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We give a C” lower bound for read-once-only branching programs computing an explicit 
Boolean function. For n = (;), the function computes the parity of the number of triangles in a 
graph on v vertices. This improves previous exp(c &) lower bounds for other graph functions 
by Wegener and Zak. The result implies a linear lower bound for the space complexity of this 
Boolean function on “eraser machines,” i.e., machines that erase each input bit immediately 
after having read it. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

1.1. Branching Programs 

A Boolean function in n variables is a mapping from the set of 2” (0, 1) input 
strings to (0, 1). Several models of computation of such functions have been con- 
sidered in the literature (Turing machine, Boolean circuit, decision tree, Boolean 
formula, etc.). Branching programs are a model generalizing decision trees. The 
program is a directed acyclic graph. To avoid confusion we shall use the terms 
nodes and arcs to refer to the elements of this digraph. (We shall use branching 
programs to do computation on graphs; these graphs (input objects) will have 
vertices and edges.) 

One of the nodes of the branching program is a source (has fan-in zero) and is 
called START, some other nodes are sinks (fan-out zero) and are called terminal 
nodes. All nonterminal nodes have fan-out two. The two arcs leaving a nonterminal 
node are labeled 0 and 1. Each nonterminal node is labeled by an input variable 
and each terminal node is labeled 0 or 1. We may assume without loss of generality 
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that the program is leveled, START is on level one and arcs go from each level to 
the next level only. 

Each input string a = a, ... a,, defines a unique path from START to a terminal 
node: the computation path determined by a. This path, after entering a nonterminal 
node labeled xi, proceeds along the arc labeled ai. The path ends at a terminal 
node. The functionfcomputed by this branching program is defined by settingf(a) 
equal to the label of this terminal node. 

The size of a branching program is the number of nodes. The width of the 
program is the maximum number of nodes on any level. The length is the number 
of levels. The multiplicity of reading is the maximum number of times any particular 
variable in encountered as a node label along any computation path. 

An easy counting argument shows that most Boolean functions require exponen- 
tial size branching programs. It is desirable to find nontrivial lower bounds for 
explicit Boolean functions (functions that belong to P or at least to NP). 

The only known lower bound for the size of an unrestricted branching program 
computing an explicit Boolean function is due to NeEiporuk [Ne, Sa] and is 
Q(n*/log* n). Beame and Cook observed [BC] that NeEiporuk’s technique actually 
applies to the “element distinctness” problem in the following sense. Let x, ,..., x, be 
m integers between 1 and m*. Written in binary, they form the input string of length 
n = 2m log m. Then any branching program deciding whether or not all the x, are 
distinct must have size Q(m’) = SZ(n*/log* n). 

Another approach that has recently gained popularity is proving lower bounds 
for branching programs with bounds on various “resources” (width, multiplicity of 
reading). A similar approach to Boolean circuits has been quite successful recently 
[Ya2, Ral, Ra2, An, Ha, AB, Be]. Our aim is to present a result of this kind. 

1.1. Limited Reading 

A read-k-times-only branching program is allowed to encounter each variable at 
most k times along any computation path. This hierarchy of classes of branching 
programs was introduced by Masek [Ma]. Wegener [We] conjectures an 
exponential gap between the levels of this hierarchy and gives candidate Boolean 
functions computable with polynomial size read-k-times-only programs but conjec- 
tured to require exponential size read (k - 1)-times-only programs. 

No superpolynomial lower bounds are known, however, even for read-twice-only 
branching programs computing an explicit Boolean function, and no such bound 
will appear in this paper. 

In connection with the history of read-once-only branching programs we should 
mention a paper by Fortune, Hopcroft, and Schmidt [FHS]. In the context of 
program schemes, they gave an exp(c &) lower bound for computing an explicit 
function by read-once-only branching programs satisfying the additional restriction 
that the variables have to be examined in precisely the same order along each com- 
putation path. Without this restriction, however, their function is computable by a 
read-once-only branching program of polynomial size and is indeed defined by such 
a program. 
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Wegener [We] and Zak [Za] independently prove an exp(c A) lower bound 
for read-once-only branching programs computing certain, clique related graph 
properties. Wegener’s property is NP-complete (presence of a clique of size u/2 
where u is the number of vertices), Zak’s is polynomial time decidable (recognizing 
the graphs that consist of a clique of size v/2 and u/2 isolated vertices.) We shall 
improve the lower bound to C” (for a different function, also a polynomial time 
decidable graph property) (Section 2). 

1.3. Space-Complexity: The Eraser RAM 

It has been noted [Ma, BFKLT, Pu] that a lower bound S(n) on the size of the 
smallest branching program computing a Boolean function f, of n variables implies 
an Q(log S(n)) lower bound on the space complexity of the family (f,: n = 1,2,...} 
on any reasonable model of computation. 

The Fortune-Hopcroft-Schmidt result mentioned above corresponds to on-line 
space complexity: the input bits are read once and in a given order only. The 
[FHS] result provides an Q(A) p s ace lower bound for such computation 
(independently of the given order of input bits). 

General read-once-only branching programs suggest the following machine 
model which we call eraser RAM. This is a RAM with a special read-only input 
tape. The machine decides in the course of the computation in what order to read 
the input but once an input cell has been read, it is erased. Let us measure the space 
required by a computation by the number of bits stored at any given time on the 
worktape. 

The following is immediate. 

PROPOSITION. If a language L can be recognized by an eraser RAM in space S(n) 
then the set L, = L n (0, 11” can be recognized by a read-once-only branching 
program of size exp( O(S(n)). 

The results of Wegener and Zak thus imply an O(G) lower bound for the eraser 
RAM space complexity of their respective Boolean functions. Our result implies a 
linear lower bound on the same model. 

2. READ-ONCE-ONLY BRANCHING PROGRAMS:THE RESULT 

Let n = (;) and let us fix a bijection between the set ( l,..., n > and the set of pairs 
from {l,..., u>. Each string x=x1 . . . x, E { 0, 1 } n can be thought of as representing a 
graph G(x) on the vertex set ( l,..., v}. The value of each input variable corresponds 
to the presence or absence of an edge between a given pair of vertices in G(x). 

Let f,(x) denote the number of triangles in G(x) modulo 2. 

THEOREM. There exists a positive constant a such that every read-once-only 
branching program computing f, has size at least 2”“. 
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First we outline the idea of the proof. We shall use the term “edge” to mean any 
of the (;) pairs of vertices. (These are the edges of the complete graph K,.) Let P be 
a path in a branching program. We shall say that an arc of P labeled 1 from a node 
labeled X, has the effect of accepting the edge e; the arc labeled 0 from the same 
node rejects e. The edges accepted by P form the graph A(P), the rejected edges 
form the graph R(P). The union of these two edge sets constitutes the set D(P) of 
edges determined by P. 

Assume f,, is computed by a read-once-only branching program of size less than 
2”” for some appropriately selected small positive constant E. From this assumption 
we shall derive 

the existence of a node w in the program, two paths P, and P, both 
leading from START to w, and an edge e not determined by either P,, 
such that the parity of the number of triangles containing e in the graph 
A(P,) u e is i. (1) 

The read-once-only property implies that after w, the program follows the same 
path of computation for input graphs A(P,) u e and A(P,) u e and thus leads to the 
same terminal node. This means these two graphs have the same number of 
triangles mod 2; the same observations hold for A(P,) and A(P,). This contradicts 
the choice of the Pi and e. 

We proceed to showing how w, e, P,, and P, satisfying (1) are found. The depth 
of a node is its distance from START. 

PROPOSITION 1. Let P be a path from START to a terminal node. If three edges 
are undetermined by this path, they cannot form a triangle. 

Proof: Suppose, to the contrary, that the edges e,, e2, e3 of a triangle are left 
undetermined by P. Then the parity of the number of triangles in each graph 
A(P) u ei must agree with the parity of the number of triangles in A(P). But then 
adding all the three edges at once will change the parity, a contradiction. 1 

COROLLARY 2. The depth of each terminal node is at least u(v - 2)/4. 

Proof By Turan’s theorem in graph theory (cf. [Lo, Problem 10.30,34]). Any 
path of length less than u(u -2)/4 leaves more than u2/4 edges undetermined, 
forcing the graph of undetermined edges to contain a triangle. 1 

It follows that for any constant c < & there are precisely 2”” computation paths of 
length cn beginning at START. Since the branching program has size less than 2”” 
there exists a node w such that at least 2”‘-“‘” paths of length cn connect START 
to w. 

Let us fix c at a quite small value; any c d 10 ~ 5 will be safe. Then, E must be even 
smaller. let us set E = c3j2. At the same time we assume that u is sufficiently large. 

Using w as a “checkpoint,” we shall classify the edges according to their status at 
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the time various computation paths pass through w. We shall see that these classes 
exhibit a strong structure. 

Let D denote the set of edges determined by at least one path from START to w. 
Let U denote the set of the remaining (undetermined) edges; 1 DJ + ICI/ = n. 

PROPOSITION 3. Let P be any path from START to w. It is impossible that three 
edges e,, e,, e3 form a triangle, where e, ED- D(P), e2, e, $ D(P). 

ProojY The proof is similar to that of Proposition 1. Suppose the contrary. The 
read-once-only property implies that e, is not tested along any path starting at w 
and therefore the parity of the number of triangles in A(P) and A(P) u {e, } is the 
same. In other words, e, is contained in an even number of triangles in A(P) u {e,). 
Similarly we infer that the number of triangles containing e, in the graph 
A(P) u {e,, e,, e3} is even. But this number is precisely one greater than the num- 
ber just shown to be even, a contradiction. 1 

Let AR denote the set of those edges which are accepted along some path from 
START to w and are rejected along some other. Clearly, AR E D. 

PROPOSITION 4. There is no triangle e,, e2, e3 with e, E AR, e2, e, E U. 

ProoJ The proof is a parity argument similar to the proofs of Propositions 1 
and 3. Suppose the contrary. Let be P be any path from START to w, accepting e, 
and let Q be some other path from START to w, rejecting e,. Then the parity of the 
number of triangles in A(P) must agree with the parity of the number of triangles in 
A(Q). Similarly the parity of the number of triangles in A(P) u (e2> and in 
A(Q) u {e2} is the same. In other words the number of triangles containing e2 in 
A(P) u {e2} and the number of triangles containing e2 in A(Q) u {e,} have the 
same parity. The same holds for e3. Clearly the number of triangles in 
A(P) u {e2, e3> and the number of triangles in A(Q) u (e,, e3) are the same mod 2. 
One can divide the triangles in A(Q) u ( e2, e3} into three classes, namely the 
triangles in A(Q), the triangles containing e2 in A(Q) u {e2} and the triangles con- 
taining e3 in A(Q)u (e3}. In the case of the triangles in A(P)u (e,, e3} one must 
add the triangle {e,, e2, e3 } to the corresponding classes. This contadicts the parity 
arguments above. 1 

One can deduce from Proposition 3 that most edges determined along any path 
between START and w are actually determined along P, i.e., the set D-D(P) is 
small. Moreover, most edges determined by some path to w are both accepted and 
rejected along paths to w, i.e., D-AR is a small set. More specifically: 

LEMMA 5. (a) ID- D(P)1 < 3c”“n. 

(b) IUI>(1-~-3c~/~)n. 

(c) IARl 2 (c - E) n. 
(d) ID - ARJ < 4c3/2n. 
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Proof. For a set A of edges, let deg,(p) denote the degree of p with respect to 
the graph formed by A. 

(a) Let e = pq be any edge in D - D(P). By Proposition 3, every vertex is 
adjacent in D(P) to at least one end of e. Therefore, 

d%dp) + deg,,&) B (v - 2). 

Adding up these inequalities for all pq E D -D(P) we obtain 

Cdeg.-.(.,(~)deg,(.,(p)8 (u-2) ID- D(P)I. (2) 

On the other hand, also by Proposition 3, the neighborhood in D-D(P) of any 
vertex p induces a clique in D(P). Therefore 

deg,- DtpJ(~) u 
2 

<(D(P)/ =cn=c 
0 2 * 

Consequently, 

Combining (2) and (3) 

deg,- Dcpj(p) < 1+ c”~o. (3) 

(b) Follows immediately from (a) since 1 UI = n - IDI. 

(c) Clearly, the logarithm of the number of START-to-w paths is a lower 
bound for IARI. 

(d) By (a), (DI = ID - D(P)1 + ID(P)1 < 3c3/*n + cn. Combining this 
inequality with (c) we obtain ID - AR( < (E + 3~~‘~) n = 4c312n. 1 

Lemma 5(b) implies that the graph U has a vertex p0 of degree greater than 
d = (1 - c - 4c3i2) u. Let S be a set of precisely d neighbors of p. in U and let T be 
the complement of S (I TI + ISI = u). 

Proposition 4 implies that no edge in AR has both of its endpoints in S. From 
this, it follows that AR is “mostly” bipartite, with bipartition (S, T). We can 
actually deduce even more structure: most vertices in Tare adjacent in AR to either 
almost all or to almost no vertices in S (about half of the vertices will satisfy each 
alternative). More precisely, let us divide T into three classes, To, T,, T2. We shall 
refer to a moderately large constant K, 20 <KG 1/(8c”*). 

Let To consist of those p E T which have more than Kc”~u neighbors in S in the 
graph D - AR. We put p E T- To into T, or T2 according to whether p has more 
AR-neighbors in S than U-neighbors or not. Let deg;,(p) denote the number of 
AR-neighbors of p in S and analogously for other classes. 
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LEMMA 6. (a) ) T, 1 < 2cu/K. 
(b) For each p E T,, degc(p) < 5c3/*v. 
(c) For each p E T2, deg;,(p) < 5c312v. 

Proof. By Lemma 5(d), 

[TOI Kc”%< ID-AR/ ~4c~‘~n. 

Claim (a) is now immediate. 
To prove (b) and (c), let PE T- TO. Let N, and N, denote the sets of U- 

neighbors and AR-neighbors of p in S, respectively; let nj = INi I. Since p $ T,,, we 
have 

n, + n2 > ISJ - Kc’12v > 611/l. (4) 

On the other hand, by Proposition 4, all edges between N, and N, belong to 
D-AR. By Lemma 5(d) it follows that n, n2 < 4c312n < 2c3’*u2. Consequently, 

2n,n2 min{n,, n,} 6- < 5c312v. 
nl+n2 

Let X denote the set of AR-edges between T, and S. 

COROLLARY 7. (a) (1 - S/K) cv/2 6 I T, I d (1 + 4~“‘) CO/~. 

(b) [AR-XI < (3c/K) v2. 

Proof: We begin with (b). Clearly, 

W-XI < IT12+ IT21 max,.T,degrLAp)+ ITo1 ISI 

By definition, ) T21 6 I TI d (c + 4c312) II. We use Lemma 6(c) to estimate the second 
term and Lemma 6(a) and the fact ISI <u for the last term. 

For the upper bound in (a), we obtain from Lemma 6(b) that 

IT,1 <min “1 PI 
PET, degg(p) ’ JSJ - 5c3’*u 

Lemma 5(a) provides the bound IDI < (c + 3c3’*) n. By the definition of S (after the 
proof of Lemma 5), ISI = L( 1 -c- 4c3j2) u J. A combination of these estimates 
yields the desired upper bound. 

For the lower bound we first observe that /XI > (C-E - 7c/K) u2/2 > 
(1 - 8/K) cu*/2. This follows from Lemma 5(c) and part (b) of this corollary. On the 
other hand, trivially, I T1 I 2 IX//u. 1 

The structural consequence of Lemma 6 and Corollary 7 for the AR graph is that 
the subgraph Xinduced between T, and S is a nearly complete bipartite graph, and 
X contains almost all edges of AR. 

m/35/2-2 
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In order to focus on X, let us make a decision on the value of each input variable 
(edge) in AR - X. There are 21AReXI < 2(3’K)cU2 possible outcomes (by Corollary 
7(b)). Let us choose the one that is the most frequent among the START to w 
computation paths. Having fixed these values, we still have at least 

2”‘~ E)H- (3/K) m2 > 2(c/2)u2(1 -8/K) 
(5) 

computation paths left. Let Z7 denote the set of these paths: 

1% 1171 >;“‘(I -8/K). (6) 

(The base of the log is 2.) 
Let t = ( T, ( and s = ISI. We see, that log 1171 is nearly ts. In order to complete the 

proof, we show, that, unless situation (1) arises, the number of subgraphs of X 
arising from paths P E 17 must be substantially less than 2”: only about 2’“‘2. This is 
impossible because different paths define different subgraphs of X. (This in turn is 
true since the possible branchings on variables in AR-X have been eliminated.) 

The proof is based on a counting lemma for matrices over GF(2). Let A, B, C be 
(0, 1)-matrices of the same dimensions. We shall say that A E C mod B if for every 
i,j, B[i,j] =0 implies A[i,j] = C[i,j]. 

LEMMA 8. Let A, ,..., A, be different t x s matrices over the two-element field 
GF(2). Furthermore, let B and C be s x s matrices over GF(2). Let fl be the number of 
l’s in B. Assume that A,?‘A, E C mod B for every i. Then 

log N < b + f (s + t + log s). (7) 

Proof. First we estimate the number of t x s matrices of rank < t/2 over GF(2). 
There are less than 2r2’2 possible choices of the column space. Given the column 
space of dimension <t/2, there are 62 *‘2 choices for each column, giving a total of 
<2 ‘(‘+ r)‘2 matrices. 

Next, we estimate the number of those Ai having rank > t/2. Such a matrix has a 
set of t/2 linearly independent columns; they are positioned in any of (,K) < s”~ 
ways. Let us fix their positions, say columns l,..., t/2, and decide their entries. Let 
us estimate, how many ways the remaining columns can be filled. For each pair 
(iA, where 1 <j< t/2 < i<s and B[i,j] =O, we have a linear condition 
Cf, = 1 x,A[k, j] = C[i, j] for the prospective entries xik. All these equations are 
linearly independent and their number is > t(2s - t)/4 - /I. This reduces the number 
of candidates (2’“) by a factor of 2 - ‘(2s-‘r)/4+@. The number of those Ai of rank > t/2 
is thus 

<s 2 r/2 Is- I(Zs- ry4+/9 _ 28 + (1/2)(s+ t/2 +logs) - (8) 
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Add the bound 2’(s+‘M2 on the number of low rank matrices to this; the figure in (7) 
is a generous overestimate of the logarithm of the sum. 1 

Let now s = ISI, t = 1 T, 1, and for each P E Z7 let A P be the t x s adjacency matrix 
of the bipartite subgraph of X defined by P. (This graph is the restriction to T, x S 
of A(P).) Let B be the s x s adjacency matrix of the induced subgraph of D - AR on 
S. (Recall that the complement, relative to S, of this graph belongs entirely to U by 
Proposition 4.) Observe that the entries of ,4,‘A, count module 2 the number of 
common neighbors of each pair of vertices in S. The falsity of (1) implies the 
statement that all the Ap’A,r Cmod B mod 2 for some fixed s x s matrix C. The 
number of l’s in B is fi = 2 1 D-AR I< 8c3j2n < 4c312v2 by Lemma 5(b). Using the 
upper bound of Lemma 7(a) for t we now infer from Lemma 8 that 

log InI <~+~(S+t+log~)<~+~(D+log~)<~u~ 
( 

2 log u 
1+2oc”‘+- 

> 
. (9) 

V 

This contradicts (6) for large u, completing the proof of the theorem. 1 
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