Superrigidity revisited

Alex Furman
University of Illinois at Chicago

October 10, 2007

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact,

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact, or $\operatorname{Haar}(G / \Gamma)<+\infty$.

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact, or $\operatorname{Haar}(G / \Gamma)<+\infty$.

Examples of lattices:

- $\Gamma=\mathbb{Z} \vec{v}_{1}+\cdots+\mathbb{Z} \vec{v}_{d} \quad$ in $\quad G=\mathbb{R}^{d}$

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact, or $\operatorname{Haar}(G / \Gamma)<+\infty$.

Examples of lattices:

- $\Gamma=\mathbb{Z} \vec{v}_{1}+\cdots+\mathbb{Z} \vec{v}_{d} \quad$ in $\quad G=\mathbb{R}^{d} \quad \Gamma$ in G is very flexible

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact, or $\operatorname{Haar}(G / \Gamma)<+\infty$.

Examples of lattices:

- $\Gamma=\mathbb{Z} \vec{v}_{1}+\cdots+\mathbb{Z} \vec{v}_{d} \quad$ in $\quad G=\mathbb{R}^{d} \quad \Gamma$ in G is very flexible
- $\Gamma=\pi_{1}\left(S_{g}\right)$ in $G=\operatorname{PSL}_{2}(\mathbb{R})$
where
S_{g} - closed surface of genus $g \geq 2$

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact, or $\operatorname{Haar}(G / \Gamma)<+\infty$.

Examples of lattices:

- $\Gamma=\mathbb{Z} \overrightarrow{\mathrm{v}}_{1}+\cdots+\mathbb{Z} \overrightarrow{\mathrm{v}}_{d} \quad$ in $\quad G=\mathbb{R}^{d}$
Γ in G is very flexible
- $\Gamma=\pi_{1}\left(S_{g}\right)$ in $G=\operatorname{PSL}_{2}(\mathbb{R})$

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact, or $\operatorname{Haar}(G / \Gamma)<+\infty$.

Examples of lattices:

- $\Gamma=\mathbb{Z} \vec{v}_{1}+\cdots+\mathbb{Z} \vec{v}_{d} \quad$ in $\quad G=\mathbb{R}^{d}$
Γ in G is very flexible
- $\Gamma=\pi_{1}\left(S_{g}\right)$ in $G=\operatorname{PSL}_{2}(\mathbb{R})$

Teichmuller, $\operatorname{dim}=6 g-6$

- $\Gamma=\pi_{1}(M) \operatorname{dim} M>2$ in $G=\operatorname{Isom}(\tilde{M})$

where

S_{g} - closed surface of genus $g \geq 2$
M - locally symmetric irreducible w/o compact and Euclidean factors

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact, or $\operatorname{Haar}(G / \Gamma)<+\infty$.

Examples of lattices:

- $\Gamma=\mathbb{Z} \vec{v}_{1}+\cdots+\mathbb{Z} \overrightarrow{\mathrm{v}}_{d} \quad$ in $\quad G=\mathbb{R}^{d}$
- $\Gamma=\pi_{1}\left(S_{g}\right)$ in $G=\operatorname{PSL}_{2}(\mathbb{R})$
- $\Gamma=\pi_{1}(M) \operatorname{dim} M>2$ in $G=\operatorname{Isom}(\tilde{M})$
Γ in G is very flexible
Teichmuller, $\operatorname{dim}=6 g-6$
Mostow Rigidity
S_{g} - closed surface of genus $g \geq 2$
M - locally symmetric irreducible w/o compact and Euclidean factors

Lattices

Definition

Let G be a locally compact second countable group. A discrete subgroup $\Gamma<G$ is a lattice if G / Γ is compact, or $\operatorname{Haar}(G / \Gamma)<+\infty$.

Examples of lattices:

- $\Gamma=\mathbb{Z} \vec{v}_{1}+\cdots+\mathbb{Z} \overrightarrow{\mathrm{v}}_{d} \quad$ in $\quad G=\mathbb{R}^{d}$
- $\Gamma=\pi_{1}\left(S_{g}\right)$ in $G=\operatorname{PSL}_{2}(\mathbb{R})$
- $\Gamma=\pi_{1}(M) \operatorname{dim} M>2$ in $G=\operatorname{Isom}(\tilde{M})$
- 「 in a semi-simple G with $\operatorname{rk}(G) \geq 2$
Γ in G is very flexible
Teichmuller, $\operatorname{dim}=6 g-6$
Mostow Rigidity
Margulis Superrigidity

where

S_{g} - closed surface of genus $g \geq 2$
M - locally symmetric irreducible w/o compact and Euclidean factors

Margulis' Higher rank Superrigidity

Theorem (Margulis, 1974)
G, H (semi)simple Lie groups, $\operatorname{rk}(G) \geq 2, H$ adjoint, $\Gamma<G$ an irred lattice, $\rho: \Gamma \rightarrow H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.

Margulis' Higher rank Superrigidity

Theorem (Margulis, 1974)
G, H (semi)simple Lie groups, $\operatorname{rk}(G) \geq 2, H$ adjoint, $\Gamma<G$ an irred lattice, $\rho: \Gamma \rightarrow H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.
Then ρ extends to a homomorphism $G \rightarrow H$.

Margulis' Higher rank Superrigidity

Theorem (Margulis, 1974)
G, H (semi)simple Lie groups, $\operatorname{rk}(G) \geq 2, H$ adjoint, $\Gamma<G$ an irred lattice, $\rho: \Gamma \rightarrow H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.
Then ρ extends to a homomorphism $G \rightarrow H$.
(Here $G=\prod_{i=1}^{n} \mathbf{G}_{i}\left(k_{i}\right), \mathbf{G}_{i}$ are k_{i}-conn. k_{i}-simple, $\operatorname{rk}(G)=\sum \operatorname{rk}_{k_{i}}\left(\mathbf{G}_{i}\right) \geq 2$)

Margulis' Higher rank Superrigidity

Theorem (Margulis, 1974)
G, H (semi)simple Lie groups, $\operatorname{rk}(G) \geq 2, H$ adjoint, $\Gamma<G$ an irred lattice, $\rho: \Gamma \rightarrow H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.
Then ρ extends to a homomorphism $G \rightarrow H$.
(Here $G=\prod_{i=1}^{n} \mathbf{G}_{i}\left(k_{i}\right), \mathbf{G}_{i}$ are k_{i}-conn. k_{i}-simple, $\operatorname{rk}(G)=\sum \operatorname{rk}_{k_{i}}\left(\mathbf{G}_{i}\right) \geq 2$)

Special case: $\operatorname{rk}(H)=1$

If $\rho(\Gamma)$ is not precompact, and does not fix a point or a pair in $\partial X, X=H / K$ Then $G=\prod_{j=1}^{n} G_{j}$ has rank one factors, $\exists G_{i} \simeq H$, and ρ extends to:

$$
\Gamma<G=\prod_{j=1}^{n} G_{j} \xrightarrow{\mathrm{pr}_{i}} G_{i} \xrightarrow{\simeq} H
$$

Margulis' Higher rank Superrigidity

Theorem (Margulis, 1974)
G, H (semi)simple Lie groups, $\operatorname{rk}(G) \geq 2, H$ adjoint, $\Gamma<G$ an irred lattice, $\rho: \Gamma \rightarrow H$ a homomorphism with unbounded Zariski dense image $\rho(\Gamma)$.
Then ρ extends to a homomorphism $G \rightarrow H$.
(Here $G=\prod_{i=1}^{n} \mathbf{G}_{i}\left(k_{i}\right), \mathbf{G}_{i}$ are k_{i}-conn. k_{i}-simple, $\operatorname{rk}(G)=\sum \operatorname{rk}_{k_{i}}\left(\mathbf{G}_{i}\right) \geq 2$)

Special case: $\mathrm{rk}(H)=1$

If $\rho(\Gamma)$ is not precompact, and does not fix a point or a pair in $\partial X, X=H / K$ Then $G=\prod_{j=1}^{n} G_{j}$ has rank one factors, $\exists G_{i} \simeq H$, and ρ extends to:

$$
\Gamma<G=\prod_{j=1}^{n} G_{j} \xrightarrow{\mathrm{pr}_{i}} G_{i} \xrightarrow{\simeq} H
$$

Cocycle Superrigidity, Zimmer 1981
$G \curvearrowright(\Omega, \mu)$ erg (irred), $c: G \times \Omega \rightarrow H \ldots, \Longrightarrow c(g, x)=f(g x) \rho(g) f(x)^{-1}$.

Generalizations of the Special Case: $\operatorname{rk}(H)=1$

Generalizations of the Special Case: $\operatorname{rk}(H)=1$

(2) $H<\operatorname{Isom}(X), X$ - general proper $\operatorname{CAT}(-1)$ or δ-hyperbolic Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)

Generalizations of the Special Case: $\operatorname{rk}(H)=1$

(2) $H<\operatorname{Isom}(X), X$ - general proper $\operatorname{CAT}(-1)$ or δ-hyperbolic Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
(3) $H=\operatorname{Homeo}\left(\mathrm{S}^{1}\right)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)

Generalizations of the Special Case: $\operatorname{rk}(H)=1$

(2) $H<\operatorname{Isom}(X), X$ - general proper $\operatorname{CAT}(-1)$ or δ-hyperbolic Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
(3) $H=\operatorname{Homeo}\left(\mathrm{S}^{1}\right)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)

Generalizations of the Special Case: $\operatorname{rk}(H)=1$

(2) $H<\operatorname{Isom}(X), X$ - general proper CAT (-1) or δ-hyperbolic Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
(3) $H=\operatorname{Homeo}\left(\mathrm{S}^{1}\right)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)
(3) $H=\operatorname{MappingClassGroup}\left(S_{g}\right)$

Kaimanovich-Masur (Inven. 1996), Bestvina-Fujiwara (Geom.Top. 2002)

Cocycle versions

Generalizations of the Special Case: $\operatorname{rk}(H)=1$

(1) H is a \mathcal{D}-group, Furstenberg (Bull.AMS 1967)
(2) $H<\operatorname{Isom}(X), X$ - general proper $\operatorname{CAT}(-1)$ or δ-hyperbolic Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
(3) $H=\operatorname{Homeo}\left(\mathrm{S}^{1}\right)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)
(3) $H=\operatorname{MappingClassGroup}\left(S_{g}\right)$

Kaimanovich-Masur (Inven. 1996), Bestvina-Fujiwara (Geom.Top. 2002)

Generalizations of the Special Case: $\operatorname{rk}(H)=1$

(1) H is a \mathcal{D}-group, Furstenberg (Bull.AMS 1967)
(2) $H<\operatorname{Isom}(X), X$ - general proper $\operatorname{CAT}(-1)$ or δ-hyperbolic Burger-Mozes (JAMS 1994), Adams (ETDS 1996), Gao (Trans.Gr. 1997)
(3) $H=\operatorname{Homeo}\left(\mathrm{S}^{1}\right)$

Ghys (Inv. 1999), Burger-Monod (JEMS 1999), Farb-Shalen (Inv. 1999), Witte-Zimmer (Geom.Ded. 2001)
(9) $H=$ MappingClassGroup $\left(S_{g}\right)$

Kaimanovich-Masur (Inven. 1996), Bestvina-Fujiwara (Geom.Top. 2002)
(5) $G=G_{1} \times \cdots \times G_{n}$ - general product, H - hyperbolic-like, Monod-Shalom (JDG 2004), Mineyev-Monod-Shalom (Top. 2004), Hjorth-Kechris (Mem.AMS 2005).

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)
(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)
(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c:G $\curvearrowright \Omega \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)

A unified approach, using "Weyl groups"
Superrigidity results (Bader-Furman, Bader-Furman-Shaker)
(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c:G $\Omega \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)

"Thin" target groups H

- Convergence groups
H is a convergence grp, if $\exists H \rightarrow \operatorname{Homeo}(M)$ with $H \curvearrowright M^{3} \backslash \Delta$ is proper

A unified approach, using "Weyl groups"
Superrigidity results (Bader-Furman, Bader-Furman-Shaker)
(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c: $G \curvearrowright \Omega \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)

"Thin" target groups H

- Convergence groups
- Homeo(S^{1})
H is a convergence grp, if $\exists H \rightarrow \operatorname{Homeo}(M)$ with $H \curvearrowright M^{3} \backslash \Delta$ is proper

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c:G $\curvearrowright \Omega \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)

"Thin" target groups H

- Convergence groups
- Homeo(S^{1})
- $\operatorname{Isom}(X)$ where X non-proper ${ }^{a}$ δ-hyperbolic space
${ }^{a}$ Duchesne-Monod, Masur-Minsky
H is a convergence grp, if $\exists H \rightarrow \operatorname{Homeo}(M)$ with $H \curvearrowright M^{3} \backslash \Delta$ is proper

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c:G $\curvearrowright \Omega \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)
"Higher rank" groups G

- k-simple $\mathbf{G}(k), \mathrm{rk}_{k}(\mathbf{G}) \geq 2$
"Thin" target groups H
- Convergence groups
- Homeo(S^{1})
- $\operatorname{Isom}(X)$ where X non-proper ${ }^{a}$ δ-hyperbolic space
${ }^{a}$ Duchesne-Monod, Masur-Minsky
H is a convergence grp, if $\exists H \rightarrow \operatorname{Homeo}(M)$ with $H \curvearrowright M^{3} \backslash \Delta$ is proper

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c:G $\curvearrowright \Omega \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)

"Higher rank" groups G

- k-simple $\mathbf{G}(k), \mathrm{rk}_{k}(\mathbf{G}) \geq 2$
- $G=G_{1} \times \cdots \times G_{n}, n \geq 2$
G_{i} arbitrary groups
"Thin" target groups H
- Convergence groups
- Homeo(S^{1})
- $\operatorname{Isom}(X)$ where X non-proper ${ }^{a}$ δ-hyperbolic space
${ }^{a}$ Duchesne-Monod, Masur-Minsky
H is a convergence grp, if $\exists H \rightarrow \operatorname{Homeo}(M)$ with $H \curvearrowright M^{3} \backslash \Delta$ is proper

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c:G $\curvearrowright \Omega \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)
"Higher rank" groups G

- k-simple $\mathbf{G}(k), \mathrm{rk}_{k}(\mathbf{G}) \geq 2$
- $G=G_{1} \times \cdots \times G_{n}, n \geq 2$
G_{i} arbitrary groups
- Exotic \tilde{A}_{2} groups
"Thin" target groups H
- Convergence groups
- Homeo(S^{1})
- $\operatorname{Isom}(X)$ where X non-proper ${ }^{a}$ δ-hyperbolic space
${ }^{a}$ Duchesne-Monod, Masur-Minsky
H is a convergence grp, if $\exists H \rightarrow \operatorname{Homeo}(M)$ with $H \curvearrowright M^{3} \backslash \Delta$ is proper

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c:G $\curvearrowright \Omega \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)
"Higher rank" groups G

- k-simple $\mathbf{G}(k), \mathrm{rk}_{k}(\mathbf{G}) \geq 2$
- $G=G_{1} \times \cdots \times G_{n}, n \geq 2$
G_{i} arbitrary groups
- Exotic \tilde{A}_{2} groups
- ...?
"Thin" target groups H
- Convergence groups
- Homeo(S^{1})
- $\operatorname{Isom}(X)$ where X non-proper ${ }^{a}$ δ-hyperbolic space
${ }^{a}$ Duchesne-Monod, Masur-Minsky
H is a convergence grp, if $\exists H \rightarrow \operatorname{Homeo}(M)$ with $H \curvearrowright M^{3} \backslash \Delta$ is proper

A unified approach, using "Weyl groups"

Superrigidity results (Bader-Furman, Bader-Furman-Shaker)

(1) Representations $\rho: \Gamma \rightarrow H$, where $\Gamma<G$ is (irred) lattice
(2) Cocycle c:G $\curvearrowright \rightarrow H$, where $G \curvearrowright(\Omega, \mu)$ ergodic (irred)
(3) $\rho: \Lambda \rightarrow H$, where $\Lambda<\operatorname{Commen}_{G}(\Gamma)$ dense in a general G
"Higher rank" groups G

- k-simple $\mathbf{G}(k), \mathrm{rk}_{k}(\mathbf{G}) \geq 2$
- $G=G_{1} \times \cdots \times G_{n}, n \geq 2$
G_{i} arbitrary groups
- Exotic \tilde{A}_{2} groups
- ...?
"Thin" target groups H
- Convergence groups
- Homeo(S^{1})
- $\operatorname{Isom}(X)$ where X non-proper ${ }^{a}$ δ-hyperbolic space
${ }^{a}$ Duchesne-Monod, Masur-Minsky
H is a convergence grp, if $\exists H \rightarrow \operatorname{Homeo}(M)$ with $H \curvearrowright M^{3} \backslash \Delta$ is proper

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$
$B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}$

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$
$B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}$

- $B \times B$ is "the same as"

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$
$B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}$

- $B \times B$ is "the same as" $\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \mid\right.$ in general position $\}=G / A$:

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$
$B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}$

- $B \times B$ is "the same as" $\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \mid\right.$ in general position $\}=G / A$:

$$
\begin{aligned}
\left(\left(\ell_{1}, \Pi_{1}\right),\left(\ell_{2}, \Pi_{2}\right)\right) \mapsto & \left(\ell_{1}, \Pi_{1} \cap \Pi_{2}, \ell_{2}\right) \\
\left(\ell_{1}, \ell_{2}, \ell_{3}\right) & \mapsto\left(\left(\ell_{1}, \ell_{1} \oplus \ell_{3}\right),\left(\ell_{2}, \ell_{2} \oplus \ell_{3}\right)\right)
\end{aligned}
$$

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$
$B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}$

- $B \times B$ is "the same as" $\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \mid\right.$ in general position $\}=G / A$:

$$
\begin{aligned}
\left(\left(\ell_{1}, \Pi_{1}\right),\left(\ell_{2}, \Pi_{2}\right)\right) \mapsto & \left(\ell_{1}, \Pi_{1} \cap \Pi_{2}, \ell_{2}\right) \\
\left(\ell_{1}, \ell_{2}, \ell_{3}\right) & \mapsto\left(\left(\ell_{1}, \ell_{1} \oplus \ell_{3}\right),\left(\ell_{2}, \ell_{2} \oplus \ell_{3}\right)\right)
\end{aligned}
$$

- $W=\operatorname{Aut}_{G}(B \times B)$ is

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$

$$
B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}
$$

- $B \times B$ is "the same as" $\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \mid\right.$ in general position $\}=G / A$:

$$
\begin{aligned}
\left(\left(\ell_{1}, \Pi_{1}\right),\left(\ell_{2}, \Pi_{2}\right)\right) \mapsto & \left(\ell_{1}, \Pi_{1} \cap \Pi_{2}, \ell_{2}\right) \\
\left(\ell_{1}, \ell_{2}, \ell_{3}\right) & \mapsto\left(\left(\ell_{1}, \ell_{1} \oplus \ell_{3}\right),\left(\ell_{2}, \ell_{2} \oplus \ell_{3}\right)\right)
\end{aligned}
$$

- $W=\operatorname{Aut}_{G}(B \times B) \quad$ is $S_{3} \curvearrowright\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right)\right\}$

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$

$$
B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}
$$

- $B \times B$ is "the same as" $\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \mid\right.$ in general position $\}=G / A$:

$$
\begin{aligned}
\left(\left(\ell_{1}, \Pi_{1}\right),\left(\ell_{2}, \Pi_{2}\right)\right) \mapsto & \left(\ell_{1}, \Pi_{1} \cap \Pi_{2}, \ell_{2}\right) \\
\left(\ell_{1}, \ell_{2}, \ell_{3}\right) & \mapsto\left(\left(\ell_{1}, \ell_{1} \oplus \ell_{3}\right),\left(\ell_{2}, \ell_{2} \oplus \ell_{3}\right)\right)
\end{aligned}
$$

- $W=\operatorname{Aut}_{G}(B \times B) \quad$ is $S_{3} \curvearrowright\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right)\right\}$

Fundamental Theorem of Projective Geometry $\{f \in \operatorname{Aut}(B) \mid f \times f$ commutes with $W \curvearrowright B \times B\}$

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$

$$
B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}
$$

- $B \times B$ is "the same as" $\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \mid\right.$ in general position $\}=G / A$:

$$
\begin{aligned}
\left(\left(\ell_{1}, \Pi_{1}\right),\left(\ell_{2}, \Pi_{2}\right)\right) \mapsto & \left(\ell_{1}, \Pi_{1} \cap \Pi_{2}, \ell_{2}\right) \\
\left(\ell_{1}, \ell_{2}, \ell_{3}\right) & \mapsto\left(\left(\ell_{1}, \ell_{1} \oplus \ell_{3}\right),\left(\ell_{2}, \ell_{2} \oplus \ell_{3}\right)\right)
\end{aligned}
$$

- $W=\operatorname{Aut}_{G}(B \times B) \quad$ is $S_{3} \curvearrowright\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right)\right\}$

Fundamental Theorem of Projective Geometry

$$
\{f \in \operatorname{Aut}(B) \mid f \times f \text { commutes with } W \curvearrowright B \times B\}=\mathrm{PGL}_{3}(k)+\mathrm{Aut}_{m s r}(k)
$$

Reconstructing PGL_{3} from an action of S_{3} on $B \times B$
Flag variety $B=G / P$

$$
B=\left\{(\ell, \Pi) \mid \ell \subset \Pi \subset V=k^{3}, \operatorname{dim} \ell=1, \operatorname{dim} \Pi=2\right\}
$$

- $B \times B$ is "the same as" $\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \mid\right.$ in general position $\}=G / A$:

$$
\begin{aligned}
\left(\left(\ell_{1}, \Pi_{1}\right),\left(\ell_{2}, \Pi_{2}\right)\right) \mapsto & \left(\ell_{1}, \Pi_{1} \cap \Pi_{2}, \ell_{2}\right) \\
\left(\ell_{1}, \ell_{2}, \ell_{3}\right) & \mapsto\left(\left(\ell_{1}, \ell_{1} \oplus \ell_{3}\right),\left(\ell_{2}, \ell_{2} \oplus \ell_{3}\right)\right)
\end{aligned}
$$

- $W=\operatorname{Aut}_{G}(B \times B) \quad$ is $S_{3} \curvearrowright\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right)\right\}$

Fundamental Theorem of Projective Geometry

$$
\{f \in \operatorname{Aut}(B) \mid f \times f \text { commutes with } W \curvearrowright B \times B\}=\mathrm{PGL}_{3}(k)+\mathrm{Aut}_{m s r}(k)
$$

Next: consider quotients $f: B \rightarrow B^{\prime}$ instead of automorphisms of $B \ldots$

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$.
$\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W\}$

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$.
$\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W\}$

- Given $f: B \rightarrow C$ set $W_{f}:=\operatorname{Stab}_{W}\left(B \times B \xrightarrow{\mathrm{pr}_{1}} B \xrightarrow{f} C\right)$

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$.
$\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W\}$

- Given $f: B \rightarrow C$ set $W_{f}:=\operatorname{Stab}_{W}\left(B \times B \xrightarrow{\mathrm{pr}_{1}} B \xrightarrow{f} C\right)$
- Given $V<W$ set $F_{V}:=\max \left\{f \mid V \leq W_{f}\right\}$

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$.
$\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W$ \}

- Given $f: B \rightarrow C$ set $W_{f}:=\operatorname{Stab}_{W}\left(B \times B \xrightarrow{\mathrm{pr}_{1}} B \xrightarrow{f} C\right)$
- Given $V<W$ set $F_{V}:=\max \left\{f \mid V \leq W_{f}\right\}$

Galois Correspondence

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$.
$\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W\}$

- Given $f: B \rightarrow C$ set $W_{f}:=\operatorname{Stab}_{W}\left(B \times B \xrightarrow{\mathrm{pr}_{1}} B \xrightarrow{f} C\right)$
- Given $V<W \quad$ set $\quad F_{V}:=\max \left\{f \mid V \leq W_{f}\right\}$

Galois Correspondence
$f \leq f^{\prime} \Longrightarrow W_{f} \geq W_{f^{\prime}} \quad F_{V} \leq F_{V^{\prime}} \Longleftarrow V \geq V^{\prime} \quad f \leq F_{V} \Longleftrightarrow W_{f} \geq V$

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$.
$\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W\}$

- Given $f: B \rightarrow C$ set $W_{f}:=\operatorname{Stab}_{W}\left(B \times B \xrightarrow{\mathrm{pr}_{1}} B \xrightarrow{f} C\right)$
- Given $V<W \quad$ set $\quad F_{V}:=\max \left\{f \mid V \leq W_{f}\right\}$

Galois Correspondence

$f \leq f^{\prime} \Longrightarrow W_{f} \geq W_{f^{\prime}} \quad F_{V} \leq F_{V^{\prime}} \Longleftarrow V \geq V^{\prime} \quad f \leq F_{V} \Longleftrightarrow W_{f} \geq V$
Defines closure operations: $f \leq \bar{f}:=F_{W_{f}} \quad V \leq \bar{V}:=W_{F_{V}}$.

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$. $\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W$ \}

- Given $f: B \rightarrow C$ set $W_{f}:=\operatorname{Stab}_{W}\left(B \times B \xrightarrow{\mathrm{pr}_{1}} B \xrightarrow{f} C\right)$
- Given $V<W \quad$ set $\quad F_{V}:=\max \left\{f \mid V \leq W_{f}\right\}$

Galois Correspondence

$f \leq f^{\prime} \Longrightarrow W_{f} \geq W_{f^{\prime}} \quad F_{V} \leq F_{V^{\prime}} \Longleftarrow V \geq V^{\prime} \quad f \leq F_{V} \Longleftrightarrow W_{f} \geq V$
Defines closure operations: $f \leq \bar{f}:=F_{W_{f}} \quad V \leq \bar{V}:=W_{F_{V}}$.
Closed objects for $B=\{(\ell, \Pi)\}$ and $W=S_{3}$

$$
B \xrightarrow{\mathrm{Id}} B \quad B \xrightarrow{\mathrm{pr}_{\ell}} \operatorname{Gr}(1) \quad B \xrightarrow{\mathrm{Pr}_{\mathrm{r}}} \operatorname{Gr}(2) \quad B \rightarrow\{*\}
$$

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$. $\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W$ \}

- Given $f: B \rightarrow C$ set $W_{f}:=\operatorname{Stab}_{W}\left(B \times B \xrightarrow{\mathrm{pr}_{1}} B \xrightarrow{f} C\right)$
- Given $V<W \quad$ set $\quad F_{V}:=\max \left\{f \mid V \leq W_{f}\right\}$

Galois Correspondence

$f \leq f^{\prime} \Longrightarrow W_{f} \geq W_{f^{\prime}} \quad F_{V} \leq F_{V^{\prime}} \Longleftarrow V \geq V^{\prime} \quad f \leq F_{V} \Longleftrightarrow W_{f} \geq V$
Defines closure operations: $f \leq \bar{f}:=F_{W_{f}} \quad V \leq \bar{V}:=W_{F_{V}}$.
Closed objects for $B=\{(\ell, \Pi)\}$ and $W=S_{3}$

$$
B \xrightarrow{\mathrm{Id}} B \quad B \xrightarrow{\mathrm{pr}_{\ell}} \operatorname{Gr}(1) \quad B \xrightarrow{\mathrm{Pr}_{\mathrm{n}}} \operatorname{Gr}(2) \quad B \rightarrow\{*\} \quad \text { i.e. } G / P \rightarrow G / Q
$$

A Galois Correspondence

Fix a space B and a group $W \curvearrowright B \times B$. Assume the flip $w_{0} \in W$. $\{$ Quotients $B \xrightarrow{f} C\} \quad \leftrightarrows \quad\{$ Subgroups $V<W$ \}

- Given $f: B \rightarrow C$ set $W_{f}:=\operatorname{Stab}_{W}\left(B \times B \xrightarrow{\mathrm{pr}_{1}} B \xrightarrow{f} C\right)$
- Given $V<W \quad$ set $\quad F_{V}:=\max \left\{f \mid V \leq W_{f}\right\}$

Galois Correspondence

$f \leq f^{\prime} \Longrightarrow W_{f} \geq W_{f^{\prime}} \quad F_{V} \leq F_{V^{\prime}} \Longleftarrow V \geq V^{\prime} \quad f \leq F_{V} \Longleftrightarrow W_{f} \geq V$
Defines closure operations: $f \leq \bar{f}:=F_{W_{f}} \quad V \leq \bar{V}:=W_{F_{V}}$.
Closed objects for $B=\{(\ell, \Pi)\}$ and $W=S_{3}$

$$
\begin{array}{ccccl}
B \xrightarrow{\mathrm{Id}} B & B \xrightarrow{\mathrm{pr}_{e}} \operatorname{Gr}(1) & B \xrightarrow{\operatorname{Prn}_{\longrightarrow}} \operatorname{Gr}(2) & B \rightarrow\{*\} & \text { i.e. } G / P \rightarrow G / Q \\
\{e\} & \{e,(2,3)\} & \{e,(1,3)\} & S_{3} & \text { i.e. } W_{Q}<W
\end{array}
$$

Boundaries and generalized Weyl groups

G-boundary (Burger-Monod)
For a Icsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright(B, \nu)$ is amenable
- $G \curvearrowright(B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Boundaries and generalized Weyl groups

G-boundary (Burger-Monod)
For a Icsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright(B, \nu)$ is amenable
- $G \curvearrowright(B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

$$
W_{G, B}=\operatorname{Aut}_{G}(B \times B)
$$

Boundaries and generalized Weyl groups

G-boundary (Burger-Monod)
For a Icsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright(B, \nu)$ is amenable
- $G \curvearrowright(B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

$$
W_{G, B}=\operatorname{Aut}_{G}(B \times B)
$$

Examples

- G amenable, can take $W_{G,\{*\}}=\{e\}$

Boundaries and generalized Weyl groups

G-boundary (Burger-Monod)

For a Icsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright(B, \nu)$ is amenable
- $G \curvearrowright(B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

$$
W_{G, B}=\operatorname{Aut}_{G}(B \times B)
$$

Examples

- G amenable, can take $W_{G,\{*\}}=\{e\}$
- G hyperbolic-like/convergence $W=\left\{e, w_{0}\right\} \cong \mathbb{Z} / 2 \mathbb{Z}$

Boundaries and generalized Weyl groups

G-boundary (Burger-Monod)

For a Icsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright(B, \nu)$ is amenable
- $G \curvearrowright(B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

$$
W_{G, B}=\operatorname{Aut}_{G}(B \times B)
$$

Examples

- G amenable, can take $W_{G,\{*\}}=\{e\}$
- G hyperbolic-like/convergence $W=\left\{e, w_{0}\right\} \cong \mathbb{Z} / 2 \mathbb{Z}$
- G-semi-simple, $B=G / P$ then $W_{G, B}=\mathcal{N}_{\mathbf{G}}(\mathbf{A}) / \mathcal{Z}_{\mathbf{G}}(\mathbf{A})$ classical (e.g. $G=\mathrm{SL}_{n}(k)$ gives $W=S_{n}$)

Boundaries and generalized Weyl groups

G-boundary (Burger-Monod)

For a Icsc G a measure space (B, ν) is G-boundary if

- $G \curvearrowright(B, \nu)$ is amenable
- $G \curvearrowright(B \times B, \nu \times \nu)$ is ergodic with unitary coefficients

Generalized Weyl group

$$
W_{G, B}=\operatorname{Aut}_{G}(B \times B)
$$

Examples

- G amenable, can take $W_{G,\{*\}}=\{e\}$
- G hyperbolic-like/convergence $W=\left\{e, w_{0}\right\} \cong \mathbb{Z} / 2 \mathbb{Z}$
- G-semi-simple, $B=G / P$ then $W_{G, B}=\mathcal{N}_{\mathbf{G}}(\mathbf{A}) / \mathcal{Z}_{\mathbf{G}}(\mathbf{A})$ classical (e.g. $G=\mathrm{SL}_{n}(k)$ gives $W=S_{n}$)
- $G=\prod^{n} G_{i}$ with non-amenble factors, W contains $(\mathbb{Z} / 2 \mathbb{Z})^{n}$

Proof for $G=\mathrm{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Proof for $G=\operatorname{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:
$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action

Proof for $G=\operatorname{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:

$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary

Proof for $G=\operatorname{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:

$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \Longrightarrow a contradiction.

Proof for $G=\operatorname{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:

$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \Longrightarrow a contradiction.

Proof.

(1) $G \curvearrowright B$ amenable $\Longrightarrow \exists$ a Γ-equivariant $f: B \rightarrow \operatorname{Prob}(M)$

Proof for $G=\mathrm{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:

$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \Longrightarrow a contradiction.

Proof.

(1) $G \curvearrowright B$ amenable $\Longrightarrow \exists$ a Γ-equivariant $f: B \rightarrow \operatorname{Prob}(M)$
(2) $H \curvearrowright M^{3} \backslash \Delta$ and $\rho(\Gamma)$ non-compact, non elementary implies
(a) Γ-map $f: B \rightarrow \operatorname{Prob}(M)$ is unique, takes values in $M \subset \operatorname{Prob}(M)$

Proof for $G=\mathrm{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:

$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \Longrightarrow a contradiction.

Proof.

(1) $G \curvearrowright B$ amenable $\Longrightarrow \exists$ a Γ-equivariant $f: B \rightarrow \operatorname{Prob}(M)$
(2) $H \curvearrowright M^{3} \backslash \Delta$ and $\rho(\Gamma)$ non-compact, non elementary implies
(a) Γ-map $f: B \rightarrow \operatorname{Prob}(M)$ is unique, takes values in $M \subset \operatorname{Prob}(M)$
(b) $\{\Gamma$ - maps $B \times B \rightarrow M\}=\left\{B \times B \xrightarrow{\mathrm{pr}_{i}} B \xrightarrow{f} M \mid i=1,2\right\}$

Proof for $G=\mathrm{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:

$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \Longrightarrow a contradiction.

Proof.

(1) $G \curvearrowright B$ amenable $\Longrightarrow \exists$ a Γ-equivariant $f: B \rightarrow \operatorname{Prob}(M)$
(2) $H \curvearrowright M^{3} \backslash \Delta$ and $\rho(\Gamma)$ non-compact, non elementary implies
(a) Γ-map $f: B \rightarrow \operatorname{Prob}(M)$ is unique, takes values in $M \subset \operatorname{Prob}(M)$
(b) $\{\Gamma$ - maps $B \times B \rightarrow M\}=\left\{B \times B \xrightarrow{\mathrm{pr}_{i}} B \xrightarrow{f} M \mid i=1,2\right\}$
(3) Hence $\left[S_{3}: W_{f}\right]=2$

Proof for $G=\mathrm{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:

$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \Longrightarrow a contradiction.

Proof.

(1) $G \curvearrowright B$ amenable $\Longrightarrow \exists$ a Γ-equivariant $f: B \rightarrow \operatorname{Prob}(M)$
(2) $H \curvearrowright M^{3} \backslash \Delta$ and $\rho(\Gamma)$ non-compact, non elementary implies
(a) Γ-map $f: B \rightarrow \operatorname{Prob}(M)$ is unique, takes values in $M \subset \operatorname{Prob}(M)$
(b) $\{\Gamma$ - maps $B \times B \rightarrow M\}=\left\{B \times B \xrightarrow{\mathrm{pr}_{i}} B \xrightarrow{f} M \mid i=1,2\right\}$
(3) Hence $\left[S_{3}: W_{f}\right]=2$
(4) $W=S_{3}$ has no closed subgroups of index 2. Contradiction!

Proof for $G=\operatorname{SL}_{3}(k)$ and convergence $H \curvearrowright M$

Want to show:

$\Gamma<G=\mathrm{SL}_{3}(k)$ a lattice, $\rho: \Gamma \rightarrow H$, where $H \curvearrowright M$ convergence action $\rho(\Gamma)$ is not compact and non-elementary \Longrightarrow a contradiction.

Proof.

(1) $G \curvearrowright B$ amenable $\Longrightarrow \exists$ a Γ-equivariant $f: B \rightarrow \operatorname{Prob}(M)$
(2) $H \curvearrowright M^{3} \backslash \Delta$ and $\rho(\Gamma)$ non-compact, non elementary implies
(a) Γ-map $f: B \rightarrow \operatorname{Prob}(M)$ is unique, takes values in $M \subset \operatorname{Prob}(M)$
(b) $\{\Gamma$ - maps $B \times B \rightarrow M\}=\left\{B \times B \xrightarrow{\mathrm{pr}_{i}} B \xrightarrow{f} M \mid i=1,2\right\}$
(3) Hence $\left[S_{3}: W_{f}\right]=2$
(4) $W=S_{3}$ has no closed subgroups of index 2. Contradiction!

For $G=G_{1} \times \cdots \times G_{n}$ take $B=B_{1} \times \cdots \times B_{n}$ and deduce:
f factors through $B \longrightarrow B_{i} \xrightarrow{\bar{f}} M$ for some $i \in\{1, \ldots, n\}$

The End

Thank you!

