Lattice Envelopes

Uri Bader Alex Furman Roman Sauer

The Technion, Haifa
University of lllinois at Chicago

Universitdt Regensburg

AMS Special Meeting, 2010-11-05

1/11



Lattice Envelopes

> A subgroup I' < G is a lattice in a lcsc group G if
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> A subgroup I' < G is a lattice in a lcsc group G if
I is discrete and Haar(G/T') < oo.

Equivalently, I' has a Borel fundamental domain F C G with mg(F) < oc.

> A lattice ' < G is uniform if G/I" is compact, non-uniform otherwise.

» A homomorphism -G is a lattice embedding if
i(T) < G is a lattice and [Ker(/)| < oo.

Problem

Given I, describe all lattice envelopes: groups G with a lattice embedding r--6.
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Combinatorial 71(X) < Aut(X), X fin simpl cpx, e.g., F, < Aut(T2,)
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Trivial lattice F—d>|'

Constructions
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Let T—G be a lattice embedding. Then
> If [G: G'] < oo, then '~ >G’ is a lattice imbedding for [" =T N i~1(G")
> If K< G is compact, then F—i>G—>G/K is a lattice imbedding

» If i(I) < H < G a closed subgroup, then F—5His a lattice imbedding
> If A < H is a lattice imbedding, then ' x A < G x H is a lattice imbedding.

v
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Let F,— G be a lattice embedding (uniform or non-uniform). Then

> either K—G— PSLy(R) or PGLy(R)

> or K— G—H where H < Aut(T) cocompact action on a bdd deg tree
according to whether F, < G is non-uniform or uniform lattice imbedding.
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| \

Let F,— G be a lattice embedding (uniform or non-uniform). Then

> either K—G— PSLy(R) or PGLy(R)

> or K— G—H where H < Aut(T) cocompact action on a bdd deg tree
according to whether F, < G is non-uniform or uniform lattice imbedding.

The uniform case uses a result of Mosher - Sageev - Whyte.
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The case of classical lattices

Theorem (Rigidity of Classical lattices, extends [F. 2001] )

Let F, 2T < H be (irred.) lattice in a conn, center free, (semi)-simple real Lie
group H w/o compact factors. Let T— G be a lattice imbedding.
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The case of classical lattices

Theorem (Rigidity of Classical lattices, extends [F. 2001] )

Let F, 2T < H be (irred.) lattice in a conn, center free, (semi)-simple real Lie
group H w/o compact factors. Let T— G be a lattice imbedding. Then

> either, up to fin ind and compact kernel G is H, or
> or up to fin ind and compact kernel G is .

r= PSLz(Z[I—l)]) < G =PSLy(R) x H where

PSLz(Qp) < H< AUt(Tp+1).

Theorem (Rigidity of S-arithmetic lattices)

Let T < H = H®) x HE) pe an S-arithmetic lattice H(k(S)) < [, cs H(k).
Let ' — G be a lattice imbedding. Then up to fin ind and compact kernel

> either G is H(>) x HE)* “ywhere H(n) < HEn)* < Aut(Xp_1)

> orGisT.
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Gromov hyperbolic groups and relatively hyperbolic groups.

5\

Theorem (Rigidity for convergence groups)

Let T be a torsion free convergence group on M, and T—G a lattice imbedding.
Then, up to fin index and compact kernel, either one has

> a lattice in rank one real Lie group Isom(H%), K =R,C,H, O, or

> a uniform lattice in a totally disconnected group H < Homeo(M).
IfT is a PD hyperbolic group, then H ~ I (after M.Mj).

\
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The General result

Class C of groups

The class (explicitly defined) includes:
@ Products of convergence groups
@ Groups with Zariski dense embedding in a semi-simple group

© groups with ﬁ{n > 0.

A\

Theorem (Main result)

Let I from class C, and T— G a lattice imbedding.
Then, up to finite index and compact kernel, I < G is a product
M1 x---xT, < G X% G, where each I'; < G; is one of

@ either a classical (irreducible) lattice in a semi-simple real Lie group
@ or an S-arithmetic lattice
@ or a lattice in a totally disconnected group (uniform if T is torsion free).
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Definition (Amenable radical)

Any lesc G has a unique maximal, normal, amenable, subgroup Rad,,(G).

Theorem (using Montgomery-Zippin)
For any lcsc G the quotient G /Radam(G) has L x D as fin ind subgroup, where
> L is a connected, semi-simple, real Lie group w/o compact factors

> D is a totally disconnected Icsc group w/o compact normal subgroups.

A\

Proposition (using Breuillard-Gelander)

Assume [ has no infinite amenable commensurated subgroups.
Let T—G be lattice imbedding. Then Radam,(G) is compact.

A\
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Step 2: getting to the S-arithmetic core

Let ' < L x D be a lattice, where L and D as above.
> Let Lo be the maximal subfactor of L with pr; (I') discrete
> = Tg<Lloand 'y <Ly x D are lattices (here L = Ly x L)
» Let N = Ker(pr,, : [1—L;1) and A = pr; (1) dense in L;
» Let D’ = prp(l1) and set D} = D’/N
» = A< Ly xDjis a lattice

A < Ly x D} is a (product of) S-arithmetic lattices H(k(S)) < H(>) x H(fn),

The proof uses Margulis’ commensurator superrigidity and arithmeticity theorems.
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Step 3: reconstructing I

Proposition

© Thesequencel = N —-T; - A — 1splitsas{ ~Ax N
@ The sequence 1 —» N — D" — Dj — 1 splits as

D'~ Dy x M= HE) x M

where N < M is a lattice
@ Moreover D ~ H(fin)* » pf

The proof uses a property of class C and Margulis’ normal subgroup theorem,
and quasi-isometric rigidity.

Proposition
The sequence 1 —T; =T —Tg—1splitsasl ~T; xTTg~2AXx N xTg
The group G/Rad.m(G) ~ L x D splits as Ly x (Ly x D1) x M

@ g < Ly product of classical lattices

@ A < Ly x D; product of S-arithmetic lattices

@ N < M lattice in a totally disconnected Ic group.
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Thank you !
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