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Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup
Γ < G is a lattice if G/Γ is compact,

or Haar(G/Γ) < +∞.

Examples of lattices:

Γ = Z~v1 + · · ·+ Z~vd in G = Rd

Γ = π1(Sg ) in G = PSL2(R)

Γ = π1(M) dim M > 2 in G = Isom(M̃)

Γ in a semi-simple G with rk(G ) ≥ 2

Γ in G is very flexible

Teichmuller, dim = 6g − 6

Mostow Rigidity

Margulis Superrigidity

where

Sg - closed surface of genus g ≥ 2

M - locally symmetric irreducible w/o compact and Euclidean factors
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Margulis’ Higher rank Superrigidity

Theorem (Margulis, 1974)

G, H (semi)simple Lie groups, rk(G ) ≥ 2, H adjoint, Γ < G an irred lattice,
ρ : Γ→ H a homomorphism with unbounded Zariski dense image ρ(Γ).

Then ρ extends to a homomorphism G → H.

(Here G =
∏n

i=1 Gi (ki ), Gi are ki -conn. ki -simple, rk(G ) =
∑

rkki (Gi ) ≥ 2)

Special case: rk(H) = 1

If ρ(Γ) is not precompact, and does not fix a point or a pair in ∂X , X = H/K
Then G =

∏n
j=1 Gj has rank one factors, ∃ Gi ' H, and ρ extends to:

Γ < G =
n∏

j=1

Gj
pri−→ Gi

'−→ H

Cocycle Superrigidity, Zimmer 1981

G y (Ω, µ) erg (irred), c : G × Ω→ H..., =⇒ c(g , x) = f (gx)ρ(g)f (x)−1.
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Generalizations of the Special Case: rk(H) = 1

1 H is a D-group, Furstenberg (Bull.AMS 1967)

2 H < Isom(X ), X – general proper CAT(-1) or δ-hyperbolic

Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)

3 H = Homeo(S1)

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999),
Witte-Zimmer (Geom.Ded. 2001)

4 H = MappingClassGroup(Sg )

Kaimanovich-Masur (Inven. 1996), Bestvina-Fujiwara (Geom.Top. 2002)

5 G = G1 × · · · × Gn – general product, H – hyperbolic-like,

Monod-Shalom (JDG 2004), Mineyev-Monod-Shalom (Top. 2004),
Hjorth-Kechris (Mem.AMS 2005).

Cocycle versions
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A unified approach, using “Weyl groups”

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

1 Representations ρ : Γ→ H, where Γ < G is (irred) lattice

2 Cocycle c : G y Ω→ H, where G y (Ω, µ) ergodic (irred)

3 ρ : Λ→ H, where Λ < CommenG (Γ) dense in a general G

“Higher rank” groups G

k-simple G(k), rkk(G) ≥ 2

G = G1 × · · · × Gn, n ≥ 2

Gi arbitrary groups

Exotic Ã2 groups

...?

“Thin” target groups H

Convergence groups

Homeo(S1)

Isom(X ) where X non-propera

δ-hyperbolic space

aDuchesne-Monod, Masur-Minsky

H is a convergence grp, if ∃ H → Homeo(M) with H y M3 \∆ is proper
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3 ρ : Λ→ H, where Λ < CommenG (Γ) dense in a general G

“Higher rank” groups G

k-simple G(k), rkk(G) ≥ 2

G = G1 × · · · × Gn, n ≥ 2

Gi arbitrary groups

Exotic Ã2 groups

...?

“Thin” target groups H

Convergence groups

Homeo(S1)

Isom(X ) where X non-propera

δ-hyperbolic space

aDuchesne-Monod, Masur-Minsky

H is a convergence grp, if ∃ H → Homeo(M) with H y M3 \∆ is proper
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Reconstructing PGL3 from an action of S3 on B × B

Flag variety B = G/P

B = {(`,Π) | ` ⊂ Π ⊂ V = k3, dim ` = 1, dim Π = 2}

B × B is “the same as” {(`1, `2, `3) | in general position} = G/A:

((`1,Π1), (`2,Π2)) 7→ (`1,Π1 ∩ Π2, `2)

(`1, `2, `3) 7→ ((`1, `1 ⊕ `3), (`2, `2 ⊕ `3))

W = Aut G (B × B) is S3 y {(`1, `2, `3)}

Fundamental Theorem of Projective Geometry

{f ∈ Aut (B) | f × f commutes with W y B × B} = PGL3(k)+Aut msr (k)

Next: consider quotients f : B → B ′ instead of automorphisms of B ...
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A Galois Correspondence

Fix a space B and a group W y B × B. Assume the flip w0 ∈W .

{Quotients B
f−→C} � {Subgroups V < W }

Given f : B → C set Wf := StabW (B × B
pr1−→B

f−→C )

Given V < W set FV := max{f | V ≤Wf }

Galois Correspondence

f ≤ f ′ =⇒ Wf ≥Wf ′ FV ≤ FV ′ ⇐= V ≥ V ′ f ≤ Fv ⇐⇒ Wf ≥ V

Defines closure operations: f ≤ f̄ := FWf
V ≤ V̄ := WFV

.

Closed objects for B = {(`, Π)} and W = S3

B
Id−→B B

pr`−→Gr(1) B
PrΠ−→Gr(2) B → {∗} i.e. G/P → G/Q

{e} {e, (2, 3)} {e, (1, 3)} S3 i.e. WQ < W
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Boundaries and generalized Weyl groups

G -boundary (Burger-Monod)

For a lcsc G a measure space (B, ν) is G -boundary if

G y (B, ν) is amenable

G y (B × B, ν × ν) is ergodic with unitary coefficients

Generalized Weyl group

WG ,B = Aut G (B × B)

Examples

G amenable, can take WG ,{∗} = {e}

G hyperbolic-like/convergence W = {e,w0} ∼= Z/2Z

G -semi-simple, B = G/P then WG ,B = NG(A)/ZG(A) classical

(e.g. G = SLn(k) gives W = Sn)

G =
∏n Gi with non-amenble factors, W contains (Z/2Z)n
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Proof for G = SL3(k) and convergence H y M

Want to show:

Γ < G = SL3(k) a lattice, ρ : Γ→ H, where H y M convergence action
ρ(Γ) is not compact and non-elementary =⇒ a contradiction.

Proof.

1 G y B amenable =⇒ ∃ a Γ-equivariant f : B → Prob(M)

2 H y M3 \∆ and ρ(Γ) non-compact, non elementary implies

(a) Γ-map f : B → Prob(M) is unique, takes values in M ⊂ Prob(M)

(b) {Γ−maps B × B → M} = {B × B
pri−→B

f−→M | i = 1, 2}
3 Hence [S3 : Wf ] = 2

4 W = S3 has no closed subgroups of index 2. Contradiction !

For G = G1 × · · · × Gn take B = B1 × · · · × Bn and deduce:

f factors through B−→Bi
f̄−→M for some i ∈ {1, . . . , n}
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2 H y M3 \∆ and ρ(Γ) non-compact, non elementary implies

(a) Γ-map f : B → Prob(M) is unique, takes values in M ⊂ Prob(M)

(b) {Γ−maps B × B → M} = {B × B
pri−→B

f−→M | i = 1, 2}
3 Hence [S3 : Wf ] = 2

4 W = S3 has no closed subgroups of index 2. Contradiction !

For G = G1 × · · · × Gn take B = B1 × · · · × Bn and deduce:

f factors through B−→Bi
f̄−→M for some i ∈ {1, . . . , n}
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The End

Thank you!
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