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0.01 Histogram of S&P500 Log-Returns 1988-2008:
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Figure 0.01: S&P500 Daily Log-Return Adjusted Closings from 1988
to 2008 (post-1987) showing long-tails of rare events. Normal kernel-
smoothed graph, in red, plus one which accounts for non-central and nor-
mally invisible, but financially important, rare jumps.
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0.02 Extreme Negative Tail Events for Log-Returns
(’88-’08):
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(a) Extreme Negative Tails.
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(b) Extreme Positive Tails.

Figure 0.02: Extreme Negative and Positive Log-Return Tail Events, with
Thresholds POT =−0.04 and +0.048, respectively. POT means Peaks
Over (or Under) Threshold. These represent the significant crashes or
bonanzas during the time period. {Note: vertical scale differences.}
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“... the futility of trying to deal with crises and
recessions by finding central bankers and
regulators who can identify and puncture bubbles.
If these people exist, we will not be able to afford
them.”
Robert E. Lucas, Economics, The University of Chicago

In Defense of the Dismal Science, The Economist, Aug 6th 2009.

{Pine-green colored text denotes an active web link.}
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http://www.economist.com/businessfinance/economicsfocus/displaystory.cfm?story_id=E1_TQTGVQDV


Course Outline (tentative)
1. Introduction (1 Lecture (L)): Data models and Discretized

Diffusion log-returns, Independent observations and their statistics,
Additive and Multiplicative models, Law of large numbers and Monte
Carlo applications, Central limit theorem and Extreme tail errors.

2. Exploratory Data Analysis (2.5L): Pseudo-Random Number
Generators (RNGs: Uniform, Normal, Exponential, Poisson,
Compound Poisson), Histograms, Cumulative histograms, Kernel
smoothing, Quantile-Quantile (Q-Q) plots, Discretized
Jump-diffusions, Confidence Intervals and Value at Risk (VaR), more
Normal distribution poor at extremes, short-fall statistics, Profit and
Loss (P&L) statments, Cauchy flat tail distribution, Data estimation,
Order statistics, Extreme statistics (Fat tails, Pareto distribution,
Peaks Over Thresholds (POTs).

3. Multivariate Statistics (1.5L): Bivariate distribution, Bivariate
Kernel smoothing, Conditional expectation, Covariance, Correlation
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Coefficient, Bivariate 3D-histograms, Hybrid fat and thin tail models,
Principal Component Analysis (PCA), Multivariate sample means.

4. Parametric Regression (1.5L): Ordinary Least Squares (OLS),
Multiple linear regression, MATLAB regression functions,
Maximum Likelihood Estimation (MLE), MLE for discretized linear
diffusions, compound Poisson processes, MLE for discretized linear
jump-diffusions.

5. Non-Parametric Regression (1L): Nnumerical optimization with
derivative-free MATLAB fminsearch, Black-Scholes European
options, Market calibration and Implied Volatility (IV), Risk-Neutral
options and IV, more Kernel smoothing regression.

6. General Parameter Estimation (1.5L): Maximum Likelihood,
Moment Methods and Bayesian Estimation.

7. Hypothesis Testing and Analysis of Variance (1L): Goodness of
fit, Confidence Intervals.
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Course Business
1. Professor: Floyd B. Hanson

• Email: fhanson@uchicago.edu;
• Office Hour: Mondays, 5PM (?), FinMath Lounge/Lab E7.

2. TAs: TBA
• Email: TBA
• Office Hours: TBA.
• Review Sessions: TBA.

3. Class Webpage:
FINM 345/Stat 339 Current Syllabus

or Chalk → Login → FINM 33100 (Winter 09) → Syllabus, etc.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture1-page7 — Floyd B. Hanson

http://www.math.uchicago.edu/~hanson/finm331/
https://chalk.uchicago.edu/


4. Texts:
• These explanatory FINM 331 Lecture Notes;
• Optionally Recommended Text: J.R. Rice, Math. Stat. and Data

Anal.;
• Other Texts:
◦ R. Carmona, Stat. Anal. of Fin. Data;
◦ S. Weisberg, Appl. Lin. Regression.

5. Recommended Computational System: MATLAB (class examples
will be based on MATLAB):
• D. & N. Higham (brothers), MATLAB Guide is highly

recommended, see SIAM Books.
• R, S and Excel or Maple/Mathematica are acceptable for

assignments, but you are on your own.
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http://www.ec-securehost.com/SIAM/ot92.html
http://www.siam.org


6. Grading:
• Homework (see also Syllabus):
◦ There will be about 8-9 graded homework sets;
◦ You may consult with other student about the ideas involved;
◦ Submitted homework must be the individual student’s own work;
◦ Similar solutions a problem will receive discounted grades with

the problem credit divided over participants;
◦ Codes and/or worksheets need to be submitted with

computational solutions;
◦ Graphical and tabular presentation needs to be professional;
◦ In general, problems will be graded on relative quality and not

just or errors;
◦ Submitted assignments should be in PDF or MSword or

similar file format, but using unformatted, plain text can be used
within these formats.

◦ Penalties will be deducted for late assignment or problem
submission, with negative credit for missing homework sets.
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• Exams: There will be at least one, a take-home final exam and
possible an in-class mid-term exam.

• Final Grade: The grade will be based upon a combination of
homework and final exam, proportioned to reflect the effort
involved.
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Prerequisite Knowledge:
1. Introductory Probability:

• see for instance, F. B. Hanson, Online Appendix B Preliminaries in
Probability and Analysis,

• and/or J. R. Rice, Chs. (1)-2 Probability and Random Variables, Sects.
3.1-3.5 Joint Distributions, 4.1-4.4 Expected Values.

2. Introductory Statistics, especially linear regression:

• see the review session notes, N. O. Nygaard, Introduction to Statistics
and Data Analysis,

• and perhaps Nygaard’s accompanying Linear Algebra Notes ;
• and/or J. R. Rice, Sects. 14.1-14.5 Linear Least Squares.

3. Very Basic MATLAB including Statistics Toolbox that comes with the
Student Edition (MATLAB Student Version);

• See also Nygaard’s review sessions previously mentioned for MATLAB
techniques.
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http://www.math.uic.edu/~hanson/pub/SIAMbook/bk0BprelimAppendfinal.pdf
http://www.math.uic.edu/~hanson/pub/SIAMbook/bk0BprelimAppendfinal.pdf
http://finmath.uchicago.edu/new/msfm/current/Statistics.pdf
http://finmath.uchicago.edu/new/msfm/current/Statistics.pdf
http://www.mathworks.com/academia/student_version/


Some Related Resources of the Professor:
1. Prior UIC course: Math 586 Computational Finance, Spring

2008.

2. Applied stochastics textbook: F.B. Hanson, Applied Stochastic
Processes and Control for Jump-Diffusions: Modeling, Analysis,
and Computation, SIAM Books, 2007.

• Online Appendix C: MATLAB Programs (listings of sample
codes used to make book figures);

• MATLAB Source Codes Directory, source m-files as individual
files or zip-file of all m-files.

3. Quantitative Finance References and Related References,
annotated books and links in finance and related topics.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture1-page12 — Floyd B. Hanson

http://www.math.uic.edu/~hanson/math586/
http://www.ec-securehost.com/SIAM/DC13.html
http://www.ec-securehost.com/SIAM/DC13.html
http://www.ec-securehost.com/SIAM/DC13.html
http://www.math.uic.edu/~hanson/pub/SIAMbook/bk0CcodeAppendfinal.pdf
http://www.math.uic.edu/~hanson/pub/SIAMbook/MATLABCodes/
http://www.math.uic.edu/~hanson/math586/Math586Spring2008QuantFinanceReferences.html


Financial Data Analysis:
1.1 Introduction to Data and Models (with Review):

• The model does not have much meaning without the data and
the data does not have much meaning without the model;
i.e., the model must reflect reality by being a good representation of
the data, including parameter and extreme values, and the data needs
a model in order to interpret the data.

• Let the financial data represent the Asset Price A (say, in dollars) and
is given by a vector sample ~A = [Ai]n×1 of n + 1 discrete
observations at times ~t(a) = [ti](n+1)×1 in years, with spacing
usually fixed with ∆t = ti+1 − ti, ignoring weekends and holidays.

• The basic Asset Return or relative asset change is given by
~RR = [Ri]n×1 = [(Ai+1 − Ai)/Ai]n×1, (1)

provided Ai 6= 0 and is appropriate for additive combinations of
randomness.
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• However, if the randomness (uncertainty or noise) appears in
multiplicative combinations as assumed in many financial models,
then the Log-Return (often just called the “return”) is used,

~LR = [LRi]n×1 ≡ [log(Ai+1) − log(Ai)]n×1
lol= [log(Ai+1/Ai)]n×1,

(2)

“log”, here is the same as the natural log (i.e., “ln”) following the
MATLAB usage.

• The return and log-return are asymptotically equivalent for small
returns, since

LRi = log(Ai+1/Ai)= log(1 + (Ai+1 − Ai)/Ai)
∼ (Ai+1 − Ai)/Ai) = Ri

(3)

as Ri → 0.

(Note that f(x) ∼ g(x) as x → x0 if f(x)/g(x) → 1 as
x → x0 and f(x) is said to be asymptotic to g(x); in applied math,

this symbol (∼) is not used for equivalent in distribution
(
dist=
)

.)
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1.2 Independent Observations:

• Let ~X = [Xi]n×1 be a vector of independent (random)
observations with common mean or expectation µX ≡ EX [Xi] and
variance σ2

X ≡ VarX [Xi] ≡ EX

[
(Xi − µX)2

]
.

{Warning: the subscript X denotes with respect to X; common
mean and variance essentially strictly excludes samples from
time-dependent markets, but may be used in practice anyway.}

• Recall that Xj is independent of Xi if the joint distribution
separates into respective univariate distributions,

FXi,Xj(xi, xj)
ind= FXi(xi) · FXj(xj), (4)

where FXi(xi) ≡ Prob[Xi ≤ xi] for each i and
FXi,Xj(xi, xj) ≡ Prob[Xi ≤ xi, Xj ≤ xj] in the continuous
random variable (RV) case and similarly in the discrete RV case
with distribution FXi(k) ≡ Prob[Xi = k] for integer k and each
i, etc.
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• If the densities exist and are integrable in the continuous RV case,
then the joint density also separates,

fXi,Xj
(xi, xj)

ind= fXi
(xi) · fXj

(xj), (5)

where the univariate density is given by the ordinary derivative of the
corresponding univariate distribution function,

fXi
(xi) ≡

dFXi

dxi

(xi) = F ′
Xi

(xi), (6)

for each i and the bivariate density is given by the second partial
derivative of the corresponding bivariate distribution function,

fXi,Xj(xi, xj) ≡
∂2FXi

∂xi∂xj

(xi, xj), (7)

for each pair {i, j}. The separation of the densities following from
the successive single derivatives: let F (x, y) = G(x) · H(y), then
∂F/∂x = G′(x) · H(y) and ∂2F/(∂x∂y) = G′(x) · H ′(y).
{Alert: Only one derivative is taken at a time, so partial
differentiation is much like ordinary differentiation.}
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• Given a density fX(x) for RV X , the expected value, expectation
or mean, if it exists, of g(X) is

EX [g(X)] =
∫ ∞

−∞
g(x)fX(x)dx. (8)

• If {X1, X2} are independent RVs with density fX1(x1)fX2(x2),
then the expectation, if it exists, of the product g1(X1)g2(X2) is

E{X1,X2}[g1(X1)g2(X2)]=
∫∞

−∞ g1(x1)fX1(x1)dx1

·
∫∞

−∞ g2(x2)fX2(x2)dx2.
(9)

• The variance, if it exists, of the RV X with density fX(x) is

VarX [X]= EX [(X−EX [X])2]=EX [X2]−E2
X [X]

=
∫∞

−∞x2fX(x)dx −E2
X [X].

(10)

• Alternate form for the distribution of RV X is

FX(x)≡Prob[X ≤x]=
∫ x

−∞
fX(y)dy. (11)
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1.3 Statistics of Sample Mean of Independent Observations:
• Let Xi for i = 1 : n be a sample of independent and identically

distributed (IID) observations, with mean µX and variance σ2
X ,

i.e., theoretical sample observations of the some characteristic of
some population.

• Define the sample mean of the n discrete IID observations be

Xn ≡
1

n

n∑
i=1

Xi. (12)

Note that if the Xi are RVs, then so Xn is a RV.
• The (simple) sample variance is

s2
n ≡ ((X − Xn)2)n ≡

1

n

n∑
i=1

(Xi − Xn)2, (13)

and also is a RV.
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• The expectation of the sample mean is, by the IID properties of Xi,
as well as the linear properties of the expectation operator (E),

µXn
≡ EX

[
Xn

] E=
lin

1

n

n∑
i=1

EX [Xi]
iid=

1

n

n∑
i=1

µX = µX , (14)

so Xn is an unbiased estimate of the population mean µX , since
EX

[
Xn

]
= µX . Let µ̂X = Xn denote that Xn is a proper

estimate of µX .
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• The expectation of the sample variance is,

µs2
n

≡ EX

[
s2

n

] E=
lin

1
n

∑n
i=1EX

[(
Xi− 1

n

∑n
j=1 Xj

)2
]

= 1
n

∑n
i=1EX

[(
1
n

∑n
j=1((Xi−µX)−(Xj −µX))

)2
]

E=
lin

1
n3

∑n
i=1

∑n
j=1

∑n
k=1EX [((Xi−µX)−(Xj −µX))

·((Xi−µX)−(Xk−µX))]

= 1
n3

∑n
i=1

∑n
j=1

∑n
k=1EX

[
(Xi−µX)2−(Xi−µX)(Xj −µX)

−(Xi−µX)(Xk−µX)+(Xj −µX)(Xk−µX)]

iid= (n3−n2−n2 + n2)
n3 σ2

X = n−1
n σ2

X ,

(15)

so s2
n is a biased estimate of the population variance σ2

X since
EX

[
s2

n

]
6= σ2

X , but the bias is small for n large.
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However, it is easy to see that

ŝ2
n ≡

1

n − 1

n∑
i=1

(Xi − Xn)2, (16)

is an unbiased estimate of the population variance σ2
X since

EX

[
ŝ2

n

]
= σ2

X . Division by (n − 1) instead of n can be seen as
the loss of one degree of freedom (DOF) because
E[Xi − Xn] = 0.

• The variance of the sample mean is similarly

σ2
Xn

≡ VarX

[
Xn

]
≡ EX

[(
Xn − µXn

)2]
= EX

[(
1
n

∑n
i=1(Xi − µX)

)2]
E=
lin

1
n2

∑n
i=1

∑n
j=1 E[(Xi − µX)(Xj − µX)]

iid= 1
n2

∑n
i=1 σ2

X =
σ2

X
n → 0+ as n → 0+,

(17)

i.e., as n becomes very large the variance of σ2
Xn

becomes very
small.
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The reduction in the sample mean variance in Eq. (17) is the basis for
the probable error in the powerful Monte Carlo random sample
simulation approximations, since this error is the order of the
standard deviation

σXn
=

σX√
n

(18)

and is called the standard error (SE) of Xn, yielding a significant
reduction from the population variance σ2

X to the sample mean
variance σ2

Xn
by a factor of 1/n. However, n has to be very large,

e.g., changing from n = 100 to n′ = 1, 000, 000, then√
n′/n = 100 which means only a 1% reduction in the standard

error of Xn for 10, 000 times more computational effort.
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1.4 Statistics of Discrete Additive Financial Models:
• A simple discretized version of Louis Bachelier’s (1900 thesis under

Henri Poincaré) asset price model in the option pricing problem is the
affine recursion with purely additive uncertainties for new asset
price Ai+1,
Ai+1 =Ai+∆Ai =Ai+µ∆t+σ

√
∆t · Zi, given A1, (19)

for i=1:n fixed time-steps ∆t= ti+1−ti, where Zi is IID with
mean E[Zi]=µZ and variance Var[Zi]=σ2

Z random variable or
uncertainty, but since there are already similar coefficients {µ, σ},
let Zi be zero-mean µZ =0 and unit-variance σ2

Z =1) (It is often
assumed that Zi is IID normal.) Hence, E[∆Ai]=µ∆t is the mean
increase in Ai in time-step ∆t and E[∆Ai]=σ2∆t is its variance.

• In real markets over long periods, {µ, σ, ∆t} are not likely to be
time-independent. Let {µ, σ, ∆t} be independent of the price Aj or
noise Zj at any time tj . Also, let |Zi|≤Bz , i.e., “practically
bounded” noise, and |µ∆t+σ

√
∆tZi| ≤ B∆A to ensure bounded

prices. Typically, ∆t ' 1/252 is one trading day in year units.
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• Summing the above additive recursion yields for i=1:n,

Ai+1 = A1 +
i∑

j=1

(µ∆t + σ
√

∆t · Zj), (20)

noting again that if the Zi are RVs, then so is Ai+1 for i=1:n.
• The new asset mean is

µAi+1
≡ EZ [Ai+1]

E=
lin

A1+
i∑

j=1

(µ∆t+σ
√

∆tEZ [Zj])

= A1+i(µ∆t+σ
√

∆tµZ)=A1+iµ∆t,

(21)

given µZ = 0, growing linearly with time-step count i, as a
Malthusian (1768) growth of an agricultural commodity, rather than a
population or a financial asset.

{Alert: Since µAi
=A1+(i−1)µ∆t is dependent on the time-step

index i, then the Ai are RVs but not IID RVs, although ∆Ai are IID
RVs.}
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• The asset variance is

σ2
Ai+1

≡ VarZ [Ai+1] ≡ EZ

[(
Ai+1 − µAi+1

)2]
,

= EZ

[(∑i
j=1 σ

√
∆t(Zj − µZ)

)2
]

E=
lin

σ2∆t
∑i

j=1

∑i
k=1 EZ [ZjZk]

iid= σ2∆t
∑i

j=1

∑i
k=1 δj,kσ2

Z = σ2∆t
∑i

j=1 σ2
Z

= iσ2∆t,

(22)

given σ2
Z =1 and where δi,j is the discrete, Kronecker delta, which

is 1 when i = j, else 0.

{Alert: (
∑n

i ai)2 =
∑n

i

∑n
j aiaj 6=

∑n
i a2

i ,
e.g., (a1+a2)2 =a2

1+2a1a2+a2
2.}
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• Summarizing in financial return terms, the ith mean return starting
at time index i for i = 1 : n is

µRi
≡ EZ [Ri]≡EZ [∆Ai]=µ∆t. (23)

• Also, the ith return variance starting at time index i is

σ2
Ri

≡ VarZ [Ri] = EZ

[
(Ri − µRi)

2
] iid= σ2∆t. (24)

• The relative change form of the return is appropriate for the
additive model, where uncertainties are additive.
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1.5 Statistics of Discrete Multiplicative Financial Models:
• A simple, discretized version of Black-Scholes and Merton’s asset

price model in the option pricing problem (see Spring 1973
companion model and mathematical justification papers) is the linear
recursion with purely multiplicative factor uncertainties for the
option prices,

Ai+1 =Ai+∆Ai =Ai(1+µ∆t+σ
√

∆t·Zi), (25)
for i=1:n, given A1, where the terms otherwise satisfy the same
conditions as in the previous additive noise section.

• Solving the above recursion in terms of products rather than sums
(note that taking logarithms turns the solution into the additive
form) yields for i=1:n,

Ai+1 =A1

i∏
j=1

(1+µ∆t+σ
√

∆t·Zj). (26)

{Alert: If the Zi are RVs, then so is ∆Ai, but Ai is only a RV and
not IID, since the basic statistics vary with i.}
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• The new asset mean in this multiplicative case is

µAi+1
≡ EZ [Ai+1]

iid= A1

∏i
j=1(1+µ∆t+σ

√
∆tµZ)

= A1(1+µ∆t)i,
(27)

using the zero-mean property of the Zi, where
∏i

j=1 is the product
symbol from 1 to i. Note that the asset grows like discretely
compounded interest which it should, considering geometric
Brownian motion of the asset.

• The asset variance for multiplicative noise is similarly

σ2
Ai+1

≡ VarZ [Ai+1]≡EZ

[(
Ai+1−µAi+1

)2]
= A2

1EZ

[(∏i
j=1σ

√
∆tZj

)2
]

= A2
1

∏i
j=1σ

√
∆t
∏i

k=1σ
√

∆tEZ [ZjZk]
iid= A2

1(σ
2∆t)i

∏i
j=1

∏i
k=1δj,k =A2

1(σ
2∆t)i,

(28)

where δj,k is again the Kronecker delta.
{Alert: (

∏i
j=1aj)2 =

∏i
j=1aj

∏i
k=1ak and

∏i
j=1c=ci.}
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• The ith mean log-return starting at time index i for i=1:n is

µLRi
≡ EZ [log(Ai+1/Ai)]=EZ [log(1+µ∆t+σ

√
∆tZi)]

iid= µlog(1+µ∆t+σ
√

∆tZ).
(29)

• The ith log-return variance starting at time index i is

σ2
LRi

≡ VarZ [LRi]=EZ

[
(LRi−µLRi

)2
]

= EZ

[
(log(1+µ∆t+σ

√
∆tZi−µlog(1+µ∆t+σ

√
∆tZ))

2
]

iid= σ2
log(1+µ∆t+σ

√
∆tZ)

.

(30)

The identically distributed (ID of IID) is required for the logarithm.
• The relative change form of the return is appropriate for the

multiplicative model, where uncertainties are multiplicative.
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• The multiplicative model log-form has an additive form, for
i=1:n

log(Ai+1)=log(Ai)+log(1+µ∆t+σ
√

∆tZi). (31)

• Solving yields,
log(An+1)=log(A1)+

n∑
i=1

log(1+µ∆t+σ
√

∆tZi). (32)

• When the time-stop ∆t is small (∆t�1), the log-asset has the
asymptotic (∼ symbol) behavior, with error o(∆t), i.e., smaller than
order ∆t,

log(An+1)∼ log(A1)+
n∑

i=1

(σ
√

∆tZi+(µ−σ2Z2
i /2)∆t), (33)

since log(1+ε)=ε−ε2/2+O(ε3)∼ε−ε2/2 for ε=
√

∆t�1.
{Alert: Asymptotic big and little Oh: f(x)=O(g(x)) if
f(x)/g(x) is bounded as x→x0; f(x)=o(g(x)) or
f(x)�g(x) if f(x)/g(x)→0 as x→x0.}
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• Similarly, the ıth log-return behaves as, with error o(∆t),

LRi ∼ log(1+µ∆t+σ
√

∆tZi)=σ
√

∆tZi+(µ−σ2Z2
i /2)∆t). (34)

• The ith mean log-return behaves as,

EZ [LRi]∼
(
µ−σ2/2

)
∆t, (35)

since VarX [X]=EX [X2]−(EX [X])2 or σ2
X =µX2 −µ2

X .
{Alert for 345 veterans: Result (35) confirmed the corresponding
stochastic calculus result for continuous models without the
stochastic calculus.}

• The ith log-return variance behaves as, again neglecting terms
smaller than order ∆t,

VarZ [LRi]∼ EZ [(σ
√

∆tZi−σ2(Zi−1)∆t/2)2]

∼ EZ [σ2∆tZ2
i ]=σ2∆t,

(36)

so for sufficiently small time-steps ∆t�1, the log-return LRi of
the multiplicative model will be asymptotically approximate IID,
neglecting terms smaller than order ∆t, i.e., with error o(∆t) .
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1.6 Stochastic (Random) Nature of Financial Data:
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Fig01: Adj. Closing Histogram, ’88−’08
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Figure 3: S&500 Index Daily Adjusted Closings AC(t) for t=1:NAC,
from 1988 to 2008 (post-1987) showing scattered behavior of the price
without any recognizable probability distribution seen, certainly not a
normal distribution. (aka Fig01; NAC=AC-count.)

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture1-page32 — Floyd B. Hanson



−100 −50 0 50 100
0

20

40

60

80

100

120
Fig02: Abs. Return Histogram, ’88−’08

AR, Absolute Returns

Fr
eq

ue
nc

y

Figure 4: S&500 Index Daily Absolute Returns or Differences AR(t)=
ÃR(t+1) = AC(t+1)−AC(t) ≡ ∆AC(t) for t=1:NAC-1, from
1988 to 2008 (post-1987) showing more central behavior, resembling a
very narrow normal distribution (or spike) with many discrete devia-
tions from the normal. (aka Fig02.)
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Figure 5: S&500 Index Daily Relative Returns RR(t) = AC(t +
1)/AC(t)−1 ≡ ∆AC(t)/AC(t) for t=1:NAC-1, from 1988 to 2008
(post-1987) showing a more developed normal distribution with wider
spread due to reduction of the scale of the returns and many rare tail
events. (aka Fig03.)
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Figure 6: S&500 Index Daily Log Returns LR(t)=log(AC(t+1))−
log(AC(t))=log(1+RR(t))∼RR(t) for t=1:NAC-1 & RR(t)�1,
from 1988 to 2008 (post-1987) showing wide spread and tail event behav-
ior similar to RR(t). In red, an approximate normal density is overlaid
plus a unit to account for fat tails from jump of crashes and bubbles. So,
the infinite normal tails have little probability compared to jumps.
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1.7 Law of Large Numbers (LLN; Weak Form):
• Theorem 1.6. Weak Law of Large Numbers:

Let ~X = [Xi]n×1 be a sample vector of independent RVs with
identical mean µX = E[Xi] and variance σ2

X = Var[Xi]. Let
Xn = 1

n

∑n
i=1 Xi be the sample mean, then for any fixed R > 0,

Prob[ |Xn − µX | > R ] → 0+ as n → ∞, (37)

i.e., converges to 0 in probability.
• Proof: A simple proof depends on the variance and follows from

Chebyshev’s inequality, although stronger proofs do not, i.e.,

Prob[|X − µX | > R] ≤ σ2
X/R2, (38)

so since E[Xn] = µX and Var[Xn] = σ2
X/n, then

Prob
[
|Xn − µX | > R

]
≤

σ2
X

nR2
→ 0+ as n → ∞. (39)
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• The proof of Chebyshev’s inequality is as an exercise. However, a
more useful form in finance is, for any K > 0,

Prob[|Xn − µX | > KσX ] ≤
1

nK2
→ 0+ as n → ∞, (40)

i.e., the risk of a large change (crash or rally) of K standard
deviations or greater in the sample mean has probability
O(1/(nK2)).

• Markov’s simpler inequality can also be used for Chebyshev’s
inequality and it states:

Theorem 1.6M Markov’s inequality: Let X be a RV such that
Prob[X ≥ 0] = 1 and E[X] exists, then

Prob[X ≥ x] ≤ EX [X]/x = µX/x. (41)
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• Proof Sketch of Markov’s Inequality: A quick formal justification
for the case that X has a well-defined density fX(x) on [0, ∞) line
implies,

EX [X]=
∫ ∞

0

yfX(y)dy=

(∫ y<x

0

+
∫ ∞

y≥x

)
yfX(y)dy

≥
∫ ∞

y≥x

yfX(y)dy≥x

∫ ∞

y≥x

fX(y)dy=xProb[X ≥x],

(42)

rearranging yields the Markov inequality.
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1.8 Central Limit Theorem (CLT) and Asymptotic Normal
Distributions:

• Theorem 1.7. Central Limit Theorem :

Let ~X =[Xi]n×1 be a sample vector of independent RVs and there
exists an identical mean µX =E[Xi] and variance
σ2

X =Var[Xi], assuming the first three moments are bounded. Let
Xn = 1

n

∑n
i=1 Xi be the sample mean, then for any fixed x in

(−∞, +∞),

lim
n→∞

Prob

[
Xn − µX

σX/
√

n
≤ x

]
= Φ(x), (43)

where Φ is the standard (mean zero, unit variance) normal
distribution function.

• The central limit theorem or CLT says that the scaled sample mean
converges in probability to the standard normal distribution,

Φ(x) = F
(n)
X (x; 0, 1) =

1
√

2π

∫ x

−∞
e−y2/2dy. (44)
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• Proof of CLT: The proof is by moment generating functions (see
Rice (2007, p. 184; but a mini-tutorial is included in proof ). There
are many versions of the CLT and some of the strong CLTs relax
some of the necessary conditions.) For the IID RV with density
fX(x), the moment generating function is an exponential
transformation using a transform variable, say t, so for the
observational RV,

MXi(t)≡ EXi

[
etXi

] iid= MX(t)=
∫ ∞

−∞
etxfX(x)dx

= EXi

[
etXi

]
=etµX EX

[
et(X−µX)

]
= etµX EX

[
1+0.5t2σ2

X +O(t3)
]
,

(45)

for all i=1:n and upon the convenient Taylor expansion of the
moment generation function for the deviation δXi ≡Xi−µX when
t is sufficiently small. Note the identity MδXi(t)=e−tµX MXi(t).
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Similarly, since also µXn
= µX , the sample mean deviation is

δXn ≡Xn−µX =(X−µX)n. Then,

MδXn
(t)≡ EX

[
etδXn

]
=EX

[
e

t
n

Pn
i=1 δXi

]
loe= EX

[∏n
i=1 e

t
n δXi

]
iid=
∏n

i=1 EX

[
e

t
n δX

]
prod
=

taylor
En

X

[
1+ t

n
δX+0.5

(
t
n

δX
)2

+O3
(

t
n

)]
=
(
1+0.5

(
t
n

σX

)2
+O3

(
t
n

))n

bin=
(
1+0.5 (tσX)2

n
+O

(
t3

n2

))
∼
(

1+0.5
(
tσX√

n

)2
)

∼e0.5(tσX)2/n cts= MδX(n)

(
t

√
n

)
,

(46)

as n→∞ for fixed t, where δX(n) =X(n)−µX is the deviate
normal RV with distribution F

(n)
X

(
x; 0, σ2

X/n
)
. Hence,

δXn
dist−→F

(n)
X

(
x; 0, σ2

X/n
)

as n→∞. QED
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• In the CLT proof, the complete the square (CTS) technique was
used to evaluate the moment generating function or the expectation
of an exponential of a normal variate, in particular by completing the
square of the exponent as follows:

MδX(n)(t)≡ EδX(n)

[
etδX(n)

]
normal=

∫∞
−∞etxe−0.5x2/σ2

X
dx√
2πσ2

X

lcd=
∫∞

−∞e−0.5(x2−2σ2
Xtx)/σ2

X
dx√
2πσ2

X

cts=e0.5(tσX)2
∫∞

−∞e−0.5(x−tσ2
X)2/σ2

X
dx√
2πσ2

X

=e0.5(tσX)2
∫∞

−∞e−0.5y2/σ2
X

dy√
2πσ2

=e0.5(tσX)2 .

(47)

Hence, MX(n)(t) = exp(tµX + 0.5(tσX)2). In this item,
technically, we should use {µX(n) , σ2

X(n)} for basic moments.
• Also used was an asymptotic version of the binomial theorem,(

1+ a2

n2 + a3

n3 +· · ·
)n bin=

(
1+n

(
a2

n2 + a3

n3

)
+ n(n−1)

2!

(
a2

n2

)2
+· · ·

)
O=
(
1+ a2

n
+O

(
1

n2

))
.

(48)

Note: the a1/n≡0 for the deviation form, else too complicated.
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• Critical Discussion of CLT (43):
◦ The CLT is an asymptotic theorem that depends on the scaling

of the IID RVs and the normal distribution results may not be
seen without the right scaling. The scaling of the sample mean
in (43) is the naturally scaled sample mean

Zn =
Xn − µXn

σXn

, (49)

where µXn
is given in (14) and σ2

Xn
is given in (17).

◦ The normal distribution is a good representation of the central
bulk of large samples of financial data, but a sociological fi-
nance point of view.
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◦ In the case that the identically distributed (ID) part of the
conditions for the CLT are relaxed, i.e., each observation
RV Xi has its own basic statistics, µXi

= E[Xi] and
σ2

Xi
= Var[Xi], so that µXn

=
∑n

i=1 µXi
and σ2

Xn
=∑n

i=1 σ2
Xi

, making the CLT still valid in for the scaled vari-
able in (49).

◦ The CLT (43) normal distribution limit is requires an infinite
domain X ∈ (−∞, +∞), but this is an approximation, since
clearly the world’s financial wealth is bounded, perhaps by
hundreds of trillion or quadrillion dollars, and finite so infinite-
ness is realistically doubtful unless it is a good approximation.
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◦ The fact that both µX and σX moments are unknown limits the
usefulness of CLT, but a practical convergence in distribution
( d→) version of the CLT is

Xn − µX

ŝ 2
n[X]/

√
n

d→ F
(n)
X (x; 0, 1), (50)

where

ŝ 2
n[X] =

1

n − 1

n∑
i=1

(
Xi − Xn

)2
. (51)

is the unbiased estimate of σ2
X since ŝ 2

n[X] → σ2
X as

n → ∞. This CLT form is better for determining confidence
intervals for estimating µX .
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◦ For example, suppose that the CLT is a reasonable approxima-
tion to the distribution sample mean Xn an IID sample of n

RVs with mean µX and variance σ2
X . We wish to find the

probability that the sample mean is within a distance c from
the population mean µX . We have

Prob[|Xn−µX |≤c]= Prob
[√

n|Xn−µX |
σX

≤
√

nc
σX

]
clt
' F

(n)
X

(
+

√
nc

σX
; 0, 1

)
−F

(n)
X

(
−

√
nc

σX
; 0, 1

)
sym
= 1−2F

(n)
X

(
−

√
nc

σX
; 0, 1

)
=pn(c),

(52)

where pn(c) is probability of the confidence interval corre-
sponding to the distance c from the mean for a sample size
of n. There are several problems options given just σ2

X . If
{c, n} are given, then pn(c) can be estimated using the cumu-
lative normal p=normcdf(x,mu,sigma) or if {c, pn(c)}
are given, then the sample size can be estimated using the in-
verse x=norminv(p,mu,sigma) in MATLAB.
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◦ Undervalued Extreme Rare Events Hidden in the Sample
Mean: The central part of returns is relatively dense com-
pared to the rare events of the highest values and so are under-
weighted in the simple counting of the sample mean, Xn =∑n

i=1 Xi/n. Let the samples be decomposed into central

X
(c)
i values, isolated, rare positive values X

(r+)
j and isolated,

rare negative X
(r−)
` values, i.e., Xi decomposed such that

Xn =
1

n

0@n−k(r+)−k(r+)X
i=1

X
(c)
i +

k(r+)X
j=1

X
(r+)
j +

k(r−)X
`=1

X
(r−)
`

1A .
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For instance, an estimate of the central part is the integral,

µ
(c)
X =

∫ ∞

−∞
xf

(c)
X (x)dx,

which is small, 2.4e-4 for the log-returns of the 1988-2008
S&P500 Index, but an estimate of the loss part is extremely
small,

k
(r−)

max
`

[|X(r−)
` |]/n'1.9e−7,

where from the same data k
(r−) ' 0.0104 jump count,

max`[|X(r−)
` |] ' 0.095 extreme log-return and n = 5296

log-return values. Note, in this example the observation, cor-
responding to the application of the CLT, is the log-return
Xi = LRi = log(Ai+1/Ai)using the multiplicative model
(31) and Xn = log(An+1/A1)/n the asymptotic total aver-
age log-price change using (33).
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◦ A critical disadvantage of the normal distribution representa-
tion is that it has exponentially thin tails and the density is order
of

e−(x − µX)2/(2σ2
X)�e−|x| �

1

|x|m
�1 (53)

as |x| → ∞, but this is in contrast to the data which show
that the tails are much fatter, i.e., fat tails are observed in real
markets. The main problem is that the DOWNSIDE RISK of
the market is estimated by probability of the larger losses (in-
cluding crashes) , i.e., for estimating Prob[−X > R], which
would be highly unrealistic using a normal distribution. The tail
part of the distribution is usually nonnormal. The estimation of
gains from bubbles or rallies are not as critical since they are
bonanzas, except for weak accuracy of the profit forecast.
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1.9 Monte Carlo Method Application:
• In many financial applications integral approximations are needed,

such as expectation integrals applied for real, continuous, IID RVs,
~X = [Xi]n×1, with proper distribution FX(x) = Prob[Xi ≤ x]
and proper probability density fX(x) on [a, b] (e.g., if fully infinite,
then (−∞, +∞)):

µg(X) ≡ EX [g(X)] ≡
∫ b

a

g(y)fX(y)dy

'
1

n

n∑
i=1

g(Xi) ≡ g(X)n,
(54)

i.e., approximated by the sample mean, which is a RV with the Xi

and all lower moments of the g(Xi) are assumed to exist.
• The expected value of g(X)n is an unbiased estimate of µg(X),

i.e.,

µg(X)n
≡ EX

[
g(X)n

]
iid=

1

n

n∑
i=1

µg(X) = µg(X), (55)

noting that 1
n

∑n
i=1 is not an RV and EX is a linear operator.
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• The variance of g(X)n is given by the variance of the sample mean
formula (17) in Sect. 1.3,

σ2
g(X)n

= σ2
g(X)/n, (56)

so the standard error or standard deviation is
SE[g(X)n] = σg(X)n

= σg(X)/
√

n.
• However, σg(X) is the target of the method and is a priori unknown,

but for a probabilistic estimate of the error the unbiased sample
variance g(X) can be used, i.e.,

ŝ2
n =

1

n − 1

n∑
i=1

(
g(Xi) − g(X)n

)2

. (57)

Hence, our estimate of the order of the Monte Carlo probabilistic
error is the estimated SE,

ŜEn

[
g(X)

]
=

ŝn√
n

. (58)
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• Often, the Monte Carlo estimate, itself, is written very loosely as
“µg(X) = g(X)n ± ŝn/

√
n

′′, but the order of one standard
deviation margin of error should be understood, i.e,
µg(X) = g(X)n + O(ŝn/

√
n).

• Hence, an Monte Carlo estimate can be computed by using an
appropriate pseudorandom number generator like rand(1,n) for
the row n-vector, standard uniform distribution on
[δ, 1 − δ] ' (0+, 1−) in basic MATLAB or unifrnd in the
Statistics Toolbox, where δ =eps/2 and eps is the
machine epsilon in MATLAB, and randn(1,n) for the mean zero,
unit variance, standard normal distribution on (−∞, +∞) in
basic MATLAB or normrnd(0,1,1,n) in the Statistics
Toolbox, for instance. In general, unifrnd(a,b,m,n) ⇔
a+(b-a)*rand(m,n) and normrnd(mu,sigma,m,n) ⇔
mu+sigma*randn(m,n) for m X n samples.

{Mileage will vary with other computational math/stat. systems.}
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(a) Sample size N = 103.
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Figure 7: Histograms of simulations of the standard uniform distribution
f

(u)
X (x; 0, 1), x ∈ (0, 1), using MATLAB rand for two different sample sizes

N using sample uniform code in Hanson (2007) Online Appendix B Preliminar-
ies, page B6. Hence, need large sample size to get a reasonable approximation to
the distribution.
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Uniform code example for Figure 7 abbreviated to one page:
function uniform09fig

% FINM 331 Uniform Histogram Demo. from Hanson book (2007)

fprintf(’\nfunction uniform09fig OutPut:’)

for m = 3:2:5;

N=10ˆm;

rand(’twister’,3);

x=rand(N,1);

xmean=mean(x); xstd=std(x);

xmin = min(x); xmax = max(x);

nbins = 30; % min(fix(sqrt(10ˆm)),101);

xmin = 0; xmax = 1;

xbin1 = xmin; xbin2 = xmax; dxbin = (xbin2-xbin1)/nbins;

xbin = xbin1+dxbin/2:dxbin:xbin2-dxbin/2;

nx = hist(x,xbin); % Need Edge Oriented histc.

bar(xbin,nx); axis tight;

title(’Histogram for x = rand(N,1)’,’Fontsize’,44...

,’FontWeight’,’Bold’);

% Code shorten for one page

end % For demo, use hist(rand(1e3,1),30), hist(rand(1e5,1),30)

% in the command window.
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Figure 8: Histograms of simulations of the standard normal distribution with
mean 0 and variance 1 using MATLAB randn with 50 bins for two sample sizes
N . The histogram for the large sample size of N = 105 in Subfigure 8(b)
exhibits a better approximation to the theoretical normal density f

(n)
X (x; 0, 1)

using normal sample code in Hanson (2007) Online Appendix B Prelimi-
naries, page B9. Note that randn(1e5,1)∈ (−5, 5), approximately, and
normpdf(5,0,1)=1.4867e-6.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture1-page55 — Floyd B. Hanson

http://www.math.uic.edu/~hanson/pub/SIAMbook/MATLABCodes/normal03fig1.m
http://www.math.uic.edu/~hanson/pub/SIAMbook/bk0BprelimAppendfinal.pdf
http://www.math.uic.edu/~hanson/pub/SIAMbook/bk0BprelimAppendfinal.pdf


Normal code example for Figure 8 abbreviated to one page:
function normal03fig1

% FINM 331 Normal Histogram Demo. from Hanson book (2007)

for m = 3:2:5

N=10ˆm;

x=randn(N,1);

xmean=mean(x);

xstd=std(x);

xmin = min(x); xmax = max(x);

xbin1 = xmin; xbin2 = xmax; dxbin = (xbin2-xbin1)/nbins;%

xbin = xbin1+dxbin/2:dxbin:xbin2-dxbin/2;

nx = hist(x,xbin); % Need Center Oriented hist.

bar(xbin,nx); axis tight;

title(’Histogram for x = randn(N,1)’,’Fontsize’,44);

ks = [0.4,0.7]; nxmax = max(nx);

xtext = xmax*ks(1);

ytext=fix(ks(2)*nxmax);

textn=[’N = ’ int2str(N)];

text(xtext,ytext,textn,’Fontsize’,40,’FontWeight’,’Bold’);

ylabel(’Normal Bin Frequency’,’Fontsize’,44);

xlabel(’x, Normal randn-Deviate’ ,’Fontsize’,44);

end% For demo., use hist(rand(1e3,1),30), hist(rand(1e5,1),30).
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• Being innovative can be helpful. If the desired integral is of the
form, ∫ b

a

h(x)dx, (59)

given a, b and a moderately varying h(x), then let
fX(x) = 1/(b − a) (60)

be a uniform density on (a, b),

g(x) = (b − a) ∗ h(x) (61)

where ∗ denotes multiplication in MATLAB, forming a substitute
expectation for the original integral (62),∫ b

a

g(x)fX(x)dx = µg(X) ≡ EX [g(X)]. (62)

The sample mean is evaluated using the uniform variate,

X = a ∗ ones(n, 1) + (b − a) ∗ rand(n, 1); (63)

an n-vector (MATLAB is most efficient in matrix-vector form).
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The sample mean is

gmean = mean(g(X)); (64)

and the approximate integral is

hintegral = mean(g(X))/(b − a); (65)

The estimated standard error (SE) of g(X) is

σg(X) =
σg(X)√

n
'

ŝn√
n

= ŜEn

[
g(X)

]
, (66)

replacing the theoretical standard deviation σg(X), which is usually
unknown, by the feasibly estimated (unbiased as a variance) sample
standard deviation ŝn. The estimated standard error for the Monte
Carlo approximation of the original will be ŜEn

[
g(X)

]
/(b − a).
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Figure 9: Monte Carlo resuls for uniform rand-deviates for f(x) = 1/(b − a)

and g(x) = (b − a) ∗ h(x) on (a, b) as a function of sample size N using
sample MCM uniform code in Hanson (2007) applied stochastics text, page 265.
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• Uniform Monte Carlo code example for Figure 9 abbreviated to one
page:
function mcm1test09

% FINM 331 mcm1test: Monte Carlo Method (2009),

% integral of h(x) = sqrt(1-xˆ2); on [a,b]:

a = 0; b = +1; % -1 <= a < b <= +1;

IntExact = 0.5*(asin(b)-asin(a))+0.5*(b*sqrt(1-bˆ2)-a*sqrt(1-aˆ2));

MugExact = IntExact;

Sigg = sqrt((b-a)ˆ2*(1-(bˆ2+a*b+aˆ2)/3)-MugExactˆ2); kmax = 7;

n = zeros(1,kmax); meang = zeros(1,kmax); sigg = zeros(1,kmax);

sigdrn = zeros(1,kmax); error = zeros(1,kmax);

for k = 1:kmax

rand(’state’,0); % set state or seed

n(k) = 10ˆk; % sample size, k = log10(n(k)) ;

x = a+(b-a)*rand(n(k),1); % get n(k) X 1 random sample on (a,b);

g = (b-a)*sqrt(1-x.ˆ2); % vectorized g;

meang(k) = mean(g); % E[g(X)];

sigg(k) = std(g); % sqrt(sigmagˆ2),sigmagˆ2 = unbiased Var(g );

sigdrn(k) = sigg(k)/sqrt(n(k));

error(k) = abs(meang(k)-MugExact);

fprintf(’%1i %8i %6.4f %6.4f %9.3e %9.3e %9.3e %9.3e\n’...

,k,n(k),meang(k),MugExact,sigg(k),Sigg,sigdrn(k),error(k))

end

% end mcm1test.m (For plot code see source)
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Figure 10: Monte Carlo results for normal randn-deviates for the standard normal
distribution on (a, b) as a function of sample size N by the von Neumann method
of acceptance and rejection to account for the reduced sample size on a finite
interval (observations outside the interval are not counted) using sample MCM
uniform code in Hanson (2007) applied stochastics text, page 272.
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• Normal Monte Carlo with Acceptance Sampling code example for
Figure 10:

function mcm2acceptreject09

% FINM 331: Normal Monte Carlo with Acceptance-Rejection Sampling.

% I = int(h(x),x=a..b), h(x) = f(x) = exp(-xˆ2/2)/sqrt(2pi);
a = -2; b = 2; % limits of integration;

f = inline (’exp(-x.*x/2)./sqrt(2*pi)’,’x’); % x in [a,b]

kmax = 7; nmc = 10ˆkmax; nac = 0;% select MCM random sample size;
x = randn(1,nmc); % nmc X 1 normal distribution;

kv = zeros(1,kmax); Ihatn = zeros(1,kmax); stderrn = zeros(1,kmax);

for n = 1:nmc
if (x(n) >= a) && (x(n) <= b)

nac = nac + 1; % counts ACCEPTED points;

end
if n==10)||(n==100)||(n==1000)||(n==10000)||(n==100000)||(n==1000000)||(n==nmc)

k = log10(n);

kv(k) = k;

Ihatn(k) = nac/n; % Estimate Integral
stderrn(k) = sqrt(Ihatn(k)*(1-Ihatn(k))/(n-1));

fprintf (’%2i %8i %8.6f %9.3e\n’,k,n,Ihatn(k),stderrn(k));

end
end

% end mcm2acceptreject.m (For plot part of code see source.)
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• Acceptance-Rejection Sampling Method of von Neumann (1951):
Often integrals will have a density fX(x) defined on [a, b], but the
integral is defined on a subset [c, d] ⊂ [a, b] or in the more
complicated case there is NO random number generator available
for fX(x). In the simpler case, the accepted (ac) integral is

I(ac) =
∫ d

c
g(x)fX(x)dx = C(ac)E[g(X)|X ∈ (c, d)]

= C(ac)µ
(ac)
g(X),

(67)

where C(ac) =
∫ d

c
fX(x)dx is the renormalization constant and

µ
(ac)
g(X) is the mean of g(X) on the accepted (ac) interval. Given the

usual IID sample ~X = [Xi]n×1 on [a, b] such that
n = n(ac) + n(re), i.e., n(ac) is the number of accepted
observations,

{
X

(ac)
i

}
, in [c, d] while n(re) is the rejected

number.
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Also, let 1(ac)(x) = 1 if x ∈ [c, d] and otherwise 0 be the
accepted indicator function, so g(ac)(x) ≡ g(x)1(ac)(x) is the
function on [a, b], where we will work. The unbiased sample
approximation to the accepted normalization constant is

C(ac) '
1

n

n∑
i=1

1(ac)(Xi) =
n(ac)

n
≡ Ĉ(ac)

n . (68)

Then, the accepted sample mean of g(X) is

g(ac)(X)n=
1

n

n∑
i=1

g(Xi)1(ac)(Xi) ≡ Î(ac)
n , (69)

since by expectations it is the unbiased estimate of

I(ac) = EX

[
Î(ac)

n

]
= µbI(ac)

n
, as well as µg(ac)(X).
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Similarly, the variance is by the usual IID calculation,

σ2bI(ac)
n

= VarX

[
Î(ac)

n

]
= EX

[(
Î(ac)

n − µbI(ac)
n

)2
]

iid= 1
nEX

[(
g(ac)(Xi) − µg(ac)(X)

)2]
=

σ2
g(ac)(X)

n ,

(70)

The unbiased sample variance of g(ac)(X) is

ŝ2
n

[
g(ac)

]
=

1

n − 1

n∑
i=1

(
g(ac)(Xi) − g(ac)(X)n

)2

(71)

and thus the standard error of g(X) can be approximated by

SE
[
Î(ac)

n

]
=

σg(ac)(X)√
n

'
ŝn

[
g(ac)

]
√

n
. (72)

In Figure 10, g(x) = 1, so

SE(ac)
n

[
Î(ac)

n

]
'

√
1

n

n(ac)

n

(
1 −

n(ac)

n

)
. (73)

Remarks: The details are left to the viewer. Also, details of general
acceptance-rejection techniques will be given later.
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• Monte Carlo Risk-Neutral European Call Pricing code example:
Note automatic acceptance and rejection by max function.
function mcm4eurocall

% Monte Carlo Risk-Neutral Pricing for European Call Options (2009),

% Adapted from D.J. Higham, Comp.Sci.&Engr., Nov/Dec2004, pp.72-79.

clc; clear

fprintf(’Monte Carlo Pricing for European Call Options (2009)’);

A0 = 2; K = 1; r = 0.05; sigma = 0.25; T = 3; N = 1.e6; PC = 95/100;

randn(’state’,50);

A = A0*exp((r-0.5*sigmaˆ2)*T+sigma*sqrt(T)*randn(N,1)); %AssetPrice

C = exp(-r*T)*max(A-K,0); % Call Prices with Acceptance by Max;

Cmean = mean(C);

SE_C = std(C)/sqrt(N); % Standard Error for Call Cmean

width = norminv((1+PC)/2)*SE_C; % 100*PC% CI Bandwidth

CImin = Cmean-width; % Confidence Inteval left

CImax = Cmean+width; % Confidence Inteval right

fprintf(’\nCImin=%6.4f < Cmean=%6.4f < CImax=%6.4f;\n’...

,CImin,Cmean,CImax);

%%%%%%%% Delete this function if have Statistics Toolbox %%%%

function z = norminv(p)

z = -sqrt(2)*erfcinv(2*p);

% end mcm3eurocall.m

Output: CImin=1.1436 < Cmean=1.1453 < CImax=1.1471;
Remark: Cmean is close to Black-Scholes answer, Cbs = 1.1447, and within CI.
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Lecture 1 Homework Posted in Chalk Assignments,
due by Lecture 2 in Chalk Assignments!

Summary of Lecture 1:

1. Review Syllabus

2. Additive vs. Multiplicative Models Examples

3. Sampling and Independent Observation Statistics

4. Law of Large Numbers (LLN)

5. Central Limit Theorem (CLT)

6. Monte Carlo

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture1-page67 — Floyd B. Hanson


