Hello Class, Here is some more specifics on how to handle the boundary conditions for the Runge-Kutta part of the PPDE computer problem: *General Dirichlet Boundary Conditions: u(x_0,t)=B_0(t) and u(x_m,t)=B_m(t) specified ("_" means subscript). *Runge-Kutta formula for the new time t_{j+1}, given U_{ij} at prior time t_j: U_{i,j+1} = U_{ij} + k*(RK1+2 (RK2+RK3)+RK4)_{ij}/6, for i=1 to m-1 interior points only ("*" means multiplication), where RK1_{ij} = F(x_i,t_j,RU1_{ij},DRU1_{ij},DDRU1_{ij}), for i=1 to m-1; RU1_{0j}=B_{0j}=B_0(t_j); RU1_{ij}=U_{ij} if i=1 to m-1; RU1_{mj}=B_{mj}=B_m(t_j); CFD: DRU2_{i,j}=(RU1_{i+1,j}-RU1_{i-1,j})/(2*h), for i=1 to m-1 interior only; CFD: DDRU2_{i,j}=(RU1_{i+1,j}-2*RU1_{ij}+RU1_{i-1,j})/h^2, for i=1 to m-1; ("^" means super-script) RK2_{ij} = F(x_i,t_j+0.5,RU2_{ij},DRU2_{ij},DDRU2_{ij}), for i=1 to m-1; RU2_{0j}=B_{0j}=B_0(t_j); RU2_{ij}=U_{ij}+(k/2)*RK1_{ij}, if i=1 to m-1; RU2_{mj}=B_{mj}=B_m(t_j); CFD: DRU2_{i,j}=(RU2_{i+1,j}-RU2_{i-1,j})/(2*h), for i=1 to m-1; CFD: DDRU2_{i,j}=(RU2_{i+1,j}-2*RU2_{ij}+RU1_{i-1,j})/h^2, for i=1 to m-1; RK3_{ij} = F(x_i,t_j+0.5,RU3_{ij},DRU3_{ij},DDRU3_{ij}), for i=1 to m-1; RU3_{0j}=B_{0j}=B_0(t_j); RU3_{ij}=U_{ij}+(k/2)*RK2_{ij}, if i=1 to m-1; RU3_{mj}=B_{mj}=B_m(t_j); CFD: DRU3_{i,j}=(RU3_{i+1,j}-RU3_{i-1,j})/(2*h), for i=1 to m-1; CFD: DDRU3_{i,j}=(RU3_{i+1,j}-2*RU3_{ij}+RU1_{i-1,j})/h^2, for i=1 to m-1; RK4_{ij} = F(x_i,t_j+1,RU4_{ij},DRU4_{ij},DDRU4_{ij}), for i=1 to m-1; RU4_{0j}=B_{0j}=B_0(t_j); RU4_{ij}=U_{ij}+k*RK3_{ij}, if i=1 to m-1; RU3_{mj}=B_{mj}=B_m(t_j); CFD: DRU4_{i,j}=(RU4_{i+1,j}-RU4_{i-1,j})/(2*h), for i=1 to m-1; CFD: DDRU4_{i,j}=(RU4_{i+1,j}-2*RU4_{ij}+RU1_{i-1,j})/h^2, for i=1 to m-1; Note that the only forms that change are those ofr RK[l]_{ij} and RU[l]_{ij} for "[l]" = 1 to 4. SR/FBH PS: Ignore anything in the original computer problem that mentions derivative boundary conditions