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Lattice Envelopes

Definition
I A subgroup Γ < G is a lattice in a lcsc group G if

Γ is discrete and Haar(G/Γ) <∞.

Equivalently, Γ has a Borel fundamental domain F ⊂ G with mG (F) <∞.

I A lattice Γ < G is uniform if G/Γ is compact, non-uniform otherwise.

I A homomorphism Γ
i−→G is a lattice embedding if

i(Γ) < G is a lattice and |Ker(i)| <∞.

Problem

Given Γ, describe all lattice envelopes: groups G with a lattice embedding Γ
i−→G .
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Basic Examples

Examples

Classical lattices in s-s real Lie groups: π1(Σg ) < PSL2(R),

PSLn(Z) < PSLn(R)

S-arithmetic SLn(Z[ 1
p ]) < SLn(R)× SLn(Qp)

Combinatorial π1(X ) < Aut(X̃ ), X fin simpl cpx, e.g., Fn < Aut(T2n)

Trivial lattice Γ
Id−→Γ

Constructions

Let Γ
i−→G be a lattice embedding. Then

I If [G : G ′] <∞, then Γ′
i−→G ′ is a lattice imbedding for Γ′ = Γ ∩ i−1(G ′)

I If K / G is compact, then Γ
i−→G−→G/K is a lattice imbedding

I If i(Γ) < H < G a closed subgroup, then Γ
i−→H is a lattice imbedding

I If Λ < H is a lattice imbedding, then Γ× Λ < G × H is a lattice imbedding.
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The case of Free groups

Example

Some lattice embeddings of Γ = Fn, 1 < n <∞:

1 Γ < PSL2(R) (non-uniform)

2 Γ < PSL2(Qp) (uniform)

3 Γ < Aut(T2n) (uniform).

Theorem

Let Fn−→G be a lattice embedding (uniform or non-uniform). Then

I either K−→G−→PSL2(R) or PGL2(R)

I or K−→G−→H where H < Aut(T ) cocompact action on a bdd deg tree

according to whether Fn < G is non-uniform or uniform lattice imbedding.

The uniform case uses a result of Mosher - Sageev - Whyte.
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The case of classical lattices

Theorem (Rigidity of Classical lattices, extends [F. 2001] )

Let Fn 6' Γ < H be (irred.) lattice in a conn, center free, (semi)-simple real Lie
group H w/o compact factors. Let Γ−→G be a lattice imbedding.

Then

I either, up to fin ind and compact kernel G is H, or

I or up to fin ind and compact kernel G is Γ.

Example

Γ = PSL2(Z[ 1
p ]) < G = PSL2(R)× H where PSL2(Qp) < H < Aut(Tp+1).

Theorem (Rigidity of S-arithmetic lattices)

Let Γ < H = H(∞) × H(fin) be an S-arithmetic lattice H(k(S)) <
∏
ν∈S H(kν).

Let Γ→ G be a lattice imbedding. Then up to fin ind and compact kernel

I either G is H(∞) × H(fin),∗, where H(fin) < H(fin),∗ < Aut(XB−T)

I or G is Γ.
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The case of convergence groups

Convergence groups

Group Γ is a convergence group if there is a minimal action Γ→ Homeo(M) with
infinite compact M so that the action on M3 \∆ is proper.

Example

Convergence groups include: non-elementary subgroups of
Gromov hyperbolic groups and relatively hyperbolic groups.

Theorem (Rigidity for convergence groups)

Let Γ be a torsion free convergence group on M, and Γ−→G a lattice imbedding.
Then, up to fin index and compact kernel, either one has

I a lattice in rank one real Lie group Isom(Hn
K ), K = R,C,H,O, or

I a uniform lattice in a totally disconnected group H < Homeo(M).
If Γ is a PD hyperbolic group, then H ' Γ (after M.Mj).
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The General result

Class C of groups

The class (explicitly defined) includes:

1 Products of convergence groups

2 Groups with Zariski dense embedding in a semi-simple group

3 groups with β
(2)
1 > 0.

Theorem (Main result)

Let Γ from class C , and Γ−→G a lattice imbedding.
Then, up to finite index and compact kernel, Γ < G is a product

Γ1 × · · · × Γn < G1 × · · · × Gn where each Γi < Gi is one of

1 either a classical (irreducible) lattice in a semi-simple real Lie group

2 or an S-arithmetic lattice

3 or a lattice in a totally disconnected group (uniform if Γ is torsion free).
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Step 1: reduction to a lattice in a product Γ < S × D

Definition (Amenable radical)

Any lcsc G has a unique maximal, normal, amenable, subgroup Radam(G ).

Theorem (using Montgomery-Zippin)

For any lcsc G the quotient G/Radam(G ) has L× D as fin ind subgroup, where

I L is a connected, semi-simple, real Lie group w/o compact factors

I D is a totally disconnected lcsc group w/o compact normal subgroups.

Proposition (using Breuillard-Gelander)

Assume Γ has no infinite amenable commensurated subgroups.
Let Γ−→G be lattice imbedding. Then Radam(G ) is compact.
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Step 2: getting to the S-arithmetic core

Let Γ < L× D be a lattice, where L and D as above.

I Let L0 be the maximal subfactor of L with prL0
(Γ) discrete

I =⇒ Γ0 < L0 and Γ1 < L1 × D are lattices (here L = L0 × L1)

I Let N = Ker(prL1
: Γ1−→L1) and Λ = prL1

(Γ1) dense in L1

I Let D ′ = prD(Γ1) and set D ′1 = D ′/N

I =⇒ Λ < L1 × D ′1 is a lattice

Theorem

Λ < L1 × D ′1 is a (product of) S-arithmetic lattices H(k(S)) < H(∞) × H(fin).

The proof uses Margulis’ commensurator superrigidity and arithmeticity theorems.
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Step 3: reconstructing Γ

Proposition
1 The sequence 1→ N → Γ1 → Λ→ 1 splits as Γ1 ' Λ× N

2 The sequence 1→ N → D ′ → D ′1 → 1 splits as
D ′ ' D1 ×M = H(fin) ×M
where N < M is a lattice

3 Moreover D ' H(fin),∗ ×M

The proof uses a property of class C and Margulis’ normal subgroup theorem,
and quasi-isometric rigidity.

Proposition

The sequence 1→ Γ1 → Γ→ Γ0 → 1 splits as Γ ' Γ1 × Γ0 ' Λ× N × Γ0

The group G/Radam(G ) ' L× D splits as L0 × (L1 × D1)×M

1 Γ0 < L0 product of classical lattices

2 Λ < L1 × D1 product of S-arithmetic lattices

3 N < M lattice in a totally disconnected lc group.
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The end

Thank you !
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