The space of metrics on Gromov hyperbolic groups

Alex Furman
University of Illinois at Chicago

Northwestern University, 2010-10-31

Negatively Curved Manifolds: Geometry

Setting

(M, g) where M - closed manifold, g - Riemannian metric with $K<0$

Negatively Curved Manifolds: Geometry

Setting

(M, g) where M - closed manifold, g - Riemannian metric with $K<0$

Marked Length Spectrum

- Free homotopy classes $\left[S^{1} ; M\right]=\left\{S^{1} \rightarrow M\right\} / \sim$.

Negatively Curved Manifolds: Geometry

Setting

(M, g) where M - closed manifold, g - Riemannian metric with $K<0$

Marked Length Spectrum

- Free homotopy classes $\left[S^{1} ; M\right]=\left\{S^{1} \rightarrow M\right\} / \sim$.
- $\forall c_{0} \neq c \in\left[S^{1} ; M\right], \quad \exists$! closed geodesic geo $_{c}$ in c.

Negatively Curved Manifolds: Geometry

Setting

(M, g) where M - closed manifold, g - Riemannian metric with $K<0$

Marked Length Spectrum

- Free homotopy classes $\left[S^{1} ; M\right]=\left\{S^{1} \rightarrow M\right\} / \sim$.
- $\forall c_{0} \neq c \in\left[S^{1} ; M\right], \quad \exists$! closed geodesic geo $_{c}$ in c.
- Marked Length Spectrum: $c \mapsto \ell_{g}(c)=$ Length $_{g}\left(\mathrm{geo}_{c}\right)$.

Negatively Curved Manifolds: Geometry

Setting

(M, g) where M - closed manifold, g - Riemannian metric with $K<0$

Marked Length Spectrum

- Free homotopy classes $\left[S^{1} ; M\right]=\left\{S^{1} \rightarrow M\right\} / \sim$.
- $\forall c_{0} \neq c \in\left[S^{1} ; M\right], \quad \exists$! closed geodesic geo $_{c}$ in c.
- Marked Length Spectrum: $c \mapsto \ell_{g}(c)=$ Length $_{g}\left(\mathrm{geo}_{c}\right)$.

Marked Length Spectrum Rigidity

- Conjecture (Burns-Katok '85): ℓ_{g} determines g, up to $\operatorname{Diff}(M)^{0}$

Negatively Curved Manifolds: Geometry

Setting

(M, g) where M - closed manifold, g - Riemannian metric with $K<0$

Marked Length Spectrum

- Free homotopy classes $\left[S^{1} ; M\right]=\left\{S^{1} \rightarrow M\right\} / \sim$.
- $\forall c_{0} \neq c \in\left[S^{1} ; M\right], \quad \exists$! closed geodesic geo $_{c}$ in c.
- Marked Length Spectrum: $c \mapsto \ell_{g}(c)=$ Length $_{g}\left(\mathrm{geo}_{c}\right)$.

Marked Length Spectrum Rigidity

- Conjecture (Burns-Katok '85): ℓ_{g} determines g, up to $\operatorname{Diff}(M)^{0}$
- Deformation rigidity (Guillemin-Kazhdan '80)
- Surfaces (Otal '90, Croke '90)
- (M, g) loc. symmetric (Hamenstädt '99, using BCG)

Negatively Curved manifolds: Dynamics of $\left(S M, \phi^{t}\right)$

- Topological entropy $h_{\text {top }}$ of ϕ^{t} on SM

Negatively Curved manifolds: Dynamics of $\left(S M, \phi^{t}\right)$

- Topological entropy $h_{\text {top }}$ of ϕ^{t} on SM
- Stable/Unstable foliations

Negatively Curved manifolds: Dynamics of $\left(S M, \phi^{t}\right)$

- Topological entropy $h_{\text {top }}$ of ϕ^{t} on SM
- Stable/Unstable foliations
- Bowen-Margulis measure μ_{BM} on $S M$

Negatively Curved manifolds: Dynamics of $\left(S M, \phi^{t}\right)$

- Topological entropy $h_{\text {top }}$ of ϕ^{t} on SM
- Stable/Unstable foliations
- Bowen-Margulis measure μ_{BM} on $S M$ which
(1) is the unique measure of maximal entropy:

$$
\operatorname{Ent}\left(S M, \phi^{t}, \mu_{\mathrm{BM}}\right)=h_{\mathrm{top}}
$$

Negatively Curved manifolds: Dynamics of $\left(S M, \phi^{t}\right)$

- Topological entropy $h_{\text {top }}$ of ϕ^{t} on SM
- Stable/Unstable foliations
- Bowen-Margulis measure μ_{BM} on $S M$ which
(1) is the unique measure of maximal entropy:

$$
\operatorname{Ent}\left(S M, \phi^{t}, \mu_{\mathrm{BM}}\right)=h_{\mathrm{top}}
$$

(2) is weal limit of periodic orbits organized by length

$$
\mu_{\mathrm{BM}}=\lim _{T \rightarrow \infty} \frac{1}{\#\{c \mid \ell(c)<T\}} \cdot \sum_{\{c \mid \ell(c)<T\}} \lambda\left(\mathrm{geo}_{c}\right)
$$

Negatively Curved manifolds: Dynamics of $\left(S M, \phi^{t}\right)$

- Topological entropy $h_{\text {top }}$ of ϕ^{t} on SM
- Stable/Unstable foliations
- Bowen-Margulis measure μ_{BM} on $S M$ which
(1) is the unique measure of maximal entropy:

$$
\operatorname{Ent}\left(S M, \phi^{t}, \mu_{\mathrm{BM}}\right)=h_{\mathrm{top}}
$$

(2) is weal limit of periodic orbits organized by length

$$
\mu_{\mathrm{BM}}=\lim _{T \rightarrow \infty} \frac{1}{\#\{c \mid \ell(c)<T\}} \cdot \sum_{\{c \mid \ell(c)<T\}} \lambda\left(\mathrm{geo}_{c}\right)
$$

(3) has conditionals on stable/unstable scaled by $e^{ \pm h t}$ where $h=h_{\text {top }}$

$$
d \phi_{*}^{t} \mu_{\mathrm{BM}}^{(s)}=e^{-h t} \cdot d \mu_{\mathrm{BM}}^{(s)}, \quad d \phi_{*}^{t} \mu_{\mathrm{BM}}^{(u)}=e^{+h t} \cdot d \mu_{\mathrm{BM}}^{(u)}
$$

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$
- F.h.c. $\left[S^{1} ; M\right.$] are conj classes:

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$
- F.h.c. $\left[S^{1} ; M\right]$ are conj classes: $C_{\Gamma}=\left\{\langle\gamma\rangle=\left\{a \gamma a^{-1}\right\}_{a \in \Gamma} \mid \gamma \neq e\right\}$

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$
- F.h.c. $\left[S^{1} ; M\right.$] are conj classes: $C_{\Gamma}=\left\{\langle\gamma\rangle=\left\{a \gamma a^{-1}\right\}_{a \in \Gamma} \mid \gamma \neq e\right\}$
- g on $M \quad$-invariant metric \tilde{g} on \tilde{M}

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$
- F.h.c. $\left[S^{1} ; M\right.$] are conj classes: $C_{\Gamma}=\left\{\langle\gamma\rangle=\left\{a \gamma a^{-1}\right\}_{a \in \Gamma} \mid \gamma \neq e\right\}$
- g on $M \quad$-invariant metric \tilde{g} on \tilde{M}

$$
\ell_{g}(\langle\gamma\rangle)=\min _{x \in \tilde{M}} \operatorname{dist}_{\tilde{g}}(\gamma \cdot x, x)
$$

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$
- F.h.c. $\left[S^{1} ; M\right.$] are conj classes: $C_{\Gamma}=\left\{\langle\gamma\rangle=\left\{a \gamma a^{-1}\right\}_{a \in \Gamma} \mid \gamma \neq e\right\}$
- g on $M \quad$-invariant metric \tilde{g} on \tilde{M}

$$
\ell_{g}(\langle\gamma\rangle)=\min _{x \in \tilde{M}} \operatorname{dist}_{\tilde{g}}(\gamma \cdot x, x)=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{dist}_{\tilde{g}}\left(\gamma^{n} y, y\right)
$$

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$
- F.h.c. $\left[S^{1} ; M\right.$] are conj classes: $C_{\Gamma}=\left\{\langle\gamma\rangle=\left\{a \gamma a^{-1}\right\}_{a \in \Gamma} \mid \gamma \neq e\right\}$
- g on $M \quad$-invariant metric \tilde{g} on \tilde{M}

$$
\ell_{g}(\langle\gamma\rangle)=\min _{x \in \tilde{M}} \operatorname{dist}_{\tilde{g}}(\gamma \cdot x, x)=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{dist}_{\tilde{g}}\left(\gamma^{n} y, y\right)
$$

- Top entropy $=$ volume entropy $=\Gamma$-orbit growth

$$
h_{\mathrm{top}}=\lim _{R \rightarrow \infty} \frac{1}{R} \log \operatorname{vol}_{\tilde{\mathrm{g}}}\left(B_{x, R}\right)
$$

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$
- F.h.c. $\left[S^{1} ; M\right.$] are conj classes: $C_{\Gamma}=\left\{\langle\gamma\rangle=\left\{a \gamma a^{-1}\right\}_{a \in \Gamma} \mid \gamma \neq e\right\}$
- g on $M \quad$-invariant metric \tilde{g} on \tilde{M}

$$
\ell_{g}(\langle\gamma\rangle)=\min _{x \in \tilde{M}} \operatorname{dist}_{\tilde{g}}(\gamma \cdot x, x)=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{dist}_{\tilde{g}}\left(\gamma^{n} y, y\right)
$$

- Top entropy $=$ volume entropy $=\Gamma$-orbit growth

$$
h_{\mathrm{top}}=\lim _{R \rightarrow \infty} \frac{1}{R} \log \operatorname{vol}_{\tilde{\mathrm{g}}}\left(B_{x, R}\right)=\lim _{R \rightarrow \infty} \frac{1}{R} \log \#\left(\Gamma \cdot y \cap B_{x, R}\right)
$$

Negatively Curved manifolds Inside-Out

- Instead of M think of \widetilde{M} or better $\Gamma=\pi_{1}(M, x)$
- F.h.c. $\left[S^{1} ; M\right.$] are conj classes: $C_{\Gamma}=\left\{\langle\gamma\rangle=\left\{a \gamma a^{-1}\right\}_{a \in \Gamma} \mid \gamma \neq e\right\}$
- g on $M \quad$-invariant metric \tilde{g} on \tilde{M}

$$
\ell_{g}(\langle\gamma\rangle)=\min _{x \in \tilde{M}} \operatorname{dist}_{\tilde{g}}(\gamma \cdot x, x)=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{dist}_{\tilde{g}}\left(\gamma^{n} y, y\right)
$$

- Top entropy $=$ volume entropy $=\Gamma$-orbit growth

$$
h_{\text {top }}=\lim _{R \rightarrow \infty} \frac{1}{R} \log \operatorname{vol}_{\tilde{g}}\left(B_{x, R}\right)=\lim _{R \rightarrow \infty} \frac{1}{R} \log \#\left(\Gamma \cdot y \cap B_{x, R}\right)
$$

- Bowen-Margulis measure μ_{BM} vs. Patterson-Sullivan current m_{PS}

$$
\operatorname{Meas}(S M)^{\phi^{t}} \quad \leftrightarrow \quad \operatorname{Meas}(S \tilde{M})^{\phi^{t} \times \Gamma} \quad \leftrightarrow \quad \operatorname{Meas}(\partial \tilde{M} \times \partial \tilde{M})^{\ulcorner }
$$

Metrics on Negatively Curved Groups

Metrics on Negatively Curved Groups

General Setting

- 「 torsion free Gromov-hyperbolic group

Metrics on Negatively Curved Groups

General Setting

- 「 torsion free Gromov-hyperbolic group- $D_{\Gamma}=\{$ left invariant metrics on 「 q.i. to a word metric $\} / \sim$

Metrics on Negatively Curved Groups

General Setting

- 「 torsion free Gromov-hyperbolic group- $D_{\Gamma}=\{$ left invariant metrics on 「 q.i. to a word metric $\} / \sim$ where $d_{1} \sim d_{2}$ if $\left|d_{1}-d_{2}\right|$ is bounded

Metrics on Negatively Curved Groups

General Setting

- 「 torsion free Gromov-hyperbolic group- $D_{\Gamma}=\{$ left invariant metrics on 「 q.i. to a word metric $\} / \sim$ where $d_{1} \sim d_{2}$ if $\left|d_{1}-d_{2}\right|$ is bounded

Examples

(1) $\Gamma=\pi_{1}(M, x)$ with $\left[d_{g}\right]$ where $d_{g, x}\left(\gamma_{1}, \gamma_{2}\right)=\operatorname{dist} \tilde{g}\left(\gamma_{1} \cdot x, \gamma_{2} \cdot x\right)$

Metrics on Negatively Curved Groups

General Setting

- 「 torsion free Gromov-hyperbolic group- $D_{\Gamma}=\{$ left invariant metrics on 「 q.i. to a word metric $\} / \sim$ where $d_{1} \sim d_{2}$ if $\left|d_{1}-d_{2}\right|$ is bounded

Examples

(1) $\Gamma=\pi_{1}(M, x)$ with $\left[d_{g}\right]$ where $d_{g, x}\left(\gamma_{1}, \gamma_{2}\right)=\operatorname{dist} \tilde{\tilde{g}}\left(\gamma_{1} \cdot x, \gamma_{2} \cdot x\right)$

Note: $d_{g, x} \sim d_{g, y}$ because $\left|d_{g, x}-d_{g, y}\right| \leq \operatorname{dist}_{\tilde{g}}(\Gamma \cdot x, Г \cdot y) \leq \operatorname{diam}(M, g)$.

Metrics on Negatively Curved Groups

General Setting

- 「 torsion free Gromov－hyperbolic group
- $D_{\Gamma}=\{$ left invariant metrics on 「 q．i．to a word metric $\} / \sim$ where $d_{1} \sim d_{2}$ if $\left|d_{1}-d_{2}\right|$ is bounded

Examples

（1）「 $=\pi_{1}(M, x)$ with $\left[d_{g}\right]$ where $d_{g, x}\left(\gamma_{1}, \gamma_{2}\right)=\operatorname{dist}_{\tilde{g}}\left(\gamma_{1} \cdot x, \gamma_{2} \cdot x\right)$
Note：$d_{g, x} \sim d_{g, y}$ because $\left|d_{g, x}-d_{g, y}\right| \leq \operatorname{dist}_{\tilde{g}}(\Gamma \cdot x, \Gamma \cdot y) \leq \operatorname{diam}(M, g)$ ．
（2）$\Gamma \rightarrow \operatorname{Isom}(X)$ where X is CAT（－1）space，and Γ is convex cocompact

Metrics on Negatively Curved Groups

General Setting

- 「 torsion free Gromov－hyperbolic group
- $D_{\Gamma}=\{$ left invariant metrics on 「 q．i．to a word metric $\} / \sim$ where $d_{1} \sim d_{2}$ if $\left|d_{1}-d_{2}\right|$ is bounded

Examples

（1）「 $=\pi_{1}(M, x)$ with $\left[d_{g}\right]$ where $d_{g, x}\left(\gamma_{1}, \gamma_{2}\right)=\operatorname{dist}_{\tilde{g}}\left(\gamma_{1} \cdot x, \gamma_{2} \cdot x\right)$
Note：$d_{g, x} \sim d_{g, y}$ because $\left|d_{g, x}-d_{g, y}\right| \leq \operatorname{dist}_{\tilde{g}}(\Gamma . x, Г . y) \leq \operatorname{diam}(M, g)$ ．
（2）$\Gamma \rightarrow \operatorname{Isom}(X)$ where X is CAT（－1）space，and Γ is convex cocompact
－「－Gromov hyperbolic，［d］where d－a word metric

Metrics on Negatively Curved Groups

General Setting

- 「 torsion free Gromov－hyperbolic group
- $D_{\Gamma}=\{$ left invariant metrics on 「 q．i．to a word metric $\} / \sim$ where $d_{1} \sim d_{2}$ if $\left|d_{1}-d_{2}\right|$ is bounded

Examples

（1．「 $=\pi_{1}(M, x)$ with $\left[d_{g}\right]$ where $d_{g, x}\left(\gamma_{1}, \gamma_{2}\right)=\operatorname{dist} \tilde{\tilde{g}}\left(\gamma_{1} \cdot x, \gamma_{2} \cdot x\right)$
Note：$d_{g, x} \sim d_{g, y}$ because $\left|d_{g, x}-d_{g, y}\right| \leq \operatorname{dist}_{\tilde{g}}(\Gamma . x, Г . y) \leq \operatorname{diam}(M, g)$ ．
（2）$\Gamma \rightarrow \operatorname{Isom}(X)$ where X is CAT（－1）space，and Γ is convex cocompact
－「－Gromov hyperbolic，［d］where d－a word metric
－．．．

Generalizing Geometric concepts

For Gromov hyperbolic Γ and $[d] \in D_{\Gamma}$ define

Generalizing Geometric concepts

For Gromov hyperbolic Γ and $[d] \in D_{\Gamma}$ define

Generalizing Geometric concepts

For Gromov hyperbolic Γ and $[d] \in D_{\Gamma}$ define

Marked Length $\quad \ell_{[d]}(\langle\gamma\rangle)=\lim _{n \rightarrow \infty} \frac{1}{n} d\left(\gamma^{n}, e\right)$

Generalizing Geometric concepts

For Gromov hyperbolic Γ and $[d] \in D_{\Gamma}$ define

$\begin{array}{ll}\text { Marked Length } & \ell_{[d]}(\langle\gamma\rangle)=\lim _{n \rightarrow \infty} \frac{1}{n} d\left(\gamma^{n}, e\right) \\ \text { Growth/Entropy } & h_{[d]}=\lim _{R \rightarrow \infty} \frac{1}{R} \log \#\{\gamma \in \Gamma \mid d(\gamma, e)<R\}\end{array}$

Generalizing Geometric concepts

For Gromov hyperbolic Γ and $[d] \in D_{\Gamma}$ define

Marked Length $\quad \ell_{[d]}(\langle\gamma\rangle)=\lim _{n \rightarrow \infty} \frac{1}{n} d\left(\gamma^{n}, e\right)$
Growth/Entropy $\quad h_{[d]}=\lim _{R \rightarrow \infty} \frac{1}{R} \log \#\{\gamma \in \Gamma \mid d(\gamma, e)<R\}$

Theorem

Given $[d] \in D_{\Gamma}$ there is a Radon measure $m_{[d]}$ on $\partial^{(2)} \Gamma=\partial \Gamma \times \partial \Gamma \backslash \Delta$

- $m_{[d]}$ is Γ-invariant and ergodic
- $d m_{[d]}(x, y)=e^{2 h_{[d]} \cdot F(x, y)} d \nu(x) d \nu(y)$ where

Generalizing Geometric concepts

For Gromov hyperbolic Γ and $[d] \in D_{\Gamma}$ define

Marked Length $\quad \ell_{[d]}(\langle\gamma\rangle)=\lim _{n \rightarrow \infty} \frac{1}{n} d\left(\gamma^{n}, e\right)$
Growth/Entropy $\quad h_{[d]}=\lim _{R \rightarrow \infty} \frac{1}{R} \log \#\{\gamma \in \Gamma \mid d(\gamma, e)<R\}$

Theorem

Given $[d] \in D_{\Gamma}$ there is a Radon measure $m_{[d]}$ on $\partial^{(2)} \Gamma=\partial \Gamma \times \partial \Gamma \backslash \Delta$

- $m_{[d]}$ is Γ-invariant and ergodic
- $d m_{[d]}(x, y)=e^{2 h_{[d]} \cdot F(x, y)} d \nu(x) d \nu(y)$ where
(1) $\nu \in \operatorname{Prob}(\partial \Gamma)$ with $\frac{d \gamma_{*} \nu}{d \nu}(x)=e^{h_{[\rho]}(d((e, x)-d(\gamma, x))+O(1)}$
(2) F measurable, bdd away from $(x \mid y)_{e}$, or $d\left(e\right.$, geo $\left._{x, y}\right)$

Generalizing Geometric concepts

For Gromov hyperbolic Γ and $[d] \in D_{\Gamma}$ define

Marked Length $\quad \ell_{[d]}(\langle\gamma\rangle)=\lim _{n \rightarrow \infty} \frac{1}{n} d\left(\gamma^{n}, e\right)$
Growth/Entropy $\quad h_{[d]}=\lim _{R \rightarrow \infty} \frac{1}{R} \log \#\{\gamma \in \Gamma \mid d(\gamma, e)<R\}$

Theorem

Given $[d] \in D_{\Gamma}$ there is a Radon measure $m_{[d]}$ on $\partial^{(2)} \Gamma=\partial \Gamma \times \partial \Gamma \backslash \Delta$

- $m_{[d]}$ is Γ-invariant and ergodic
- $d m_{[d]}(x, y)=e^{2 h_{[d]} \cdot F(x, y)} d \nu(x) d \nu(y)$ where
(1) $\nu \in \operatorname{Prob}(\partial \Gamma)$ with $\frac{d \gamma_{*} \nu}{d \nu}(x)=e^{h_{[\rho]}(d(e, x)-d(\gamma, x))+O(1)}$
(2) F measurable, bdd away from $(x \mid y)_{e}$, or $d\left(e, \mathrm{geo}_{x, y}\right)$

Based on Coornaert's Patterson-Sullivan theory for Gromov hyperbolic groups, and If $c: \Gamma \times X \rightarrow \mathbb{R}$ cocycle with $|c(-, x)| \leq M(x)$, then $c(\gamma, z)=b(\gamma \cdot z)-b(z)$.

Relating $D_{\Gamma}, \operatorname{Meas}\left(\partial^{(2)} \Gamma\right)$, and $\mathbb{R}_{+}^{C_{\Gamma}}$

Relating $D_{\Gamma}, \operatorname{Meas}\left(\partial^{(2)} \Gamma\right)$, and $\mathbb{R}_{+}^{C_{\Gamma}}$

Theorem

For $d_{1}, d_{2} \in D_{\Gamma}$ the following are equivalent
(1) $d_{1} \sim c \cdot d_{2}$ so $c=h_{\left[d_{2}\right]} / h_{\left[d_{1}\right]}$,
(2) $\ell_{\left[d_{1}\right]}=c \cdot \ell_{\left[d_{2}\right]}$,
(-) $m_{\left[d_{1}\right]} \not \perp m_{\left[d_{2}\right]}$,
(-) $m_{\left[d_{1}\right]}=m_{\left[d_{2}\right]}$.

Relating $D_{\Gamma}, \operatorname{Meas}\left(\partial^{(2)} \Gamma\right)$, and $\mathbb{R}_{+}^{G_{\Gamma}}$

Theorem

For $d_{1}, d_{2} \in D_{\Gamma}$ the following are equivalent
(1) $d_{1} \sim c \cdot d_{2}$ so $c=h_{\left[d_{2}\right]} / h_{\left[d_{1}\right]}$,
(2) $\ell_{\left[d_{1}\right]}=c \cdot \ell_{\left[d_{2}\right]}$,
(-) $m_{\left[d_{1}\right]} \not \perp m_{\left[d_{2}\right]}$,
(-) $m_{\left[d_{1}\right]}=m_{\left[d_{2}\right]}$.

Corollary

For $\Gamma=\pi_{1}(M, p)$ one has $\operatorname{Riem}_{<0}(M) \longrightarrow \operatorname{Riem}_{<0}^{\mathrm{MLS}}(M) \hookrightarrow D_{\Gamma}$.

Relating D_{Γ}, Meas $\left(\partial^{(2)} \Gamma\right)$, and $\mathbb{R}_{+}^{G_{\Gamma}}$

Theorem

For $d_{1}, d_{2} \in D_{\Gamma}$ the following are equivalent
(1) $d_{1} \sim c \cdot d_{2}$ so $c=h_{\left[d_{2}\right]} / h_{\left[d_{1}\right]}$,
(2) $\ell_{\left[d_{1}\right]}=c \cdot \ell_{\left[d_{2}\right]}$,
(-) $m_{\left[d_{1}\right]} \not \perp m_{\left[d_{2}\right]}$,
(1) $m_{\left[d_{1}\right]}=m_{\left[d_{2}\right]}$.

Corollary

For $\Gamma=\pi_{1}(M, p)$ one has $\quad \operatorname{Riem}_{<0}(M) \longrightarrow \operatorname{Riem}_{<0}^{\mathrm{MLS}}(M) \hookrightarrow D_{\Gamma}$.
$(1) \Longrightarrow(2)$ by construction, $(3) \Longrightarrow(4)$ from ergodicity. $(4) \Longrightarrow(1) \ldots$
$(2) \Longrightarrow(3)$ is proved using an analogue of Bowen's construction - weak limits of

$$
\frac{1}{\#\left\{\langle\gamma\rangle \in C_{\Gamma} \mid \ell_{[d]}(\langle\gamma\rangle)<R\right\}} \cdot \sum_{\left\{\gamma \in \Gamma \mid \ell_{[d]}(\gamma)<R\right\}} \delta_{\left(\gamma_{-}, \gamma_{+}\right)} .
$$

Distinguishing metrics on surface groups

Examples

Metrics on $\Gamma=\pi_{1}(\Sigma)$ where Σ higher genus closed surface

Distinguishing metrics on surface groups

Examples

Metrics on $\Gamma=\pi_{1}(\Sigma)$ where Σ higher genus closed surface
(1) Teich $(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \mathrm{PSL}_{2}(\mathbb{R})\right) / \mathrm{PSL}_{2}(\mathbb{R})$

Distinguishing metrics on surface groups

Examples

Metrics on $\Gamma=\pi_{1}(\Sigma)$ where Σ higher genus closed surface
(1) $\operatorname{Teich}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \operatorname{PSL}_{2}(\mathbb{R})\right) / \operatorname{PSL}_{2}(\mathbb{R})$
(2) $\operatorname{QF}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \mathrm{PSL}_{2}(\mathbb{C})\right) / \mathrm{PSL}_{2}(\mathbb{C})$

Distinguishing metrics on surface groups

Examples

Metrics on $\Gamma=\pi_{1}(\Sigma)$ where Σ higher genus closed surface
(1) $\operatorname{Teich}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \operatorname{PSL}_{2}(\mathbb{R})\right) / \operatorname{PSL}_{2}(\mathbb{R})$
(2) $\operatorname{QF}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \mathrm{PSL}_{2}(\mathbb{C})\right) / \mathrm{PSL}_{2}(\mathbb{C})$
(0) Riem $<0(\Sigma)=$ Riemannian metrics with $K<0 \bmod \operatorname{Diff}(\Sigma)^{0}$

Distinguishing metrics on surface groups

Examples

Metrics on $\Gamma=\pi_{1}(\Sigma)$ where Σ higher genus closed surface
(1) $\operatorname{Teich}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \operatorname{PSL}_{2}(\mathbb{R})\right) / \operatorname{PSL}_{2}(\mathbb{R})$
(2) $\operatorname{QF}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \mathrm{PSL}_{2}(\mathbb{C})\right) / \mathrm{PSL}_{2}(\mathbb{C})$
(3) Riem $<0(\Sigma)=$ Riemannian metrics with $K<0 \bmod \operatorname{Diff}(\Sigma)^{0}$
(0) Word metrics d_{S}

Distinguishing metrics on surface groups

Examples

Metrics on $\Gamma=\pi_{1}(\Sigma)$ where Σ higher genus closed surface
(1) $\operatorname{Teich}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \operatorname{PSL}_{2}(\mathbb{R})\right) / \operatorname{PSL}_{2}(\mathbb{R})$
(2) $\operatorname{QF}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \mathrm{PSL}_{2}(\mathbb{C})\right) / \mathrm{PSL}_{2}(\mathbb{C})$
(3) Riem $<0(\Sigma)=$ Riemannian metrics with $K<0 \bmod \operatorname{Diff}(\Sigma)^{0}$
(0) Word metrics d_{S}

Theorem

- The maps Riem $\operatorname{RoD}(\Sigma) \hookrightarrow D_{\Gamma}$ and $\operatorname{QF}(\Sigma) \hookrightarrow D_{\Gamma}$ are injective.

Distinguishing metrics on surface groups

Examples

Metrics on $\Gamma=\pi_{1}(\Sigma)$ where Σ higher genus closed surface
(1) $\operatorname{Teich}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \operatorname{PSL}_{2}(\mathbb{R})\right) / \operatorname{PSL}_{2}(\mathbb{R})$
(2) $\operatorname{QF}(\Sigma)=\operatorname{Hom}_{c c}\left(\Gamma, \mathrm{PSL}_{2}(\mathbb{C})\right) / \mathrm{PSL}_{2}(\mathbb{C})$
(0) Riem $<0(\Sigma)=$ Riemannian metrics with $K<0 \bmod \operatorname{Diff}(\Sigma)^{0}$
(- Word metrics d_{S}

Theorem

- The maps Riem $<0(\Sigma) \hookrightarrow D_{\Gamma}$ and $\operatorname{QF}(\Sigma) \hookrightarrow D_{\Gamma}$ are injective.
- The spaces
(1) Teich (Σ)
(2) $\mathrm{QF}(\Sigma) \backslash$ Teich (Σ)
(3) Riem $<0(\Sigma) \backslash \operatorname{Teich}(\Sigma)$
(- Word metrics on $\Gamma=\pi_{1}(\Sigma)$
have disjoint images in D_{Γ}.

Hidden symmetries of a metric

Goal

Define and describe the group of hidden/rough symmetries of $(\Gamma,[d])$ When is this group richer than 「?

Hidden symmetries of a metric

Goal

Define and describe the group of hidden/rough symmetries of $(\Gamma,[d])$ When is this group richer than 「?

Definition

Given $[d] \in D_{\Gamma}$ define $\quad H_{[d]}=\left\{h \in \operatorname{Homeo}(\partial \Gamma) \mid(h \times h)_{*} m_{[d]}=m_{[d]}\right\}$.

Hidden symmetries of a metric

Goal

Define and describe the group of hidden/rough symmetries of $(\Gamma,[d])$ When is this group richer than 「?

Definition

Given $[d] \in D_{\Gamma}$ define $\quad H_{[d]}=\left\{h \in \operatorname{Homeo}(\partial \Gamma) \mid(h \times h)_{*} m_{[d]}=m_{[d]}\right\}$.

Theorem

For any $[d] \in D_{\Gamma}$ the group $H_{[d]}$ is a locally compact group
$\Gamma<H_{[d]}$ is a cocompact lattice.

Hidden symmetries of a metric

Goal

Define and describe the group of hidden/rough symmetries of $(\Gamma,[d])$ When is this group richer than 「?

Definition

Given $[d] \in D_{\Gamma}$ define $\quad H_{[d]}=\left\{h \in \operatorname{Homeo}(\partial \Gamma) \mid(h \times h)_{*} m_{[d]}=m_{[d]}\right\}$.

Theorem

For any $[d] \in D_{\Gamma}$ the group $H_{[d]}$ is a locally compact group
$\Gamma<H_{[d]}$ is a cocompact lattice.

Examples

(1) $\Gamma=F_{n}$ with d word metric $\rightsquigarrow H_{[d]}=\operatorname{Aut}\left(T_{2 n}\right)$

Hidden symmetries of a metric

Goal

Define and describe the group of hidden/rough symmetries of $(\Gamma,[d])$ When is this group richer than 「?

Definition

Given $[d] \in D_{\Gamma}$ define $\quad H_{[d]}=\left\{h \in \operatorname{Homeo}(\partial \Gamma) \mid(h \times h)_{*} m_{[d]}=m_{[d]}\right\}$.

Theorem

For any $[d] \in D_{\Gamma}$ the group $H_{[d]}$ is a locally compact group
$\Gamma<H_{[d]}$ is a cocompact lattice.

Examples

(1) 「 $=F_{n}$ with d word metric $\rightsquigarrow H_{[d]}=\operatorname{Aut}\left(T_{2 n}\right)$
(2) $\Gamma<\operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$ with $d=\operatorname{dist}_{\mathbf{H}_{K}^{n}} \rightsquigarrow H_{[d]}=\operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$ with $K=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$

The most symmetric groups and metrics

Theorem

Let $\Gamma=\pi_{1}(M)$ where M admits n.c. metric. Then

- either $H_{[d]}$ is discrete and $\left[H_{[d]}: \Gamma\right]<\infty$,
- or Γ is a uniform lattice in $\operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$ where $K=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ $M=\Gamma \backslash \mathbf{H}_{K}^{n}$ and $d \sim c \cdot \operatorname{dist}_{H_{K}^{n}}$ and $H_{[d]} \simeq \operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$.

The most symmetric groups and metrics

Theorem

Let $\Gamma=\pi_{1}(M)$ where M admits n.c. metric. Then

- either $H_{[d]}$ is discrete and $\left[H_{[d]}: \Gamma\right]<\infty$,
- or Γ is a uniform lattice in $\operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$ where $K=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ $M=\Gamma \backslash \mathbf{H}_{K}^{n}$ and $d \sim c \cdot \operatorname{dist}_{H_{K}^{n}}$ and $H_{[d]} \simeq \operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$.

This uses recent results of Mahan Mj on Hilbert-Smith conjecture.

The most symmetric groups and metrics

Theorem

Let $\Gamma=\pi_{1}(M)$ where M admits n.c. metric. Then

- either $H_{[d]}$ is discrete and $\left[H_{[d]}: \Gamma\right]<\infty$,
- or Γ is a uniform lattice in $\operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$ where $K=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ $M=\Gamma \backslash \mathbf{H}_{K}^{n}$ and $d \sim c \cdot \operatorname{dist}_{H_{K}^{n}}$ and $H_{[d]} \simeq \operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$.

This uses recent results of Mahan Mj on Hilbert-Smith conjecture.

Theorem

Let $\Gamma=F_{n}$ and $[d] \in D_{\Gamma}$. Then

- either $H_{[d]}$ is discrete and $\left[H_{[d]}: F_{n}\right]<\infty$,
- or $d \sim d_{s}$ - word metric; in which case $H_{[d]} \simeq \operatorname{Aut}(T)$.

Related results on general lattices

Theorem (Bader-Furman-Sauer)

Let H be a Icsc group containing $\Gamma=F_{n}$ as a lattice.
Then, up to finite index and compact kernel

- either $H \simeq \Gamma$ (trivial lattice),
- or $H \simeq \mathrm{PSL}_{2}(\mathbb{R})$ (non-uniform lattice),
- or H is a non-discrete closed subgroup of Aut(Tree) (uniform lattice).

Related results on general lattices

Theorem (Bader-Furman-Sauer)

Let H be a lcsc group containing $\Gamma=F_{n}$ as a lattice.
Then, up to finite index and compact kernel

- either $H \simeq \Gamma$ (trivial lattice),
- or $\mathrm{H} \simeq \mathrm{PSL}_{2}(\mathbb{R})$ (non-uniform lattice),
- or H is a non-discrete closed subgroup of Aut(Tree) (uniform lattice).

Theorem (Bader-Furman-Sauer)

Let Γ be a Gromov-hyperbolic PD-group, H a Icsc group, $\Gamma<H$ lattice.
Then, up to finite index and compact kernel

- either $H \simeq \Gamma$,
- or Γ is a cocompact rank one lattice and $H \simeq \operatorname{Isom}\left(\mathbf{H}_{K}^{n}\right)$.

The last result uses recent results of Mahan Mj on Hilbert-Smith conjecture.

Minimal entropy characterization

Minimal entropy characterization

Definition

Let Γ be Gromov-hyperbolic group, $[d] \in D_{\Gamma}$. Let

$$
\kappa_{[d]}=\inf \left\{\kappa>0 \mid \exists \text { rough isometric embedding }(\Gamma, \kappa \cdot d) \rightarrow \mathbf{H}_{\mathbb{R}}^{\infty}\right\}
$$

After Bonk - Schramm.

Minimal entropy characterization

Definition

Let Γ be Gromov-hyperbolic group, $[d] \in D_{\Gamma}$. Let

$$
\kappa_{[d]}=\inf \left\{\kappa>0 \mid \exists \text { rough isometric embedding }(\Gamma, \kappa \cdot d) \rightarrow \mathbf{H}_{\mathbb{R}}^{\infty}\right\}
$$

After Bonk - Schramm.

Theorem (after Bourdon)

Let $M=\Gamma \backslash \mathbf{H}_{K}^{n}$ where $K=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$. Then

$$
\frac{h_{[d]}}{\kappa_{[d]}} \geq k n+k-2, \quad k=\operatorname{dim}_{\mathbb{R}} K
$$

with equality attained iff $d \sim c \cdot \operatorname{dist}_{\mathbf{H}_{k}^{n}}$.

Thanks

Thank you.

Thanks

Thank you.

Applause to the Organizers!

Keith Burns, John Franks, Bryna Kra, Clark Robinson, Amie Wilkinson, Jeff Xia

Thank you!

