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1. Introduction

We consider the complexity of computing Boolean functions by deterministic and
randomized linear decision trees, i.e. by decision trees where each test decides if a linear
inequality holds for the input. Let us give first a brief overview of the relationship between
this model and several similar ones investigated in complexity theory.

This model is a generalization of the standard decision tree model, where each test
determines whether an input variable is 0 or 1. The decision tree model was studied in
great detail (see the survey in Bollobés [5], and Kahn, Saks and Sturtevant [18]). Recently
the randomized version also received attention (Yao [34], [36], Saks and Wigderson [28], -
King [19], Hajnal [17], Grdger [13], Nisan [26]).

A generalization of the standard model allowing restricted linear tests was considered
in Hajnal, Maass and Turdn [16], where the problem of proving lower bounds for linear
decision trees was also raised. Another related generalization is discussed in Aggarwal,
Coppersmith and Kleitman [1].

Linear decision trees were intensively studied in the case when the inputs are reals,
rationals or integers, for problems such as sorting (Yao [33], Snir [30]) and the knapsack
problem (Dobkin and Lipton [10]). The lower bound proofs in the real case typically use
geometric arguments such as component counting or face counting (Dobkin and Lipton
[11], Yao and Rivest [37], Snir [29]). In the integer case one can also make use of similar
arguments (Klein and Meyer auf der Heide [20], Meyer auf der Heide [23]). Here it is
important that the inputs can be large integers as well. We note that the lower bounds in
these results are quadratic (Dobkin and Lipton [10], Klein and Meyer auf der Heide [20],
Meyer auf der Heide [23]) and in some cases even exponential (Dietzfelbinger and Maass
[9]), while in the model considered in this paper n is always an upper bound. Results about
the probabilistic and nondeterministic versions are given in Manber and Tompa [21], Snir
[31], Meyer auf der Heide [24], [25].

Linear decision trees computing Boolean functions are also somewhat related to thresh-
old circuits (a linear decision tree of depth £ may be viewed as a size O(2*), depth 3 thresh-
old circuit with special structure). This connection is illustrated by the fact that a very
simple proof, analogous to the proof of Theorem 1., gives a linear lower bound for the size
of unrestricted depth threshold circuits (Grdger and Turdn [14]).

In this paper we consider the function

INNER PRODUCT MOD2,(Z1,--+ ,ZnyY1y--- +¥Yn) =X Y 1= (1 AY1) D ... B (Tn AYn).

There are several lower bound results for this function in different models, using the fact
that its table is an Hadamard matrix (Tarjan [32], Chor and Goldreich [7], Babai, Frankl
and Simon [2], Hajnal, Maass, Pudlék, Szegedy and Turédn [15], Bruck [6]).
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We show that the complexity of computing INNER PRODUCT MOD2, by linear
decision trees is £(n), even if randomization and an arbitrary fixed error probability € < %
for every input is allowed. Previously sublinear lower bounds for the complexity of graph
connectivity, resp. parity in the deterministic model were obtained by Dietzfelbinger (8]
and Groger [12].

Sections 2, 3 and 4 present the lower bounds for the deterministic, Las Vegas and
2-way error randomized models, respectively. Although the linear lower bound for the
2-way error randomized model implies linear lower bounds for the simpler models, we give
a proof for each case, partly because better constants are obtained for the simpler models

‘and partly for reasons for exposition. Section § contains some remarks and open problems.

2. Deterministic linear decision tree complexity

A linear decision tree (LDT) over the variables z1,... ,zn is a binary tree T with each

inner node labelled by a linear test L of the form i a;z; : v, where ay,...Qmnm,y are real
numbers. The edges of T' are labelled by 0 or 1, colr;ésponding to the outcomes <, resp. >
of the tests. The leaves of T are labelled by 0 or 1. The output T'(x) of T for x € {0,1}™
is the label of the leaf where x arrives, t7(x) is the number of tests along the path followed
by x. The complexity of T is C(T) := max{tr(x) : x € {0,1}™}. The LDT’s having no
inner nodes just a single leaf labelled by 0 or 1 are called trivial, their complexity is 0. We
always assume that the trees contain no redundant tests, i.e. every leaf is reachable by
some input. Two LDT’s T and 7' are equivalent if there is an isomorphism between the

two trees such that every x follows paths corresponding to each other in 7' and 7". Note

* that although there are infinitely many linear tests, the number of pairwise nonequivalent

LDT’s is finite, as for a linear test L what matters is the dichotomy of {0,1}™ realized
by L. Let 7,, denote a fixed set of LDT’s containing exactly one representative of each
equivalence class.

An LDT T computes a Boolean function f : {0,1}™ — {0,1} if T(x) = f(x) for every
x € {0,1}™. Let T,n(f) denote a fixed set of LDT’s containing exactly one representative
of each equivalence class of trees computing f.

The deterministic linear decision tree complexity of f is

D(f) :=min{C(T): T € Tn(f)}
Theorem 1. D (INNER PRODUCT MOD2,) > %.

Proof. A linear test L given by ), c;zi+ ., Biyi : v is 0 (resp. 1) over a set Z C {0, 1}%n

=1 1=1
if for every (x,y) € Z it holds that ax + By < v (resp. ax + By > 7). L is nontrivial over
Z if it is neither 0, nor 1 over Z.



Lemma 1. Let X,Y C {0,1}", |X]| = |Y| = k > 1, and assume that L is nontrivial on
- X xY. Then there are partitions (X1, Xg) of X, and (Y7,Yr) of ¥ such that 0 < [ X[ =
|Yz| <k, LisOon X1 x Yy, and Lis 1 on Xg X Yg.

Proof. Order the elements of X (resp. Y') according to the value of ax (resp. By), resolving
ties arbitrarily. Thus X = {xi1,...,xx}, Y = {y1,...,¥k}, where ax; < ... < ax; and
By1 < ... < Byk. Let £ be the largest index such that ax, + By: < v. By our assumptions
0 <2< k. Then Xr = {X1,...,%Xe}, Xr := X\X1, Y1 := {¥1,-..,¥e}, Yr:=Y\YL
satisfy the requirements of the lemma. O

" Now consider an LDT T c¢omputing INNER PRODUCT MOD2,. We define a se- -

quence of sets X;,Y; C {0,1}" (z = 0,1,...) such that all inputs in X; X Y; follow the
same path of length i in 7. Let Xy = Y := {0,1}". Assume that X; ; and Y¥;_; are
defined and let v;_; be the node of T where the inputs in X;_; X Y;_; arrive after z — 1
tests are evaluated (thus vo is the root). Assume that v;—; is not a leaf. Apply Lemma
1. to X;_1, Yi_; and the test L;_; in v;—; to get (Xi—1,1,Xi-1,r) and (Yi—1,1,Yi-1,R)-
If |X;—1,0] > |Xi-1,r| then let X; := X; 11, Yi :==Yi,L. Otherwise let X; := X;_1 R,
Y; := Y;—1,r. Clearly all inputs in X; X ¥; follow the same path of length ¢ in T" and it
holds that |X;| = |Yi| > 2"
Theorem 1. is proved by showing that v; is not a leaf if ¢ < %.

Lemma 2. (Lindsey, see e.g. [2]). For every X,Y C {0,1}"

l]{(x,y)EXxY:x-yzl}l—[{(x,y)EXxY:x-y=0}]| < VIX|Y]-2m.

O

Hence if |X| = |Y| = k and INNER PRODUCT MOD2,, is constant on X X Y then

k2 < vk -k -2, thus k < 27/2, If v; is a leaf then INNER PRODUCT MOD?2,, is constant
on X; x Y;. Thus 27 < 27/2 and so i > 7. _ d

3. Las Vegas linear decision tree complexity

A Las Vegas, or O-error randomized LDT algdrithm computing a Boolean function
F:{0,1}™ — {0,1} is probability distribution P over Tm(f). P(T') denotes the probability
of T. The complexity of P on xis E(P,x) := Y. tp(x)-P(T),i.e. the expected number

Tm(f)

of tests asked for x. The complexity of P is C(P) := max{E(P,x) : x € {0,1}™}. The
Las Vegas linear decision tree complexity of f is

LY(f) :=inf{C(P): P is a Las Vegas LDT algorithm for f}
Theorem 2. LV (INNER PRODUCT MOD2,) > con,
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where c(> 0.21) is the minimum of the function }(-z?logz — (1 — z?)log(1 — z)) -
on (0, 1).

Proof. We use Yao’s method [34] to translate the problem into one about distributional
complexity.
Let T be an LDT computing f : {0,1}™ — {0,1} and let Q be a distribution on
{0,1}™. Q(x) denotes the probability of x. The complexity of T wrto @ is A(T,Q) :=
Y tr(x)- Q(x). The complexity of f wrto @ is A(f, Q) :=min{A(T,Q): T € Tn(f)}.

{0,213

‘The distributional linear decision tree complexity of f is

A(f) == sup{A(f,Q) : @ is a distribution over {0, 1}m}.
Lemma 3. (Yao [34]). LV(f) = A(f). O

We note that Yao proved this result and Lemma 6. (to be given in Section 4.) for
decision trees, but both apply with the same proofs to LDT’s as well.

Therefore to prove Theorem 2. it is sufficient to show that if @ is the uniform distri-
bution over {0,1}%" then

(1) A(INNER PRODUCT MOD2,, Q) > con.

Let Z C {0,1}*". An LDT T is correct on Z if T(x,y) = x - y for every (x,y) € Z.
Let

be the average complexity of T on X x Y. We define
fa(k) := min{Ar(X,Y): X,Y C{0,1}", |X|=|Y|=k, T is correct on X x Y},

i.e. fa(k) is the best average complexity achievable on a k X k square. With this notation
(1) becomes

2) fa(2") = con.

Now (2), and thus Theorem 2. follow from the next lemma.
Lemma 4. For every k (1 <k < 2") it holds that fn(k) > 2co(logk — F).
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Proof. We argue by induction on k, if k < 27/2 then there is nothing to prove. For the
induction step consider k > 2"/2. We show that if X,¥Y C {0,1}"*, | X|=|Y| =k and T is
a correct LDT on X X Y then Ap(X,Y) > 2¢o(logk — g)

The remark following Lemma 2. implies that T is nontrivial and hence from Lemma
1. we get partitions (X1, Xg) and (Y7,Yr) such that 0 < [Xr| = |YZ| < k, and the test
in the root of T'is 0 on X1 x Y7, and 1 on Xg X Yg. Assume w.l.0.g. that [Xp|=£2> %

We estimate Ap for the four rectangles obtainable from these sets. As the test in the
root of T'is 0 on X X Y7, (resp. 1 on Xg X Yg), it must be the case that the left subtree
Ty, of T (resp. the rlght subtree Tr of T) is correct on X L X YL (resp on X R X YR)
Therefore by induction

(3) Ar(Xp,Y1) = Ar (X1, Y1) +1 2 fa(€) +1
and
(4) Ar(XRg,Yr) = Arpy(XR,YR) +1 2 fa(k—£) + 1.

For the other two rectangles we claim
(5) AT(XR,YL) = fn(k‘ —{) and AT(XL,YR) > fn(k - E).

This follows from the following observation.

Lemma 5. Let U,V C {0,1}", [U| =u, |[V| =v and let T be a correct LDT on U x V.
Then Ar(U,V) > fn(min{u,v}).

Proof. Assume w.l.o.g. u < v. V' C V, |V| = u then by the definition of f,,
Ap(U, V') > fo(u). Averaging over all such sets V' ’

falu) < ) > Ar(U, V') = Ar(U,V)
vicv
[V|=u
as every (x,y) € U x V is contained in the same number of rectangles U x V'. O
From (3), (4) and (5), using £2 + (k — £)® > £~
Ar(X,Y) > l(ez (fn(ﬁ) +1) 4 (k= 02 (Falk =€) + 1) + 200k — £)fu(k — £) =
£2 k £)? £
1
>2+ (E)zw) " (1 - (7)) fli -0

)



From the induction hypothesis

1 £.\2 £.2

5t (g) fal€) + (1 - (E) > fa(k—£) 2

1 L2 n £.2 n
> Loneo (5" (oge-3) + (1- () Gorte-0- ) ) =

n 1 L2, £ I I4
= 2¢ (logh — 2) + (5 +2¢ ((E> log =+ (1~ (£)") log(1 - E)))
220 (logk = ).
where in the last step we used the definition of ¢g. Hence
Ap(X,Y) > 2¢0 (logk — 2). . M

This also completes the proof of Theorem 2. ‘ O

4. Randomized 2-way error linear decision tree complexity

A randomized 2-way error LDT algorithm computing a Boolean function f : {0,1}™ —
{0,1} is a distribution P over 7,,. (As errors are permitted we do not restrict ourselves
to Tm(f).) An LDT T makes an error on x if T(x) # f(x). Let e(T,x) = 1if T
makes an error on X, and e(T,x) = 0 otherwise. The error probability of P on x is
e(P,x) := Y. e(T,x) - P(T). P computes f with error < € if e(P,x) < € for every x €

T

{0,1}™. The complexity of P on x is E(P,x) := ), tr(x) - P(T). The complexity of P is
Tm
C(P) := max{E(P,x) : x € {0,1}™}. The randomized 2-way e-error linear decision tree
complexity of f is
R(f):=inf{C(P): P is arandomized 2-way error LDT algorithm

computing f with error < e}.

Theorem 3. For every e such that 0 < e < i

R¢(INNER PRODUCT MOD2,,) > (1 — 4e) (g +log(1 - 4¢))

where ¢; = Ec%ég =0.157....

Proof. Here again we use Yao’s method [34] to reduce the problem to distributional
complexity with error.
Let T be an LDT and Q be a distribution over {0,1}™. Then T computes f :

{0,1}™ — {0,1} with error < e under Q if 3 e(T,x)-Q(x) < e. The complexity
{o,1}m



of T wrto Q is A(T,Q) = Y, tr(x)- Q(x). The e-error complexity of f wrto Q is

{o,1}m™
A4(f,Q) = min{A(T,Q) : T is an LDT computing f with error < e under Q}. The
e-error distributional linear decision tree complexity of f is

AS(f) :=sup{A*(f,Q) : Q is a distribution over {0, 1}m}.

Lemma 6. (Yao [34]). Ré(f) > A%(f) for 0<e< 3. O

Hence it is sufficient to prove that if Q is the uniform distribution over {0 1}2" and

"0<e< - then

1
¢ 2 > _
(6)  A°(INNER PRODUCT MOD2,,Q) > gro—=(1 —2¢) (5 +log(1 - 2¢)) .

Let Z C {0,1}*". An LDT T is e-correct on Z if |{(x,y) € Z: T(x,y) # x-y}| =

€-|Z|. T is < e-correct on Z if it is €'-correct for some € < e. We define
fa(k,€) == min{Ap(X,Y): X, Y C {0,1}", |X|=|Y|=k%k, T is < e—correct on XxY},

where Ar(X,Y) is as defined in section 3. Note that f,(k, €) generalizes f,(k) as fn(k,0) =
frn(k). With this notation (6) can be expressed as

() Fa(2,6) > 211 sl 96)( +log(1-—26)>

Consider the following function for & > 0 and 0 <e<Ll:

! . , oL
gn(k,€) = { 210g3k(1 — 2¢) (IOg(k(l - 25)) - —2'> ife< g,
0

otherwise.

For later reference we mention that
a) gn(k,e€) is convex in e for every fixed k,

b) ga(k, €) is convex in k for every fixed e,

c) Eg"(k’ €) is monotone increasing in k for every fixed e,

d) Eg"(k’ €) is monotone decreasing in € for every fixed k,

1—2¢ .
e) gn(k,€) =gn (mk,e'> if ¢, < %
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Here a) and b) follow from the convexity of zlogz and the fact that fT is convex
if f is convex; c) follows from the fact that f + is monotone increasing if f is monotone
increasing; ) follows from the definitions. Property d) follows as (1—2¢)(log(k(1—2¢)) — 2
is convex and tends to 0 if ¢ / %

Now (7), and hence Theorem 3. are implied by the following lemma.

1
Lemma 7. For every k and e such that 1 <k <2"and 0<e <1 fo(k,e) > -I;gn(k, €).

Proof. We proceed by induction on %, and for a given k we show that the lemma holds

~ for every €. If k£ < 27/2, the claim is obvious.

For the induction step consider k > 27/2. It ha,s to be shown that if X Y C {0 1}"
|X| =|Y| =k and T is an < e-correct LDT for X x Y then Ap(X,Y) > %gn(k, €). From

property d) above we may assume w.f.0.g. that T is e-correct.

n

Ife>Z, ork < 2~ the claim is again obvious. Otherwise k& > 2 /

. Lemma 2.
implies that in this case T has to be nontrivial. Indeed, as

Hxy)eX xY:ix-y=1} - |{(xy) € X xY :x-y =0} <k.2n?

we get that both sets have size > k% — 1k - 27/2, thus the trivial LDT’s have error
on/2 :
2 2k &
Applying Lemma 1. to the linear test at the root of T' we find partitions (X, Xg)
and (Y7, Yg) such that the test is constant on X1 XY and Xz xYg and w.l.o.g. | X | =¥,

f<t<k.
Assume that T is e;-correct on X, X Y7, € 1-correct on Xp X YR, € 2-correct on
Xp x YL, € 3-correct on X, X Yg and e;-correct on (X x Y)\(Xr x Yz). We claim

1
(8) Ar(XrL,YL) 2> —gn(ﬁ e1)+1 and Ap(Xg,YRr) > egn(k Ler1)+1,

1 1
(9) AT(XR,YL) > gn(k E €9 2) and AT(.XL,YR) Z -L—-—-Zgn(k E €9 3)

Here (8) follows by applying the induction hypothesis to the left and right subtrees of T
(9) follows from the following variant of Lemma 5.

Lemma 8. Let U,V C {0,1}, [U| = v, |V| = v, w := min{u,v}, and let T be an €'-correct
LDT on U x V. Assume that f,(w,e) > %gn(w, ¢) holds for every € (0 < e <1). Then

1
Ar(U, V) > ;D—gn(w, ).



Proof. Assume w.l.o.g. u <v. f V' CV,|V'|=u and T is ¢(V')-correct on U x V' then
by the assumption Ar(U, V') > Lg,(u,e(V')). Averaging over all sets V' and using the
convexity of g,(k,€) in €

1
AU = 3 A0V 2 75 T Laa(esV) 2 2on(u s 3 )
(‘U.) VICV (u) VICV u U (u) V’CV
]V'|—=u ]V’T:u l |V'r=u
1 '
= ;gn(u,e ).

From (8) and (9)
1
Ar(X,Y) = ﬁ(ﬁAT(XL, Y)+ (k=02 Ar(Xg, Yr)

+0(k — &) (Ar(Xg, Y1)+ Ar(X1,YR))) >

1 1
25+ 17 (Lgn(lye1) + (k — £)gn(k — £,e21) + £(gn(k — £, €2,2) + gn(k — £, €2,3)))

where again we used £% + (k — €)% > ’”2—2 To simplify this expression note
e(k* — %) = e21(k — £)° + (e, + €2,3)(k — £),
so the convexity of ¢,(k,¢€) in e implies

(k—£)gn(k — £, e21) +£(gn(k — £, €2,2) + gn(k — £ €2,3)) >

k—¢ £ ‘
Z(k + E)gn (k - E, k——}—éez’l + m(62’2 —+ 62’3)) = (k -} E)gn(k - 2, 62).
Hence
1 1
(10) AT(X,Y) 2 5+ 15 (bgalty ) + (k + O)ga(k — &, e3)).
Now we claim
1 3 k
>-4+2g. (2.
(1) Ar(X,Y)2 3+ Fon (3)
The definitions imply
- (12) (1—2e)k? = (1 —26)0% + (1 — 2¢;)(k* — £2).

To prove (11) we distinguish 3 cases.

1 1
Case 1. ¢ < 3 and e < 3



From (10), (12) and properties b), ¢) and e)
1
Ar(X,Y) 2 &+ 2 (tgn(be) + (k4 alk ~£,2)) =

1,1 1— 26 A 1- 2
5+ (o (A2 00) 4 (v 0, (152 - 006) )

k420 (1-2¢ £ +1—262k2-e2 B |
2 I\ T 9c k420 " 1—2 k+20°°) "

+k+2£ k? ] >l+§ Ee
2 \kveet) T2 e A\3Y)

Case 2. ¢ < 5 and e > %

We use (10), properties c), e) and %1_2—253—2 > %, which in turn follows from (12) and

€y > -;— to get

Il

>

+

Il
N = N

1 I 1-— 261
> —

Ar(X,Y) > 2—1— Egn(f €)= k2gn< . E,e)

1 1—-2e1 1—2¢
>4 (2L >
—2+1—2eleg”(1—-7 e‘)-

1 ¢ k2 1 1 3 k
> - _— — _ .
_2+k29n<£a5)_9 kgn(k 5)_ Lgn<3, )

1 1
Case 3. ¢; > 3 and € < 3

Here we use (10), properties c), e) and =52 11 2;: (k—2) > k+e’ implied by (12) and ¢, > 3
to obtain

1 k44 1-2
Ap(X, Y)> + (k—{—@)gn(k ﬁeq)_; ];g”(l 62(k £)>

1 1-2 1 [1-2g 1 k4t [ R
. . k- e (s
5t T 25k eg( e (k=0 ) 5T R Y <k+ee)

JL,2 (ENSL1. 8 (k)
2 T\ \¢) =3 T I \3¢)"
1

This proves (11). (As we assumed € < 3, €1 > 7 and €; > § is not possible.) Now to get

Lemma 7. we show 3 . .
hd i > g (k. 6.
+ kgn <3,6) z kgn(kae)

[V

N | =

If gn %,e) > 0 then

1 n

n
5T 3log 3(1 ~2) (103;( (1-29) - ;) 2 5T 3(1 — 2¢) (log(k(l ~ 2¢)) — §) .
If gn('3;, 6) = 0 but g,(k,€) > 0 then log(§(1 — 26)) < % implies log(k(l —26)) — 2 <log3,

SO
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1 1 n 1
ol _- (1 (1 —2€)) — =) < =
kgn(k,e) 210g3(1 2¢) (log(k(l e)) 2) <3

This completes the proof of Theorem 3.

Finally we state a bound for every e < —;—

Theorem 4. For every 6§(0 < § < 3

2

1
R%~% (INNER PRODUCT MOD2,) 2 ¢ (5-1).
Proof. In order to decrease the error probability of a randomized algorithm one can
repeat the algorithm several times and take majority vote among the outputs obtained.
The standard Chernoff inequality states that if S, is the sum of m independent random

variables each taking value 1 (resp. 0) with probability p (resp. 1 — p) then Pr(Sp, >
2

pm + h) < e~ . In order to decrease the error probability below % it suffices to have

Pr (Sm > —”g—) < 6_252’“ < %. This holds if m = ;)—2—2—, and then Theorem 4. follows from
Theorem 3. (]

5. Some remarks and problems

The lower bounds of Theorems 1., 2. and 3. apply also to decision trees with separable
tests, i.e. with tests of the form f(z1,...,25) + 9(y1,.-. ,Yn) : 7, where f and g are
arbitrary functions. ’

On the other hand INNER PRODUCT MOD2, can be computed by a quadratic
decision tree of depth [log(n + 1)]. It would be interesting to know if e.g. the function
(1 AY1A21)D...®(Tn Ayn A z,) is difficult for quadratic decision trees, and in general to
prove lower bounds and hierarchy results for algebraic decision trees computing Boolean
functions. In this context the results of Babai, Nisan and Szegedy [3] may be useful.

It would also be interesting to compare the computational power of deterministic,
nondeterministic and randomized LDT’s. We note that both for Boolean decision trees and
for LDT’s with real inputs the deterministic and the randomized versions are polynomially
related (Nisan [26], Meyer auf der Heide [24]), but the reasons for this are apparently
different in the two cases.

Another possibility is to consider linear branching programs computing Boolean func-
tions, suggested by Pudlék [27]. Here again, both branching programs computing Boolean
functions, and linear branching programs with real inputs (e.g. for sorting) have been
studied in detail (see e.g. Barrington [4], resp. Yao [35]).

Concerning the complexity of the most difficult function in the deterministic LDT
model, the standard counting method gives an n — 2logn lower bound. On the other

11



hand every 3 variable function has complexity < 2, hence every n variable function has
complexity < n — 1, i.e. there are no evasive functions in this model.

Finally we note that Theorem 2. implies an §2(n) lower bound for the Las Vegas LDT
complexity of determining if an n vertex graph is connected, using the reduction of [15].
The best upper bound is O(nlogn), which also holds in the deterministic model.
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