugacy classes of lattice embeddings

 $\Gamma \rightarrow G = \mathsf{PSL}_2(\mathbb{R})$

where

$$\mathsf{\Gamma} = \langle \mathsf{a}_1, \dots, \mathsf{a}_g, \mathsf{b}_1, \dots, \mathsf{b}_g \mid [\mathsf{a}_1, \mathsf{b}_1] \cdots [\mathsf{a}_g, \mathsf{b}_g] = 1 \rangle$$

Flexibility of lattices in $SL_2(\mathbb{R})$

Theorem (Riemann ?, Poincaré, Teichmüller ?)

For a closed surface of genus $g \ge 2$ one has

 $\operatorname{Teich}(\Sigma) \cong \mathbb{R}^{6 \cdot g - 6}$

There are \mathbb{R}^{6g-6} many *G*-conjugacy classes of lattice embeddings

 $\Gamma \rightarrow G = \mathsf{PSL}_2(\mathbb{R})$

where

$$\mathsf{\Gamma} = \langle \mathsf{a}_1, \dots, \mathsf{a}_g, \mathsf{b}_1, \dots, \mathsf{b}_g \mid [\mathsf{a}_1, \mathsf{b}_1] \cdots [\mathsf{a}_g, \mathsf{b}_g] = 1 \rangle$$

Remarks

• $\forall \rho_1, \rho_2 : \Gamma \to \mathsf{PSL}_2(\mathbb{R})$ lattice embeddings

$$\exists ! f \in \mathsf{Homeo}(S^1 = \partial \mathsf{H}^2) \qquad \rho_2(\gamma) = f^{-1} \circ \rho_1(\gamma) \circ f$$

Similar results apply to non-uniform lattices.

Theorem 1 (Mostow '68)

► A closed manifold Mⁿ of dim n ≥ 3 admits at most one hyperbolic metric.

Theorem 1 (Mostow '68)

- ► A closed manifold Mⁿ of dim n ≥ 3 admits at most one hyperbolic metric.
- ► $G = \text{lsom}(\mathbf{H}^n)$, $n \ge 3$, and $\Gamma, \Gamma' < G$ uniform lattices Given $j : \Gamma \cong \Gamma'$ there $\exists ! g \in G$ with $\mathbf{j}(\gamma) = \mathbf{g}^{-1} \gamma \mathbf{g}$.

Theorem 1 (Mostow '68)

- ► A closed manifold Mⁿ of dim n ≥ 3 admits at most one hyperbolic metric.
- ► $G = \text{Isom}(\mathbf{H}^n), n \ge 3$, and $\Gamma, \Gamma' < G$ uniform lattices Given $j : \Gamma \cong \Gamma'$ there $\exists ! g \in G$ with $\mathbf{j}(\gamma) = \mathbf{g}^{-1} \gamma \mathbf{g}$.

Theorem 2 (Mostow)

 $G = \text{lsom}(\mathbf{H}), G' = \text{lsom}(\mathbf{H}')$ where $\mathbf{H}, \mathbf{H}' \in {\mathbf{H}^n, \mathbf{H}^n_{\mathbb{C}}, \mathbf{H}^n_{\mathbb{H}}, \mathbf{H}^2_{\mathbb{O}}} \setminus \mathbf{H}^2$. Let $\Gamma < G, \Gamma' < G'$ be uniform lattices and $j : \Gamma \cong \Gamma'$ an isomorphism. Then $j : \Gamma \cong \Gamma'$ extends to an isomorphism $G \cong G'$.

Theorem 1 (Mostow '68)

- ► A closed manifold Mⁿ of dim n ≥ 3 admits at most one hyperbolic metric.
- ► $G = \text{Isom}(\mathbf{H}^n), n \ge 3$, and $\Gamma, \Gamma' < G$ uniform lattices Given $j : \Gamma \cong \Gamma'$ there $\exists ! g \in G$ with $\mathbf{j}(\gamma) = \mathbf{g}^{-1} \gamma \mathbf{g}$.

Theorem 2 (Mostow)

 $G = \text{lsom}(\mathbf{H}), G' = \text{lsom}(\mathbf{H}')$ where $\mathbf{H}, \mathbf{H}' \in {\mathbf{H}^n, \mathbf{H}^n_{\mathbb{C}}, \mathbf{H}^n_{\mathbb{H}}, \mathbf{H}^2_{\mathbb{O}}} \setminus \mathbf{H}^2$. Let $\Gamma < G, \Gamma' < G'$ be uniform lattices and $j : \Gamma \cong \Gamma'$ an isomorphism. Then $j : \Gamma \cong \Gamma'$ extends to an isomorphism $G \cong G'$.

Theorem 3 (Mostow '73)

Same for any (semi)-simple G, $G' \not\simeq SL_2(\mathbb{R})$ and uniform (irreducible) lattices $\Gamma < G$, $\Gamma' < G'$.

Given:

- $\Gamma, \Gamma' \curvearrowright \mathbf{H}^n$ properly discontinuous cocompact isometric actions.
- An isomorphism of abstract groups $j : \Gamma \cong \Gamma'$

Given:

- ▶ $\Gamma, \Gamma' \curvearrowright \mathbf{H}^n$ properly discontinuous cocompact isometric actions.
- An isomorphism of abstract groups $j : \Gamma \cong \Gamma'$

Show:

9 \exists a homeomorphism $f : \partial \mathbf{H}^n \to \partial \mathbf{H}^n$ so that $f(\gamma \xi) = j(\gamma)f(\xi)$.

Given:

- ▶ $\Gamma, \Gamma' \curvearrowright \mathbf{H}^n$ properly discontinuous cocompact isometric actions.
- An isomorphism of abstract groups $j : \Gamma \cong \Gamma'$

Show:

- **9** \exists a homeomorphism $f : \partial \mathbf{H}^n \to \partial \mathbf{H}^n$ so that $f(\gamma \xi) = j(\gamma)f(\xi)$.
- **(a)** Show that f is quasi-conformal and improve to conformal (using $n \ge 3$).

Given:

- ▶ $\Gamma, \Gamma' \curvearrowright \mathbf{H}^n$ properly discontinuous cocompact isometric actions.
- An isomorphism of abstract groups $j : \Gamma \cong \Gamma'$

Show:

- **9** \exists a homeomorphism $f : \partial \mathbf{H}^n \to \partial \mathbf{H}^n$ so that $f(\gamma \xi) = j(\gamma)f(\xi)$.
- **②** Show that f is quasi-conformal and improve to conformal (using $n \ge 3$).

Quasi-isometry: a map $q: X \to Y$ s.t. $\exists K, A, C$

$$\blacktriangleright \quad K^{-1} \cdot d_X(x, x') - A \ < \ d_Y(q(x), q(x')) \ < \ K \cdot d_X(x, x') + A$$

Given:

- ▶ $\Gamma, \Gamma' \curvearrowright \mathbf{H}^n$ properly discontinuous cocompact isometric actions.
- An isomorphism of abstract groups $j : \Gamma \cong \Gamma'$

Show:

- **9** \exists a homeomorphism $f : \partial \mathbf{H}^n \to \partial \mathbf{H}^n$ so that $f(\gamma \xi) = j(\gamma)f(\xi)$.
- **(a)** Show that f is quasi-conformal and improve to conformal (using $n \ge 3$).

Quasi-isometry: a map $q: X \to Y$ s.t. $\exists K, A, C$

•
$$K^{-1} \cdot d_X(x, x') - A < d_Y(q(x), q(x')) < K \cdot d_X(x, x') + A$$

 $\forall y \in Y, \quad \exists x \in X, \quad d(q(x), y) < C.$

Given:

- $\Gamma, \Gamma' \curvearrowright \mathbf{H}^n$ properly discontinuous cocompact isometric actions.
- An isomorphism of abstract groups $j : \Gamma \cong \Gamma'$

Show:

- **3** a homeomorphism $f : \partial \mathbf{H}^n \to \partial \mathbf{H}^n$ so that $f(\gamma \xi) = j(\gamma)f(\xi)$.
- **(a)** Show that f is quasi-conformal and improve to conformal (using $n \ge 3$).

Quasi-isometry: a map $q: X \to Y$ s.t. $\exists K, A, C$

► $\forall y \in Y$, $\exists x \in X$, d(q(x), y) < C.

Step 1 of Mostow's proof

► \exists quasi-isometry $q : \mathbf{H}^n \to \operatorname{Cayley}(\Gamma, S) = \operatorname{Cayley}(\Gamma', j(S)) \to \mathbf{H}^n$

Given:

- $\Gamma, \Gamma' \curvearrowright \mathbf{H}^n$ properly discontinuous cocompact isometric actions.
- An isomorphism of abstract groups $j : \Gamma \cong \Gamma'$

Show:

- **3** a homeomorphism $f : \partial \mathbf{H}^n \to \partial \mathbf{H}^n$ so that $f(\gamma \xi) = j(\gamma)f(\xi)$.
- **(a)** Show that f is quasi-conformal and improve to conformal (using $n \ge 3$).

Quasi-isometry: a map $q: X \to Y$ s.t. $\exists K, A, C$

 $\forall y \in Y, \quad \exists x \in X, \quad d(q(x), y) < C.$

Step 1 of Mostow's proof

- ► \exists quasi-isometry $q : \mathbf{H}^n \to \operatorname{Cayley}(\Gamma, S) = \operatorname{Cayley}(\Gamma', j(S)) \to \mathbf{H}^n$
- Any quasi-isometry $q: \mathbf{H}^n \to \mathbf{H}^n$ extends to a qc-homeo $f: \partial \mathbf{H}^n \to \partial \mathbf{H}^n$

Given:

- ▶ $\Gamma, \Gamma' \curvearrowright \mathbf{H}^n$ properly discontinuous cocompact isometric actions.
- An isomorphism of abstract groups $j : \Gamma \cong \Gamma'$

Show:

- **3** a homeomorphism $f : \partial \mathbf{H}^n \to \partial \mathbf{H}^n$ so that $f(\gamma \xi) = j(\gamma)f(\xi)$.
- **(a)** Show that f is quasi-conformal and improve to conformal (using $n \ge 3$).

Quasi-isometry: a map $q: X \to Y$ s.t. $\exists K, A, C$

•
$$K^{-1} \cdot d_X(x, x') - A < d_Y(q(x), q(x')) < K \cdot d_X(x, x') + A$$

 $\forall y \in Y, \quad \exists x \in X, \quad d(q(x), y) < C.$

Step 1 of Mostow's proof

- ► \exists quasi-isometry $q : \mathbf{H}^n \to \operatorname{Cayley}(\Gamma, S) = \operatorname{Cayley}(\Gamma', j(S)) \to \mathbf{H}^n$
- Any quasi-isometry $q: \mathbf{H}^n \to \mathbf{H}^n$ extends to a qc-homeo $f: \partial \mathbf{H}^n \to \partial \mathbf{H}^n$
- f is j-equivariant

Any isom $G > \Gamma \cong \Gamma' < G' \not\simeq SL_2(\mathbb{R})$ between lattices extends to $G \cong G'$.

Any isom $G > \Gamma \cong \Gamma' < G' \not\simeq SL_2(\mathbb{R})$ between lattices extends to $G \cong G'$.

Main difficulty - boundary maps.

Any isom $G > \Gamma \cong \Gamma' < G' \not\simeq SL_2(\mathbb{R})$ between lattices extends to $G \cong G'$.

Main difficulty - boundary maps.

Prasad ('73): G ≃ SO(n,1), SU(n,1), Sp(n,1), F₄, but G ≄ SL₂(ℝ). More precisely lattice of Q-rank one.

Any isom $G > \Gamma \cong \Gamma' < G' \not\simeq SL_2(\mathbb{R})$ between lattices extends to $G \cong G'$.

Main difficulty - boundary maps.

- Prasad ('73): G ≃ SO(n,1), SU(n,1), Sp(n,1), F₄, but G ≄ SL₂(ℝ). More precisely lattice of Q-rank one.
- ▶ Margulis ('75): higher rank semi-simple G.

Any isom $G > \Gamma \cong \Gamma' < G' \not\simeq SL_2(\mathbb{R})$ between lattices extends to $G \cong G'$.

Main difficulty - boundary maps.

- Prasad ('73): G ≃ SO(n,1), SU(n,1), Sp(n,1), F₄, but G ≄ SL₂(ℝ). More precisely lattice of Q-rank one.
- Margulis ('75): higher rank semi-simple G.
 Now usually deduced from Margulis superrigidity (below).

Any isom $G > \Gamma \cong \Gamma' < G' \not\simeq SL_2(\mathbb{R})$ between lattices extends to $G \cong G'$.

Main difficulty - boundary maps.

- Prasad ('73): G ≃ SO(n,1), SU(n,1), Sp(n,1), F₄, but G ≄ SL₂(ℝ). More precisely lattice of Q-rank one.
- Margulis ('75): higher rank semi-simple G.
 Now usually deduced from Margulis superrigidity (below).

Problem (Mostow-Margulis rigidity with locally compact targets)

G - semi-simple Lie group, *H* - general locally compact. If $G > \Gamma \cong \Gamma' < H$, what is *H* ?

Any isom $G > \Gamma \cong \Gamma' < G' \not\simeq SL_2(\mathbb{R})$ between lattices extends to $G \cong G'$.

Main difficulty - boundary maps.

- ▶ Prasad ('73): G ≃ SO(n, 1), SU(n, 1), Sp(n, 1), F₄, but G ≄ SL₂(ℝ). More precisely lattice of Q-rank one.
- Margulis ('75): higher rank semi-simple G.
 Now usually deduced from Margulis superrigidity (below).

Problem (Mostow-Margulis rigidity with locally compact targets)

G - semi-simple Lie group, *H* - general locally compact. If $G > \Gamma \cong \Gamma' < H$, what is *H* ?

- Furman ('01): simple $rk(G) \ge 2$, or $G = Isom(\mathbf{H}_{K}^{n})$ and H/Γ' compact.
- ▶ Bader-Furman-Sauer ('12): all cases (including SL₂(ℝ)) and more...

Theorem (Margulis \sim 74).

G a simple Lie, $rk(G) \ge 2$, $\Gamma < G$ lattice $\rho : \Gamma \to H$ a homomorphism into a simple *H*

Theorem (Margulis \sim 74).

G a simple Lie, $\operatorname{rk}(G) \geq 2$, $\Gamma < G$ lattice $\rho : \Gamma \to H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded.

Theorem (Margulis \sim 74).

G a simple Lie, $\operatorname{rk}(G) \geq 2$, $\Gamma < G$ lattice $\rho : \Gamma \to H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded. Then ρ extends to isomorphism $\overline{\rho} : G \cong H$.

Theorem (Margulis \sim 74).

G a simple Lie, $\operatorname{rk}(G) \geq 2$, $\Gamma < G$ lattice $\rho : \Gamma \to H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded. Then ρ extends to isomorphism $\overline{\rho} : G \cong H$.

Margulis' super-rigidity

Theorem (Margulis \sim 74).

G a simple Lie, $rk(G) \ge 2$, $\Gamma < G$ lattice $\rho : \Gamma \to H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded. Then ρ extends to isomorphism $\overline{\rho} : G \cong H$.

Margulis' Superrigidity Theorem (\sim 74)

Let $G = \prod G_i$ semi-simple, $\sum \operatorname{rk}(G_i) \ge 2$; H - simple, center-free. $\Gamma < G$ an irreducible lattice, and $\rho : \Gamma \to H$, with Z-dense unbdd image. Then $\rho : \Gamma \cong \Gamma'$ extends to an epimorphism $G \to H$.

Margulis' super-rigidity

Theorem (Margulis \sim 74).

G a simple Lie, $\operatorname{rk}(G) \geq 2$, $\Gamma < G$ lattice $\rho : \Gamma \to H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded. Then ρ extends to isomorphism $\overline{\rho} : G \cong H$.

Margulis' Superrigidity Theorem (\sim 74)

Let $G = \prod G_i$ semi-simple, $\sum \operatorname{rk}(G_i) \ge 2$; H - simple, center-free. $\Gamma < G$ an irreducible lattice, and $\rho : \Gamma \to H$, with Z-dense unbdd image. Then $\rho : \Gamma \cong \Gamma'$ extends to an epimorphism $G \to H$.

Margulis' Arithmeticity Theorem ('75)

All (irreducible) lattices in higher rank (semi)-simple Lie groups are arithmetic.

Margulis' super-rigidity

Theorem (Margulis \sim 74).

G a simple Lie, $\operatorname{rk}(G) \geq 2$, $\Gamma < G$ lattice $\rho : \Gamma \to H$ a homomorphism into a simple H $\rho(\Gamma)$ Zariski-dense, unbounded. Then ρ extends to isomorphism $\overline{\rho} : G \cong H$.

Margulis' Superrigidity Theorem (\sim 74)

Let $G = \prod G_i$ semi-simple, $\sum \operatorname{rk}(G_i) \ge 2$; H - simple, center-free. $\Gamma < G$ an irreducible lattice, and $\rho : \Gamma \to H$, with Z-dense unbdd image. Then $\rho : \Gamma \cong \Gamma'$ extends to an epimorphism $G \to H$.

Margulis' Arithmeticity Theorem ('75)

All (irreducible) lattices in higher rank (semi)-simple Lie groups are arithmetic.

Arith lattice ?

Something like $SL_n(\mathbb{Z}) < SL_n(\mathbb{R})$

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

• *L* is an algebraic subgroup of $G \times H$.

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

• *L* is an algebraic subgroup of $G \times H$.

• By Borel's density theorem $\overline{\Gamma}^Z = G$.

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\overline{\Gamma}^Z = G$.

Lemma/Exercise

Given:

subgroup $L < G \times H$ $pr_G(L) = G$, $pr_H(L) = H$ H - simple group.

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\overline{\Gamma}^Z = G$.

Lemma/Exercise

Given:

subgroup $L < G \times H$ $pr_G(L) = G$, $pr_H(L) = H$ H - simple group.

Prove:

```
\exists epimorphism \rho : G \to H
so that L = (id \times \rho)(G),
```

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\overline{\Gamma}^Z = G$.

Lemma/Exercise

Given:

subgroup $L < G \times H$ $pr_G(L) = G$, $pr_H(L) = H$ H - simple group.

Prove:

```
\exists \text{ epimorphism } \rho : G \to H
so that L = (\text{id} \times \rho)(G),
unless L = G \times H.
```

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\overline{\Gamma}^Z = G$.

Lemma/Exercise

Given:

subgroup $L < G \times H$ $pr_G(L) = G$, $pr_H(L) = H$ H - simple group.

Prove:

```
\exists \text{ epimorphism } \rho : G \to H
so that L = (\text{id} \times \rho)(G),
unless L = G \times H.
```

Problem: show $L \neq G \times H$.

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in G \times H \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\overline{\Gamma}^Z = G$.

Lemma/Exercise

Given:	Prove:
subgroup $L < G imes H$	\exists epimorphism $\rho: \mathcal{G} \to \mathcal{H}$
$pr_G(L) = G$, $pr_H(L) = H$	so that $L = (id imes ho)(G)$,
H - simple group.	unless $L = G \times H$.

Problem: show $L \neq G \times H$.

Solution: impose one non-trivial algebraic condition on $(id \times \rho)(\Gamma) < G \times H$.

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in \mathcal{G} \times \mathcal{H} \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\overline{\Gamma}^Z = G$.

Lemma/Exercise

Given:	Prove:
subgroup $L < G imes H$	\exists epimorphism $\rho: \mathcal{G} \to \mathcal{H}$
$pr_G(L) = G$, $pr_H(L) = H$	so that $L = (id imes ho)(G)$,
H - simple group.	unless $L = G \times H$.

Problem: show $L \neq G \times H$.

Solution: impose one non-trivial algebraic condition on $(id \times \rho)(\Gamma) < G \times H$.

Actual solution (Margulis)

• Construct boundary map $f: G/P \to H/Q$ so that $f(\gamma \xi) = \rho(\gamma)f(\xi)$

Take $L < G \times H$ be the Z-closure of the graph of ρ

$$\Lambda_{\rho} = \{(\gamma, \rho(\gamma)) \in \mathcal{G} \times \mathcal{H} \mid \gamma \in \Gamma\}, \qquad L = \overline{\Lambda}^{Z}$$

- L is an algebraic subgroup of $G \times H$.
- By Borel's density theorem $\overline{\Gamma}^Z = G$.

Lemma/Exercise

Given:	Prove:
subgroup $L < G imes H$	\exists epimorphism $\rho: \mathcal{G} \to \mathcal{H}$
$pr_G(L) = G$, $pr_H(L) = H$	so that $L = (id imes ho)(G)$,
H - simple group.	unless $L = G \times H$.

Problem: show $L \neq G \times H$.

Solution: impose one non-trivial algebraic condition on $(id \times \rho)(\Gamma) < G \times H$.

Actual solution (Margulis)

- Construct boundary map $f: G/P \to H/Q$ so that $f(\gamma \xi) = \rho(\gamma)f(\xi)$
- **2** Prove that f is a rational map.

Theorem (1 - Boundary maps)

 $\Gamma < G$ lattice, G' - simple, $\rho : \Gamma \to G'$ hom with Z-dense unbounded image. Then \exists a measurable Γ -map $f : G/P \to G'/Q'$ with $Q' \lneq G$ parabolic.

Theorem (1 - Boundary maps)

 $\Gamma < G$ lattice, G' - simple, $\rho : \Gamma \to G'$ hom with Z-dense unbounded image. Then \exists a measurable Γ -map $f : G/P \to G'/Q'$ with $Q' \lneq G$ parabolic.

Proofs:

Theorem (1 - Boundary maps)

 $\Gamma < G$ lattice, G' - simple, $\rho : \Gamma \to G'$ hom with Z-dense unbounded image. Then \exists a measurable Γ -map $f : G/P \to G'/Q'$ with $Q' \lneq G$ parabolic.

Proofs:

- Margulis, using Oseledets theorem
- Zimmer, using amenable actions
- Furstenberg, using random walks

Remarks on the proof

Theorem (1 - Boundary maps)

 $\Gamma < G$ lattice, G' - simple, $\rho : \Gamma \to G'$ hom with Z-dense unbounded image. Then \exists a measurable Γ -map $f : G/P \to G'/Q'$ with $Q' \lneq G$ parabolic.

Proofs:

- Margulis, using Oseledets theorem
- Zimmer, using amenable actions
- Furstenberg, using random walks

Remarks on the proof

Theorem (1 - Boundary maps)

 $\Gamma < G$ lattice, G' - simple, $\rho : \Gamma \to G'$ hom with Z-dense unbounded image. Then \exists a measurable Γ -map $f : G/P \to G'/Q'$ with $Q' \lneq G$ parabolic.

Proofs:

- Margulis, using Oseledets theorem
- Zimmer, using amenable actions
- Furstenberg, using random walks

Theorem (2 - Regularity, uses $rk(G) \ge 2$ and $\Gamma < G$ irr lattice)

A measurable Γ -equivariant map $f : G/P \to G'/Q'$ is a.e. equal to a rational map.

Remarks on the proof

Theorem (1 - Boundary maps)

 $\Gamma < G$ lattice, G' - simple, $\rho : \Gamma \to G'$ hom with Z-dense unbounded image. Then \exists a measurable Γ -map $f : G/P \to G'/Q'$ with $Q' \lneq G$ parabolic.

Proofs:

- Margulis, using Oseledets theorem
- Zimmer, using amenable actions
- Furstenberg, using random walks

Theorem (2 - Regularity, uses $rk(G) \ge 2$ and $\Gamma < G$ irr lattice)

A measurable Γ -equivariant map $f : G/P \to G'/Q'$ is a.e. equal to a rational map.

Theorem 1 can be strengthened to

- μ_0 is Dirac, Q' = P' minimal parabolic.
- Γ -equiv. msbl $f : G/P \to G'/P'$ is unique.

Special case of Margulis' superrigidity

 $\Gamma < G = \prod G_i$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \geq 2$.

 $\rho: \Gamma \to H$ a homomorphism into a simple H with rk(H) = 1.

Special case of Margulis' superrigidity

 $\Gamma < G = \prod G_i$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \geq 2$.

 $\rho: \Gamma \to H$ a homomorphism into a simple H with rk(H) = 1.

• Either $\rho(\Gamma)$ is elementary ($\implies \rho(\Gamma)$ precpct)

Special case of Margulis' superrigidity

 $\Gamma < G = \prod G_i$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \geq 2$.

 $\rho: \Gamma \to H$ a homomorphism into a simple H with rk(H) = 1.

- Either $\rho(\Gamma)$ is elementary ($\implies \rho(\Gamma)$ precpct)
- Or $\exists i$ with $G_i \cong H$ and $\rho : \Gamma \xrightarrow{\subset} G \xrightarrow{\rho r_i} G_i \cong H$.

Special case of Margulis' superrigidity

 $\Gamma < G = \prod G_i$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \geq 2$.

 $\rho: \Gamma \to H$ a homomorphism into a simple H with rk(H) = 1.

- Either $\rho(\Gamma)$ is elementary ($\implies \rho(\Gamma)$ precpct)
- Or $\exists i$ with $G_i \cong H$ and $\rho : \Gamma \xrightarrow{\subset} G \xrightarrow{\rho r_i} G_i \cong H$.

Theorem (Margulis '81)

Let $\Gamma < G = \prod G_i$ be an irr lattice in a real semi-simple Lie group, $rk(G) \ge 2$. Then Γ is not an amalgam $A *_C B$ on an HNN extension.

Special case of Margulis' superrigidity

 $\Gamma < G = \prod G_i$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \geq 2$.

 $\rho: \Gamma \to H$ a homomorphism into a simple H with rk(H) = 1.

- Either $\rho(\Gamma)$ is elementary $(\implies \rho(\Gamma) \text{ precpct})$
- Or $\exists i$ with $G_i \cong H$ and $\rho : \Gamma \xrightarrow{\subset} G \xrightarrow{pr_i} G_i \cong H$.

Theorem (Margulis '81)

Let $\Gamma < G = \prod G_i$ be an irr lattice in a real semi-simple Lie group, $rk(G) \ge 2$. Then Γ is not an amalgam $A *_C B$ on an HNN extension.

If Γ is an S-arithmetic lattice, it has only "obvious" amalgam decompositions.

Special case of Margulis' superrigidity

 $\Gamma < G = \prod G_i$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \geq 2$.

 $\rho: \Gamma \to H$ a homomorphism into a simple H with rk(H) = 1.

- Either $\rho(\Gamma)$ is elementary ($\implies \rho(\Gamma)$ precpct)
- Or $\exists i$ with $G_i \cong H$ and $\rho : \Gamma \xrightarrow{\subset} G \xrightarrow{pr_i} G_i \cong H$.

Theorem (Margulis '81)

Let $\Gamma < G = \prod G_i$ be an irr lattice in a real semi-simple Lie group, $rk(G) \ge 2$. Then Γ is not an amalgam $A *_C B$ on an HNN extension.

If Γ is an S-arithmetic lattice, it has only "obvious" amalgam decompositions.

Proof by superrigidity for $\Gamma \rightarrow Aut(Tree)$.

Special case of Margulis' superrigidity

 $\Gamma < G = \prod G_i$ irr lattice in a semi-simple Lie group, $\operatorname{rk}(G) \ge 2$.

 $\rho: \Gamma \to H$ a homomorphism into a simple H with rk(H) = 1.

- Either $\rho(\Gamma)$ is elementary ($\implies \rho(\Gamma)$ precpct)
- Or $\exists i$ with $G_i \cong H$ and $\rho : \Gamma \xrightarrow{\subset} G \xrightarrow{pr_i} G_i \cong H$.

Theorem (Margulis '81)

Let $\Gamma < G = \prod G_i$ be an irr lattice in a real semi-simple Lie group, $rk(G) \ge 2$. Then Γ is not an amalgam $A *_C B$ on an HNN extension.

If Γ is an S-arithmetic lattice, it has only "obvious" amalgam decompositions.

Proof by superrigidity for $\Gamma \rightarrow Aut(Tree)$.

Further superrigidity phenomena (long list of names...)

▶ Other *H*: CAT(-1), Gromov-hyp, Homeo(S^1), MCG(Σ), C_{reg} , S,...

• Other G: products $G = G_1 \times \cdots \times G_n$, $n \ge 2$, of general lcsc grps, \tilde{A}_2 groups

 $G \curvearrowright (X,\mu)$ probability measure preserving actions of a lcsc group.

 $G \curvearrowright (X, \mu)$ probability measure preserving actions of a lcsc group.

• cocycle $c : G \times X \to H$ to a Polish group H is a measurable map

 $c(g_1g_2, x) = c(g_1, g_2.x) \cdot c(g_2, x)$ $(g_1, g_2 \in G, x \in X)$

 ${\cal G} \curvearrowright ({\cal X},\mu)$ probability measure preserving actions of a lcsc group.

• cocycle $c: G \times X \to H$ to a Polish group H is a measurable map

$$c(g_1g_2, x) = c(g_1, g_2, x) \cdot c(g_2, x)$$
 $(g_1, g_2 \in G, x \in X)$

• conjugation: given $c : G \times X \to H$ and a map $f : X \to H$

$$c^{f}(g,x) := f(g.x)^{-1}c(g,x)f(x)$$

 ${\cal G} \curvearrowright ({\cal X},\mu)$ probability measure preserving actions of a lcsc group.

• cocycle $c: G \times X \to H$ to a Polish group H is a measurable map

$$c(g_1g_2, x) = c(g_1, g_2, x) \cdot c(g_2, x)$$
 $(g_1, g_2 \in G, x \in X)$

• conjugation: given $c : G \times X \to H$ and a map $f : X \to H$

$$c^{f}(g,x) := f(g.x)^{-1}c(g,x)f(x)$$

► straight cocycles $c(g, x) = f(g.x)^{-1}\pi(g) f(x)$ for some π : Hom(G, H).

 ${\cal G} \curvearrowright (X,\mu)$ probability measure preserving actions of a lcsc group.

• cocycle $c: G \times X \to H$ to a Polish group H is a measurable map

$$c(g_1g_2, x) = c(g_1, g_2, x) \cdot c(g_2, x)$$
 $(g_1, g_2 \in G, x \in X)$

• conjugation: given $c : G \times X \to H$ and a map $f : X \to H$

$$c^{f}(g,x) := f(g.x)^{-1}c(g,x)f(x)$$

► straight cocycles $c(g, x) = f(g.x)^{-1}\pi(g) f(x)$ for some π : Hom(G, H).

Cohomology of $G \curvearrowright X$ with values in H $Z^{1}(G \curvearrowright X, H) = \{ \text{cocycles } c : G \times X \to H \}$ $H^{1}(G \curvearrowright X, H) = Z^{1}(G \curvearrowright X, H)/c \sim c^{f}.$

 ${\cal G} \curvearrowright (X,\mu)$ probability measure preserving actions of a lcsc group.

• cocycle $c: G \times X \to H$ to a Polish group H is a measurable map

$$c(g_1g_2, x) = c(g_1, g_2, x) \cdot c(g_2, x)$$
 $(g_1, g_2 \in G, x \in X)$

• conjugation: given $c : G \times X \to H$ and a map $f : X \to H$

$$c^{f}(g,x) := f(g.x)^{-1}c(g,x)f(x)$$

► straight cocycles $c(g, x) = f(g.x)^{-1}\pi(g) f(x)$ for some π : Hom(G, H).

Cohomology of $G \curvearrowright X$ with values in H $Z^{1}(G \curvearrowright X, H) = \{ cocycles \ c : G \times X \to H \}$ $H^{1}(G \curvearrowright X, H) = Z^{1}(G \curvearrowright X, H)/c \sim c^{f}.$

* Everything is measurable, taken up to null sets !

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma < G$ and any H

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma < G$ and any H

Cocycles as representations of virtual groups

Proposition/observation. For a lattice $\Gamma < G$ and any H

• $\rho: \Gamma \to H$ up to *H*-conj \leftrightarrow cocycle $c: G \times G/\Gamma \to H$ up to conj • ρ extends to $\bar{\rho}: G \to H \leftrightarrow c(g, x) \sim \rho(g)$

Proposition/observation. For a lattice $\Gamma < G$ and any H

Proposition/observation. For a lattice $\Gamma < G$ and any H

Proof of (1). Choose a Borel cross-section $\sigma : G/\Gamma \to G$ of $g \mapsto g\Gamma$. • $\sigma(x)\Gamma\sigma(x)^{-1} = \operatorname{Stab}_{G}(x)$ for $x \in G/\Gamma$

Proposition/observation. For a lattice $\Gamma < G$ and any H

•
$$\sigma(x)\Gamma\sigma(x)^{-1} = \operatorname{Stab}_{G}(x)$$
 for $x \in G/\Gamma$

•
$$c(g,x) = \sigma(g.x)^{-1}g \sigma(x) \in \Gamma$$
.

Proposition/observation. For a lattice $\Gamma < G$ and any H

- $\sigma(x)\Gamma\sigma(x)^{-1} = \operatorname{Stab}_{G}(x)$ for $x \in G/\Gamma$
- ► $c(g,x) = \sigma(g.x)^{-1}g \sigma(x) \in \Gamma$. Note $c : G \times G/\Gamma \to \Gamma$ is a cocycle.

Proposition/observation. For a lattice $\Gamma < G$ and any H

Proof of (1). Choose a Borel cross-section $\sigma : G/\Gamma \to G$ of $g \mapsto g\Gamma$.

- $\sigma(x)\Gamma\sigma(x)^{-1} = \operatorname{Stab}_{G}(x)$ for $x \in G/\Gamma$
- ► $c(g,x) = \sigma(g.x)^{-1}g \sigma(x) \in \Gamma$. Note $c : G \times G/\Gamma \to \Gamma$ is a cocycle.

 $\blacktriangleright \ \rho: \Gamma \to H \text{ a hom} \qquad \rightsquigarrow \qquad \rho \circ c: G \times G / \Gamma \to \Gamma \to H \text{ is a cocycle}$

Proposition/observation. For a lattice $\Gamma < G$ and any H

- $\sigma(x)\Gamma\sigma(x)^{-1} = \operatorname{Stab}_{G}(x)$ for $x \in G/\Gamma$
- ► $c(g,x) = \sigma(g.x)^{-1}g \sigma(x) \in \Gamma$. Note $c : G \times G/\Gamma \to \Gamma$ is a cocycle.
- *ρ*: Γ → *H* a hom
 φ ∘ *c* : *G* × *G*/Γ → Γ → *H* is a cocycle
 α : *G* × *G*/Γ → *H φ_x*(*γ*) = *α*(*σ*(*x*)*γσ*(*x*)⁻¹, *x*) is a hom.

Zimmer's cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer '81)

Let G (semi)-simple, H be simple Lie groups, $\operatorname{rk}(G) \geq 2$ $G \curvearrowright (X, \mu)$ (irred) ergodic p.m.p. $c : G \times X \to H$ cocycle where c is Zariski-dense, not compact. Then \exists epimor $\pi : G \to H$ and measurable map $f : X \to H$ $c(g, x) = f(g.x)^{-1}\pi(g) f(x).$

Zimmer's cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer '81)

Let G (semi)-simple, H be simple Lie groups, $\operatorname{rk}(G) \geq 2$ $G \curvearrowright (X, \mu)$ (irred) ergodic p.m.p. $c : G \times X \to H$ cocycle where c is Zariski-dense, not compact. Then \exists epimor $\pi : G \to H$ and measurable map $f : X \to H$ $c(g, x) = f(g.x)^{-1}\pi(g) f(x).$

Remark

 $\mathsf{\Gamma}\text{-cocycles are also superrigid, by } \mathsf{\Gamma} \curvearrowright X \quad \rightsquigarrow \quad \mathcal{G} \curvearrowright (\mathcal{G} \times_{\mathsf{\Gamma}} X).$

Zimmer's cocycle superrigidity

Cocycle Superrigidity Theorem (Zimmer '81)

Let G (semi)-simple, H be simple Lie groups, $rk(G) \ge 2$ $G \frown (X, \mu)$ (irred) ergodic p.m.p. $c : G \times X \to H$ cocycle where c is Zariski-dense, not compact. Then \exists epimor $\pi : G \to H$ and measurable map $f : X \to H$ $c(g, x) = f(g.x)^{-1}\pi(g) f(x).$

Remark

 $\mathsf{\Gamma}\text{-cocycles are also superrigid, by } \mathsf{\Gamma} \curvearrowright X \quad \rightsquigarrow \quad \mathcal{G} \curvearrowright (\mathcal{G} \times_{\mathsf{\Gamma}} X).$

Strategy of the proof

- ▶ Boundary map: $f : X \times G/P \to H/Q$ s.t. $f_{g,x}(g\xi) = c(g,x)f_x(\xi)$.
- Ergodicity vs. smoothness of algebraic actions
- Regularity as in Margulis' proof.

Cocycles in nature

(stable) Orbit Equivalence

 $\Gamma \curvearrowright (X,\mu)$ and $\Lambda \curvearrowright (Y,\nu)$ freely, and $T: X \cong Y$ with $T(\Gamma.x) = \Lambda.T(x)$ Then $T(\gamma.x) = c(\gamma,x).T(x)$ defines a cocycle $c: \Gamma \times X \to \Lambda$.

Cocycles in nature

(stable) Orbit Equivalence

 $\Gamma \curvearrowright (X,\mu)$ and $\Lambda \curvearrowright (Y,\nu)$ freely, and $T: X \cong Y$ with $T(\Gamma.x) = \Lambda.T(x)$ Then $T(\gamma.x) = c(\gamma,x).T(x)$ defines a cocycle $c: \Gamma \times X \to \Lambda$.

Volume preserving actions on manifolds

 $\Gamma \to \text{Diff}_+(M^n, \text{vol})$ defines the **derivative cocycle** $c : \Gamma \times (M, \text{vol}) \to \text{SL}_n(\mathbb{R}).$

 $\Gamma \curvearrowright (X,\mu)$ and $\Lambda \curvearrowright (Y,\nu)$ freely, and $T: X \cong Y$ with $T(\Gamma.x) = \Lambda.T(x)$ Then $T(\gamma.x) = c(\gamma,x).T(x)$ defines a cocycle $c: \Gamma \times X \to \Lambda$.

Volume preserving actions on manifolds

 $\Gamma \to \text{Diff}_+(M^n, \text{vol})$ defines the **derivative cocycle** $c : \Gamma \times (M, \text{vol}) \to \text{SL}_n(\mathbb{R})$. **Zimmer's program**: classify volume preserving actions of higher rank Γ on mflds

 $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ freely, and $T : X \cong Y$ with $T(\Gamma.x) = \Lambda.T(x)$ Then $T(\gamma.x) = c(\gamma, x).T(x)$ defines a cocycle $c : \Gamma \times X \to \Lambda$.

Volume preserving actions on manifolds

 $\Gamma \to \text{Diff}_+(M^n, \text{vol})$ defines the **derivative cocycle** $c : \Gamma \times (M, \text{vol}) \to \text{SL}_n(\mathbb{R})$. **Zimmer's program**: classify volume preserving actions of higher rank Γ on mflds

Other geometric cocycles

G connected and simply connected $\curvearrowright M$ \rightsquigarrow a cocycle $c: G \times M \rightarrow \pi_1(M)$.

 $\Gamma \curvearrowright (X,\mu)$ and $\Lambda \curvearrowright (Y,\nu)$ freely, and $T: X \cong Y$ with $T(\Gamma.x) = \Lambda.T(x)$ Then $T(\gamma.x) = c(\gamma,x).T(x)$ defines a cocycle $c: \Gamma \times X \to \Lambda$.

Volume preserving actions on manifolds

 $\Gamma \to \text{Diff}_+(M^n, \text{vol})$ defines the **derivative cocycle** $c : \Gamma \times (M, \text{vol}) \to \text{SL}_n(\mathbb{R})$. **Zimmer's program**: classify volume preserving actions of higher rank Γ on mflds

Other geometric cocycles

G connected and simply connected $\curvearrowright M \longrightarrow$ a cocycle $c : G \times M \rightarrow \pi_1(M)$. Gromov's **rigid geometric structures** \rightsquigarrow a linear rep $\pi_1(M) \rightarrow H$.

 $\Gamma \curvearrowright (X,\mu)$ and $\Lambda \curvearrowright (Y,\nu)$ freely, and $T: X \cong Y$ with $T(\Gamma.x) = \Lambda.T(x)$ Then $T(\gamma.x) = c(\gamma,x).T(x)$ defines a cocycle $c: \Gamma \times X \to \Lambda$.

Volume preserving actions on manifolds

 $\Gamma \to \text{Diff}_+(M^n, \text{vol})$ defines the **derivative cocycle** $c : \Gamma \times (M, \text{vol}) \to \text{SL}_n(\mathbb{R})$. **Zimmer's program**: classify volume preserving actions of higher rank Γ on mflds

Other geometric cocycles

G connected and simply connected $\curvearrowright M \longrightarrow$ a cocycle $c : G \times M \rightarrow \pi_1(M)$. Gromov's **rigid geometric structures** \rightsquigarrow a linear rep $\pi_1(M) \rightarrow H$.

Popa's cocycle superrigidity

Invest in the action $\Gamma \curvearrowright (X, \mu)$ rather than in Γ s and Gs (program in flux - follow the arXiv closely...)