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10. Bayesian Methods in Finance, Part IIa:
• 10.1. Time-Varying Equity Premium Parameter:

Time-variation of parameters is an intrinsic property of empirical
financial and other economic systems. Many of the basic models, such as
the Black-Scholes (BS1973) European option pricing model, assume
constant coefficients, e.g., constant spot rates and volatility in
Black-Scholes. Merton (M1973) simultaneously showed in his
Black-Scholes justification paper how to include time-variable parameter
in the option pricing formulas by replacing the parameter terms r(T −t)
and σ2(T −t)by∫ T

t

r(τ )dτ and
∫ T

t

σ2(τ )dτ, (10.1)

respectively.
aAgain, for background to a good part of this lecture, see Michael Johannes and Nicholas

Polson (JP2003/2006/2009), MCMC Methods for Continuous-Time Financial Economet-
rics, 95 pages, preprint for the Handbook of Financial Econometrics, edited by Yacine
Ait-Sahalia and Lars Hansen.
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For estimating the time-varying parameters, one can use ordinary
methods of linear regression or maximum likelihood estimation with
the simple idea of time-moving windows or intervals. However, there is a
trade-off, the time-itervals have large enough to provide an adequate
observation sample size of the underlying asset and be numerous or small
enough to provide a reasonable portrayal of the time-dependencea.

When Bayesian estimation is used with successive approximations as
with Gibbs Sampling or the Metropolis algorithm, the sequential
treatment of discretized-time parameters is not a good representation of
the time-dependence overall and a cause of much higher computational
complexity, compared the the simultaneous approximations in block form
for all parameters and variables at each discrete time. Similar trade-offs
occur in numerical analysis between the Gauss-Seidel successive
approximation method and the Jacobi simultaneous approximation
method for iterative solving of linear algebraic systems.

aF.B. Hanson and J.J. Westman (2003a, 2003b), [CDC03] and [ACC03] publications, on
jump-diffusion time-varying parameter models, applied to optimal portfolio problems and
stock-returns, respectively.
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A time-varying parameter version of the Black-Scholes linear
diffusion model of the underlying stock price is

dS(t)=S(t)
(
(r(t) + µs(t) + σ2

s/2)dt + σsdWs(t)
)
, (10.2)

where r(t) is the given time-varying spot interest rate, µs(t) is the
proposed equity risk premiuma for the stock and the diffusion
coefficient σ2

s/2 has been preadded for convenience in the log-return
form of the equation and dWs(t) is the stock price diffusion process.
The equity premium of Johannes and Polson (JP2003, JP2006) satisfies a
mean-reverting, constant parameter model, resembling the Heston
stochastic volatility model,

dµs(t)=κµ(θµ−µs(t)) dt+σµWµ(t), (10.3)

where {κµ, θµ, σµ, ρµ,s} are the constant coefficients and

dWµ(t)=ρµ,sdWs(t)+
√

1−ρ2
µ,sdW⊥(t), (10.4)

resolved into independent components so E[dWµdWs(t)]=ρµ,sdt.
aThe equity risk premium is used to statistically compensate for stocks that earn more

than they would by the spot rate, as payment for increase risk. However, it is controversial,
see Equity Premium Puzzle, and other sources.
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Due to the constant coefficients in (10.3), the method of integrating
factors of ODEs works independent of the stochastic term to eliminate
the RHS linear term,

d
(
eκµtµs(t)

)
=eκµt(κµθµdt+σµdWµ(t)) , (10.5)

which can be checked by substitution, so it can be integrated in time steps
∆t such that at ti = i∆t,

µs,i = µs,i−1e−κµ∆t+θµ

(
1−e−κµ∆t

)
+σµ

∫ ti

ti−1
e−κµ(t−τ)dWµ(τ ),

(10.6)

for i=1:n with µs,0 given at t = 0. Approximating the stochastic
integral at the lower limit for sufficiently small ∆t, but leaving the
constant e−κµ∆t intact, producing an autoregressive time series model
of order one, AR(1),

µs,i =αµ+βµµs,i−1+σ̃µZµ,i (10.7)

where αµ =θµ

(
1−e−κµ∆t

)
, βµ =e−κµ∆t, σ̃µ =σµ

√
∆te−κµ∆t

and Zµ,i
dist= N (0, 1). Note that elements [µs,i; µs,i−1] are recursive.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture10-page5 — Floyd B. Hanson



Letting the current observed excess log-return element be, given the
log-returns and the spot rate as well as an interest in estimating the equity
premium,

Xi =log(Si/Si−1)−ri−1∆t, (10.8)

σ̃s =σs

√
∆t and Zs,i

dist= N (0, 1), then our observation-transition
system of equations is

Xi = µs,i+σ̃sZs,i

µs,i = αµ+βµµs,i−1+σ̃µZµ,i,
(10.9)

for i=1:n. The σ̃sZs,i is the measurement error.

In summary of the problema, the observation vector is ~X =[Xi]ni=1,
the latent variable vector is ~Y =~µs =[µs,i]ni=1 and the parameter vector
is

~Θ=[αµ; βµ; σ̃µ; σ̃s; ρµ,s]. (10.10)

aRecall that where we have been using the variable pair [ ~X; ~Y ] for the observation and
transition distribution vectors, respectively, because we started using ~X for the data. How-
ever, Johannes and Polson (JP2006) use just the opposite nomenclature [~Y ; ~X]for the same
vectors. In some fields it is standard to you ~Y for observations of a variable ~X .
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The prior distribution is of the form

f
(prior)
~Θ,~Y

(
~θ, ~µs

)
(10.11)

and the posterior distribution is of the form

f
(post)
~Θ,~Y | ~X

(
~θ, ~µs|~x

)
. (10.12)

Again, the Hammersley-Clifford theorem permits a decomposition of the
posterior into simpler full conditional distributions,

f
(post)
~Θ|~Y , ~X

(
~θ|~µs, ~x

)
(10.13)

and

f
(post)
~Y |~Θ, ~X

(
~µs|~θ, ~x

)
. (10.14)

The full likelihood distribution intermediate between the prior and
posterior is

f
(post)
~X|~Θ,~Y

(
~x|~θ, ~µs

)
. (10.15)
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However, since these generate hybrids of normal distributions, which do
not have random generators in MATLAB, it would be desirable to break
these up even more. The first full conditional for ~Θ can be replaced in the
Gibbs sampler by

f
(post)
~Θ1:2|~Θ3:5,~Y , ~X

(αµ, βµ|σµ, σs, ρµ,s, ~µs, ~x)
dist∼ N (~m1:2, V1:2);

f
(post)
~Θ3,5|~Θ1:2,4,~Y , ~X

(σµ, ρµ,s|αµ, βµ, σs, ~µs, ~x)
dist∼ IW(Ψ3,5, dof3,5);

f
(post)
~Θ4|~Θ1:3,5,~Y , ~X

(σs|αµ, βµ, σµ, ρµ,s, ~µs, ~x)
dist∼ IW(Ψ4, dof4);

(10.16)

with similar forms for the priors without the conditioning on [~µs; ~x].
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The equity premium vector is an n-dimensional distribution
f

(post)
~Y |~Θ, ~X

(
~µs|~θ, ~x

)
with recursive complexity which is convenient for

iterative simulations of the µs,k for k=1:n, but not for determining the
necessary Bayesian distribution.

Johannes and Polson (JP2003,JP2006) suggest a forward filtering,
backward sampling (FFBS) algorithm that uses the famous Kalman
filtera for the forward sweep. The Kalman filter algorithm is another of
the top ten algorithms of the century along with the Metropolis Monte
Carlo algorithm. The Kalman filter is for filtering estimates of the mean
of a partially observed linear Gaussian process and the covariance of the
error, but is extendable to other models. It has been used for finance
applications a number of times.

aSee the classic text of B.D.O Anderson and J.B. Moore (AM1979), Optimal Filtering,
Dover Publications Edition 2005 and inexpensive; Kalman Filter section, pp. 105-115. For a
more relevant source here, see R.S. Tsay (T2005), Analysis of Financial Time Series, pp. 490-
496. For this last lecture we do not have time to go into the details of this, but two of my PhD
students did their theses on optimal filtering.
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The conditional mean of the state is needed for its estimate,

µk|k−1 ≡E[µs,k| ~Xk−1], (10.17)

where the conditional past observations are ~Xk−1 ≡ [Xi]
k−1
i=1 . Note that

the same conditional mean of the observations is the same,

yk|k−1 ≡E[yk| ~Xk−1]= µ̂k. (10.18)

Next let the variance of the state conditioned on past observations be

Σk|k−1 ≡Var[µs,k| ~Xk−1], (10.19)

and let the corresponding variance of the error es,t ≡yk−yk|k−1 of the
observation estimate be

Vk ≡Var[es,t| ~Xk−1]=Σk|k−1+σ̃2
s . (10.20)

Some other properties of the one-step forecast error es,t are zero-mean,
E[es,t]=0, and no correlation with the previous observation,
Cov[es,t, yk−1]=0.
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For actual calculations of the state, two recursions for the state forcast
estimate and its error variance are needed and after much analysisa

µk|k+1 =µk|k−1+Kkes,t;

Σk|k+1 =(1−Kk)Σk|k−1+σ̃2
µ;

(10.21)

where Kk ≡ Σk|k−1/Vk is the Kalman gain. There are many option
for the initial condition, a simple one could be µ1|0 =0=Σ1,0. Using
the result of these formulas can yield the forward estimate of moments of

~µs, i.e., of f
(kf)
~Y |~Θ, ~X

(
~µs|~θ, ~x

)
.

An intermediate step, between forward and backward sweeps, is the
estimated sample the last state,

µ̂n
dist∼ f

(kf)

Yn|~Yn−1,~Θ, ~X

(
µs,k|~yn−1, ~θ, ~x

)
, (10.22)

as the start for the backward step.

a See R.S. Tsay (T2005), Analysis of Financial Time Series, pp. 490-496.
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The backward step uses a decomposition of the posterior joint expected
returns premium ~µs,

f
(post)
~Y |~Θ, ~X

(
~µs|~θ, ~x

)
∝f

(
µs,n|~θ, ~x

)n−1∏
i=0

f
(
µs,i|µ̂s,i+1, ~θ, ~x

)
. (10.23)

Reinterpreting the state transition equation (10.7) given the forward
estimate for µ̂s,i+1 and needing the backward estimate of µs,i for state i,
using

Zµ,i+1 =(αµ+βµµs,i−µ̂s,i+1) /σ̃µ (10.24)

to formulate a normal distribution.

? Johannes and Polson (JP2006) give several other time-varying
parameter models, including Merton’s (M1974) default model which is
like a Black-Scholes (BS1973) option model with time-varying
parameters.
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Figure 10.1: Johannes and Polson (JP2006), Fig. 3B, p. 49, time-varying equity
premium problem showing trajectories of 1987-2000 S&P 500 and Nasdaq 100
indices.
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Figure 10.2: Johannes and Polson (JP2006), Fig. 4, p. 52, time-varying equity
premium problem results for 1987-2000 S&P 500 and Nasdaq 100 indices.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture10-page14 — Floyd B. Hanson



• 10.2. Log-Stochastic Volatility (Log-SV or Log-SVD) Models:

Stochastic volatility or variance models are nicely treatable by MCMC
methods, even though they lead to non-Gaussian process.

Consider the stochastic system of log-return and log-volatilitya,

d log(S(t)) = µs(t)dt+
√

V (t)dWs(t); (10.25)

d log(V (t))= κv(θv−log(V (t)))dt+σvdWv(t); (10.26)

where the [κv; θv; σv] are constant and the Wiener processes are
assumed independent so ρs,v ≡0. (In the cited paper correlations are
included.)

aE. Jacquier, N.G. Polson and P.E. Rossi (JPR2004), Bayesian Analysis of Stochastic
Volatility Models with Fat-Tails and Correlated Errors, Journal of Econometrics, vol. 122(1),
pp. 185-212; E. Jacquier, N.G. Polson and P.E. Rossi (JPR2002), Bayesian Analysis of
Stochastic Volatility Models, Journal of Business and Economic Statistics, vol. 20(1), pp. 69-
87.
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Let µs(t)=0 to focus on the stochastic properties,

Xi =log(Si/Si−1)/
√

∆t for i=1:n, Zj,i
dist= N (0, 1) for

j =s :v, αv =κvθv∆t, βv =1−κv∆t and σ̃v =σv

√
∆t, so the

time-discretized system that will be solved is

Xi =
√

Vi−1Zs,i; (10.27)

log(Vi)= αv+βv log(Vi−1)+σ̃vZv,i. (10.28)

The parameter vector is ~Θ=[αv; βv; σ̃v] and latent or hidden state
vector is ~Y = ~V =[Vi]ni=1. According to Hammersley-Clifford, the full
posterior f

(post)
~Θ,~Y | ~X

(~θ, ~v|~x) can decomposed into more convenient, full
conditionals

f
(post)
~Θ1:2|~Θ3,~Y ~X

(αv, βv|σ̃2
v, ~v, ~x); (10.29)

f
(post)
~Θ3|~Θ1:2,~Y ~X

(σ̃2
v|αv, βv, ~v, ~x); (10.30)

f
(post)
~Y |~Θ, ~X

(~v|αv, βv, σ̃2
v, ~x). (10.31)
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This choice of full conditional makes for standard choices of conjugate
priors, least for the volatility parameter priors,

f
(prior)
~Θ1:2

(αv, βv)
dist∼ N (~m1:2, V1:2); (10.32)

f
(prior)
~Θ3

(σ̃2
v)dist∼ IG(Ψ3, dof3). (10.33)

Forcing conjugacy leads to the full conditional parameter posteriors
according to the Bayes rules,

f (post)(αv, βv|σ̃2
v, ~v, ~x)∝

∏n
i=1 f(vi|vi−1, αv, βv, σ̃2

v)f(αv, βv)

dist∼ N (~mpost
1:2 , V

(post)
1:2 );

(10.34)

f (post)(σ̃2
v|αv, βv, ~v, ~x)∝

∏n
i=1 f(vi|vi−1, αv, βv, σ̃2

v)f(σ̃2
v)

dist∼ IG(Ψ(post)
3 , dof (post)

3 );
(10.35)

where the conditional two-step volatility likelihood follows from the
volatility normal error,

Zv,i =(log(Vi) −βv log(Vi−1)−αv) /σ̃v. (10.36)
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So, the volatility likelihood for the parameter Bayesian rule is

f(vi|vi−1, αv, βv, σ̃2
v)∝ σ̃−1

v exp
(
−0.5σ̃−2

v (log(Vi)

−βv log(Vi−1)−αv)
2
)
.

(10.37)

The posterior for the latent state vector ~V is quite complex because of the
connectivity of nearest neighbor is tight and the volatility full joint
posterior is, using the simple p notation for the probability,

p(~V |~Θ, ~X)∝p( ~X|~Θ, ~V )×p(~V |~Θ), (10.38)

but the conditional independence and Markov property requiring only
nearest neighbor property (NNbor),

p( ~X|~Θ, ~V )∝
∏n

i=1 p(Xi|Vi, ~Θ);

p(~V |~Θ)∝
∏n

i=1 p(Vi|Vi−1, ~Θ).
(10.39)

Combining the two products based on (NNbor),

p(~V |~Θ, ~X)∝
n∏

i=1

p(Xi|Vi, ~Θ)×p(Vi|Vi−1, ~Θ). (10.40)
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By Hammersley-Clifford and (NNbor, both backward and forward), the
volatility complete conditional instead is

p(Vi|Vj 6=i, ~X)=p(Vi|Vi−1, Vi+1, ~Θ, ~X), (10.41)

but this can be further reduced by several applications of Bayes rule
(Bayesian IQ test?) and more (NNbor) properties for ~Xa and Vi,

p(Vi|Vi−1, Vi+1, ~Θ, ~X)∝ p(Vi, Vi−1, Vi+1|~Θ, ~X)

∝ p(Xi+1|Vi, ~Θ)×p(Vi, Vi−1, Vi+1|~Θ)

∝ p(Xi+1|Vi, ~Θ)×p(Vi|Vi−1, ~Θ)

×p(Vi+1|Vi, ~Θ),

(10.42)

where only (NNbor) terms have been retained and p(Vi, Vi−1, Vi+1|~Θ)
has been split up into two terms reflecting the binary dependence in
(10.36) for Zv,i, Zv,i+1.

aJP2006 introduce term inconsistency relating Xi to Vi, when in (10.27) Xi depends on
Vi−1. In the published JPR2004, they just define Xi =

√
ViZs,i which fixes the problem.
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Substituting from (10.36) and Zs,i+1 = Xi+1/
√

Vi into the volatility
posterior likelihood,

p(Vi|Vi−1, Vi+1, ~Θ, ~X)∝ V −0.5
i exp(−0.5Z2

s,i+1)
d log(log(Vi)

dVi

· exp(−0.5Z2
v,i) exp(−0.5Z2

v,i+1)

∝ V −1.5
i exp(−0.5(V −1

i X2
i+1))

· exp(−0.5σ−2
v (log(Vi) − µv,i±1)2),

(10.43)

where we use the proper X2
i+1 instead of X2

i in JP2006, explicitly
marked the the use of the Jacobian to change the density with respect to
log(Vi) to that of Vi, our main interest, and have combined two volatility
exponentials by the completing the square technique as in JPR2004,
giving the corrected,

µv,i±1 ≡(βv log(Vi+1Vi−1) + αv(1−βv)) /(1+β2
v). (10.44)
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Neither exponential in (10.43) is a normal density in the variable Vi, but
are normal in some other functional form, so it will be necessary to use
the Metropolis-Hastings acceptance-rejection algorithm with
acceptance-rejection for

π(Vi)≡p(Vi|Vi−1, Vi+1, ~Θ, ~X). (10.45)

JPR1994 use the independence version of Metropolis-Hastings with a
gamma proposal density q(Vi) as π(Vi) (10.43) is is a inverse gamma
density, ignoring the non-log terms.

Let the acceptance probability be

α(V (g)
i , V

(g+1)
i )=min

π
(
V

(g+1)
i

)/
q
(
V

(g+1)
i

)
π

(
V

(g)
i

)/
q
(
V

(g)
i

) , 1

. (10.46)
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Figure 10.3: Johannes and Polson (JP2006), Fig. 5, p. 59, smoothed volatility
paths E[Vi| ~X] with 95% credible intervals (light red dashed lines) for 1987-2000
S&P 500 and Nasdaq 100 indices.
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• 10.3. Correlated Volatility (Correlated-SVD) Leverage Effect Models:

Fischer Black is credited for showing that the correlation between equity
return prices and volatility were importanta and so is called the Black
volatility leverage effect. Thus, assume that the equity price and
volatility are correlated,
Corr[dWs(t), dWv(t)]≡Cov[dWs(t), dWv(t)]/dt=ρs,v.(10.47)

Empirical evidence implies that ρs,v <0, higher volatility is related to
lower stock prices and lower volatility leverage prices higher.

The complicates the method of the prior subsection, but JPR2004 handle
this by proposing the correlations revised system model,

Xi =
√

Vi−1Zs,i; (10.48)

log(Vi)= αv+βv log(Vi−1)+σ̃v

(
ρs,vZs,i+

√
1−ρ2

s,vZv,i

)
,(10.49)

where now Corr[Zs,i, Zv,i]=0 and [Zs,i; Zv,i]
dist= N (~02, I2).

aFischer Black, (1976), Studies in Stock Price Volatility Changes, In American Statistical
Association, Proceedings of the Business and Economic Statistics Section, pp. 177–181.
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The added parameter ρs,v suggest added two new parameters,
φv = σ̃vρs,v and ωv = σ̃2

v(1−ρ2
s,v), so the expanded parameter set is

~Θ=[αv; βv; φv; ωv]. (10.50)

The prior conjugate distributions for the parameters are

[αv; βv](prior) dist∼ N (~m1:2, V1:2); (10.51)

φ(prior)
v

dist∼ N (m3, V3); (10.52)

ω(prior)
v

dist∼ IG(Ψ4, dof4). (10.53)

Conjugacy leads to the posterior full conditional parameter posteriors
according to the Bayes rules,

f (post)(αv, βv|φv, ωv, ~v, ~x)dist∼ N
(

~m
(post)
1:2 , V

(post)
1:2

)
; (10.54)

f (post)(φv|αv, βv, φv, ωv, ~v, ~x)dist∼ N
(
m

(post)
3 , V

(post)
3

)
; (10.55)

f (post)(ωv|αv, βv, φv, ~v, ~x)dist∼ IG
(
Ψ(post)

4 , dof (post)
4

)
. (10.56)

These need to be converted by Bayes rules for likelihood dependence.
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For the volatility latent variable ~V , the nearest neighborhood connections
need the Metropolis algorithm as in the previous case for

f (post)(Vi|Vi−1, Vi+1, ~Θ, ~X). (10.57)

See (JPR2004) and the previous subsection for further details.
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• 10.4. Heston’s Square Root Volatility (Heston SVD) Model:

The equity price, Hestona volatility system used by JP2006 is

dS(t) = S(t)
(
(µs(t)+(ηv+0.5)V (t))dt+

√
V (t)dWs(t)

)
; (10.58)

dV (t)= κv(θv−V (t))dt+σv

√
V (t)dWv(t); (10.59)

where presumably the term (ηv+0.5)V (t) is an added volatility risk
term plus a preemptive insertion of the diffusion coefficient so that it does
appear in the equation for the log-return. It is assumed that the two
Brownian motion term have constant correlation,

Corr[dWs(t), dWv(t)]=ρs,v. (10.60)

aS. L. Heston (1993), A Closedform Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options, Reviews of Financial Studies, vol. 6, pp. 327–
343.
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The discretized systema is then

Xi = η̃vVi−1+
√

Vi−1Zs,i; (10.61)

Vi= αv+βvVi−1+σ̃v

√
Vi−1Zv,i, (10.62)

where the excess log-return per year over the given spot rate is

Xi =log(Si/Si−1)/
√

∆t−ri−1

√
∆t, (10.63)

αv =κvθv∆t, βv =1−κv∆t, σ̃v =σv

√
∆t, η̃v =ηv

√
∆t, and

Zv,i =ρs,vZs,i+
√

1−ρ2
s,vZ̃v,i.

aNote only integration without transformation has been used to get (10.62) and it must be
realized that the many models of finance are singular diffusions, so that care must taken in
transforming them. Geometric Brownian motion is a singular diffusion, but linear coefficient
mean that the singularities are exactly removable by the log-transformation. However, Hes-
ton’s model is to complex for that and many transformations can spoil the diffusion property.
See F.B. Hanson’s recent paper on these issues Stochastic Calculus of Heston’s Stochastic-
Volatility Model, MTNS2010.
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For the parameters,
~Θ=[η̃v; αv; βv; σ̃2

v; ρs,v], (10.64)

the prior conjugate distributions are

η̃(prior)
v

dist∼ N (m1, V1); (10.65)

[αv; βv](prior) dist∼ N (~m2:3, V2:3); (10.66)[
σ̃2

v

](prior) dist∼ IG(Ψ4, dof4); (10.67)

ρ(prior)
s,v

dist∼ U(−1, 1); (10.68)

where U(a, b) denotes a uniform distribution on [a, b] and noting that
the correlation coefficient is bounded −1≤ρs,v ≤ 1.
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By Hammersley-Clifford, the full posterior conditionals are given in the
Metropolis-Hastings MCMC algorithm, omitting the Bayes rule steps,

p(η̃v|αv, βv, σ̃2
v, ρs,v, ~V , ~X) dist∼ N (mpost

1 , V
(post)
1 ); (10.69)

p(αv, βv|σ̃2
v, ρs,v, ~V , ~X) dist∼ N (~mpost

2:3 , V
(post)
2:3 ); (10.70)

p(σ̃2
v|αv, βv, ρs,v, ~V , ~X) dist∼ IG(Ψpost

4 , dof (post)
4 ); (10.71)

p(ρs,v|αv, βv, σ̃2
v, ~V , ~X) by Metropolis algorithm;(10.72)

p(Vi|Vi−1, Vi+1, ~Θ, ~X) by Metropolis algorithm.(10.73)

After Eraker, Johannes and Polson (EJP2003)a, a suggested volatility
scheme for the nearest neighbors is

[Vi|Vi−1](post) dist∼ N (αv+βvVi−1, Vi−1σ̃2
v); (10.74)

[Vi+1|Vi](post) dist∼ N (αv+βvVi, Viσ̃
2
v), (10.75)

aB. Eraker, M. Johannes and N. Polson (EJP2003), The Impact of Jumps in Equity Index
Volatility and Returns, Journal of Finance, vol. 58, pp. 1269–1300.
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• 10.4. Stochastic-Volatility, Contemporaneous Jump-Diffusion (SVCJ
or SVCJD) in Both Return and Volatility Models:

The model of Duffie, Pan and Singleton (DPS2000)a is a system of a two
jump-diffusion for both equity prices and stochastic volatility (variance),

dS(t) = S(t)
(
(µs(t)+ηvV (t))dt+

√
V (t)dWs(t) (10.76)

+
(
eQs −1

)
dP (t)

)
;

dV (t)= κv(θv−V (t))dt+σv

√
V (t)dWv(t)+QvdP (t); (10.77)

where again the pure Brownian motions are correlated as in (10.60) with
coefficient ρs,v , dP (t) is the common or contemporaneous jump
counter with jump rate λ, with the jth jump time τj or jump counter Jj .

aD. Duffie, K. Singleton and J. Pan (DPS2000), Transform Analysis and Asset Pricing for
Affine Jump–Diffusions, Econometrica, vol. 68, pp. 1343–1376. See also Eraker, Johannes
and Polson (EJP2003) who compare SVCJD with independent equity-volatility jumps SVIJD
model, as well as the SVD and SVJD models, which they call misspecified models; the
(EJP2003) gives many further details for this section that are not in (JP2003/2006/2009).
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However, the variance jump sizes are exponentially distributed

Qv,j
dist∼ E(µv) and the equity price jump sizes are distributed

conditionally normal stochastic volatility (variance),

[Qs,j|Qv,j]
dist∼ N (µs+ρsQv,j, σ2

s). (10.78)

The given spot rate is again r(t).

The discretized double jump-diffusion model is, assuming a 0 − 1 jump
law for sufficiently small Λ=λ∆t,

Xi = µx+η̃vVi−1+
√

Vi−1Zs,i+Qs,iJi; (10.79)

Vi= αv+βvVi−1+σ̃v

√
Vi−1Zv,i+Qv,iJi, (10.80)

where the excess log-return per year over the given spot rate is

Xi =log(Si/Si−1)/
√

∆t−ri−1

√
∆t, (10.81)

αv =κvθv∆t, βv =1−κv∆t, σ̃v =σv

√
∆t, µx is another state-less

risk (fudge?) factor, η̃v =(ηv−0.5)
√

∆t, ρ̃s,v =ρs,v/
√

∆t

µ̃s =µs/
√

∆t, σ̃s =σs/
√

∆t, and Ji =∆P (t−∆t).
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Again, Zv,i =ρs,vZs,i+
√

1−ρ2
s,vZ̃v,i. The parameter vector is

~Θ=[µx, η̃v; αv; βv; σ̃2
v; ρs,v; Λ; µv; µ̃s, ρ̃s, σ̃s]. (10.82)

The prior conjugate distributions are

[µx; η̃v](prior) dist∼ N (~m1:2, V1:2); (10.83)

[αv; βv](prior) dist∼ N (~m3:4, V3:4); (10.84)

[µ̃s; ρ̃s](prior) dist∼ N (~m9:10, V9:10); (10.85)[
σ̃2

v

](prior) dist∼ IG(Ψ5, dof5); (10.86)[
σ̃2

s

](prior) dist∼ IG(Ψ11, dof11); (10.87)

[Λ](prior) dist∼ Beta(a7, b7); (10.88)

[µv]
(prior) dist∼ G(a8, b8); (10.89)

[ρs,v](prior) dist∼ U(−1, 1); (10.90)

where is assumed that the normal priors are independent.
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Again, by Hammersley-Clifford, the parameter full posterior
conditionals are given in the Metropolis-Hastings MCMC algorithm,

p(µx; η̃v|~Θi6=1:2, J, ~Q, ~V , ~X) dist∼ N (~m
(post)
1:2 , V

(post)
1:2 ); (10.91)

p(αv, βv|~Θi6=3:4, J, ~Q, ~V , ~X) dist∼ N (~m
(post)
3:4 , V

(post)
3:4 ); (10.92)

p(σ̃2
v|~Θi6=5, J, ~Q, ~V , ~X) dist∼ IG(Ψ(post)

5 , dof (post)
5 ); (10.93)

p(Λ|~Θi6=7, J, ~Q, ~V , ~X) dist∼ Beta(a(post)
7 , b

(post)
7 ); (10.94)

p(µ̃s; ρ̃s|~Θi6=9:10, J, ~Q, ~V , ~X) dist∼ N (~m
(post)
9:10 , V

(post)
9:10 ); (10.95)

p(σ̃2
s |~Θi6=11, J, ~Q, ~V , ~X) dist∼ IG(Ψ(post)

11 , dof (post)
11 ); (10.96)

p(µv|~Θi6=8, J, ~Q, ~V , ~X) dist∼ G(a(post)
8 , b

(post)
8 ); (10.97)

p(ρs,v|αv, βv, σ̃2
v, ~V , ~X) by Metropolis algorithm; (10.98)

the last needs Metropolis due to lack of conjugacy of the uniform prior
with the likelihood distribution. Again. the Bayes step is omitted.
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By Hammersley-Clifford, the latent state full posterior conditionals are
given in the Metropolis-Hastings MCMC algorithm,

p(Qv,i|~Θ,Ji =1,Qs,i,Vi,Vi−1)
dist∼ TN dist= N×1Qv,i>0; (10.99)

p(Qs,i|~Θ,Ji =1,Qv,i,Vi,Vi−1,Xi)
dist∼ N ; (10.100)

p(Ji =1|~Θ,Qs,i,Qv,i,Vi,Vi−1,Xi)
dist∼ Ber ; (10.101)

p(Ji =0|~Θ,Qs,i,Qv,i,Vi,Vi−1,Xi)
dist∼ Ber ; (10.102)

p(Vi|Vi−1,Vi+1,~Θ, ~X)byMetropolis. (10.103)

The TN denotes the truncated-normal distribution, here used to
enforce the positivity of volatility jumps, Qv,i >0. The Ber denotes the
Bernoulli distribution, such that the posterior probability of a jump
(success) is Λ/(1+Λ) (avoid poor approximation Λ) for the assumed
0−1 jump law.
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While the standard Bayesian estimation procedure suggests using
uninformative priors, (EJP2003) recommend using some informative
priors for consistency with the 0−1 jump law assumption that jumps are
rare, but also that jump being large is their distinguishing feature from
the continuous diffusion changes, so Λ should be chosen low and that the
equity mean jump µs and possibly σs be chosen large to focus on large
jumps.

The (EJP3003) authors give the following advantages of the MCMC
estimation methods in general:

1. MCMC efficiently estimates latent (hidden) state variables such as
volatility, jump counters and jump sizes.

2. MCMC handles estimation of risk factors.
3. MCMC offers superior sampling procedures through decomposing

variables and parameters into manageable modules.
4. MCMC is computationally efficient with built in simulation checks

of accuracy.
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Figure 10.4: Eraker, Johannes and Polson (EJP2003), Table III, p. 1280, for 1980-
1999 S&P 500 index parameter estimates comparing SVD, SVJD, SVCJD (model
of this section) and SVIJD models. Recall the two λk should be Λk for k=y :v.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture10-page36 — Floyd B. Hanson



Figure 10.5: Eraker, Johannes and Polson (EJP2003), Figure 1, p. 1282, 1980’s
top and 1990’s bottom, for the S&P 500 index estimated volatility paths comparing
SVD, SVJD, SVCJD (model of this section) and SVIJD models.
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Figure 10.6: Eraker, Johannes and Polson (EJP2003), Figure 2, p. 1283, for 1980-
1999 S&P 500 index QQ plot test comparing SVD, SVJD, SVCJD (model of this
section) and SVIJD model residuals against the data.
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Figure 10.7: Eraker, Johannes and Polson (EJP2003), Table VI, p. 1283, for
1980-1999 S&P 500 index comparing the Log-Bayes factors for the model. Cau-
tion: from the text commentary on both QQ plot and Bayes factors, SV and SVJ
are misspecified models, hence using the reciprocal of (JP2006) Bayes factor for
SV1 vs. SV2 with arguments in the reversed order LogBF(SV2, SV1) =

log(P2) − log(P1) > 0 means P2>P1 or SV2�SV1, i.e., SV2 is
better. From the comments in (JP2003), looks like Bayes factor used is
BF (SV 2, SV 1) = p(X|SV 2)/p(X|SV 1), the likelihood ratio, so that
p(SV 2|X)/p(SV 1|X)=BF (SV 2, SV 1)p(SV 2)/p(SV 1).
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Figure 10.8: MATLAB Statistics Toolbox (STB) mhsample Metropolis Hast-
ings function, p. 1a. See the STB Guide.
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Figure 10.9: MATLAB STB mhsample Metropolis Hastings function, p. 1b.
The advantage of ’logpdf’ is that is cuts down growth of the likelihood.
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Figure 10.10: MATLAB STB mhsample Metropolis Hastings function, p. 2a.
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Figure 10.11: MATLAB STB mhsample Metropolis Hastings function, p. 2b.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture10-page43 — Floyd B. Hanson



Figure 10.12: MATLAB STB mhsample Metropolis Hastings function, p. 3.
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Figure 10.13: MATLAB STB mhsample Metropolis Hastings function, p. 4.
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Figure 10.14: MATLAB STB sliceesample Slice Sampling function, p. 1a.
Slice sampling is simpler to use than Metropolis Hastings.
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Figure 10.15: MATLAB STB slicesample Slice Sampling function, p. 1b.
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Figure 10.16: MATLAB STB mhsample Slice Sampling function, p. 2. For a
MATLAB demo. code use help bayesdemo, for a 11 page Bayesian Analysis
of a Logistic Regression document with a link at the top to open or run the code.
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Figure 10.17: MATLAB STB slicesample Slice Sampling function, p. 3.
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Figure 10.18: MATLAB STB Guide Markov Chain Samplers, p. 1a. Some brief
explanations of mhsample and slicesample methods.
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Figure 10.19: MATLAB STB Guide Markov Chain Samplers, p. 1b. Some brief
explanations of mhsample and slicesample methods.
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Figure 10.20: MATLAB STB Guide Markov Chain Samplers, p. 2a. Some brief
explanations of mhsample and slicesample methods.
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Figure 10.21: MATLAB STB Guide Markov Chain Samplers, p. 2b. Some brief
explanations. Generate random numbers using the slice sampling method with the
slicesample function. y=f(x(t))*rand; x(t+1)=L+(R-L)*rand;
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? Notes on Slice, Metropolis-Hastings and Sampling in General:
• Emphasize the posterior full conditional distributions to avoid

handling multivariate, joint distributions due to excessive analytical
complexity and large scale computational demands.

• The basic statistical properties of the posterior parameter and
other distributions can be obtained from the final sampling using
MATLAB mean, std and other functions; the sample mean is the
usual estimate for parameters.

• Latent or hidden state trajectories can be obtained by plotting a
sample sample from the final iteration posterior distribution of the
final iteration.

• A good reference on both samplers is C.P. Robert and G. Casella
(2004), Monte Carlo Statistical Methods, pp. 267-320 for the
Metropolis-Hastings sampler and pp. 321-336f or the slice sampler,
with the original published paper by R. Neal (2003), Slice Sampling,
Ann. Stat., vol. 31, pp. 705-767, including discussion.
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• The size of the full likelihood distribution can become quite large due
to the product of the partial likelihoods of each of the data, but for
slicesample or mhsample functions the ‘logpdf’ option in
place of the ‘pdf’ default can be used to input the log-densities to
reduce growth. The mhsample also has a ‘logproppdf’ instead
of ‘proppdf’ for the proposed PDF option.

• For a MATLAB slicesample demonstration code use

help bayesdemo (10.104)

or use the Help window, to obtain an 11 page Bayesian Analysis of
a Logistic Regression document with a link at the top to open or run
the code. The code and document are a Bayesian example applied to
experimental data on car performance using a logistic or logit
model. The short document and also the code contain much useful
tutorial information on Bayesian inference, slice sampling and the
analysis of sampler output.
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* Summary of Lecture 10:

1. Bayesian Estimation Estimation in Finance, Part II

2. Bayesian Time-Varying Equity Risk Premium for BS Model

3. Bayesian Log-Stochastic Volatility,Log-SVD

4. Bayesian Correlated-SVD Leverage Effect

5. Bayesian Heston Square Root SVD

6. Bayesian Contemporaneous Jumps, SVCJD

7. Eraker, Johannes & Polson (2003) SVD, SVJD, SVCJD & SVIJD
Comparisons

8. MATLAB Metropolis Hastings mhsample Function

9. MATLAB Slice Sampler slicesample Function

10. MATLAB Brief Explanations of mhsample and slicesample Methods.
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