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Definition

Let G be a locally compact second countable group. A discrete subgroup
I < G is a lattice if G/I is compact,
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Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup
[ < G is a lattice if G/I' is compact, or Haar(G/T') < +o0.

Examples of lattices:

e =Zv+---+2ZvV; in G=R?

o =m(S;) in G=DPSLy(R)

o I=m(M) dimM >2 in G = Isom(M)
@ [ in a semi-simple G with rk(G) > 2

I in G is very flexible
Teichmuller, dim = 6g — 6
Mostow Rigidity

Margulis Superrigidity

where

Sg - closed surface of genus g > 2

M - locally symmetric irreducible w/o compact and Euclidean factors
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Margulis' Higher rank Superrigidity
Theorem (Margulis, 1974)

G, H (semi)simple Lie groups, tk(G) > 2, H adjoint, I < G an irred lattice,
p: T — H a homomorphism with unbounded Zariski dense image p(I).
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Theorem (Margulis, 1974)

G, H (semi)simple Lie groups, tk(G) > 2, H adjoint, I < G an irred lattice,
p: T — H a homomorphism with unbounded Zariski dense image p(I).
Then p extends to a homomorphism G — H.

(Here G =T]"_, Gi(ki), G; are ki-conn. k;-simple, tk(G) = > rky,(G;) > 2)

Special case: tk(H) =1

If p(T") is not precompact, and does not fix a point or a pair in 90X, X = H/K
Then G = Hj:l G; has rank one factors, 3 G; ~ H, and p extends to:

r<G:HGj&>G,.i>H
j=1
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Margulis' Higher rank Superrigidity
Theorem (Margulis, 1974)

G, H (semi)simple Lie groups, tk(G) > 2, H adjoint, I < G an irred lattice,
p: T — H a homomorphism with unbounded Zariski dense image p(I).
Then p extends to a homomorphism G — H.

(Here G =T]"_, Gi(ki), G; are ki-conn. k;-simple, tk(G) = > rky,(G;) > 2)

Special case: tk(H) =1

If p(T") is not precompact, and does not fix a point or a pair in 90X, X = H/K
Then G = HJ'.’:l G; has rank one factors, 3 G; ~ H, and p extends to:

r<G:HGjﬁ>G,.i>H
j=1

Cocycle Superrigidity, Zimmer 1981
G~ (Q,p) erg (irred), c: G xQ— H..., = c(g,x) = f(gx)p(g)f(x)~L.
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@ H < Isom(X), X — general proper CAT(-1) or é-hyperbolic
Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
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Generalizations of the Special Case: rk(H) =1

© H is a D-group, Furstenberg (Bull. AMS 1967)

@ H < Isom(X), X — general proper CAT(-1) or d-hyperbolic
Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)

© H = Homeo(S?!)

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999),
Witte-Zimmer (Geom.Ded. 2001)

@ H = MappingClassGroup(Sg)
Kaimanovich-Masur (Inven. 1996), Bestvina-Fujiwara (Geom.Top. 2002)
@ G =Gy x -+ x G, — general product, H — hyperbolic-like,

Monod-Shalom (JDG 2004), Mineyev-Monod-Shalom (Top. 2004),
Hjorth-Kechris (Mem.AMS 2005).

Cocycle versions }
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O Representations p: [ — H, where [ < G is (irred) lattice
@ Cocycle ¢: G ~Q — H, where G ~ (2, ) ergodic (irred)
@ p: N — H, where A < Commeng(I') dense in a general G
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Reconstructing PGL3 from an action of 53 on B x B

Flag variety B= G/P
B={(,N)|tcNcV=£k,dml=1, dmMN=2}

@ B x B is "the same as" {({1,¢2,¢3) | in general position} = G/A:

((61,M4), (€2,N3)) = (¢1,M1 N Mo, 45)
(01,2, 43) = ((£1, 41 @ £3), (L2, 42 ® £3))

e W =Aut G(B X B) is 53 8% {(61,62,63)}

Fundamental Theorem of Projective Geometry
{f € Aut(B) | f x f commutes with W ~ B x B} = PGL3(k)+Aut ns (k)

v

Next: consider quotients f : B — B’ instead of automorphisms of B ...
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A Galois Correspondence

Fix a space B and a group W ~ B x B. Assume the flip wg € W.
{Quotients BLC} = {Subgroups V < W}
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A Galois Correspondence

Fix a space B and a group W ~ B x B. Assume the flip wg € W.
{Quotients BLC} = {Subgroups V < W}

Staby (B x B25B-0)
max{f | V < W}

@ Given f:B— C set W;:

@ Given V< W set  Fy:

Galois Correspondence

f<f = Wr> W Fy<Fy, < V>V f<F, < W>V

Defines closure operations: f < f:= Fw, V< V.= Wk, .

Closed objects for B = {(¢,1)} and W = S;
LB BX4ar(1) BEMGr(2) B—{x} ie G/P— G/Q
{e} {6,(2,3)} {e,(1,3)} S3 ie. Wo< W
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Boundaries and generalized Weyl groups

G-boundary (Burger-Monod)

For a lcsc G a measure space (B, v) is G-boundary if
@ G ~ (B,v) is amenable

@ G~ (B x B,v xv) is ergodic with unitary coefficients
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G-boundary (Burger-Monod)

For a lcsc G a measure space (B, v) is G-boundary if
@ G ~ (B,v) is amenable

@ G~ (B x B,v xv) is ergodic with unitary coefficients

Generalized Weyl group
We B = Aut G(B X B)

Examples
@ G amenable, can take Wg 1., = {e}
@ G hyperbolic-like/convergence W = {e, wy} = Z/2Z

@ G -semi-simple, B = G/P then W¢ g = Ng(A)/Zg(A) classical
(e.g. G =SL,(k) gives W = S,,)

@ G =[]" G; with non-amenble factors, W contains (Z/27)"
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Proof for G = SL3(k) and convergence H ~ M
Want to show:

I' < G = SL3(k) a lattice, p: T — H, where H ~ M convergence action
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Proof for G = SL3(k) and convergence H ~ M
Want to show:

I' < G = SL3(k) a lattice, p: T — H, where H ~ M convergence action
p(T) is not compact and non-elementary
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Proof for G = SL3(k) and convergence H ~ M
Want to show:

I' < G = SL3(k) a lattice, p: T — H, where H ~ M convergence action

p() is not compact and non-elementary =  a contradiction.

Proof.

Q@ G ~ Bamenable = 3 a l-equivariant f: B — Prob(M)

@ H~ M3\ A and p(I') non-compact, non elementary implies

(a) M-map f : B — Prob(M) is unique, takes values in M C Prob(M)
(b) {T —maps Bx B— M}={BxBXLB-M|i=1,2}
© Hence [S3: W] =2

©@ W = 53 has no closed subgroups of index 2. Contradiction !

For G = Gy x --- x G, take B = By x - -+ X B, and deduce:
f factors through B—B;— M for some i € {1,...,n}
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The End

A.Furman ()

Thank you!
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