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3. Exploratory Data Analysis Tools, Continued:
3.1. Histograms — Bin/Bar Graphics of Data Distributions:
A histogram function produces discrete graphical representation of a
density functions with bars (rectangles) for each bin (intervals) from
empirical or computed data.

In MATLAB, vanilla or Statistical Toolbox versions, a typical
format is

hist(Data,Nbins); (3.1)

where Data is the vector or matrix data, NBins is the number of bins
that data is divided into after it has been ordered by size. The function
hist plots the frequency counts in each bin. In the plot, the x-axis is the
bin axis, the y-axis is the frequency axis and the plot itself is a special
kind of bar graph that represents the quantile interval frequencies. Since
the frequencies are unscaled, the histogram is related to the density, but
lacks the normalization that forces the density to satisfy the
conservation of probability.
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• Weak Examples Histograms for Financial Data:
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(b) S&P500 Absolute Returns 2008.

Figure 3.1: Histograms of S&P500 Index (quote bGSPC) data for the whole
year 2008 using NBins = 50 bins for n + 1 = 254 closings. Subfigure 1(a)
displays the adjusted closings Si for i = 1 : n + 1 and is not a useful plot, but
is a very poor plot since it lacks title and axes labels. Subfigure 1(b) displays the
absolute returns ARi = Si+1 − Si for i = 1 : n and is a somewhat better
plot, but title, labels and axis numbers are hardly readable for a presentation.
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• Better Examples Histograms for Financial Data:
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(a) S&P500 Absolute Returns 2008.
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(b) S&P500 Log-Returns 2008.

Figure 3.2: Histograms of S&P500 Index (quote bGSPC) data for the whole
year 2008 using NBins = 50 bins for n + 1 = 254 closings. Subfigure 2(a)
displays the relative returns RRi = Si+1/Si − 1 for i = 1 : n and these
two plots are much better as well as more professional for the space available.
Subfigure 2(b) displays the log-returns LRi = log(Si+1) − log(Si) for i =

1:n and is a the preferred variable for plotting financial data.
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• Histogram Code Examples (abbreviated) for Figures 3.1–3.2:
function histspc2008

% Get Histogram for S&P500 ˆGSPC (Yahoo Finance) for Year 2008

% Dates 2007/12/31-2008/12/31, Daily Adjusted Closings.

clc

% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;

S = textread(’GSPC2008adjC.txt’,’%f’); % Xcel.cvs deleted to 1 column.

L = length(S);

fprintf(’\nmean(S)=%6.1f; std(S)=%5.1f; length(S)=%3i;’,mean(S),std(S),L);

figure(1);

hist(S,50); % Note: Poor Toy or Amateur Plot;

%

figure(2);

AR = S(2:L)-S(1:L-1); % Note: Vector Subtraction of New - Old Prices;

fprintf(’\nmean(AR)=%5.3f; std(AR)=%5.2f;’,mean(AR),std(AR));

hist(AR,50);

title(’Histogram: Absolute Returns’); % Note Not Much Better Plot ...

xlabel(’AR, Absolute Returns’); % since Titles and Label Hard to Read

ylabel(’Frequency’);

%

figure(3); % Note: (S2-S1)/S1 = S2/S1-1; Saving Comp. Cost for 2X S1;

RR = S(2:L)./S(1:L-1)-1; % Note: Dot or Componentwise Division!

fprintf(’\nmean(RR)=%8.6f; std(RR)=%7.5f;’,mean(RR),std(RR));

hist(RR,50);
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title(’Histogram: Relative-Returns, 2008 S&P500’...
,’Fontsize’,24,’FontWeight’,’Bold’); % Now Much Better Plot;

xlabel(’RR, Relative-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);
set(gca,’Fontsize’,18,’FontWeight’,’Bold’); % gca = get current axis

%

figure(4);

LR = log(S(2:L))-log(S(1:L-1)); % Note: Vector Log Difference!
fprintf(’\nmean(LR)=%8.6f; std(LR)=%7.5f;\n’,mean(LR),std(LR));

hist(LR,50);

title(’Histogram of Log-Returns, 2008 S&P500’...
,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’LR, Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);
set(gca,’Fontsize’,18,’FontWeight’,’Bold’); % gca = get current axis

Output histspc2008.m:

mean(S)=1221.0; std(S)=191.7; length(S)=254;

mean(AR)=2.234; std(AR)=26.82;
mean(RR)=0.002256; std(RR)=0.02592;

mean(LR)=0.001921; std(LR)=0.02583;

>>
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• More on Histograms:
The source for the MATLAB code on the previous two pages is at
Histogram histspc2008 code.

The number of bins, NBins, should be selected carefully: not too
large causing raggedness from too many empty bins or too small so
that it looks like a uniform distribution.

Alternatively, the bin mark locations can be specified in a vector, say
BinLoc which can be set manually such as letting
BinLoc=a:bw:b be the bin location vector given a data range
[a,b] and bin width bw, then using

hist(Data,BinLoc); (3.2)

and MATLAB should detect whether you are using a bin count or bin
location vector. The range can be determined by the commands
a=min(Data) and b=max(Data) if Data is a vector, but in rare
instances some leeway outside this range might be needed.
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• What About Cumulative Histogram for Discrete
Distributions?
The function hist with output arguments,

[BinCount,BinLoc]=hist(Data,Nbins); (3.3)

along with the cumulative sum function, cumsum,

CumBinCnt=cumsum(BinCount); (3.4)

and the more powerful bar graph function, bar,

bar(BinLoc,CumBinCnt); (3.5)

can also generate discrete analogs of the Cumulative Distribution
Function (CDF). The easier to use data import function load is also
used in the sample code Histogram histspc2008dist code following
Figure 3.3.
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• Cumulative Histogram Figure for Financial Data:
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Figure 3.3: Cumulative Histogram of S&P500 Index (quote bGSPC) data for
the whole year 2008 using NBins = 50 bins for n + 1 = 254 closings.
Figure displays cumultative log-returns where the ith log-return is LRi =

log(Si+1) − log(Si) for i = 1 : n. Notice how axis tight command
made a nicer and more compact figure than the previous histograms.
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• Cumulative Histogram Code Example (abbreviated) for Fig. 3.3:
function histspc2008dist

% Get Cumulative Histogram for S&P500 ˆGSPC (Yahoo Finance) for Year 2008

% Dates 2007/12/31-2008/12/31, Daily Adjusted Closings.

clc

% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;

% Another simpler import data file method!

load -ASCII S08.mat; % Note: Change GSPC2008adjC.txt name for load function.

L = length(S08);

%

LR = log(S08(2:L))-log(S08(1:L-1)); % Note: Vector Log Difference!

fprintf(’\nmean(LR)=%8.6f; std(LR)=%7.5f;’,mean(LR),std(LR));

[BinCount,BinLoc]=hist(LR,50); % Get Bin Count and Location Output!

%

figure(5);

CumBinCnt = cumsum(BinCount); % cumsum does the Cumulative Sums

bar(BinLoc,CumBinCnt); axis tight;

title(’Cumulative Histogram of S&P Distribution’...;

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’LR, Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,18,’FontWeight’,’Bold’); % gca = get current axis
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3.2. Kernel Smoothing Functions:
The main disadvantage of the histogram is that it is ragged or
nonsmooth, more so the smaller the bin width. The estimation of the
density, without normalization of frequencies, is done from the bar height
over the bins. This nonsmooth feature can be fixed, in part if the
corresponding width is not too small, using a kernel smoother, where the
kernel K(x) is a density or something similar that integrates to one, e.g.,
a standard normal or uniform or triangular density. In order to
accommodate the complexity of real sample data, a set of of n

observations, [Xi]n×1, is approximated by an estimated smoother
f̂

(s)
X (x). The smoother is a sum or mixture of n terms using this kernel

evaluated by a scaled variable centered about each Xi,

f̂
(s)

X (x) =
1

n · xbw

n∑
i=1

K

(
x − Xi

xbw

)
, (3.6)

where xbw is the scaling or bandwidth that would be the standard
deviation if the kernel were the standard normal or Gaussian density.
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• More Kernel Smoothing:
Note that the extra division by xbw follow from conservation of
probability, i.e.,

1 =
∫ +∞

−∞
K(z)dz =

∫ +∞

−∞
K

(
x − Xi

xbw

)
dx

xbw

, (3.7)

where the calculus change of variables z = (x − Xi)/xbw has
been used and an infinite domain is assumed, but a finite domain
function, like the uniform density, can be used with compact support.

In the Statistical Toolbox, ksdensity is the kernel
smoothing density estimation function. A typical format would be
the output-input form,

[fs,xs] = ksdensity(X); (3.8)

where X is the sample data n-vector, fs is the output = n-vector of
estimated density values at the output n-vector of points xs. For a
sample plot of an estimated density, use a professionally produced
version of plot(xs,fs);, but see the following Figure 3.4.
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• Kernel Smoothing and Histogram for 2008 Log-Returns Figure:
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(b) Same without output arguments.

Figure 3.4: Estimated kernel smoothing density is compared to a prior histogram
for S&P500 Index (quote bGSPC) log-returns LRi = log(Si+1)−log(Si)

for i = 1 : n for the whole year 2008. Note that the (a) graph uses ksdensity
with output arguments and the plot and is quite readable, while the (b) graph uses
only ksdensity without output arguments that automatically produces a plotted
figure and the kernel estimation is essentially unreadable in the overlay onto the
histogram, but does not seem to be easily fixed.
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• Poor Kernel Smoothing and Histogram Subfigure (b) Enlarged:
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• Kernel Smoothing and Histogram Code Example for Figure 3.4:
function histspc2008ks

% Get Kernel Smoothed Histogram for Log-Returns Density
% for 2008 S&P500 ˆGSPC (Yahoo Finance) Data;

% Dates 2007/12/31-2008/12/31, Daily Adjusted Closings.

clc
% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;

% Another simpler import data file method!

load -ASCII S08; % Note: Change GSPC2008adjC.txt name for load function.
L = length(S);

figure(6);

LR = log(S(2:L))-log(S(1:L-1)); % Note: Vector Log Difference!
fprintf(’\nmean(LR)=%8.6f; std(LR)=%7.5f;’,mean(LR),std(LR));

hist(LR,50); hold on; % hold hist for adding ks-density;

[fz,z] = ksdensity(LR);

plot(z,fz,’-r’,’LineWidth’,3); hold off;
title(’Kernel Smoothed Histogram from S&P Data’...;

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’LR, Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);
ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’Histogram’,’KS-Density’);

set(gca,’Fontsize’,18,’FontWeight’,’Bold’); % gca = get current axis
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• Even More on Kernel Smoothing:
∗ The default kernel is normal, but other kernels can be requested
by adding to the input arguments the parameter-value pairs, written
as literals within single quotes, such as ,’kernel’,’box’
presumably for a uniform kernel or ,’kernel’,’triangular’.

∗ Similarly, the bandwidth parameter can be changed using the
parameter ’width’ to reveal more features, but the default normal
kernel has an optimal width, i.e., the standard deviation. The
used width can be recovered by replacing the output set [fs,xs] to
[fs,xs,xbw] where xbw is the used width (binwidth).

∗ The output estimated function type can be specified pairing the
parameter ’function’ with the value ’cdf’ for a CDF or with
’icdf’ for the inverse-cumulative-distribution function.

∗ For more, see Help menu option in MATLAB, e.g., see the GUI
fitting tool of the toolbox, the dfitool which helps you do a lot of
the tasks you may need to do without real coding.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture3-page16 — Floyd B. Hanson



3.3 Quantiles of Ordered Statistics:
• Quantiles:

Quantiles are a way of summarizing a theoretical or empirical
distribution function FX(x) by specifying the values of the
distribution variate x = qi called the ith-quantiles for
i = 1:m − 1 that divide the distribution in to m quantile groups or
m-quantiles, [qi−1, qi] for i = 1:m, usually of even probabilities
or frequencies pi ∈ [0, 1] for i = 1:m. The extra tile marks are
minimum, q0 = min[x], and the maximum, qm = max[x],
which may be infinite in case of distributions such as the theoretical
normal or exponential distributions. When convenient, we will refer
to the complete set qi as tile marks for i = 0:m. The quantiles are
defined implicitly by

FX(qi) ≡ Prob[X ≤ qi] = pi, (3.9)

for i = 1:m.
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• Examples of Quantiles:
The set of both q0 = min[x] and qm = max[x] would define the
most trivial of quantiles, the 1-quantile or uniquantile. However, the
simplest of quantiles that would be considered are the quartiles such
that quartile probability vector is ~p = [0.0, 0.25, 0.5, 0.75, 1.0]
defining the total quartile marks named the minimum, lower quarter,
median, upper quarter and maximum, or

qi = F −1
X (pi) (3.10)

for i = 0:4, assuming an inverse distribution exists and is unique,
both could be violated if there are jump and discontinuities.

Another commonly used quantiles are the percentiles with
m = 100, where ~p = [0.01 ∗ i]100×1 = [0.01:0.01:1.00], the
last in MATLAB loop construct notation with the percentile mark
vector given by ~q = [F −1

X (pi)]100×1 = F −1
X (~p), in MATLAB

vector notation, as in the quartile inversion formula above, but with
m = 100. Recall that MATLAB has inverse distribution functions.
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• MATLAB quantile function:
Recall that MATLAB has inverse distribution functions for its
distributions, e.g., the Statistics Toolbox generic

F x=cdf(’Name’,Xvector,Parmvector); (3.11)

there is the generic inverse distribution
Finverse p=icdf(’Name’,Pvector,Parmvector);(3.12)

However, the Statistics Toolbox has a built-in function that does
quantiles,

QuantVector=quantile(DataVector,ProbVector);(3.13)

where veciors [DataVector,ProbVector,QuantVector]
are of size [n,m,m], where n is sufficiently large to yield
well-defined quartile marks. See MATLAB help for data sort and a
not so simple quantile construction.a

aThese Lecture 3 Notes come partly from MATLAB (registered trademark of Mathworks,
Inc.) Help, testing, Carmona (2004) and the necessary Hanson’s interpretations, motivations
and experiences.
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• Recall Kernel Smoothing ksdensity and Histogram hist for
2008 Log-Returns Figure:
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Figure 3.5: Note the two kernel bumps in the two tails made by two
little normal kernels fitted to the tail nonnormal behavior of the normal
kernel mixture.
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• MATLAB Code for quantile Application to S&P500 2008
Log-Returns:

function quantilespc2008
% Get Quantiles for Log-Returns Density of 2008 S&P500;

clc

% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;
load -ASCII S08.mat; %

NS = length(S08);

fprintf(’\nquantilespc2008 Output for Log-Returns, 1/13/2009:’);
LR = log(S08(2:NS))-log(S08(1:NS-1)); % Note: Vector Log Difference!

fprintf(’\n\nmean(LR) = %8.6f; std(LR) = %7.5f; NS = %4i;’...

,mean(LR),std(LR),NS);
fprintf(’\nskew(LR) = %7.5f > 0; kurtosis(LR) = %5.3f > 3;’...

,skewness(LR),kurtosis(LR));

P = [0,0.001,0.01,0.025,0.05,0.25,0.50,0.75,1.00];

Q = quantile(LR,P);
fprintf(’\n\nRisk Probabilities P = \n[%5.3f,%5.3f,%5.3f,%5.3f];’...

,P(1,2:5));

fprintf(’\n\nRisk Log-Return Quantiles Q = ’);
fprintf(’\n[%5.3f,%5.3f,%5.3f,%5.3f];’,Q(1,2:5));

fprintf(’\n\nQuartile Probabilities P = ’);

fprintf(’\n[%5.3f,%5.3f,%5.3f,%5.3f,%5.3f];’,P(1,[1,6:9]));
fprintf(’\n\nQuartiles Log-Return Q = ’);

fprintf(’\n[%5.3f,%5.3f,%5.3f,%5.3f,%5.3f];’,Q(1,[1,6:9]));
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• MATLAB quantile Application to S&P500 Log-Returns Output:

quantilespc2008 Output for Log-Returns,1/13/2009:

mean(LR)=0.001921; std(LR)=0.02583; NS= 254;

skew(LR)=0.03657>0; kurtosis(LR)=6.680>3;

Risk Probabilities

P=[0.001,0.010,0.025,0.050];

Risk Log-Return Quantiles

Q=[-0.110,-0.067,-0.050,-0.039];

Quartile Probabilities

P=[0.000,0.250,0.500,0.750,1.000];

Quartiles Log-Return

Q=[-0.110,-0.008,0.000,0.013,0.095];

>>
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• Quantile versus Quantile (Q-Q) Plots:
A quantile-quantile plot or Q-Q plot is used to calculate and
compare sample quantiles of to distributions against each other,
e.g., the quantiles of a sample distribution against the same quantiles
of a theoretical distribution. The closeness of the plot to a linear plot
(Y =X) is a qualitative measure of how close the distributions are
to each other.

In the Statistics Toolbox the Q-Q plot function is called
qqplot. As with most MATLAB function its arguments comes in
several forms,

qqplot(Xvector); (3.14)

is used when you have a sample vector Xvector that you want to
compare its quantiles with a normal distribution and you want
qqplot to simulate the theoretical normal. However, if you want to
use your own pair of samples, (Xvector,Yvector), then use

qqplot(Xvector,Yvector); (3.15)
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If you also want to use your own quantiles, Qvector, then use

qqplot(Xvector,Yvector,Qvector); (3.16)

but the second version may be more appropriate for a lot of
applications.

The first example uses this second form to test the sample
distribution of our 2008 S&P500 Index log-returns LR, a
row-vector of length NLR against the a simulated normal
distribution having the same mean (meanLR) and standard
deviation (stdLR),

Xnorm,normrnd(meanLR,stdLR,1,NLR); (3.17)

outputting a row-vector of length,

NLR=length(LR); (3.18)
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• Q-Q Plot Comparing 2008 Log-Returns Against
Corresponding Normal Distribution:
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Figure 3.6: Q-Q Plot of S&P500 Index log-returns for the whole year
2008 compared to a simulated normal distribution with the same mean (µ)
and standard deviation or volatility (σ). Look at those really fat tails!
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• MATLAB Code for qqplot Comparison of 2008 S&P500
Log-Returns to Normal Distribution with Same Basic Statistics:

function qqplotspc2008

% Get Q-Q Plots for Log-Returns Density of 2008 S&P500;

clc

% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;

load -ASCII S08.mat;

NS = length(S08);

fprintf(’\nqqplotspc2008 Output for Log-Returns, 1/13/2009:’);

LR = log(S08(2:NS))-log(S08(1:NS-1)); % Note: Vector Log Difference!

meanLR = mean(LR); stdLR = std(LR); NLR = length(LR);

fprintf(’\nmean(LR) = %8.6f; std(LR) = %7.5f; NLR = %4i;’...

,meanLR,stdLR,NLR);

fprintf(’\nskew(LR) = %7.5f > 0; kurtosis(LR) = %5.3f > 3;’...

,skewness(LR),kurtosis(LR));

Xnorm = normrnd(meanLR,stdLR,1,NLR);

figure(2);

qqplot(Xnorm,LR); axis tight;

title(’Q-Q Plot of Log-Ret. vs. Normal, same (\mu,\sigma )’...;

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’QLR, 2008 Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Qnorm, Reference Normal’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);
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• Second qqplot Example Comparing 2008 Log-Returns With a
Simulated Jump-Diffusion:
Since the closeness of the 2008 S&P500 log-returns (NLR-vector
LR) to the normal distribution simulation, with same overall mean
meanLR = mean(LR) and standard deviation stdLR=
std(LR) is poor for both positive and negative log-return tails, a
simplified jump-diffusion simulation will be tested as the reference
distribution,

XJD = Xnorm+Xiid.∗Xpois; (3.19)

Be sure to note that the .∗ element by element multiplication is used
in the compound Poisson product of Xiid and Xpois.

The discretized continuous diffusion component of the
jump-diffusion will be the same as for the prior reference, simulated
normal NLR-vector,

Xnorm = normrnd(meanLR,stdLR,1,NLR); (3.20)
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For the Poisson counting process Xpois, it will be assumed that the
Poisson jump parameter Lambda=lambda*Dt to be sufficiently
small so the zero-one law, two-state Bernoulli process can be used,
since the multi-jump case would be too complicated to use at this
stage of the course. However, the Statistic Toolbox does not
include a Bernoulli RNG, but the built-in Binomial RNG binornd

is the same as what would be the Bernoulli RNG if the order n=1 and
the one-state probability p=Lambda are used. The binomial
disrtibution is given by

Bino(k; n, p)≡ Prob[Z(bin,n) =k]≡

 n

k

pk(1 − p)n−k

= n!
k!(n − k)!p

k(1 − p)n−k,

(3.21)

for k = 0:n.
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So, in the Bernoulli case with parameters (n=1,p=Lambda)

Ber(k; Λ)≡ Bino(k; 1, Λ)= 1
k!(1−k)!Λ

k(1−Λ)1−k

=

1−Λ, k=0

Λ, k=1

 ,
(3.22)

which is the 0-1 Poisson jump law. Hence, the simulated
Poisson/Bernoulli approximate component has the form

Xpois = binornd(1,Lambda,1,NLR); (3.23)

subject to the condition that Lambda=lambda*Dt be small, which
is not the same as requiring the time-step Dt be small.

Since we do not have enough data to have any idea about the
distribution of the amplitude of the compound Poisson process, we
will take it as a uniform distribution on the same range as the data,
i.e., (a,b)=(minLR,maxLR), so

Xiid = unifrnd(minLR,maxLR,1,NLR); (3.24)
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• Q-Q Plot Comparing 2008 Log-Returns Against a
Simple Jump-Diffusion Distribution:
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Q−Q Plot of Log−Ret. vs. JD−Simulations

Figure 3.7: Q-Q Plot of S&P500 Index log-returns for the whole year 2008 com-
pared to a simulated jump-diffusion distribution with the same mean (µ), volatility
(σ) and uniform jump-amplitude range (a, b). Closer on both tails, considering
the different Qnorm and QJD scales. A better parameter fit for QJD may help?
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• Q-Q Plot Comparing 2008 Log-Returns Against a
Normal Distribution at Same Y-Scale:
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Figure 3.8: Q-Q Plot of S&P500 Index log-returns against the corresponding
normal simulation for the whole year 2008 at the same scale as the simulated jump-
diffusion distribution for comparison.
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• MATLAB Code for qqplot Comparison of 2008 S&P500
Log-Returns to Jump-Diffusion Simulation with Some Similar
Statistics, But Not All (XJD is called Xsims in the code):

function qqplotsims2008w10

% Get Q-Q Plots for Log-Returns Density of 2008 S&P500 & JD-Sims;

% Revised Winter 2010

clc
% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;

load -ASCII S08.mat;

NS = length(S08);
fprintf(’\nqqplotsims2008w10 Log-Returns Output (%s):\n’,datestr(now));

LR = log(S08(2:NS))-log(S08(1:NS-1)); % Note: Vector Log Difference!

meanLR = mean(LR); stdLR = std(LR); NLR = length(LR);
fprintf(’\nmean(LR) = %8.6f; std(LR) = %7.5f; NLR = %4i;’...

,meanLR,stdLR,NLR);

minLR = min(LR); maxLR = max(LR);
fprintf(’\nminLR = %7.5f; maxLR = %5.3f;’,minLR,maxLR);

fprintf(’\nskew(LR) = %7.5f > 0; kurtosis(LR) = %5.3f > 3;’...

,skewness(LR),kurtosis(LR));

Xnorm = normrnd(meanLR,stdLR,1,NLR);
fprintf(’\nXnorm: mean=%8.6f; std=%7.5f;’,mean(Xnorm),std(Xnorm));

fprintf(’\nXnorm: min=%7.5f; max=%7.5f;’,min(Xnorm),max(Xnorm));

Dt = 1/NLR; lambda = 37; Lambda = lambda*Dt;
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fprintf(’\nDt = %7.5f; lambda = %5.3f; Lambda = %5.3f;’...

,Dt,lambda,Lambda);

Xpois = binornd(1,Lambda,1,NLR); % small Lambda Bernoulli approximation;

Xiid = unifrnd(minLR,maxLR,1,NLR);

XJD = Xnorm + Xiid.*Xpois;

%

scrsize = get(0,’ScreenSize’); % figure spacing for target screen

ss = [5.0,4.0,3.5]; % figure spacing factors

%

figure(3); nfig = 3;

qqplot(LR,XJD);

axis([minLR maxLR -0.22 0.22])% axis tight;

title(’Q-Q Plot of Log-Ret. vs. JD-Simulations’...;

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’QLR, 2008 Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’QJD, Jump-Diffusion Sims’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

%

figure(2); nfig = 2;

qqplot(LR,Xnorm);

axis([minLR maxLR -0.22 0.22])% axis tight;

title(’Q-Q Plot of Log-Ret. vs. Norm-Simulations’...;
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,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’QLR, 2008 Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Qnorm, Jump-Diffusion Sims’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

fprintf(’\n’);

%

=====================OUTPUT========================

qqplotsims2008w10 Output for Log-Returns (14-Jan-2010 22:50:05):

mean(LR) = 0.001921; std(LR) = 0.02583; NLR = 253;

minLR = -0.10957; maxLR = 0.095;

skew(LR) = 0.03657 > 0; kurtosis(LR) = 6.680 > 3;

Xnorm: mean=0.002821; std=0.02448;

Xnorm: min=-0.06449; max=0.05894;

Dt = 0.00395; lambda = 37.000; Lambda = 0.146;

>>
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• Postscript — Comments on qqplot Result and Limited
Improvement of Simple Jump-Diffusion Simulations:
1. The XJD simulation does better than than Xnorm alone in

matching the LR quartiles, except for the most extremes jumps.

2. Note that for the uniform jump-amplitude distribution there are a
lot of small jumps around the center that are indistinguishable
from the continuous, normal fluctuations in the log-returns. Thus,
a large jump rate does not mean a large number of crash and rally
type jumps.

3. However, making lambda any larger, than the lambda=37
used so Lambda=0.146<1, would seriously violate the
Bernoulli (0-1) approximation and make 2 or more jumps more
likely. Of course, including data between closing helps, if it is
readily available and is for users with special access.

4. If there are more then one jump, then compound Poisson needs
the sum form. See later, perhaps.
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• Comparison Test of binornd and poissrnd:
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Figure 3.9: Histograms for comparing the 0-1 jump binorad RNG and the gen-
eral Poisson jump count poissrnd. The values uses the Poisson parameter
Lambda=0.01462 and the 2008 log-return sample count NLG=253. Notice the
different distributions for each RNG, although most jump counts are either 0 or 1,
the poissrnd generate a few double jumps, but this is one sample and rare extra
counts are possible.
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• MATLAB Code for Comparing Bernoulli (bino with n=1) and
Full poissrnd:

function PoissBinoRndTestS08W10

% Get Q-Q Plots for Log-Returns Density of 2008 S&P500 & JD-Sims;

clc

% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;

load -ASCII S08.mat;

NS = length(S08);

fprintf(’\nPoissBinoRndTests Output for Log-Returns, 1/14/2009:’);

LR = log(S08(2:NS))-log(S08(1:NS-1)); % Note: Vector Log Difference!

meanLR = mean(LR); stdLR = std(LR); NLR = length(LR);

fprintf(’\nmean(LR) = %8.6f; std(LR) = %7.5f; NLR = %4i;’...

,meanLR,stdLR,NLR);

fprintf(’\nskew(LR) = %7.5f > 0; kurtosis(LR) = %5.3f > 3;’...

,skewness(LR),kurtosis(LR));

Dt = 1/NLR; lambda = 37; Lambda = lambda*Dt;

fprintf(’\nDt = %8.6f; lambda = %4.1f; Lambda = %7.4f;’...

,Dt,lambda,Lambda);

minLR = min(LR); maxLR = max(LR);

fprintf(’\nminLR = %8.5f; maxLR = +%7.5f;’,minLR,maxLR);

Xbino = binornd(1,Lambda,1,NLR); % small Lambda Bernoulli approximation;

Xpoiss = poissrnd(Lambda,1,NLR); % note renaming former from Xpois

fprintf(’\nXbino(1,1:12)=[%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i];’...
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,Xbino(1,1:12));

fprintf(’\nXpoiss(1,1:12)=[%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i,%1i];’...

,Xpoiss(1,1:12));

figure(4);

hist(Xbino,0:2);

axis tight;

title(’Histogram: binornd Bernoulli/Poisson Result’...

,’Fontsize’,20,’FontWeight’,’Bold’);

xlabel(’k, Jump-Counts’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Jump Frequencies’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,18,’FontWeight’,’Bold’);

figure(5);

hist(Xpoiss,0:4);

axis tight;

title(’Histogram: poissrnd Pure Poisson Result’...

,’Fontsize’,20,’FontWeight’,’Bold’);

xlabel(’k, Jump-Counts’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Jump Frequencies’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,18,’FontWeight’,’Bold’);

fprintf(’\n’);
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Technique Alert: Note too that there is a change in the hist function,
from previous uses with Nbins=50 to a binvector= 1:K, where K
is the likely maximum jump count+J where J is an extra count to verify
a correctly identified maximum), centered on integer counts of
binvector, otherwise a confusing graph is produced, with the integer
appears anywhere on its bin-interval, when only integer value matter on
the x-axis.a

=====================OUTPUT========================

PoissBinoRndTests Output for Log-Returns, 1/14/2009:

mean(LR) = 0.001921; std(LR) = 0.02583; NLR = 253;

skew(LR) = 0.03657 > 0; kurtosis(LR) = 6.680 > 3;

Dt = 0.003953; lambda = 37.0; Lambda = 0.1462;

minLR = -0.10957; maxLR = +0.09470;

Xbino(1,1:12) = [0,0,0,0,0,0,0,0,1,0,0,0];

Xpoiss(1,1:12) = [1,0,0,0,0,0,0,0,0,0,0,0];

aIs this Financial Engineering Mathematics? {^}
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3.4. Value at Risk (VaR)a:
Value at Risk (VaR) formulas are used or misused for statistical estimate
of risk in order to estimate the amount of capital held in reserve
(liquidity) in case there are large losses (drawdowns or shortfalls). There
are many versions of VaR and VaR has been heavily criticized and
blamed for recent financial and general economic problems. There are
arguments about whether the problems stem from the VaR model itself or
the underlying statistical probability model that is used to quantitatively
evaluate the VaR formulas, especially assuming the normal probability
model in very nonnormal environments. An alternative to the modeling
approach is the use of historical simulations.

aSee Hull (2006) Chapt. 18, Carmona (2004) p. 25ff., and Wilmott (2000) for other
background information.
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• VaR — One Formulation in Words:
Suppose we have a financial portfolio, say of stocks, bonds,
derivatives and other financial instruments (in general, this could
include all the firm’s investments), with current total book value of
Vi at time ti and for the firm and this portfolio we use a level of
confidence c, a probability of confidence. This probability is usually
expressed as its complement which is the level of risk (loss)
α=1−c. Say, an alpha level is 0.01 or alternately in per cent is 1%,
so the confidence interval is 100c%=100(1−α)%=99%, The
firm expects no less than its specified level of risk, usually specified
by regulatory agencies. The particular insurance or protection
question is what amount of reserve capital RCN is required to
guarantee that the portfolio’s book value Vi+N will not be in the
red (has net loss) at the next time ti+1 the book is reevaluated with
time horizon T ≡ ti+N −ti (often measured in days N ) with at
least α probability. The RCN is usually some multiple of Vi.
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• VaR — One Formulation in Mathematics:
Let ∆VN = Vi+N − Vi be the potential loss (a gain has no risk
problem here) value of the portfolio in N days, then the reserve
capital RCN is determined by

Prob[Vi + ∆VN + RCN < 0] = α. (3.25)

One way the Value of Risk can be defined as the current portfolio
value plus the reserved capital, i.e.,

VaRN ≡ Vi + RCN . (3.26)

Thus, VaRN = VaRN(α) such that
Prob[∆VN < −VaRN(α)] = α (3.27)

and as a confidence interval using complementary probability,

Prob[∆VN ≥ −VaRN(α)] = (1 − α), (3.28)

which means a 100(1 − α)% level of confidence that the portfolio
return will be greater than or equal to −VaRN(α), the cutoff
separation from the tail of greater losses.
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• Relative VaR and Log-Reformulation:a

Another formulation compatible with relative returns or log-returns
uses the relative VaR with respect to current portfolio value Vi,

RVaRN(α) =
VaRN(α)

Vi

, (3.29)

provided Vi > 0, so
Prob[∆VN/Vi ≥ −RVaRN(α)] = 1 − α. (3.30)

Since we showed previously that the log-return as asymptotic to the
relative return for small values , we have the Log−VaR,

Prob[log(Vi+N/Vi) ≥ −LVaRN(α)] = 1 − α. (3.31)

This formula could very well be taken as a practical definition of
RVaRN(α) when calculating with available underlying log-return
(LR) distribution data. Given the underlying LR distribution,
LVaRN(α) is called the negative α–quantile of the log-return
distribution, according to Carmona (2004).

a In some references the kind of VaR may not be clearly defined, so needs to be identified
by usage.
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• Log-VaR Calculations with Log-Return distributions:
Recall the log-return LRN =∆N log(Vi)≡ log(Vi+N/Vi), so
then the probability complement form for LVaR is

Prob[LRN < −LVaRN(α)] = α (3.32)

and assuming there is a nicely behaved, invertible log-return
distribution FLR(x) for the application and the risk level α is
reasonable,

FLR(−LVaRN(α)) = α. (3.33)

Inverting and dropping the index i yields in general the Log-VaR,

LVaRN(α) = −F −1
LR (α). (3.34)

If that FLR is a normal distribution,

LVaR(n)
N (α) = −

(
F

(n)
LR

)−1

(α). (3.35)
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Theorem 3.1. LVaR
√

N Factor from Daily Basis to N-days:
Let the daily log-returns be IID, distributed normally, with
zero-meana and σ2k∆t-variance, where ∆t is one trading day in
years and k is an integer, then for the log-VaR at risk level α

satisfiesb

LVaRN(α) =
√

N · LVaR1(α). (3.36)

However, using real data, such as the S&P500 (SP), might be better,
so then the Statistics Toolbox quantile function can be
used instead,
QVaRN(α)

eg
=LVaR(sp)

N (α)=−quantile
(
LR(sp)

N , α
)
. (3.37)

a Often, the log-return mean of the data is extremely small and often the mean is set to
zero for a convenient fast trick, else over very long periods a non-zero mean estimate would
lead to a monotonic bias with monotonic growth of the expected price of the asset. Another
assumption that is often made is that the log-returns are IID independent of the number of
trading days.

b Proof is left to the student. Caution: This does not follow from prior discrete models.
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• LVaR Code Comparing Normal and Real Data Versions:
function LVaR2008

% Get LogVaR for Normal & Quantile Data Log-Returns of 2008 S&P500;

clc

% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;

load -ASCII S08.mat; % Change GSPC2008adjC.txt name for load function.

NS = length(S08);

fprintf(’\nLVaR2008.m Output for S&P 2008 Log-Returns, 1/15/2009:’);

fprintf(’\nHere LVaRnorm = -NormInv; assuming normally distributed;’);

LR = log(S08(2:NS))-log(S08(1:NS-1)); % Note: Vector Log Difference!

meanLR = mean(LR); stdLR = std(LR); NLR = length(LR);

fprintf(’\nmean(LR) = %8.6f; std(LR) = %7.5f; NLR = %4i;’...

,meanLR,stdLR,NLR);

fprintf(’\nskew(LR) = %7.5f > 0; kurtosis(LR) = %5.3f > 3;’...

,skewness(LR),kurtosis(LR));alpha = [0.001,0.01,0.02,0.05];

LVaRquant = -quantile(LR,alpha);

LVaRnorm = -norminv(alpha,meanLR,stdLR); % Same Mean and Std;

fprintf(’\n\n Risk level alpha = [%6.4f,%6.4f,%6.4f,%6.4f];’...

,alpha);

fprintf(’\nConfidence level 1-alpha = [%6.4f,%6.4f,%6.4f,%6.4f];’...

,1-alpha);

fprintf(’\n\nLog-Return Quantile LVaR = ’);

fprintf(’[%6.4f,%6.4f,%6.4f,%6.4f];’,LVaRquant);

fprintf(’\n\n Log-Return Normal LVaR = ’);

fprintf(’[%6.4f,%6.4f,%6.4f,%6.4f];’,LVaRnorm);
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fprintf(’\n\n Normal LVaR RelDiff= ’);

fprintf(’[%6.2f%%,%6.2f%%,%6.2f%%,%6.2f%%];’...

,(LVaRnorm./LVaRquant-1)*100);

fprintf(’\nwhere Normal RelDiff = (LVaRnorm./LVaRquant-1)*100;’);

fprintf(’\n’);

=====================OUTPUT========================

LVaR2008.m Output for S&P 2008 Log-Returns, 1/15/2009:

Here LVaRnorm = -NormInv; assuming normally distributed;

mean(LR) = 0.001921; std(LR) = 0.02583; NLR = 253;

skew(LR) = 0.03657 > 0; kurtosis(LR) = 6.680 > 3;

Risk level alpha = [0.0010,0.0100,0.0200,0.0500];

Confidence level 1-alpha = [0.9990,0.9900,0.9800,0.9500];

Log-Return Quantile LVaR = [0.1096,0.0668,0.0558,0.0394];

Log-Return Normal LVaR = [0.0779,0.0582,0.0511,0.0406];

Normal LVaR RelDiff= [-28.91%,-12.92%, -8.30%, 2.89%];

where Normal RelDiff = (LVaRnorm./LVaRquant-1)*100;

>>

Note: The difference of the normal LVaR from the quantile
LVaR=QVaR grows larger the bigger are the losses.
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3.5 Shortfall Statistics: Other Risk Measures Beyond VaR: a

• Basel Accords on Financial Institutions:
These are a series of agreements about the responsibilities of
international financial institutions to control their exposures to risk
(see Hull’s (2006) so-called ”Traders’ Bible” Chapter 18, for a short
sidebar summary; also Wikipedia, but since it is usually anonymous,
check further). ”The first pillar (namely Basel I) deals with
maintenance of regulatory capital calculated for three major
components of risk that a bank faces: credit risk, operational risk
and market risk. . . . Basel II uses a ”three pillars” concept (1)
minimum capital requirements (addressing risk), (2) supervisory
review and (3) market discipline . . . ” (Wikipedia, time ordered).

aAs previously, this lecture will be a hybrid of Carmona’s (2004) and Hanson’s (2000-09)
financial data analysis, but with the former more clarified.
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• Profit & Loss Or Loss & Profit Distributions:
Since the portfolio value returns ∆Vj for j = i : i+N can range
from positive to negative, their distribution is both a profit and loss
(P&L) distribution. Since our main risk is the losses, let the random
variable X represent the data −∆VN to emphasize the losses and
let FX(x) be the distribution ofX , the “Loss” distribution. Note
that if the RV Y represents the profit +∆VN , then Y = −X with
“Profit” distribution FY (y), so by the law for changing densities,
say on (a, b) under changes of variables, conserving probability

1 =
∫ b

a

fY (y)dy = +
∫ −a

−b

fX(x)dx, (3.38)

which is equivalent to using the absolute value of the Jacobian of the
transformation, i.e., fX(x) = fY (y)|dy/dx| and similarly for
the distribution at least in the continuous case when we can assume
the densities exist.
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• Shortfall Distribution:
Again let α be the level of risk corresonding to the given Value at
Risk VaRN(α), then the Shortfall distribution (SF), for the
shortfall or loss X = −∆VN , is defined as a conditional loss
distibution,

F
(sf)
X (x; α) = Prob[X ≤ x | X > VaRN(α)]. (3.39)

This can be used to get an estimate of the actual loss. The form of the
conditioning is explained by the original definition of VaRN(α).
Let the loss data X = −∆VN be chosen as an RV, so

α
def= Prob[∆VN <−VaRN(α)]

= Prob[−∆VN >VaRN(α)]

= Prob[X >VaRN(α)].

(3.40)

However, the shortfall distribution, since conditional, is related to a
conditional truncation of the ”Loss” distribution FX(x) with
renormalization to conserve of probability.
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In terms of the differential distribution (called measure in abstract,
but dFX(x)=fX(x)dx in usual practice),

dF
(sf)
X (x; α)=


dFx(x | x>VaRN (α))
Prob[X>VaRN (α)]

, x>VaRN(α)

0, else

, (3.41)

so, probability is conserved,∫ +∞
−∞dF

(sf)
X (x; α)=

∫ +∞
VaRN (α)

dF
(sf)
X (x; α)

= 1
α

∫ +∞
VaRN (α)

dFX(x)

≡ 1
α
Prob[X >Varα]=1.

(3.42)

Hence, the Expected Shortfall ES(α) is

ES(α)≡ E[X |X >VaRN(α)]

=
∫ +∞

−∞ xdF
(sf)
X (x; α)

= 1
α

∫ +∞
VaRN (α)

xdFX(x),

(3.43)

completing what should be a more coherent explanation of
Carmona’s (p. 27) less than credible presentation.
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• Choice of Loss Distribution FX(x):
The difficulty with the shortfall distribution theory is the choice of
the loss distribution FX(x) such that the distribution is consistent
with appropriate financial models.

* “Normal” Choice: If the distribution is normally distributed with
mean µ and variance σ2 then the estimated expected shortfall can be
calculated by MATLAB, for instance, since

ES(n)(α)=
1

α

∫ +∞

VaRN (α)

xdF
(n)
X (x; µ, σ2)

=
1

α
√

2π

∫ +∞

VaRN (α)−µ

2σ2

(µ + σz) exp(−z2/2)

=
µ

α
F

(n)
X

(
−

VaRN(α) − µ

σ
; 0, 1

)
+

σ

α
√

2π
exp

(
−

(VaRN(α) − µ)2

2σ2

)
.

(3.44)
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For the appropriate financial model with a normal distribution often
means the log-diffusion (LD) which has the form (take for given)
that scales for N -steps (refer to Theorem 3.1),

log(Vi+N/Vi)=log(1−X/Vi)=µldN∆t+σ
√

N∆tZi, (3.45)

where µld ≡ µ−σ2/2 is the log-diffusion mean that here follows
from Z2

i 'E[Zi]=1 and Zi is zero-mean and unit-variance. (Note
that (3.45) does not follow precisely from the discrete
multiplicative form.) The dilemma with Eq. (3.45) and the expected
shortall estimate is that the interest is not in small losses X or
relative ones Xrel≡X/Vi, but in large ones, otherwise use
log(1−X/Vi)'−X/Vi, which is then normally distributed.

However, since the data has non-normal fat tails leads to questions of
validity for the normal distribution anyway, we might just as well use
Xrel with RVaRN(α) or the log-loss Xlog≡ log(Vi+N/Vi)
with LVaRN(α) in the formulas on pages 50-52.
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* NonNormal Data Quantile Choice: Recall the 2008 S&P500
Index data displayed in Figure 3.4 on page 13 to emphasize the two
bumps in the tails with the histogram and the ks-density, illustrating
very nonnormal behavior. Although another choice is the
kernel-smoothed ks-density, here we choose the use of quantiles and
the Quantile VaR or QVaRN(α) in Eq. (3.37) used in the
LVaR200.m code on page 46. Given reduced market log-return
N -data LR we can calculate QVaRN(α) for the given α using
(3.37) replacing the VaRN(α) in the Expected Shortfall
Equation (3.43).

Next, the log-return CDF FX(x) is approximated by the quantile
distribution,

Q=quantile(LR,P); (3.46)

where 1×(m+1) quantile interval probabilities P=0:DP:1; with
m+1 constant steps DP=1/m;, assumed to be sufficiently small for
reasonable numerical accuracy.
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Moments or expectations of a function g(x) can be numerically
approximated by selecting an x-value in each quantile bin with
probability DP, i.e.,∫ −∞

−∞
g(x)dFX(x)'

m∑
i=1

g(Qi∗)
∫ Qi+1

Qi

dFX(x)

' DP∗
m∑

i=1

g(Qi∗).
(3.47)

For instance, one estimate of the g-approximation is that of the
mid-point, Qi∗ =Qi+0.5 '(Qi+Qi+1)/2.

Thus, the quantile approximation of the expected shortfall is

QES(n)(α)'
DP

α

m∑
i=1

g(es)((Qi+Qi+1)/2), (3.48)

where

g(es)(x)≡

x, QVaRN(α)≤x≤Qm+1

0, else

 . (3.49)

One can also check probability conservation using g(es)(1).
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* Reminder: Lecture 3 Homework Posted in Chalk Assignments,
due by Lecture 4 in Chalk Assignments!

* Summary of Lecture 3:

1. Histograms

2. Kernel Smoothing

3. Quantiles and QQplots

4. VaR(alpha) variations: RVaR, LVaR, QVaR=QLVaR

5. Expected Shortfall Estimates ES(alpha)
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