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2.1 Monte Carlo Method Methods Introduction,
An Application of Sampling and Asymptotic Limit Theorems:

• In many financial applications integral approximations are needed,
such as expectation integrals applied for real, continuous, IID RVs,
~X = [Xi]n×1, with proper distribution FX(x) = Prob[Xi ≤ x]
and proper probability density fX(x) on [a, b] (e.g., if fully infinite,
then (−∞, +∞)):

µg(X) ≡ EX [g(X)] ≡
∫ b

a

g(y)fX(y)dy

'
1

n

n∑
i=1

g(Xi) ≡ g(X)n,
(1)

i.e., approximated by the sample mean, which is a RV with the Xi

and all lower moments of the g(Xi) are assumed to exist.
• The sample mean g(X)n is an unbiased estimate of µg(X), i.e.,

µg(X)n
≡ EX

[
g(X)n

]
iid=

1

n

n∑
i=1

µg(X) = µg(X), (2)

noting that 1
n

∑n
i=1 is not an RV and EX is a linear operator.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture2-page2 — Floyd B. Hanson



• The variance of g(X)n is given by the variance of the sample mean
formula (17) in Lect. 1, Sect. 1.3,

σ2
g(X)n

= σ2
g(X)/n, (3)

so the standard error or standard deviation is
SE[g(X)n] = σg(X)n

= σg(X)/
√

n.
• However, σg(X) is the target of the method and is a priori unknown,

but for a probabilistic estimate of the error the unbiased sample
variance g(X) can be used, i.e.,

ŝ2
n =

1

n − 1

n∑
i=1

(
g(Xi) − g(X)n

)2

. (4)

Hence, our estimate of the order of the Monte Carlo probabilistic
error is the estimated SE,

ŜEn

[
g(X)

]
=

ŝn√
n

. (5)
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• Often, the Monte Carlo estimate, itself, is written very loosely as
“µg(X) = g(X)n ± ŝn/

√
n

′′, but the order of one standard
deviation margin of error should be understood, i.e,
µg(X) = g(X)n + O(ŝn/

√
n).

• Hence, an Monte Carlo estimate can be computed by using an
appropriate pseudorandom number generator like rand(1,n) for
the row n-vector, standard uniform distribution on
[δ, 1 − δ] ' (0+, 1−) in basic MATLAB or unifrnd in the
Statistics Toolbox, where δ =eps/2 and eps is the
machine epsilon in MATLAB, and randn(1,n) for the mean zero,
unit variance, standard normal distribution on (−∞, +∞) in
basic MATLAB or normrnd(0,1,1,n) in the Statistics
Toolbox, for instance. In general, unifrnd(a,b,m,n) ⇔
a+(b-a)*rand(m,n) and normrnd(mu,sigma,m,n) ⇔
mu+sigma*randn(m,n) for m X n samples.

{Mileage will vary with other computational math/stat. systems.}
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(a) Sample size N = 103.
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(b) Sample size N = 105.

Figure 1: Histograms of simulations of the standard uniform distribution
f

(u)
X (x; 0, 1), x ∈ (0, 1), using MATLAB rand for two different sample sizes

N using sample uniform code (see also code copy in Chalk/Course Documents)
in Hanson (2007) Online Appendix B Preliminaries, page B6. Hence, need large
sample size to get a reasonable approximation to the distribution.
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Uniform code example for Figure 1 abbreviated to one page:
function uniform09fig

% FINM 331 Uniform Histogram Demo. from Hanson book (2007)

fprintf(’\nfunction uniform09fig OutPut:’)

for m = 3:2:5;

N=10ˆm;

rand(’twister’,3);

x=rand(N,1);

xmean=mean(x); xstd=std(x);

xmin = min(x); xmax = max(x);

nbins = 30; % min(fix(sqrt(10ˆm)),101);

xmin = 0; xmax = 1;%Adjust to theoretical [0,1] for graph;

xbin1 = xmin; xbin2 = xmax; dxbin = (xbin2-xbin1)/nbins;

xbin = xbin1+dxbin/2:dxbin:xbin2-dxbin/2;

nx = hist(x,xbin); % Need Edge Oriented histc.

bar(xbin,nx); axis tight;

title(’Histogram for x = rand(N,1)’,’Fontsize’,44...

,’FontWeight’,’Bold’);

% Code shorten for one page

end % For demo, use hist(rand(1e3,1),30), hist(rand(1e5,1),30)

% in the command window.
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(b) Sample size N = 105.

Figure 2: Histograms of simulations of the standard normal distribution with
mean 0 and variance 1 using MATLAB randn with 50 bins for two sample sizes
N . The histogram for the large sample size of N = 105 in Subfigure 2(b) ex-
hibits a better approximation to the theoretical normal density f

(n)
X (x; 0, 1) using

normal sample code (see also code copy in Chalk/Course Documents) in Hanson
(2007) Online Appendix B Preliminaries, page B9. Note that randn(1e5,1)∈
(−5, 5), approximately, and normpdf(5,0,1)=1.4867e-6.
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Normal code example for Figure 2 abbreviated to one page:
function normal09fig

% FINM 331 Normal Histogram Demo. from Hanson book (2007)

for m = 3:2:5

N=10ˆm;

x=randn(N,1);

xmean=mean(x);

xstd=std(x);

xmin = min(x); xmax = max(x);

xbin1 = xmin; xbin2 = xmax; dxbin = (xbin2-xbin1)/nbins;%

xbin = xbin1+dxbin/2:dxbin:xbin2-dxbin/2;

nx = hist(x,xbin); % Need Center Oriented hist.

bar(xbin,nx); axis tight;

title(’Histogram for x = randn(N,1)’,’Fontsize’,44);

ks = [0.4,0.7]; nxmax = max(nx);

xtext = xmax*ks(1);

ytext=fix(ks(2)*nxmax);

textn=[’N = ’ int2str(N)];

text(xtext,ytext,textn,’Fontsize’,40,’FontWeight’,’Bold’);

ylabel(’Normal Bin Frequency’,’Fontsize’,44);

xlabel(’x, Normal randn-Deviate’ ,’Fontsize’,44);

end% For demo., use hist(rand(1e3,1),30), hist(rand(1e5,1),30).
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• Being innovative can be helpful. If the desired integral is of the
form, ∫ b

a

h(x)dx, (6)

given a, b and a moderately varying h(x), then let
fX(x) = 1/(b − a) (7)

be a uniform density on (a, b),

g(x) = (b − a) ∗ h(x) (8)

where ∗ denotes multiplication in MATLAB, forming a substitute
expectation for the original integral (9),∫ b

a

g(x)fX(x)dx = µg(X) ≡ EX [g(X)]. (9)

The sample mean is evaluated using the uniform variate,

X =a*ones(n,1)+(b-a)*rand(n,1); (10)

an n-vector (MATLAB is most efficient in matrix-vector form).
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The sample mean is

gmean = mean(g(X)); (11)

and the approximate integral is

hintegral = mean(g(X))/(b-a); (12)

The estimated standard error (SE) of g(X) is

σg(X) =
σg(X)√

n
'

ŝn√
n

= ŜEn

[
g(X)

]
, (13)

replacing the theoretical standard deviation σg(X), which is usually
unknown, by the feasibly estimated (unbiased as a variance) sample
standard deviation ŝn. The estimated standard error for the Monte
Carlo approximation of the original will be ŜEn

[
g(X)

]
/(b − a).
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Figure 3: Monte Carlo resuls for uniform rand-deviates for f(x) = 1/(b − a)

and g(x) = (b − a) ∗ h(x) on (a, b) as a function of sample size N using
sample MCM uniform code (see also code copy in Chalk/Course Documents) in
Hanson (2007) applied stochastics text, page 265.
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• Uniform Monte Carlo code example for Figure 3 abbreviated to one
page:
function mcm1test09

% FINM 331 mcm1test: Monte Carlo Method (2009),

% integral of h(x) = sqrt(1-xˆ2); on [a,b]:

a = 0; b = +1; % -1 <= a < b <= +1;

IntExact = 0.5*(asin(b)-asin(a))+0.5*(b*sqrt(1-bˆ2)-a*sqrt(1-aˆ2));

MugExact = IntExact;

Sigg = sqrt((b-a)ˆ2*(1-(bˆ2+a*b+aˆ2)/3)-MugExactˆ2); kmax = 7;

n = zeros(1,kmax); meang = zeros(1,kmax); sigg = zeros(1,kmax);

sigdrn = zeros(1,kmax); error = zeros(1,kmax);

for k = 1:kmax

rand(’state’,0); % set state or seed

n(k) = 10ˆk; % sample size, k = log10(n(k)) ;

x = a+(b-a)*rand(n(k),1); % get n(k) X 1 random sample on (a,b);

g = (b-a)*sqrt(1-x.ˆ2); % vectorized g;

meang(k) = mean(g); % E[g(X)];

sigg(k) = std(g); % sqrt(sigmagˆ2),sigmagˆ2 = unbiased Var(g );

sigdrn(k) = sigg(k)/sqrt(n(k));

error(k) = abs(meang(k)-MugExact);

fprintf(’%1i %8i %6.4f %6.4f %9.3e %9.3e %9.3e %9.3e\n’...

,k,n(k),meang(k),MugExact,sigg(k),Sigg,sigdrn(k),error(k))

end

% end mcm1test.m (For plot code see source)
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Figure 4: Monte Carlo results for normal randn-deviates for the standard nor-
mal distribution on (a, b) as a function of sample size N by the von Neumann
method of acceptance and rejection to account for the reduced sample size on
a finite interval (observations outside the interval are not counted) using sample
MCM uniform code (see also code copy in Chalk/Course Documents) in Hanson
(2007) ç page 272.
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• Normal Monte Carlo with Acceptance Sampling code example
applied to finite range normal in Figure 4:

function mcm2acceptreject09

% FINM 331: Normal Monte Carlo with Acceptance-Rejection Sampling.

% I = int(h(x),x=a..b), h(x) = f(x) = exp(-xˆ2/2)/sqrt(2pi);
a = -2; b = 2; % limits of integration;

f = inline (’exp(-x.*x/2)./sqrt(2*pi)’,’x’); % x in [a,b]

kmax = 7; nmc = 10ˆkmax; nac = 0;% select MCM random sample size;
x = randn(1,nmc); % nmc X 1 normal distribution;

kv = zeros(1,kmax); Ihatn = zeros(1,kmax); stderrn = zeros(1,kmax);

for n = 1:nmc
if (x(n) >= a) && (x(n) <= b)

nac = nac + 1; % counts ACCEPTED points;

end
if n==10)||(n==100)||(n==1000)||(n==10000)||(n==100000)||(n==1000000)||(n==nmc)

k = log10(n);

kv(k) = k;

Ihatn(k) = nac/n; % Estimate Integral
stderrn(k) = sqrt(Ihatn(k)*(1-Ihatn(k))/(n-1));

fprintf (’%2i %8i %8.6f %9.3e\n’,k,n,Ihatn(k),stderrn(k));

end
end

% end mcm2acceptreject.m (For plot part of code see source.)
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• Acceptance-Rejection Sampling Method of von Neumann (1951):
Often integrals will have a density fX(x) defined on [a, b], but the
integral is defined on a subset [c, d] ⊂ [a, b] or in the more
complicated case there is NO random number generator available
for fX(x). In the simpler case, the accepted (ac) integral is

I(ac)[g]≡
∫ d

c
g(x)fX(x)dx = C(ac)E[g(X)|X ∈ (c, d)]

= C(ac)µ
(ac)
g(X),

(14)

where C(ac) =I(ac)[g]≡
∫ d

c
fX(x)dx=FX(d)−FX(c) is the

renormalization constant, f
(ac)
X (x)=fX(x)/C(ac) is the

accepted density and µ
(ac)
g(X) is the mean of g(X) on the accepted

(ac) interval. Given the usual IID sample ~X =[Xi]n×1 on [a, b]
such that n = n(ac) + n(re), i.e., n(ac) is the number of accepted
observations ~X(ac) =[X(ac)

i ]n(ac)×1 in [c, d], while n(re) is the
rejected number. Both numbers are random since they vary with
the sample.
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Also, let 1(ac)(x) = 1 if x ∈ [c, d] and otherwise 0 be the
accepted indicator function, so g(ac)(x) ≡ g(x)1(ac)(x) is the
function on [a, b], where we will work. The unbiased sample
approximation to the accepted normalization constant is

C(ac)=I(ac)[1]'
1

n

n∑
i=1

1(ac)(Xi)=
n(ac)

n
≡ Î(ac)

n [1]= Ĉ(ac)
n , (15)

since

EX [Î(ac)
n [1]]=

1

n

n∑
i=1

EX [1(ac)(Xi)]=I(ac)[1]. (16)

Then, the accepted sample mean of the integral of g(X) is

bI(ac)
n [g]≡ 1

n

nX
i=1

g(Xi)1
(ac)(Xi)=

1

n

n(ac)X
i=1

g(X
(ac)
i )

=
bC(ac)

n

n(ac)

n(ac)X
i=1

g(X
(ac)
i ),

(17)

since by accepted expectations it yields the unbiased estimate of the
integral, i.e.,

EX

h bI(ac)
n [g]

i
=

1

n

nX
i=1

EX

h
g(Xi)1

(ac)(Xi)
i
=I(ac)[g]. (18)
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Similarly, the variance is by the usual IID calculation,

σ2bI(ac)
n

= VarX

h bI(ac)
n

i
= EX

»“ bI(ac)
n − µbI(ac)

n
1(ac)(Xi)

”2
–

iid
= 1

n2

Pn
i=1 EX

»“
g(ac)(Xi) − µg(ac)(X)

”2

1(ac)(Xi)

–
=

σ2
g(ac)(X)

n ,

(19)

The unbiased sample variance of g(ac)(X) is

bs2
n

h
g(ac)

i
=

1

n − 1

nX
i=1

“
g(ac)(Xi) − g(ac)(X)n1(ac)(Xi)

”2

(20)

and thus the standard error of g(X) can be approximated by

SE
h bI(ac)

n

i
=

σg(ac)(X)√
n

'
bsn

h
g(ac)

i
√

n
. (21)

In Figure 4, g(x) = 1, so

SE(ac)
n

h bI(ac)
n

i
'

s
1

n

n(ac)

n

„
1 − n(ac)

n

«
. (22)

Remarks: The details are left to the viewer.
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• Monte Carlo Risk-Neutral European Call Pricing code example:
Note automatic acceptance and rejection by max function.
function mcm4eurocall

% Monte Carlo Risk-Neutral Pricing for European Call Options (2009),

% Adapted from D.J. Higham, Comp.Sci.&Engr., Nov/Dec2004, pp.72-79.

clc; clear

fprintf(’Monte Carlo Pricing for European Call Options (2009)’);

A0 = 2; K = 1; r = 0.05; sigma = 0.25; T = 3; N = 1.e6; PC = 95/100;

randn(’state’,50);

A = A0*exp((r-0.5*sigmaˆ2)*T+sigma*sqrt(T)*randn(N,1)); %AssetPrice

C = exp(-r*T)*max(A-K,0); % Call Prices with Acceptance by Max;

Cmean = mean(C);

SE_C = std(C)/sqrt(N); % Standard Error for Call Cmean

width = norminv((1+PC)/2)*SE_C; % 100*PC% CI Bandwidth

CImin = Cmean-width; % Confidence Inteval left

CImax = Cmean+width; % Confidence Inteval right

fprintf(’\nCImin=%6.4f < Cmean=%6.4f < CImax=%6.4f;\n’...

,CImin,Cmean,CImax);

%%%%%%%% Delete this function if have Statistics Toolbox %%%%

function z = norminv(p)

z = -sqrt(2)*erfcinv(2*p);

% end mcm3eurocall.m

Output: CImin=1.1436 < Cmean=1.1453 < CImax=1.1471;
Remark: Cmean is close to Black-Scholes answer, Cbs = 1.1447, and within CI.
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• 2.2. Evidence of Jumps and Time-Dependence:
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(a) Histogram for S&P500 (sp) data.
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Figure 5: Histogram frequencies using year 2000 closings for S&P500 (sp) data
and double-uniform jump-diffusion (dujd) model from Zhu & Hanson, 2006
book chapter. Notice skew asymmetry, fat tails, peakedness and finite extent.
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Higher Central Moments with M
(k)
X ≡EX [(X − µX)k], k≥2, with

M
(2)
X =σ2

X :

• Skewness, η
(3)
X ≡ M

(3)
X /σ3

X 6= 0 (normal value), is a scaled 3rd
central moment measure of asymmetry. Often in financial markets,
η

(3)
X <0 due to the usual dominance of crashes over rallies and

develops after a sufficient amount of time, but can be positive during
some time periods.

• Kurtosis, η
(4)
X ≡ M

(4)
X /σ4

X >3 (normal value), is a scaled 4th
central moment measure of fat tails, associated with high crowns
(peaks). Excess Kurtosis over the normal value, δη

(4)
X ≡η

(4)
X −3,

due to nonnormal processes develops after a sufficient amount of
time, but can be found to be small, i.e., data is nearly normal, over
shorter periods.
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Figure 6: Estimation (midyear smoothing) of coefficients of skewness and kurto-
sis for S&P500 (sp) data and double-uniform jump-diffusion (dujd) model from
Zhu & Hanson, 2006 book chapter. Notice time-dependence and variable com-

parisons. Data is S&P 500 daily adjusted closings in 1988-2004.
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• Aside from high frequency financial data (more than daily closings),
the number of daily closings per year are not that large, on average
there are n ' 252 market daily closings per year, or roughly
∆t ' 1/252 ' 4 × 10−3 market years between daily closings, so
the realistic limits n just large and ∆t just small are not quite the
purely mathematical limits, n → +∞ and ∆t → 0+, respectively,
for higher order approximations, except when there is high frequency
data (data between closings).

• Market parameters are Time Dependent, i.e., in discrete time,
µ∆t = µi∆t and σ

√
∆t = σi

√
∆t for i = 1 : n time-steps, so

that the cumulative log-return, as a summed time series,

log(An+1)=log(A1)+
n∑

i=1

log(1+µi∆t+σi

√
∆tZi), (23)

are the multiplicative stochastic model log random variables (RVs),
but are no longer the sum of identically distributed (ID), in general.
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• Stochastic Jumps such as Crashes and Bubbles are relatively rare
and are nonnormal processes that include large deviations with
probability greater those predicted by the (log-)normal distribution.
Such jumps are documented for large number of financial
instruments. Merton (1976) pioneered the first Jump-Diffusion
finance model, for option pricing. In discrete asset data form, with
constant parameters, the model, as a time series, is

Ai+1 = Ai

1 + µ∆t + σ
√

∆tZi +
Yi∑

j=1

νi,j

 , (24)

for i=1:n, where Yi is a Poisson jump counting RV with
E[Yi]=λ∆t=Var[Yi], λ is a constant jump rate, the νi,j are
IID jump-amplitude RVs, while the Zi are usually distributed as a
standard normal distribution, F

(n)
Z (z; 0, 1), such that the

{Zi, Yi, νi,j} are pairwise independent.
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The Poisson distribution, for for k = 0, 1, 2, . . . jumps in a ∆t

time-step, is

pk(λ∆t)≡Prob[Yi =k]=e−λ∆t (λ∆t)k

k!
. (25)

So, in the case of a small Poisson parameter, λ∆t�1, the Poisson
is approximated by a Bernoulli process which satisfies a zero-one
law such that Yi = 0 with probability, 1 − λ∆t and Yi = 1 with
probability λ∆t and with negligible error
O2(λ∆t)=O((λ∆t)2). In this zero-one jump case, the
jump-diffusion model becomes a much easier problem,

Ai+1 = Ai

(
1 + µ∆t + σ

√
∆tZi + νi,1Yi

)
, (26)

for i=1:n, since
∑Yi

j=1 νi,j = νi,1Yi if Yi takes on only values
zero and one, often denoting failure and success events, like tails of
heads in a coin toss, for the general Bernoulli problem.
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• The conversion to the log form is not as simple as for the pure
diffusion Zi multiplicative case with drift µ and it is necessary to go
back to the original continuous time formulation. There are
independent chain rules for the continuous diffusion process and the
discontinuous jump process, since at an instantaneous jump there
is no time (∆t=0) for the continuous change. Hence, for the
Bernoulli 0 – 1 jump law with λ∆t�1,

log(Ai+1)= log(Ai)+log(1+µ∆t+σ
√

∆tZi+νiYi); (27)

log(Ai+1)' log(Ai)+σ
√

∆tZi+(µ−σ2Z2
i /2)∆t

+log(1+νi)Yi,
(28)

where the two step approximation is first with
{Yi =0, 0<∆t�1} and then with {Yi =1, ∆t=0}. We will
take (28) as our Bernoulli jump-diffusion model as given. The error
O3/2(∆t) is negligible in probability. The log-asset prices Ai are
distributed as a Poisson mixture of normal distributions according
to the jump counts k (Hanson, 2007), causing a distribution with fat
tails.
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• 2.2.5 More Evidence of Jumps and Time-Dependence:
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Figure 7: Estimation (midyear smoothing) of DUJ model parameters jump rate
λ(t), negative-jump probability p1(t)with lower bound a(t), and positive-jump
upper bound b(t) from Zhu & Hanson, 2006 book chapter. Notice time-
dependence, but caution since smoothing results are flawed at the far right and
far left. Data is S&P 500 Index daily adjusted closings, 1988-2004.
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Figure 8: Estimation (midyear smoothing) of DUJD model mean and standard de-
viation parameters, (µd(t), σd(t)) for diffusion component and (µj(t), σj(t))
for jump component from Zhu & Hanson, 2006 book chapter. Notice time-
dependence and that the both diffusion and jump standard deviations are much
more variable than the means, respectively.
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• 2.3. Asset Models with Stochastic Volatility:
• Empirical evidence indicates that the asset price Ai volatility,

σ=
√

Vi, is random leading to a stochastic-volatility diffusion
(SVD) model, with stochastic variance Vi, taking the form of
coupled square-root stochastic noise models, as a double time
series,

log(Ai+1)' log(Ai)+(µ−Vi/2)∆t+
√

Vi∆tZ
(a)
i ,

Vi+1 = Vi + κv(θv − Vi)∆t+σv

√
Vi∆tZ

(v)
i ,

(29)

where Vi ≥min(Vi)=εv >0 such that ∆t�εv �1 to avoid the
zero-variance singularity as well as stochastic calculus and
simulation problems (Hanson, 2009). Here, κv is the deterministic
mean rate of decay, θv is the deterministic equilibrium level, σv is

the volatility of volatility and ρa,v = Cov
[
Z

(a)
i , Z

(v)
i

]
is the

correlation coefficient between the Z
(a)
i and Z

(v)
i standard normally

distributed noise.
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• The problem is that the stochastic variance and hence the stochastic
volatility cannot be directly estimated, so are called latent variables
and special methods are needed to otherwise estimate these stochastic
variables.

• Also, T. G. Andersen et al. (2007) have found that volatility jumps
are highly important in bond yields, equity return indices and foreign
exchange rates.
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• Main Topic 2. Exploratory Data Analysis Tools:
Analytical and Computational

• 2.3. Pseudo-Random Number Generators (RNGs) for
Financial Applications:
• Pseudo-RNG means Deterministically Simulated RNGs:

There is no such thing as purely random number generators and
the basic procedure to simulate the generation of so-called random or
pseudo-random numbers is purely deterministic using basic
algebraic operations with large multipliers truncated by modular
arithmetic with a large modulus called the linear congruential
method, sometimes followed by techniques like shuffling the raw
results to reduce bias (see any Numerical Recipes handbook). There
are other methods, such as those for quasi-random number
generators that have more deterministic representations, but are
more efficient for generating very large samples of these simulated
random numbers.
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• More on Pseudo-RNGs:
Specialists in this area work to develop new, more reliable and
efficient simulated random numbers, such as the the Mersenne
Twister that is used as an option in the current MATLAB uniform
random generator rand or the Statistics Toolbox normrnd.

MATLAB has not always been on the leading edge in computational
systems for the applied sciences, because decades ago the rand
developed for the early PCs was used beyond its lifetime and a bad
bias appeared in the output of rand using more powerful and precise
PCs.
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• Uniform Random Generation:
The uniform or rectangular distribution is the most basic distribution
and its (pseudo-)random number generator is used to generate
random numbers for other distributions by transformation or other
techniques. It is also the best example of fat tails. The uniform
distribution on [a, b] is theoretically given by its density,

f
(u)
Z (z; a, b) =

1

b − a

 1, a ≤ z ≤ b

0, else

 , (30)

where µZ = (b + a)/2 and σ2
Z = (b − a)2/12, or by the

distribution itself,

F
(u)
Z (z; a, b) =

1

b − a


0, z ≤ a

z − a, a ≤ z ≤ b

b − a, b ≤ z

 . (31)
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• MATLAB Uniform RNGs:
In MATLAB (similar in R, S and other systems), the basic uniform
random number generator (RNG) is on the open interval (0, 1)
(almost all RNG are on open intervals), i.e., for F

(u)
Z (z; 0+, 1−) or

more precisely on [δ, 1 − δ] ' (0+, 1−), where δ = eps/2 and
eps is the machine epsilon in MATLAB as mentioned last time. The
usual form on (a, b) is

Z =a+(b−a)∗rand(m, n); ⇐⇒ Z =unifrnd(a, b, m, n); (32)
where (m,n) is the integer size of the random matrix generated and
unifrnd is the MATLAB Statistics Toolbox uniform RNG
with enhanced arguments. Caution: “unifrnd(mu,sigma,n);”
means the same as “unifrnd(mu,sigma,n,n);” or an nth
order random matrix, so use “unifrnd(mu,sigma,1,n);” or
“unifrnd(mu,sigma,n,1);” for row and column vectors,
respectively. For histogram illustration of rand simulations using
book sample uniform code, see this Lecture, pp. 5-6.
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• Matrix Laboratory Background:
Note that MATLAB stands for “MATrix LABoratory”, not Math
Laboratory, but is also a highly vectorized computational system and
will perform the best if you can make your m-file code as much in
matrix-vector form as possible, avoid the use of for and other
loops, if possible or practical.

MATLAB is so popular in some areas, especially for the powerful
toolboxes in the area, that the area users, such as control engineering,
believe that MATLAB was develop just for them. However, it was
originally developed around 1980 or earlier by Cleve Moler, an
University of New Mexico Applied Math Professor and Stanford
PhD who worked in computational linear algebra and who built a
computational system for himself in FORTRAN (C was only a
computer systems language then) to compute his results and
graphically display them and eventual let his friends and colleagues
use it and finally going commercial with it.
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• Rand Seeds, State and Streams:
Each call to rand produces an different state or seed of random
numbers, but this can be controlled but specifying the ’state’ or
’seed’, for example,

rand(′state′, k); Z = a + (b − a) ∗ rand(m, n); (33)

where ’state’ is a literal and k is a specified positive integer state, so if
k is fixed so will the set of random numbers produced. The ’seed’
produces slightly different random numbers. See MATLAB help for
more information or for more sophisticated control of randomstreams
see RandStream.
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• More Statistics Toolbox Uniform RNG – unifrnd:
The MATLAB Statistics Toolbox (comes with the MATLAB
Student Version) provides a more compact form for the
m × n uniform RNG on (a, b), actually a trivial repackaging of the
above vanilla form as

Z = unifrnd(a,b,m,n); (34)

As with rand higher order random arrays beyond order 2 (matrices)
can be generated, e.g, unifrnd(a,b,m,n,p) for a 3rd order,
m × n × p array.

• More Uniform Distribution Statistics:
The coefficient of skew is η3 =0, i.e., skewless and the coefficient of
kurtosis is η4 = 1.8 < 3, i.e., negative excess kurtosis over
normal or platykurtic, flatter than normal and very much so.
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• Normal Random Generation – Normal Probability
Density Function:
The normal distribution is a good representation of the central
part of the distribution of equities and other underlying financial
assets when log-prices are studied, the asset prices themselves are
usually log-normally distributed. Recall that the Central Limit
Theorem (Lect. 1, pp. 39ff) predicts that is should be the limit of the
scaled sample mean in the limit of a very large number of
independent observations with common µz = EZ [Z] and
σ2

z = VarZ [Z] statistics.

The normal distribution on (−∞, +∞) is theoretically given by
its density,

f
(n)
Z

(
z; µz, σ2

z

)
=

1√
2πσ2

z

exp
(
−(z − µz)2/

(
2σ2

z

))
, (35)

where normpdf(z,mu,sigma) is the MATLAB Statistics

Toolbox normal probability density function (PDF).
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• Normal Cumulative Distribution Function (CDF):
The normal CDF for normal RV Z(n) is given by

F
(n)
Z

(
z; µz, σ2

z

)
≡ Prob[Z(n) ≤ z]

=
∫ z

−∞
f

(n)
Z

(
x; µz, σ2

z

)
dx

(36)

and computed with the convenient Statistics Toolbox

function
fz = normcdf(z,mu,sigma); (37)

given normal parameters mu and sigma.

For the discretized Black-Scholes (1973) model, the change in the
log-asset can be written in ∆t-precision (i.e., neglecting o(∆t)):

∆ log(Ai)
∆t= µlog∆t+σ

√
∆tZi

dist= F
(n)
Z

(
z; µlog∆t, σ2∆t

)
; (38)

where µlog ≡µ−σ2/2, σ and ∆t � 1 are constants, while
Merton’s (1973) versions are much more general.
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• Statistics Toolbox Normal RNG:
With this Toolbox, the scaled, compact form of the normal RNG is
normrnd with the usual syntax,

Z = normrnd(mu,sigma,m,n); (39)

where (m, n) is the integer size of the random matrix generated.

• Vanilla MATLAB Normal RNG:
In vanilla MATLAB, the basic normal random number generator
(RNG) randn is similar to the uniform rand, except for that except
that it is usually generated from two uniform RVs by the elegant
Box-Muller algorithm. The usual form on on the real line is

Z = mu + sigma*randn(m,n); (40)

where (m,n) is the integer size of the random matrix generated.
This form is the likely the underlying function that defines
normrnd. For histogram illustration of randn using book sample
normal code, see this Lecture, pp. 7–8.
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• Normal Distribution Inverse Function:
Another important function is the inverse normal CDF,

z =
(
F

(n)
Z

)−1(
p; µz, σ2

z

)
3 p = F

(n)
Z

(
z; µz, σ2

z

)
, (41)

where p is the given probability. The Statistics Toolbox
function can be used in the form

z = norminv(p,mu,sigma); (42)
If the Statistics Toolbox is not available (it does not come
with the nonstudent version of MATLAB), so it may useful to be
aware of the relationship to the complementary error function,

erfc(x) =
1

√
π

∫ ∞

x

exp(−t2)dt (43)

and its inverse, i.e., for the standard normal CDF, is defined as
normcdf(x) = 0.5*erfc(exp(-x/sqrt(2))); (44)

with normal distribution inverse
norminv(x) = -sqrt(2)*erfcinv(2*p); (45)
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• Computational Caution for Normal CDF:
Caution: The normal CDF is very sensitive to the approximation
used and less precise approximations can lead to gross errors in the
case of small x values in the tails, so making your own
approximation for normcdf is not recommended, but the MATLAB
complementary error function erfc was developed by the legendary
special function expert, Argonne National Lab’s Jim Cody.

• More Normal Statistics:
The normal coefficient of skew is η3 = 0, i.e., skewless and the
coefficient of kurtosis is η4 = 3, i.e., no excess kurtosis and called
mesokurtic.
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• Exponential Distribution:
The exponential distribution on the positive real line is important
since the time between successive jumps of a Poisson process is
exponential distributed, i.e. tells what the expected time to the next
crash or bubble if the jump rate were known. Also, the related
double exponential distribution on the full real line is used by S.
Kou & H. Wang, 2004 to model jump amplitude distribution, as Z.
Zhu & F. Hanson, 2005 has used both single and double uniformly
distributed jump amplitudes to model crashes and bubbles in the
market.
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• Exponential Probability Density and Cumulative
Distribution Functions:
The exponential distribution on [0, ∞) is theoretically given by its
density,

f
(e)
Z (z; λ)=λe−λz

1, z ≥ 0

0, else

, (46)

with µZ = 1/λ and σ2
Z =1/λ2 statistics, or by the distribution

itself,

F
(e)
Z (z; λ)≡Prob[Z(e)≤ z] =

(
1−e−λz

)1, z ≥ 0

0, else

, (47)

for exponentially distributed RV, Z(e), where the single parameter of
the distribution is the rate λ, the reciprocal of the mean µZ . The
{η3 =2 > 0, η4 =9>3} are the coefficients of skew and
kurtosis, so has positive skew and positive excess kurtosis or
leptokurtic.
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• Exponential Distribution RNGs:
With the Statistics Toolbox, the scaled version compact
exponential random number generator exprnd is given by

Z = exprnd(mu,m,n); (48)

where mu=1/lambda is the mean and (m,n) is the array size.

There is no corresponding vanilla MATLAB version, but in Hanson’s
Online Appendix B Preliminaries we have

X = -log(rand(m,n))/lambda; (49)

using an efficient uniform distribution transformation using
MATLAB’s rand.

A histogram illustration of x=-mu*log(rand(N,1)) simulations
follows using book sample exponential code.
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Figure 9: Histograms of simulations of the standard exponential distribution
with mean µ = 1/λ = 1 using MATLAB rand and log with 50 bins for two
sample sizes N . The histogram for the large sample size of N = 105 in Sub-
figure 9(b) exhibits a better approximation to the theoretical exponential density
f

(e)
Z (z; 1) using exponential sample code in Online Appendix B Preliminaries,

page B15 and in Chalk/Course Documents.
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• More Exponential Distribution Functions:
Other useful exponential distribution functions are expcdf,
expinv and exppdf, whose syntax can be found from MATLAB

help with the Statistics Toolbox.

There are also several useful generic functions where the user
specifies the distribution nickname as a literal in quotes of over 20
distribution options and some are random, cdf and pdf. The
random integer generator randi provides an way of selection
random component subscripts from a nonrandom vector of
observations.

In Hanson’s Online Appendix B Preliminaries there is more
information on the properties of some of these distributions,
including means, variances, skews and kurtosis formulas.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture2-page46 — Floyd B. Hanson

http://www.math.uic.edu/~hanson/pub/SIAMbook/bk0BprelimAppendfinal.pdf


• Poisson Random Generation:
Siméon-Denis Poisson (pronounced like pwah-sohn) developed the
Poisson distribution following a study of the frequency of mule kicks
in the French Army, but ironically his name means fish in French and
has nothing to do with the word poison, though it is a rare event that
a student asks about those “poison variables”.

The Poisson distribution represents integer or discrete events, which
we will call jump events or just jumps that we wish to include in
models with large market crashes and rallies. The Poisson
distribution is defined independent of times such that for jump
counts k=0,1,2,. . . , the probability that there are exactly k

jumps with parameter Λ>0 is given by

pk(Λ)≡Prob[Z(p) =k]=e−ΛΛk

k!
(50)

where k! is the factorial function such that 0!≡1 and recursively,
(k + 1)! = (k + 1) · k! .
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• Poisson Distribution Properties:
The properties of the Poisson distribution follow quickly from those
for the exponential function

exp(x) ≡ ex taylor
=

∞∑
k=0

xk

k!
, (51)

which is uniformly convergent making the interchange of calculus
operations very legitimate.

The Poisson expectation of a function of a Poisson RV, g(Z(p)), is
defined asvspace*-0.5em

EZ

[
g(Z(p))

]
≡ e−Λ

∞∑
k=0

Λk

k!
g(k), (52)

so from the properties of the basic exponential Taylor series,
E[1] = 1 trivially conserving probability since∑∞

k=0 Λk/k! = exp(Λ).
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• Poisson Distribution Mean:
Similarly, but also using an interchange of differentiation and
summation,

µ = µ(p) ≡ E
[
Z(p)

]
≡e−Λ ∑∞

k=0
Λk

k! k

ident= e−Λ · Λ
d

dΛ

∞∑
k=0

Λk

k!
taylor
= e−Λ · Λ

d

dΛ
eΛ

loe= Λ,

(53)

since the natural exponential has the property that it is its own
derivative, d exp(x)/dx = exp(x), by one of the laws of
exponents (LOE) we have exp(a) · exp(b) loe= exp(a + b), and

the identity Λ d
dΛ

∑∞
k=0

Λk

k!

ident=
∑∞

k=0
Λk

k!
k through uniform

convergence.
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• Poisson Distribution Variance and Beyond:
The Poisson variance reflects this one parameter distribution and is

σ2 =
(
σ(p)

)2 ≡ E
[(

Z(p) − Λ
)2]

ident= E
[(

Z(p)
)2]

− Λ2

= e−Λ
∞∑

k=0

Λk

k!
k2 − Λ2 = e−Λ

(
Λ

d

dΛ

)2

eΛ − Λ2

= e−ΛΛ d
dΛ

ΛeΛ − Λ2 = e−ΛΛ
(
ΛeΛ + eΛ

)
− Λ2

= Λ(Λ + 1) − Λ2 = Λ,

(54)

where power of k inside the summand has been replaced by the same
power of the operator Λ d

dΛ
outside and the only a single power of

differentiation was performed at each step. Note that a bit of analysis
and algebra has been used. For higher central moments, identities
can also be used to form recursions in terms of the regular moments
using the binomial theorem with given lower ones, such as
E[(Z − Λ)3] = E[Z3] − 3ΛE[Z2] + 2Λ3 for reducing the third
order central moment to the regular one, given E[Z2]=Λ(Λ + 1) .

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture2-page50 — Floyd B. Hanson



0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Poisson Distributions: pk(!)

p k(!
)

k, Poisson Counter
 

 

! = 0.2
! = 1.0
! = 2.
! = 5.

Figure 10: Poisson distributions pk(Λ) with respect to the Poisson
counter variable k for parameter values Λ=0.2, 1.0, 2.0, and 5.0. The dis-
crete values are connected by dashed, dotted, and dash-dotted lines to help
visualize the distribution the parameter form, but notice the normal-like
form for Λ=5.0 all using Poisson sample code with MATLAB recursions
in Online Appendix B Preliminaries, page B21 and in Chalk/Course Docs.
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• Statistics Toolbox Poisson Functions:
◦ K = poissrnd(Lambda,m,n); produces an m×n matrix of

random Poisson counts K for Poisson parameter Λ = Lambda.
◦ P = poisspdf(X,Lambda); produces a continuous probabil-

ity matrix (or vector or scalar) Y for a corresponding continuous
counting matrix (or vector or scalar) X for integer components and
else 0, i.e.,

Y =pX(Λ)1X∈{0,1,2,... }, (55)

say, in the scalar case where 1S is the indicator function for set S.
For Example, a poorly documented curve of one of the curves in
Fig. 10 on the previous page can quickly be produced by

X = 0:10; Lambda = 5.0; P = poisspdf(X,Lambda);

but this can fixed up to make a professional presentation.
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◦ Also [LambdaHat,LambdaCI] = poissfit(X,alpha),
given input n-vector data X and confidence interval value alpha

will output Poisson parameter estimate LambdaHat by the sample
mean and a 100(1-alpha)% confidence interval (CI).
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• Poisson Stochastic Processes as a Time Series:
For modeling crashes, it is necessary to introduce time but here
discrete time, as in a time series, and a constant jump amplitude so
we are not restricted to unit jumps, i.e., Zi = c · ∆Pi and
Λ = λ∆t, λ > 0 and ∆t > 0. Let the log-return be

Ji = c · ∆Pi, (56)

such that ∆Pi is an (integer) counting process and

pk(λ∆t) = Prob[∆Pi = k] = e−λ∆t (λ∆t)k

k!
, (57)

where E[∆Pi] = λ∆t = Var[∆Pi], but E[Ji] = cλ∆t and
Var[Ji] = c2λ∆t since the Ji process is not a unit amplitude
process like ∆Pi unless c = 1, so the mean-variance equivalence
property does not hold for even a more general Poisson process.

P.S. Process means a function of time, but can be deterministic
(nonrandom) or stochastic (random).
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• Exponential Distribution of Time Between Poisson Jumps:
Lemma: Let ∆Pj be a simple Poisson process with fixed jump rate
λ > 0 and Tj be the jth jump-time, then the time between jumps
∆Tj ≡ Tj+1 − Tj conditioned on Tj for j = 0, 1, 2, . . . with
T0 ≡ 0 is

F∆Tj
(∆t; λ) ≡ Prob[∆Tj ≤ ∆t | Tj] = 1 − e−λ∆t. (58)

Proof: The basic idea is that the above conditional probability will be
the same as the probability there will be at least one jump in ∆t,

Prob[∆Tj ≤ ∆t|Tj]
total=
prob

1 − Prob[∆Tj > ∆t|Tj]
basic=
idea

1 − Prob[∆Pj = 0|Tj]
indep
=
Tj

1 − Prob[∆Pj = 0]

indep
=
j

1 − Prob[∆P0 = 0]

p0(λ)
= 1 − e−λ∆t = F

(e)
Z (∆t; 1/λ),

(59)

where ∆Pj ≡ Pj+1 − Pj and which proves the hypothesis.
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• Compound Poisson Processes:
Simple Poisson processes are just too simple to have sufficient
character for real world applications financial applications, because
large market movements beyond diffusions come in many sizes.
Even in Merton’s (1976) pioneering jump-diffusion model
generalizing Black-Scholes-Merton (1973), he used compound
processes, in which in discrete log-return form of the jump term,
restricted to single jumps, at the ith time-step is

Ji = ν̃i∆Pi, (60)
where the ν̃i =log(1 + νi) from νi >−1 are IID RVs
independent of the Poisson jump counting process ∆Pi given a
jump and in the jump-diffusion independent of the diffusion. So a
compound Poisson is doubly stochastic, but you can think of the
Poisson process randomly generating a jump-time as well as a
jump-amplitude instantaneously. However, in the discrete case,
there could be no jumps but no more than one jump likely in the
time-interval (ti−∆t, ti] if λ∆t�1, where the jump-rate is λ.
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• Compound Poisson Statistics:
For IID ν̃i, let E[ν̃i] ≡ µν̃ and Var[ν̃i] ≡ σ2

ν̃ , then

E[Ji] = E[ν̃i∆Pi]
ind= E[ν̃i] · E[∆Pi] = µν̃λ∆t (61)

and
Var[Ji] = E[(ν̃i∆Pi − µν̃λ∆t)2]

devs= E[((ν̃i − µν̃)(∆Pi − λ∆t)

+µν̃(∆Pi − λ∆t) + λ∆t(ν̃i − µν̃))2
]

alg
= E

[
(ν̃i − µν̃)2(∆Pi − λ∆t)2

+2µν̃(ν̃i − µν̃)(∆Pi − λ∆t)2

+2λ∆t(ν̃i − µν̃)2(∆Pi − λ∆t)

+2µν̃λ∆t(ν̃i − µν̃)(∆Pi − λ∆t)

+µ2
ν̃(∆Pi − λ∆t)2 + (λ∆t)2(ν̃i − µν̃)2

]
ind= σ2

ν̃λ∆t + µ2
ν̃λ∆t + σ2

ν̃(λ∆t)2

alg
=

(
σ2

ν̃(1 + λ∆t) + µ2
ν̃

)
λ∆t

∆t= E
[
ν̃2

i

]
λ∆t.

(62)
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• More on Compound Poisson Processes:
Note the with the IID assumption for the ν̃i, the mean of the
compound, bilinear process is a bilinear product of means of the
jump amplitude and the number of jumps on the average, making a
lot of sense, but for the variance of the compound process is a
bilinear combination of the 2nd moment (E

[
ν̃2

i

]
) and the common

jump variance = mean jump count (λ∆t), to precision-∆t, i.e.,
here neglecting O((∆t)2) = o(∆t) for ∆t � 1.

• Why do we throw away the (∆t)2 terms in models?
Well, that is almost never explained in calculus. If we have an fixed
interval [0, T ] and break it up into n parts of size ∆t = T/n, then
by elementary integral rules (integrals are the ultimate solution form),∫ T

0

(dt)2 '
n∑

i=1

(∆t)2 =n(∆t)2 =n

(
T

n

)2

=
T 2

n
→0+, (63)

as n → +∞, so O((∆t)2) = o(∆t) simply does not count and
neither does O

(
(∆t)3/2

)
= o(∆t) from diffusions.
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• Question about Change of Variables for Simple or
Compound Poisson Processes:
The question about how the discrete jump-diffusion equation on
Eq. (27) went from multiplicative (geometric) form,

Ai+1 =Ai(1+µ∆t+σ
√

∆tZi+νiYi), (64)
to the approximate log-form on Eq. (28) rewritten with (∆log(Ai)),
∆log(Ai)'(µ−σ2/2)∆t+σ

√
∆tZi+log(1+νi)Yi (65)

and is very briefly explained in the text on this slide, saying that
discontinuous (∆(d)) or jump changes are calculated differently
from continuous (∆(c)) or diffusion changes. Diffusion change is by
taking pure logs of the continuous part when ∆t�1,

∆(c)log(Ai)'(µ−σ2Z2
i /2)∆t+σ

√
∆tZi), (66)

while the former is by difference of logs of the discrete part,

pre-jump from post-jump (using log(1+νiYi)
zol=
lol

log(1+νi)Yi),

∆(d)log(Ai)=log(Ai(1+νiYi))−log(Ai)
zol=
lol

log(1+νi)Yi,(67)

and finally, ∆ log(Ai)'∆(c)log(Ai)+∆(d)log(Ai).
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* Reminder: Lecture 2 Homework Posted in Chalk Assignments,
due by Lecture 3 in Chalk Assignments!

* Summary of Lecture 2:

1. Simple Monte Carlo Methods.

2. Pseudo-RNGs and Distribution Properties

3. MATLAB RNGs, PDFs, CDFs, ...

4. Uniform, Normal, Exponential Distributions, ...

5. Poisson Distribution and Applications

6. Compound Poisson if time permits
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