Superrigidity revisited

Alex Furman University of Illinois at Chicago

October 10, 2007

A.Furman ()

Yale 2007-10-10

October 10, 2007 1 / 10

3. 3

< 4 ₽ × <

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact,

3

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact, or $Haar(G/\Gamma) < +\infty$.

3

(日) (同) (三) (三)

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact, or $Haar(G/\Gamma) < +\infty$.

Examples of lattices:

• $\Gamma = \mathbb{Z}\vec{v}_1 + \cdots + \mathbb{Z}\vec{v}_d$ in $G = \mathbb{R}^d$

(日) (周) (三) (三)

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact, or $Haar(G/\Gamma) < +\infty$.

- 4 同 6 4 日 6 4 日 6

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact, or $Haar(G/\Gamma) < +\infty$.

Examples of lattices: • $\Gamma = \mathbb{Z}\vec{v}_1 + \dots + \mathbb{Z}\vec{v}_d$ in $G = \mathbb{R}^d$ Γ in G is very flexible • $\Gamma = \pi_1(S_g)$ in $G = PSL_2(\mathbb{R})$

where

$$S_g$$
 - closed surface of genus $g \ge 2$

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact, or $Haar(G/\Gamma) < +\infty$.

Examples of lattices:

•
$$\Gamma = \mathbb{Z} \vec{v}_1 + \cdots + \mathbb{Z} \vec{v}_d$$
 in $G = \mathbb{R}^d$

• $\Gamma = \pi_1(S_g)$ in $G = \mathrm{PSL}_2(\mathbb{R})$

 Γ in G is very flexible

Teichmuller, dim = 6g - 6

where

$$S_g$$
 - closed surface of genus $g \ge 2$

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact, or $Haar(G/\Gamma) < +\infty$.

Examples of lattices:

•
$$\Gamma = \mathbb{Z} \vec{v}_1 + \cdots + \mathbb{Z} \vec{v}_d$$
 in $G = \mathbb{R}^d$

•
$$\Gamma = \pi_1(S_g)$$
 in $G = \mathrm{PSL}_2(\mathbb{R})$

• $\Gamma = \pi_1(M) \dim M > 2$ in $G = \operatorname{Isom}(\tilde{M})$

 Γ in G is very flexible

Teichmuller, dim = 6g - 6

where

 S_g - closed surface of genus $g \geq 2$

M - locally symmetric irreducible w/o compact and Euclidean factors

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact, or $Haar(G/\Gamma) < +\infty$.

Examples of lattices:

•
$$\Gamma = \mathbb{Z} \vec{v}_1 + \cdots + \mathbb{Z} \vec{v}_d$$
 in $G = \mathbb{R}^d$

•
$$\Gamma = \pi_1(S_g)$$
 in $G = \mathrm{PSL}_2(\mathbb{R})$

•
$$\Gamma = \pi_1(M) \dim M > 2$$
 in $G = \operatorname{Isom}(\tilde{M})$

 Γ in G is very flexible

Teichmuller, dim = 6g - 6

Mostow Rigidity

where

$$S_g$$
 - closed surface of genus $g\geq 2$

M - locally symmetric irreducible w/o compact and Euclidean factors

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma < G$ is a **lattice** if G/Γ is compact, or $Haar(G/\Gamma) < +\infty$.

Examples of lattices:

•
$$\Gamma = \mathbb{Z} \vec{v}_1 + \cdots + \mathbb{Z} \vec{v}_d$$
 in $G = \mathbb{R}^d$

•
$$\Gamma = \pi_1(S_g)$$
 in $G = \mathrm{PSL}_2(\mathbb{R})$

•
$$\Gamma = \pi_1(M) \dim M > 2$$
 in $G = \operatorname{Isom}(\tilde{M})$

• Γ in a semi-simple G with $rk(G) \geq 2$

 Γ in G is very flexible

Teichmuller, dim = 6g - 6

Mostow Rigidity

Margulis Superrigidity

where

$$S_g$$
 - closed surface of genus $g\geq 2$

M - locally symmetric irreducible w/o compact and Euclidean factors

Theorem (Margulis, 1974)

G, H (semi)simple Lie groups, $rk(G) \ge 2$, H adjoint, $\Gamma < G$ an irred lattice,

 $\rho: \Gamma \to H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.

▲ @ ▶ ▲ @ ▶ ▲

Theorem (Margulis, 1974)

G, H (semi)simple Lie groups, $rk(G) \ge 2$, H adjoint, $\Gamma < G$ an irred lattice,

 $\rho: \Gamma \to H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.

Then ρ extends to a homomorphism $G \rightarrow H$.

A 回下 < 三下 </p>

Theorem (Margulis, 1974)

G, H (semi)simple Lie groups, $\mathrm{rk}(G)\geq 2,$ H adjoint, $\Gamma < G$ an irred lattice,

 $\rho: \Gamma \to H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.

Then ρ extends to a homomorphism $G \rightarrow H$.

(Here $G = \prod_{i=1}^{n} \mathbf{G}_{i}(k_{i})$, \mathbf{G}_{i} are k_{i} -conn. k_{i} -simple, $\operatorname{rk}(G) = \sum \operatorname{rk}_{k_{i}}(\mathbf{G}_{i}) \geq 2$)

(日) (周) (三) (三)

Theorem (Margulis, 1974)

G, H (semi)simple Lie groups, $rk(G) \ge 2$, H adjoint, $\Gamma < G$ an irred lattice, $\rho : \Gamma \to H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.

Then ρ extends to a homomorphism $G \rightarrow H$.

(Here $G = \prod_{i=1}^{n} \mathbf{G}_{i}(k_{i})$, \mathbf{G}_{i} are k_{i} -conn. k_{i} -simple, $\operatorname{rk}(G) = \sum \operatorname{rk}_{k_{i}}(\mathbf{G}_{i}) \geq 2$)

Special case: rk(H) = 1

If $\rho(\Gamma)$ is not precompact, and does not fix a point or a pair in ∂X , X = H/KThen $G = \prod_{j=1}^{n} G_j$ has rank one factors, $\exists G_i \simeq H$, and ρ extends to:

$$\Gamma < G = \prod_{j=1}^n G_j \xrightarrow{\operatorname{pr}_i} G_i \xrightarrow{\simeq} H$$

イロト イポト イヨト イヨト 二日

Theorem (Margulis, 1974)

G, *H* (semi)simple Lie groups, $rk(G) \ge 2$, *H* adjoint, $\Gamma < G$ an irred lattice, $\rho : \Gamma \to H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.

Then ρ extends to a homomorphism $G \rightarrow H$.

(Here $G = \prod_{i=1}^{n} \mathbf{G}_{i}(k_{i})$, \mathbf{G}_{i} are k_{i} -conn. k_{i} -simple, $\operatorname{rk}(G) = \sum \operatorname{rk}_{k_{i}}(\mathbf{G}_{i}) \geq 2$)

Special case: rk(H) = 1

If $\rho(\Gamma)$ is not precompact, and does not fix a point or a pair in ∂X , X = H/KThen $G = \prod_{j=1}^{n} G_j$ has rank one factors, $\exists G_i \simeq H$, and ρ extends to:

$$\Gamma < G = \prod_{j=1}^n G_j \xrightarrow{\operatorname{pr}_i} G_i \xrightarrow{\simeq} H$$

Cocycle Superrigidity, Zimmer 1981

 ${\mathcal G} \curvearrowright (\Omega, \mu) \text{ erg (irred), } c: {\mathcal G} \times \Omega \to H..., \Longrightarrow \ c(g, x) = f(gx)\rho(g)f(x)^{-1}.$

3. 3

Image: A math a math

H < Isom(X), X – general proper CAT(-1) or δ-hyperbolic
 Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)

Image: A math a math

- H < Isom(X), X general proper CAT(-1) or δ-hyperbolic
 Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
- $H = Homeo(S^1)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)

- H < Isom(X), X general proper CAT(-1) or δ-hyperbolic
 Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
- $H = Homeo(S^1)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)

- H < Isom(X), X general proper CAT(-1) or δ-hyperbolic
 Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
- $H = Homeo(S^1)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)

• $H = \text{MappingClassGroup}(S_g)$

Kaimanovich-Masur (Inven. 1996), Bestvina-Fujiwara (Geom.Top. 2002)

- *H* is a \mathcal{D} -group, Furstenberg (Bull.AMS 1967)
- H < Isom(X), X general proper CAT(-1) or δ-hyperbolic
 Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
- $H = Homeo(S^1)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)

• $H = \text{MappingClassGroup}(S_g)$

Kaimanovich-Masur (Inven. 1996), Bestvina-Fujiwara (Geom.Top. 2002)

- *H* is a \mathcal{D} -group, Furstenberg (Bull.AMS 1967)
- H < Isom(X), X general proper CAT(-1) or δ-hyperbolic
 Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
- H = Homeo(S¹)

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)

• $H = \text{MappingClassGroup}(S_g)$

Kaimanovich-Masur (Inven. 1996), Bestvina-Fujiwara (Geom.Top. 2002)

• $G = G_1 \times \cdots \times G_n$ – general product, H – hyperbolic-like, Monod-Shalom (JDG 2004), Mineyev-Monod-Shalom (Top. 2004), Hjorth-Kechris (Mem.AMS 2005).

Cocycle versions

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

3

A (10) < A (10) </p>

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

() Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice

3

(日) (同) (三) (三)

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

() Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice

2 Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

(日) (周) (三) (三)

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

- **(**) Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice
- **2** Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

H is a **convergence grp**, if $\exists H \to \text{Homeo}(M)$ with $H \curvearrowright M^3 \setminus \Delta$ is proper

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

- **(**) Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice
- **2** Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

H is a **convergence grp**, if $\exists H \to \text{Homeo}(M)$ with $H \curvearrowright M^3 \setminus \Delta$ is proper

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

- **Q** Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice
- **2** Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

"Thin" target groups H

- Convergence groups
- Homeo(S¹)
- Isom(X) where X non-proper^a
 δ-hyperbolic space

^aDuchesne-Monod, Masur-Minsky

H is a **convergence grp**, if $\exists H \to \operatorname{Homeo}(M)$ with $H \curvearrowright M^3 \setminus \Delta$ is proper

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

- **Q** Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice
- **2** Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

H is a **convergence grp**, if $\exists H \to \operatorname{Homeo}(M)$ with $H \curvearrowright M^3 \setminus \Delta$ is proper

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

- **Q** Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice
- **2** Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

"Higher rank" groups G

- k-simple $\mathbf{G}(k)$, $\operatorname{rk}_k(\mathbf{G}) \geq 2$
- $G = G_1 \times \cdots \times G_n$, $n \ge 2$

G_i arbitrary groups

"Thin" target groups H

- Convergence groups
- Homeo(S¹)
- Isom(X) where X non-proper^a
 δ-hyperbolic space

^aDuchesne-Monod, Masur-Minsky

H is a **convergence grp**, if $\exists H \to \operatorname{Homeo}(M)$ with $H \curvearrowright M^3 \setminus \Delta$ is proper

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

- **()** Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice
- **2** Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

"Higher rank" groups G

- k-simple $\mathbf{G}(k)$, $\operatorname{rk}_k(\mathbf{G}) \geq 2$
- $G = G_1 \times \cdots \times G_n, n \ge 2$

G_i arbitrary groups

• Exotic *Ã*₂ groups

"Thin" target groups H

- Convergence groups
- Homeo(S¹)
- Isom(X) where X non-proper^a
 δ-hyperbolic space

^aDuchesne-Monod, Masur-Minsky

H is a **convergence grp**, if $\exists H \to \text{Homeo}(M)$ with $H \curvearrowright M^3 \setminus \Delta$ is proper

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

- **()** Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice
- **2** Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

"Higher rank" groups G

- k-simple $\mathbf{G}(k)$, $\operatorname{rk}_k(\mathbf{G}) \geq 2$
- $G = G_1 \times \cdots \times G_n, n \ge 2$
 - G_i arbitrary groups
- Exotic *Ã*₂ groups

• ...?

"Thin" target groups H

- Convergence groups
- Homeo(S¹)
- Isom(X) where X non-proper^a
 δ-hyperbolic space

^aDuchesne-Monod, Masur-Minsky

H is a **convergence grp**, if $\exists H \to \operatorname{Homeo}(M)$ with $H \curvearrowright M^3 \setminus \Delta$ is proper

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

() Representations $\rho : \Gamma \to H$, where $\Gamma < G$ is (irred) lattice

2 Cocycle $c : G \curvearrowright \Omega \to H$, where $G \curvearrowright (\Omega, \mu)$ ergodic (irred)

3 $\rho : \Lambda \to H$, where $\Lambda < \operatorname{Commen}_{G}(\Gamma)$ dense in a general G

"Higher rank" groups G

- k-simple $\mathbf{G}(k)$, $\operatorname{rk}_k(\mathbf{G}) \geq 2$
- $G = G_1 \times \cdots \times G_n, n \ge 2$

G_i arbitrary groups

• Exotic *Ã*₂ groups

• ...?

"Thin" target groups H

- Convergence groups
- Homeo(S¹)
- Isom(X) where X non-proper^a
 δ-hyperbolic space

^aDuchesne-Monod, Masur-Minsky

H is a **convergence grp**, if $\exists H \to \operatorname{Homeo}(M)$ with $H \curvearrowright M^3 \setminus \Delta$ is proper

A.I urman	
	``

3

• • • • • • • •

Flag variety B = G/P

 $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

(日) (周) (三) (三)

Flag variety B = G/P

 $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

• $B \times B$ is "the same as"

	-	
~		
м.	Iurrian	
		`'

- 4 同 6 4 日 6 4 日 6

Flag variety B = G/P $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

• $B \times B$ is "the same as" $\{(\ell_1, \ell_2, \ell_3) \mid \text{in general position}\} = G/A$:

(日) (周) (三) (三)

Flag variety B = G/P $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

• $B \times B$ is "the same as" $\{(\ell_1, \ell_2, \ell_3) \mid \text{in general position}\} = G/A$: $((\ell_1, \Pi_1), (\ell_2, \Pi_2)) \mapsto (\ell_1, \Pi_1 \cap \Pi_2, \ell_2)$ $(\ell_1, \ell_2, \ell_3) \mapsto ((\ell_1, \ell_1 \oplus \ell_3), (\ell_2, \ell_2 \oplus \ell_3))$

イロト イポト イヨト イヨト 二日

Flag variety B = G/P $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

• $B \times B$ is "the same as" $\{(\ell_1, \ell_2, \ell_3) \mid \text{in general position}\} = G/A$: $((\ell_1, \Pi_1), (\ell_2, \Pi_2)) \mapsto (\ell_1, \Pi_1 \cap \Pi_2, \ell_2)$ $(\ell_1, \ell_2, \ell_3) \mapsto ((\ell_1, \ell_1 \oplus \ell_3), (\ell_2, \ell_2 \oplus \ell_3))$

• $W = \operatorname{Aut}_{G}(B \times B)$ is

Flag variety B = G/P $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

• $B \times B$ is "the same as" $\{(\ell_1, \ell_2, \ell_3) \mid \text{in general position}\} = G/A$: $((\ell_1, \Pi_1), (\ell_2, \Pi_2)) \mapsto (\ell_1, \Pi_1 \cap \Pi_2, \ell_2)$ $(\ell_1, \ell_2, \ell_3) \mapsto ((\ell_1, \ell_1 \oplus \ell_3), (\ell_2, \ell_2 \oplus \ell_3))$

• $W = \operatorname{Aut}_{G}(B \times B)$ is $S_3 \curvearrowright \{(\ell_1, \ell_2, \ell_3)\}$

Flag variety B = G/P $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

• $B \times B$ is "the same as" $\{(\ell_1, \ell_2, \ell_3) \mid \text{in general position}\} = G/A$: $((\ell_1, \Pi_1), (\ell_2, \Pi_2)) \mapsto (\ell_1, \Pi_1 \cap \Pi_2, \ell_2)$ $(\ell_1, \ell_2, \ell_3) \mapsto ((\ell_1, \ell_1 \oplus \ell_3), (\ell_2, \ell_2 \oplus \ell_3))$

• $W = \operatorname{Aut}_{G}(B \times B)$ is $S_3 \frown \{(\ell_1, \ell_2, \ell_3)\}$

Fundamental Theorem of Projective Geometry $\{f \in Aut(B) \mid f \times f \text{ commutes with } W \frown B \times B\}$

	-	
Δ	Hurman	- 1 - 1
<u> </u>	i ui illali	

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Flag variety
$$B = G/P$$

 $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

• $B \times B$ is "the same as" $\{(\ell_1, \ell_2, \ell_3) \mid \text{in general position}\} = G/A$: $((\ell_1, \Pi_1), (\ell_2, \Pi_2)) \mapsto (\ell_1, \Pi_1 \cap \Pi_2, \ell_2)$ $(\ell_1, \ell_2, \ell_3) \mapsto ((\ell_1, \ell_1 \oplus \ell_3), (\ell_2, \ell_2 \oplus \ell_3))$

•
$$W = \operatorname{Aut}_{G}(B \times B)$$
 is $S_3 \frown \{(\ell_1, \ell_2, \ell_3)\}$

Fundamental Theorem of Projective Geometry $\{f \in Aut(B) \mid f \times f \text{ commutes with } W \frown B \times B\} = PGL_3(k) + Aut_{msr}(k)$

A Eurman (
A.I uIIIIaII (

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Flag variety B = G/P $B = \{(\ell, \Pi) \mid \ell \subset \Pi \subset V = k^3, \dim \ell = 1, \dim \Pi = 2\}$

• $B \times B$ is "the same as" $\{(\ell_1, \ell_2, \ell_3) \mid \text{in general position}\} = G/A$: $((\ell_1, \Pi_1), (\ell_2, \Pi_2)) \mapsto (\ell_1, \Pi_1 \cap \Pi_2, \ell_2)$ $(\ell_1, \ell_2, \ell_3) \mapsto ((\ell_1, \ell_1 \oplus \ell_3), (\ell_2, \ell_2 \oplus \ell_3))$

• $W = \operatorname{Aut}_{G}(B \times B)$ is $S_3 \frown \{(\ell_1, \ell_2, \ell_3)\}$

Fundamental Theorem of Projective Geometry $\{f \in Aut(B) \mid f \times f \text{ commutes with } W \frown B \times B\} = PGL_3(k) + Aut_{msr}(k)$

Next: consider quotients $f : B \rightarrow B'$ instead of automorphisms of $B \dots$

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_0 \in W$. {Quotients $B \xrightarrow{f} C$ } \Leftrightarrow {Subgroups V < W}

イロト イポト イヨト イヨト

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_0 \in W$. {Quotients $B \xrightarrow{f} C$ } \Leftrightarrow {Subgroups V < W} • Given $f : B \to C$ set $W_f := \operatorname{Stab}_W(B \times B \xrightarrow{\operatorname{pr}_1} B \xrightarrow{f} C)$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Fix a space B and a group
$$W \cap B \times B$$
. Assume the flip $w_0 \in W$.
{Quotients $B \xrightarrow{f} C$ } \Leftrightarrow {Subgroups $V < W$ }
• Given $f : B \to C$ set $W_f := \operatorname{Stab}_W(B \times B \xrightarrow{\operatorname{pr}_1} B \xrightarrow{f} C)$
• Given $V < W$ set $F_V := \max\{f \mid V \le W_f\}$

3

<ロ> (日) (日) (日) (日) (日)

Fix a space B and a group $W \cap B \times B$. Assume the flip $w_0 \in W$. $\{\text{Quotients } B \xrightarrow{f} C\} \quad \leftrightarrows \quad \{\text{Subgroups } V < W\}$ • Given $f: B \to C$ set $W_f := \text{Stab}_W(B \times B \xrightarrow{\text{pr}_1} B \xrightarrow{f} C)$ • Given V < W set $F_V := \max\{f \mid V \le W_f\}$

Galois Correspondence

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Fix a space *B* and a group $W \curvearrowright B \times B$. Assume the flip $w_0 \in W$. {Quotients $B \xrightarrow{f} C$ } \iff {Subgroups V < W}

• Given $f: B \to C$ set $W_f := \operatorname{Stab}_W(B \times B \xrightarrow{\operatorname{pr}_1} B \xrightarrow{f} C)$

• Given V < W set $F_V := \max\{f \mid V \le W_f\}$

Galois Correspondence

$$f \leq f' \implies W_f \geq W_{f'} \quad F_V \leq F_{V'} \iff V \geq V' \quad f \leq F_v \iff W_f \geq V$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Fix a space *B* and a group $W \curvearrowright B \times B$. Assume the flip $w_0 \in W$. {Quotients $B \xrightarrow{f} C$ } \Leftrightarrow {Subgroups V < W}

• Given $f: B \to C$ set $W_f := \operatorname{Stab}_W(B \times B \xrightarrow{\operatorname{pr}_1} B \xrightarrow{f} C)$

• Given V < W set $F_V := \max\{f \mid V \le W_f\}$

Galois Correspondence

$$\begin{split} f \leq f' \implies W_f \geq W_{f'} \quad F_V \leq F_{V'} \iff V \geq V' \quad f \leq F_v \iff W_f \geq V \\ \text{Defines closure operations:} \ f \leq \bar{f} := F_{W_f} \quad V \leq \bar{V} := W_{F_V}. \end{split}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Fix a space B and a group $W \frown B \times B$. Assume the flip $w_0 \in W$. {Quotients $B \xrightarrow{f} C$ } \Leftrightarrow {Subgroups V < W} • Given $f : B \to C$ set $W_f := \operatorname{Stab}_W(B \times B \xrightarrow{\operatorname{pr}_1} B \xrightarrow{f} C)$ • Given V < W set $F_V := \max\{f \mid V \leq W_f\}$

Galois Correspondence

$$f \leq f' \implies W_f \geq W_{f'} \quad F_V \leq F_{V'} \iff V \geq V' \quad f \leq F_v \iff W_f \geq V$$

Defines closure operations: $f \leq \overline{f} := F_{W_f} \quad V \leq \overline{V} := W_{F_V}$.

Closed objects for
$$B = \{(\ell, \Pi)\}$$
 and $W = S_3$
 $B \xrightarrow{\text{Id}} B \quad B \xrightarrow{\text{pr}_{\ell}} \text{Gr}(1) \quad B \xrightarrow{\text{Pr}_{\Pi}} \text{Gr}(2) \quad B \to \{*\}$

A.Furman ()

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Fix a space B and a group $W \cap B \times B$. Assume the flip $w_0 \in W$. {Quotients $B \xrightarrow{f} C$ } \Leftrightarrow {Subgroups V < W} • Given $f : B \to C$ set $W_f := \operatorname{Stab}_W(B \times B \xrightarrow{\operatorname{pr}_1} B \xrightarrow{f} C)$ • Given V < W set $F_V := \max\{f \mid V \leq W_f\}$

Galois Correspondence

$$\begin{split} f \leq f' \implies W_f \geq W_{f'} \quad F_V \leq F_{V'} \iff V \geq V' \quad f \leq F_v \iff W_f \geq V \\ \text{Defines closure operations:} \ f \leq \bar{f} := F_{W_f} \quad V \leq \bar{V} := W_{F_V}. \end{split}$$

Closed objects for
$$B = \{(\ell, \Pi)\}$$
 and $W = S_3$
 $B \xrightarrow{\mathrm{Id}} B \quad B \xrightarrow{\mathrm{pr}_{\ell}} \mathrm{Gr}(1) \quad B \xrightarrow{\mathrm{Pr}_{\Pi}} \mathrm{Gr}(2) \quad B \to \{*\} \quad \text{i.e. } G/P \to G/Q$

A.Furman ()

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Fix a space B and a group $W \cap B \times B$. Assume the flip $w_0 \in W$. {Quotients $B \xrightarrow{f} C$ } \Leftrightarrow {Subgroups V < W} • Given $f : B \to C$ set $W_f := \operatorname{Stab}_W(B \times B \xrightarrow{\operatorname{pr}_1} B \xrightarrow{f} C)$ • Given V < W set $F_V := \max\{f \mid V \le W_f\}$

Galois Correspondence

$$\begin{split} f &\leq f' \implies W_f \geq W_{f'} \quad F_V \leq F_{V'} \iff V \geq V' \quad f \leq F_v \iff W_f \geq V \\ \text{Defines closure operations:} \ f \leq \bar{f} := F_{W_f} \quad V \leq \bar{V} := W_{F_V}. \end{split}$$

Closed objects for
$$B = \{(\ell, \Pi)\}$$
 and $W = S_3$
 $B \xrightarrow{\mathrm{Id}} B \quad B \xrightarrow{\mathrm{pr}_{\ell}} \mathrm{Gr}(1) \quad B \xrightarrow{\mathrm{Pr}_{\Pi}} \mathrm{Gr}(2) \quad B \to \{*\} \quad \text{i.e. } G/P \to G/Q$
 $\{e\} \quad \{e, (2,3)\} \quad \{e, (1,3)\} \quad S_3 \quad \text{i.e. } W_Q < W$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

G-boundary (Burger-Monod)

For a lcsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright (B, \nu)$ is amenable
- $G \curvearrowright (B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

< 回 > < 三 > < 三 >

G-boundary (Burger-Monod)

For a lcsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright (B, \nu)$ is amenable
- $G \curvearrowright (B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group $W_{G,B} = \operatorname{Aut}_{G}(B \times B)$

(日) (周) (三) (三)

G-boundary (Burger-Monod)

For a lcsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright (B, \nu)$ is amenable
- $G \curvearrowright (B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

 $W_{G,B} = \operatorname{Aut}_{G}(B \times B)$

Examples

• G amenable, can take $W_{G,\{*\}} = \{e\}$

G-boundary (Burger-Monod)

For a lcsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright (B, \nu)$ is amenable
- $G \curvearrowright (B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

 $W_{G,B} = \operatorname{Aut}_{G}(B \times B)$

Examples

- G amenable, can take $W_{G,\{*\}} = \{e\}$
- *G* hyperbolic-like/convergence $W = \{e, w_0\} \cong \mathbb{Z}/2\mathbb{Z}$

G-boundary (Burger-Monod)

For a lcsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright (B, \nu)$ is amenable
- $G \curvearrowright (B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

 $W_{G,B} = \operatorname{Aut}_{G}(B \times B)$

Examples

- G amenable, can take $W_{G,\{*\}} = \{e\}$
- *G* hyperbolic-like/convergence $W = \{e, w_0\} \cong \mathbb{Z}/2\mathbb{Z}$
- G -semi-simple, B = G/P then W_{G,B} = N_G(A)/Z_G(A) classical (e.g. G = SL_n(k) gives W = S_n)

G-boundary (Burger-Monod)

For a lcsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright (B, \nu)$ is amenable
- $G \curvearrowright (B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

 $W_{G,B} = \operatorname{Aut}_{G}(B \times B)$

Examples

- G amenable, can take $W_{G,\{*\}} = \{e\}$
- *G* hyperbolic-like/convergence $W = \{e, w_0\} \cong \mathbb{Z}/2\mathbb{Z}$
- G -semi-simple, B = G/P then W_{G,B} = N_G(A)/Z_G(A) classical (e.g. G = SL_n(k) gives W = S_n)
- $G = \prod^n G_i$ with non-amenble factors, W contains $(\mathbb{Z}/2\mathbb{Z})^n$

	_	2.5
~		
м.	lunnan	
		•

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Want to show:

 $\Gamma < G = SL_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action

(日) (周) (三) (三)

Want to show:

 $\Gamma < G = SL_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary

3

(日) (周) (三) (三)

Want to show:

 $\Gamma < G = SL_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action

 $\rho(\Gamma)$ is not compact and non-elementary \implies a contradiction.

イロト 不得下 イヨト イヨト 二日

Want to show:

 $\Gamma < G = \operatorname{SL}_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \implies a contradiction.

Proof.

 $G \curvearrowright B \text{ amenable} \implies \exists a \ \Gamma \text{-equivariant} \quad f : B \rightarrow \operatorname{Prob}(M)$

Want to show:

 $\Gamma < G = \operatorname{SL}_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \implies a contradiction.

Proof.

- *H* ~ *M*³ \ Δ and ρ(Γ) non-compact, non elementary implies
 (a) Γ-map *f* : *B* → Prob(*M*) is unique, takes values in *M* ⊂ Prob(*M*)

Want to show:

 $\Gamma < G = \operatorname{SL}_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \implies a contradiction.

Proof.

- ∂ H ∩ M³ \ Δ and ρ(Γ) non-compact, non elementary implies
 (a) Γ-map f : B → Prob(M) is unique, takes values in M ⊂ Prob(M)
 (b) {Γ maps B × B → M} = {B × B ^{pr}_i B ^f→M | i = 1,2}

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Want to show:

 $\Gamma < G = \operatorname{SL}_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \implies a contradiction.

Proof.

$$G \curvearrowright B \text{ amenable} \implies \exists a \Gamma \text{-equivariant} \quad f : B \to \operatorname{Prob}(M)$$

3 Hence $[S_3 : W_f] = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Want to show:

 $\Gamma < G = \operatorname{SL}_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \implies a contradiction.

Proof.

$$G \curvearrowright B \text{ amenable} \implies \exists a \Gamma \text{-equivariant} \quad f : B \to \operatorname{Prob}(M)$$

- 3 Hence $[S_3 : W_f] = 2$
- $W = S_3$ has no closed subgroups of index 2. Contradiction !

Want to show:

 $\Gamma < G = \operatorname{SL}_3(k)$ a lattice, $\rho : \Gamma \to H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \implies a contradiction.

Proof.

$$G \curvearrowright B \text{ amenable} \implies \exists a \Gamma \text{-equivariant} \quad f : B \to \operatorname{Prob}(M)$$

3 Hence
$$[S_3 : W_f] = 2$$

(4)
$$W = S_3$$
 has no closed subgroups of index 2. Contradiction !

For $G = G_1 \times \cdots \times G_n$ take $B = B_1 \times \cdots \times B_n$ and deduce:

f factors through $B \longrightarrow B_i \xrightarrow{\tilde{f}} M$ for some $i \in \{1, \ldots, n\}$

A.Furman ()

Yale 2007-10-10

The End

Thank you!

A Eurman	()
A.I ul lian	U

3

イロト イヨト イヨト イヨト