Uri Bader Alex Furman Roman Sauer

The Technion, Haifa

University of Illinois at Chicago

Universität Regensburg

AMS Special Meeting, 2010-11-05

Definition

A subgroup Γ < G is a lattice in a lcsc group G if Γ is discrete and Haar(G/Γ) < ∞.</p>

Definition

A subgroup Γ < G is a lattice in a lcsc group G if
 Γ is discrete and Haar(G/Γ) < ∞.
 Equivalently, Γ has a Borel fundamental domain F ⊂ G with m_G(F) < ∞.

Definition

- A subgroup $\Gamma < G$ is a lattice in a lcsc group G if Γ is discrete and $\operatorname{Haar}(G/\Gamma) < \infty$. Equivalently, Γ has a Borel fundamental domain $\mathcal{F} \subset G$ with $m_G(\mathcal{F}) < \infty$.
- A lattice $\Gamma < G$ is uniform if G/Γ is compact, non-uniform otherwise.

Definition

- A subgroup $\Gamma < G$ is a lattice in a lcsc group G if Γ is discrete and $\operatorname{Haar}(G/\Gamma) < \infty$. Equivalently, Γ has a Borel fundamental domain $\mathcal{F} \subset G$ with $m_G(\mathcal{F}) < \infty$.
- A lattice $\Gamma < G$ is uniform if G/Γ is compact, non-uniform otherwise.
- A homomorphism Γ^{*i*}→G is a lattice embedding if *i*(Γ) < G is a lattice and |Ker(*i*)| < ∞.</p>

Definition

- A subgroup $\Gamma < G$ is a lattice in a lcsc group G if Γ is discrete and $\operatorname{Haar}(G/\Gamma) < \infty$. Equivalently, Γ has a Borel fundamental domain $\mathcal{F} \subset G$ with $m_G(\mathcal{F}) < \infty$.
- A lattice $\Gamma < G$ is uniform if G/Γ is compact, non-uniform otherwise.
- A homomorphism Γ^{*i*}→G is a lattice embedding if *i*(Γ) < G is a lattice and |Ker(*i*)| < ∞.</p>

Problem

Given Γ , describe all lattice envelopes: groups G with a lattice embedding $\Gamma \xrightarrow{\prime} G$.

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R})$,

・ロト ・四ト ・ヨト ・ヨー うへぐ

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R})$, $\mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$

・ロト ・ 西 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R}), \ \mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$ *S*-arithmetic $\mathsf{SL}_n(\mathbb{Z}[\frac{1}{p}]) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_p)$

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R}), \, \mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$ *S*-arithmetic $\mathsf{SL}_n(\mathbb{Z}[\frac{1}{p}]) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_p)$ Combinatorial $\pi_1(X) < \mathsf{Aut}(\tilde{X}), X$ fin simpl cpx, e.g., $F_n < \mathsf{Aut}(T_{2n})$

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R}), \, \mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$ *S*-arithmetic $\mathsf{SL}_n(\mathbb{Z}[\frac{1}{p}]) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_p)$ Combinatorial $\pi_1(X) < \mathsf{Aut}(\tilde{X}), \, X \text{ fin simpl cpx, e.g., } F_n < \mathsf{Aut}(T_{2n})$ Trivial lattice $\Gamma \xrightarrow{\mathrm{Id}} \Gamma$

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R}), \, \mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$ S-arithmetic $\mathsf{SL}_n(\mathbb{Z}[\frac{1}{p}]) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_p)$ Combinatorial $\pi_1(X) < \mathsf{Aut}(\tilde{X}), \, X \text{ fin simpl cpx, e.g., } F_n < \mathsf{Aut}(T_{2n})$ Trivial lattice $\Gamma \xrightarrow{\mathrm{Id}} \Gamma$

Constructions

Let $\Gamma \xrightarrow{i} G$ be a lattice embedding.

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R}), \, \mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$ S-arithmetic $\mathsf{SL}_n(\mathbb{Z}[\frac{1}{p}]) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_p)$ Combinatorial $\pi_1(X) < \mathsf{Aut}(\tilde{X}), \, X \text{ fin simpl cpx, e.g., } F_n < \mathsf{Aut}(T_{2n})$ Trivial lattice $\Gamma \xrightarrow{\mathrm{Id}} \Gamma$

Constructions

Let $\Gamma \xrightarrow{i} G$ be a lattice embedding. Then

• If $[G:G'] < \infty$, then $\Gamma' \xrightarrow{i} G'$ is a lattice imbedding for $\Gamma' = \Gamma \cap i^{-1}(G')$

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R}), \, \mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$ S-arithmetic $\mathsf{SL}_n(\mathbb{Z}[\frac{1}{p}]) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_p)$ Combinatorial $\pi_1(X) < \mathsf{Aut}(\tilde{X}), \, X \text{ fin simpl cpx, e.g., } F_n < \mathsf{Aut}(T_{2n})$ Trivial lattice $\Gamma \xrightarrow{\mathrm{Id}} \Gamma$

Constructions

Let $\Gamma \xrightarrow{i} G$ be a lattice embedding. Then

- If $[G:G'] < \infty$, then $\Gamma' \xrightarrow{i} G'$ is a lattice imbedding for $\Gamma' = \Gamma \cap i^{-1}(G')$
- ▶ If $K \triangleleft G$ is compact, then $\Gamma \xrightarrow{i} G \longrightarrow G/K$ is a lattice imbedding

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R}), \, \mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$ S-arithmetic $\mathsf{SL}_n(\mathbb{Z}[\frac{1}{p}]) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_p)$ Combinatorial $\pi_1(X) < \mathsf{Aut}(\tilde{X}), \, X \text{ fin simpl cpx, e.g., } F_n < \mathsf{Aut}(T_{2n})$ Trivial lattice $\Gamma \xrightarrow{\mathrm{Id}} \Gamma$

Constructions

Let $\Gamma \xrightarrow{i} G$ be a lattice embedding. Then

- If $[G:G'] < \infty$, then $\Gamma' \xrightarrow{i} G'$ is a lattice imbedding for $\Gamma' = \Gamma \cap i^{-1}(G')$
- If $K \triangleleft G$ is compact, then $\Gamma \xrightarrow{i} G \longrightarrow G/K$ is a lattice imbedding
- ▶ If $i(\Gamma) < H < G$ a closed subgroup, then $\Gamma \xrightarrow{i} H$ is a lattice imbedding

Classical lattices in s-s real Lie groups: $\pi_1(\Sigma_g) < \mathsf{PSL}_2(\mathbb{R}), \, \mathsf{PSL}_n(\mathbb{Z}) < \mathsf{PSL}_n(\mathbb{R})$ S-arithmetic $\mathsf{SL}_n(\mathbb{Z}[\frac{1}{p}]) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_p)$ Combinatorial $\pi_1(X) < \mathsf{Aut}(\tilde{X}), \, X \text{ fin simpl cpx, e.g., } F_n < \mathsf{Aut}(T_{2n})$ Trivial lattice $\Gamma \xrightarrow{\mathrm{Id}} \Gamma$

Constructions

Let $\Gamma \xrightarrow{i} G$ be a lattice embedding. Then

- If $[G:G'] < \infty$, then $\Gamma' \xrightarrow{i} G'$ is a lattice imbedding for $\Gamma' = \Gamma \cap i^{-1}(G')$
- If $K \triangleleft G$ is compact, then $\Gamma \xrightarrow{i} G \longrightarrow G/K$ is a lattice imbedding
- If $i(\Gamma) < H < G$ a closed subgroup, then $\Gamma \xrightarrow{i} H$ is a lattice imbedding
- If $\Lambda < H$ is a lattice imbedding, then $\Gamma \times \Lambda < G \times H$ is a lattice imbedding.

Some lattice embeddings of $\Gamma = F_n$, $1 < n < \infty$:

Some lattice embeddings of $\Gamma = F_n$, $1 < n < \infty$:

- $\Gamma < \mathsf{PSL}_2(\mathbb{R})$ (non-uniform)
- **2** $\Gamma < \mathsf{PSL}_2(\mathbb{Q}_p)$ (uniform)
- $\Gamma < \operatorname{Aut}(T_{2n})$ (uniform).

Some lattice embeddings of $\Gamma = F_n$, $1 < n < \infty$:

- $\Gamma < \mathsf{PSL}_2(\mathbb{R})$ (non-uniform)
- **2** $\Gamma < \mathsf{PSL}_2(\mathbb{Q}_p)$ (uniform)
- $\Gamma < \operatorname{Aut}(T_{2n})$ (uniform).

Theorem

Let $F_n \longrightarrow G$ be a lattice embedding (uniform or non-uniform). Then

- either $K \longrightarrow G \longrightarrow \mathsf{PSL}_2(\mathbb{R})$ or $\mathsf{PGL}_2(\mathbb{R})$
- ▶ or $K \longrightarrow G \longrightarrow H$ where H < Aut(T) cocompact action on a bdd deg tree

according to whether $F_n < G$ is non-uniform or uniform lattice imbedding.

Some lattice embeddings of $\Gamma = F_n$, $1 < n < \infty$:

- $\Gamma < \mathsf{PSL}_2(\mathbb{R})$ (non-uniform)
- **2** $\Gamma < \mathsf{PSL}_2(\mathbb{Q}_p)$ (uniform)
- $\Gamma < \operatorname{Aut}(T_{2n})$ (uniform).

Theorem

Let $F_n \longrightarrow G$ be a lattice embedding (uniform or non-uniform). Then

- either $K \longrightarrow G \longrightarrow \mathsf{PSL}_2(\mathbb{R})$ or $\mathsf{PGL}_2(\mathbb{R})$
- ▶ or $K \longrightarrow G \longrightarrow H$ where H < Aut(T) cocompact action on a bdd deg tree

according to whether $F_n < G$ is non-uniform or uniform lattice imbedding.

The uniform case uses a result of Mosher - Sageev - Whyte.

Let $F_n \not\simeq \Gamma < H$ be (irred.) lattice in a conn, center free, (semi)-simple real Lie group H w/o compact factors. Let $\Gamma \longrightarrow G$ be a lattice imbedding.

Let $F_n \not\simeq \Gamma < H$ be (irred.) lattice in a conn, center free, (semi)-simple real Lie group H w/o compact factors. Let $\Gamma \longrightarrow G$ be a lattice imbedding. Then

- ▶ either, up to fin ind and compact kernel G is H, or
- or up to fin ind and compact kernel G is Γ .

Let $F_n \not\simeq \Gamma < H$ be (irred.) lattice in a conn, center free, (semi)-simple real Lie group H w/o compact factors. Let $\Gamma \longrightarrow G$ be a lattice imbedding. Then

- ▶ either, up to fin ind and compact kernel G is H, or
- or up to fin ind and compact kernel G is Γ .

Example

$$\Gamma = \mathsf{PSL}_2(\mathbb{Z}[\tfrac{1}{p}]) < G = \mathsf{PSL}_2(\mathbb{R}) \times H \quad \text{where} \quad \mathsf{PSL}_2(\mathbb{Q}_p) < H < \mathsf{Aut}(T_{p+1}).$$

Let $F_n \not\simeq \Gamma < H$ be (irred.) lattice in a conn, center free, (semi)-simple real Lie group H w/o compact factors. Let $\Gamma \longrightarrow G$ be a lattice imbedding. Then

- ▶ either, up to fin ind and compact kernel G is H, or
- or up to fin ind and compact kernel G is Γ .

Example

$$\Gamma = \mathsf{PSL}_2(\mathbb{Z}[\tfrac{1}{p}]) < G = \mathsf{PSL}_2(\mathbb{R}) \times H \quad \text{where} \quad \mathsf{PSL}_2(\mathbb{Q}_p) < H < \mathsf{Aut}(\mathcal{T}_{p+1}).$$

Theorem (Rigidity of *S*-arithmetic lattices)

Let $\Gamma < H = H^{(\infty)} \times H^{(fin)}$ be an S-arithmetic lattice $\mathbf{H}(k(S)) < \prod_{\nu \in S} \mathbf{H}(k_{\nu})$. Let $\Gamma \to G$ be a lattice imbedding. Then up to fin ind and compact kernel

• either G is $H^{(\infty)} \times H^{(fin),*}$, where $H^{(fin)} < H^{(fin),*} < Aut(X_{B-T})$

► or G is Γ.

Group Γ is a convergence group if there is a minimal action $\Gamma \to \text{Homeo}(M)$ with infinite compact M so that the action on $M^3 \setminus \Delta$ is proper.

Group Γ is a convergence group if there is a minimal action $\Gamma \to \text{Homeo}(M)$ with infinite compact M so that the action on $M^3 \setminus \Delta$ is proper.

Example

Convergence groups include: non-elementary subgroups of Gromov hyperbolic groups and relatively hyperbolic groups.

Group Γ is a convergence group if there is a minimal action $\Gamma \to \text{Homeo}(M)$ with infinite compact M so that the action on $M^3 \setminus \Delta$ is proper.

Example

Convergence groups include: non-elementary subgroups of Gromov hyperbolic groups and relatively hyperbolic groups.

Theorem (Rigidity for convergence groups)

Let Γ be a torsion free convergence group on M, and $\Gamma \longrightarrow G$ a lattice imbedding.

Group Γ is a convergence group if there is a minimal action $\Gamma \to \text{Homeo}(M)$ with infinite compact M so that the action on $M^3 \setminus \Delta$ is proper.

Example

Convergence groups include: non-elementary subgroups of Gromov hyperbolic groups and relatively hyperbolic groups.

Theorem (Rigidity for convergence groups)

Let Γ be a torsion free convergence group on M, and $\Gamma \longrightarrow G$ a lattice imbedding. Then, up to fin index and compact kernel, either one has

▶ a lattice in rank one real Lie group $Isom(\mathbf{H}_{K}^{n})$, $K = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$, or

Group Γ is a convergence group if there is a minimal action $\Gamma \to \text{Homeo}(M)$ with infinite compact M so that the action on $M^3 \setminus \Delta$ is proper.

Example

Convergence groups include: non-elementary subgroups of Gromov hyperbolic groups and relatively hyperbolic groups.

Theorem (Rigidity for convergence groups)

Let Γ be a torsion free convergence group on M, and $\Gamma \longrightarrow G$ a lattice imbedding. Then, up to fin index and compact kernel, either one has

- ▶ a lattice in rank one real Lie group $Isom(\mathbf{H}_{K}^{n})$, $K = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$, or
- a uniform lattice in a totally disconnected group H < Homeo(M).

Group Γ is a convergence group if there is a minimal action $\Gamma \to \text{Homeo}(M)$ with infinite compact M so that the action on $M^3 \setminus \Delta$ is proper.

Example

Convergence groups include: non-elementary subgroups of Gromov hyperbolic groups and relatively hyperbolic groups.

Theorem (Rigidity for convergence groups)

Let Γ be a torsion free convergence group on M, and $\Gamma \longrightarrow G$ a lattice imbedding. Then, up to fin index and compact kernel, either one has

- ▶ a lattice in rank one real Lie group Isom(\mathbf{H}_{K}^{n}), $K = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$, or
- a uniform lattice in a totally disconnected group H < Homeo(M). If Γ is a PD hyperbolic group, then $H \simeq \Gamma$ (after M.Mj).

・ロト・西・・田・・田・・日・シック

7/11

Class C of groups

The class (explicitly defined) includes:

Products of convergence groups

Class C of groups

The class (explicitly defined) includes:

- Products of convergence groups
- Groups with Zariski dense embedding in a semi-simple group

Class C of groups

The class (explicitly defined) includes:

- Products of convergence groups
- **②** Groups with Zariski dense embedding in a semi-simple group
- 3 groups with $\beta_1^{(2)} > 0$.

Class C of groups

The class (explicitly defined) includes:

- Products of convergence groups
- **②** Groups with Zariski dense embedding in a semi-simple group
- 3 groups with $\beta_1^{(2)} > 0$.

Theorem (Main result)

Let Γ from class C, and $\Gamma \longrightarrow G$ a lattice imbedding.

Class C of groups

The class (explicitly defined) includes:

- Products of convergence groups
- **②** Groups with Zariski dense embedding in a semi-simple group
- 3 groups with $\beta_1^{(2)} > 0$.

Theorem (Main result)

Let Γ from class C, and $\Gamma \longrightarrow G$ a lattice imbedding. Then, up to finite index and compact kernel, $\Gamma < G$ is a product $\Gamma_1 \times \cdots \times \Gamma_n < G_1 \times \cdots \times G_n$

Class C of groups

The class (explicitly defined) includes:

- Products of convergence groups
- **②** Groups with Zariski dense embedding in a semi-simple group
- 3 groups with $\beta_1^{(2)} > 0$.

Theorem (Main result)

Let Γ from class C, and Γ→G a lattice imbedding.
Then, up to finite index and compact kernel, Γ < G is a product Γ₁ × ··· × Γ_n < G₁ × ··· × G_n where each Γ_i < G_i is one of
either a classical (irreducible) lattice in a semi-simple real Lie group
or an S-arithmetic lattice
or a lattice in a totally disconnected group (uniform if Γ is torsion free).

Step 1: reduction to a lattice in a product $\Gamma < S \times D$

・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・ う へ ()・

8/11

Step 1: reduction to a lattice in a product $\Gamma < S \times D$

Definition (Amenable radical)

Any lcsc G has a unique maximal, normal, amenable, subgroup $\operatorname{Rad}_{\operatorname{am}}(G)$.

Definition (Amenable radical)

Any lcsc G has a unique maximal, normal, amenable, subgroup $\operatorname{Rad}_{\operatorname{am}}(G)$.

Theorem (using Montgomery-Zippin)

For any lcsc G the quotient $G/\operatorname{Rad}_{\operatorname{am}}(G)$ has $L \times D$ as fin ind subgroup, where

- ▶ L is a connected, semi-simple, real Lie group w/o compact factors
- ▶ D is a totally disconnected lcsc group w/o compact normal subgroups.

Definition (Amenable radical)

Any lcsc G has a unique maximal, normal, amenable, subgroup $\operatorname{Rad}_{\operatorname{am}}(G)$.

Theorem (using Montgomery-Zippin)

For any lcsc G the quotient $G/\operatorname{Rad}_{\operatorname{am}}(G)$ has $L \times D$ as fin ind subgroup, where

- ▶ L is a connected, semi-simple, real Lie group w/o compact factors
- ▶ D is a totally disconnected lcsc group w/o compact normal subgroups.

Proposition (using Breuillard-Gelander)

Assume Γ has no infinite amenable commensurated subgroups. Let $\Gamma \longrightarrow G$ be lattice imbedding. Then $\operatorname{Rad}_{\operatorname{am}}(G)$ is compact.

Step 2: getting to the S-arithmetic core

• Let L_0 be the maximal subfactor of L with $pr_{L_0}(\Gamma)$ discrete

- Let L_0 be the maximal subfactor of L with $pr_{L_0}(\Gamma)$ discrete
- $\blacktriangleright \implies \quad \Gamma_0 < L_0 \text{ and } \Gamma_1 < L_1 \times D \text{ are lattices (here } L = L_0 \times L_1)$

- Let L_0 be the maximal subfactor of L with $pr_{L_0}(\Gamma)$ discrete
- $\blacktriangleright \implies \quad \Gamma_0 < L_0 \text{ and } \Gamma_1 < L_1 \times D \text{ are lattices (here } L = L_0 \times L_1)$
- Let $N = \operatorname{Ker}(\operatorname{pr}_{L_1} : \Gamma_1 \longrightarrow L_1)$ and $\Lambda = \operatorname{pr}_{L_1}(\Gamma_1)$ dense in L_1

- Let L_0 be the maximal subfactor of L with $pr_{L_0}(\Gamma)$ discrete
- $\blacktriangleright \implies \quad \Gamma_0 < L_0 \text{ and } \Gamma_1 < L_1 \times D \text{ are lattices (here } L = L_0 \times L_1)$
- ▶ Let $N = \text{Ker}(\text{pr}_{L_1} : \Gamma_1 \longrightarrow L_1)$ and $\Lambda = \text{pr}_{L_1}(\Gamma_1)$ dense in L_1

• Let
$$D' = \overline{\operatorname{pr}_D(\Gamma_1)}$$
 and set $D'_1 = D'/N$

- Let L_0 be the maximal subfactor of L with $pr_{L_0}(\Gamma)$ discrete
- $\blacktriangleright \implies \quad \Gamma_0 < L_0 \text{ and } \Gamma_1 < L_1 \times D \text{ are lattices (here } L = L_0 \times L_1)$
- ▶ Let $N = \text{Ker}(\text{pr}_{L_1} : \Gamma_1 \longrightarrow L_1)$ and $\Lambda = \text{pr}_{L_1}(\Gamma_1)$ dense in L_1

• Let
$$D' = \overline{\operatorname{pr}_D(\Gamma_1)}$$
 and set $D'_1 = D'/N$

$$\blacktriangleright \implies \land < L_1 \times D'_1 \text{ is a lattice}$$

- Let L_0 be the maximal subfactor of L with $pr_{L_0}(\Gamma)$ discrete
- $\blacktriangleright \implies \quad \Gamma_0 < L_0 \text{ and } \Gamma_1 < L_1 \times D \text{ are lattices (here } L = L_0 \times L_1)$
- ▶ Let $N = \operatorname{Ker}(\operatorname{pr}_{L_1} : \Gamma_1 \longrightarrow L_1)$ and $\Lambda = \operatorname{pr}_{L_1}(\Gamma_1)$ dense in L_1

• Let
$$D' = \overline{\operatorname{pr}_D(\Gamma_1)}$$
 and set $D'_1 = D'/N$

 $\blacktriangleright \implies \Lambda < L_1 \times D'_1 \text{ is a lattice}$

Theorem

 $\Lambda < L_1 \times D'_1$ is a (product of) S-arithmetic lattices $\mathbf{H}(k(S)) < H^{(\infty)} \times H^{(\mathrm{fin})}$.

- Let L_0 be the maximal subfactor of L with $pr_{L_0}(\Gamma)$ discrete
- $\blacktriangleright \implies \quad \Gamma_0 < L_0 \text{ and } \Gamma_1 < L_1 \times D \text{ are lattices (here } L = L_0 \times L_1)$
- ▶ Let $N = \operatorname{Ker}(\operatorname{pr}_{L_1} : \Gamma_1 \longrightarrow L_1)$ and $\Lambda = \operatorname{pr}_{L_1}(\Gamma_1)$ dense in L_1

• Let
$$D' = \overline{\operatorname{pr}_D(\Gamma_1)}$$
 and set $D'_1 = D'/N$

 $\blacktriangleright \implies \Lambda < L_1 \times D_1' \text{ is a lattice}$

Theorem

 $\Lambda < L_1 \times D'_1$ is a (product of) S-arithmetic lattices $\mathbf{H}(k(S)) < H^{(\infty)} \times H^{(\mathrm{fin})}$.

The proof uses Margulis' commensurator superrigidity and arithmeticity theorems.

Step 3: reconstructing Γ

10/11

Step 3: reconstructing Γ

Proposition

 ${\small \bigcirc} \ \ {\rm The \ sequence \ } 1 \to {\it N} \to {\it \Gamma}_1 \to \Lambda \to 1 \ {\rm splits \ as \ } {\it \Gamma}_1 \simeq \Lambda \times {\it N}$

・ロト ・四ト ・ヨト ・ヨー うへぐ

Proposition

 ${\small \bigcirc} \ \ {\rm The \ sequence \ } 1 \to {\it N} \to {\it \Gamma}_1 \to \Lambda \to 1 \ {\rm splits \ as \ } {\it \Gamma}_1 \simeq \Lambda \times {\it N}$

② The sequence
$$1 \to N \to D' \to D'_1 \to 1$$
 splits as
 $D' \simeq D_1 \times M = H^{(fin)} \times M$

Proposition

 ${\small \bigcirc} \ \ {\rm The \ sequence \ } 1 \to {\it N} \to {\it \Gamma}_1 \to \Lambda \to 1 \ {\rm splits \ as \ } {\it \Gamma}_1 \simeq \Lambda \times {\it N}$

② The sequence
$$1 \rightarrow N \rightarrow D' \rightarrow D'_1 \rightarrow 1$$
 splits as
 $D' \simeq D_1 \times M = H^{(fin)} \times M$
where $N < M$ is a lattice

Proposition

 ${\small \bigcirc} \ \ {\rm The \ sequence \ } 1 \to {\it N} \to {\it \Gamma}_1 \to \Lambda \to 1 \ {\rm splits \ as \ } {\it \Gamma}_1 \simeq \Lambda \times {\it N}$

10/11

2 The sequence
$$1 \rightarrow N \rightarrow D' \rightarrow D'_1 \rightarrow 1$$
 splits as $D' \simeq D_1 \times M = H^{(fin)} \times M$ where $N < M$ is a lattice
3 Moreover $D \simeq H^{(fin),*} \times M$

Proposition

 $I \to N \to \Gamma_1 \to \Lambda \to 1 \text{ splits as } \Gamma_1 \simeq \Lambda \times N$

The proof uses a property of class C and Margulis' normal subgroup theorem, and quasi-isometric rigidity.

Proposition

The proof uses a property of class C and Margulis' normal subgroup theorem, and quasi-isometric rigidity.

Proposition

The sequence $1 \to \Gamma_1 \to \Gamma \to \Gamma_0 \to 1$ splits as $\Gamma \simeq \Gamma_1 \times \Gamma_0 \simeq \Lambda \times N \times \Gamma_0$

Proposition

The proof uses a property of class C and Margulis' normal subgroup theorem, and quasi-isometric rigidity.

Proposition

The sequence $1 \to \Gamma_1 \to \Gamma \to \Gamma_0 \to 1$ splits as $\Gamma \simeq \Gamma_1 \times \Gamma_0 \simeq \Lambda \times N \times \Gamma_0$ The group $G/\operatorname{Rad}_{\operatorname{am}}(G) \simeq L \times D$ splits as $L_0 \times (L_1 \times D_1) \times M$

10/11

Proposition

The proof uses a property of class C and Margulis' normal subgroup theorem, and quasi-isometric rigidity.

Proposition

The sequence $1 \to \Gamma_1 \to \Gamma \to \Gamma_0 \to 1$ splits as $\Gamma \simeq \Gamma_1 \times \Gamma_0 \simeq \Lambda \times N \times \Gamma_0$ The group $G/\operatorname{Rad}_{\operatorname{am}}(G) \simeq L \times D$ splits as $L_0 \times (L_1 \times D_1) \times M$

- ${\small \bigcirc } \ \ \Gamma_0 < L_0 \ \ product \ \ of \ \ classical \ \ lattices$
- **2** $\Lambda < L_1 \times D_1$ product of *S*-arithmetic lattices
- N < M lattice in a totally disconnected lc group.

Thank you !

<ロ><四><合><き><き><き><き><き><き><き><き</td>11/11