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4. Non-Normal Exploratory Data Analysis Tools:
4.1. Cauchy Distribution — A Pathological Example of a
Fat Tail Distribution:
The Cauchy distribution has a bell-shaped density, like the normal
density, but that is a reciprocal quadratic,

f
(c)
X (x; a, b) =

b

π(b2 + (x − a)2)
, (4.1)

and its distribution is related to the inverse tangent function, tan−1(x) in
mathematics or atan(x) on (−π/2, +π/2) in MATLAB, i.e.,

F
(c)
X (x; a, b) =

1

π
tan−1

(
x − a

b

)
+

1

2
, (4.2)

the integration technique being to let z = (x − a)/b and note that the
new integrand is the exact derivative of the tangent of z divided by π

while tan−1(−∞)/π = −1/2. Here, a is the mode or location of the
density maximum as well as the median, and b is a scale parameter as
well as the reciprocal of π times the height at the mode, 1/(πb).
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• Cauchy Distribution and Pathology:
Since f

(c)
X (x; a, b)=O(1/x2), the Cauchy density is integrable

and probability is conserved, but xf
(c)
X (x; a, b)=O(1/x) as

|x| → ∞, so the mean of a Cauchy RV is µ(c) =E[X(c)]=∞.
Thus, the variance along with all other high moments are undefined
with an infinite values. Now that is pathological since the tails are too
fat for the Cauchy moments to be integrable. In fact, the Cauchy tails
are so fat compared to normal tails, the relative size of the normal to
Cauchy tails is still exponentially small as can be seen by an
application of L’Hôpital’s rule when x becomes large and using
standard forms,
f

(n)
X (x; 0, 1)

f
(c)
X (x; 0, 1)

=
√

π(1 + x2)
√

2 exp(x2/2)
L′H−→

√
2π

exp(x2/2)
→0+, (4.3)

confirming that exponentials of large arguments will beat out powers,
in most cases. Thus, Cauchy tail asymptotic power law:

f
(c)
X (x; a, b)→

b

π · x2
as |x| → ∞. (4.4)
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• Cauchy Distribution and Cauchy Principal Value (CPV):
The pathology is not so serious for practical reasons, since the data
range is finite, the maximum log-return is never much more than 20%
in absolute value and it is realistic to be interested in finite part of the
tails anyway.

Another reason is the improper integrals on the full infinite domain
rigorously have to be treated in the limit on the finite domain
(−R1, +R2) as both values go to infinity. However, for random
simulations, necessarily done in finite time, the results will be finite
excluding numerical overflow, so another of Cauchy’s ideas, the
Cauchy Principal Value, takes advantage of antisymmetry of an
integrand on (−R, +R) as R → ∞. Hence, the CPV value of the
Cauchy mean for the standard distribution (a, b) = (0, 1) is

µ(cpv) =
1

π
lim

R→∞

∫ +R

−R

xdx

1 + x2 ≡ 0, (4.5)

by oddness, a practical mean. However, in the standard case and
the CPV variance, nothing can save the variance due to evenness.
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• Inverse Distribution and Distribution RNG by Uniform RNG:
For many CDFs, the following result permits defining one RNG in
terms of the best known RNG, the uniform RNG:

Theorem 4.1. Conversion of a CDF to Uniform CDF:
If FX(x) is invertible, and X is a RV with distribution FX(x), then

FX(x)dist= F
(u)
U (u), (4.6)

where F
(u)
U (u) is the uniform cumulative distribution function.

”Sketch of Proof”: For practical purposes, assume FX(x) is strictly
increasing and continuous, so (FX)−1(x) exists, but we ignore
pathological cases. Let X be an RV with distribution FX(x) and
that U =FX(X) is also an RV, then

FFX
(X)(u) ≡ Prob[FX(X)≤u] incr.= Prob[X ≤F −1

X (u)] (4.7)

≡ FX

(
(FX)−1(u)

)
] defn=
inverse

u. � (4.8)

The catch is that a practical and efficient computational formula for
the inverse in needed for usefulness.
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• Cauchy RNG Using Uniform RNG:
Since from (4.2),

u=F
(c)
X (x; a, b)=tan−1((x − a)/b)/π+1/2, (4.9)

it takes some algebra to invert, so solving for x in terms of u,

x=
(
F

(c)
X

)−1

(u; a, b)=b tan(π(u−0.5))+a, (4.10)

and by defining in MATLAB,
cauchyrnd(a,b,1,N)=b*tan(pi*(rand(1,N)-0.5))+a;(4.11)

which is not found in the Statistics Toolbox, but can easily
be placed in a subfunction function within a function main
m-file (note since tan and rand functions are vector function
and everything else is a scalar the function should be vector and be
efficient).

Note: The same thing does NOT work for the Normal Distribution
due to that lack of a inverse in terms of elementary function,
although one exists on principle.
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• Cauchy MATLAB Functions in Public Domain:
The function cauchyrnd is essentially one that can be can be found
at MathWorks Central File Exchange in the downloaded
public toolbox by Peder Axensten,
http://www.mathworks.com/matlabcentral/fileexchange/11749 . The
package contains

◦ cauchycdf: Cauchy cumulative distribution function (cdf).

◦ cauchyfit: Parameter estimation for Cauchy data.
{Note: This constrained maximum likelihood m-file uses the
Optimization Toolbox’s fmincon, else uses the basic
fminsearch.}

◦ cauchyinv: Inverse of the Cauchy cumulative distribution
function (cdf).

◦ cauchypdf: Cauchy probability density function (pdf).

◦ cauchyrnd: Generate random numbers from the Cauchy
distribution.
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• Cauchy PDFs (height- and tail-adjusted) and 2008 Log-Returns:
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Figure 4.1: Combined plot of histogram of the 2008 S&P500 Index log-
returns using cauchypdf with either height (red —) or tail (green - - -)
to histogram’s, but do not fit in general (!), though look good for tails.
Also for comparison is the output of cauchyfit in (black - - -).
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• Q-Q Plot of Cauchy (height-adjusted) Simulations versus 2008
S&P500 Log-Returns:
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Figure 4.2: Q-Q Plot of cauchyrnd RNG simulations for height-
adjusted Cauchy distribution versus 2008 S&P500 Index log-returns The
simulations are a good representation of the tails of the data, any large
deviations probably due to Cauchy theoretical infinite domain.
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• Q-Q Plot of Cauchy (tail-adjusted) Simulations versus 2008
S&P500 Log-Returns:
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Figure 4.3: Q-Q Plot of the cauchyrnd RNG simulations for tail-adjusted
Cauchy distribution versus 2008 S&P500 Index log-returns. The simulations are
a better representation of the central part of the data and tails, excluding Cauchy
large domain deviations.
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• Cauchy and Normal Fits with height-adjusted Cauchy Sims
Comparison of Fat and Very Thin Tails:
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Figure 4.4: Comparison of Cauchy cauchyfit and Normal normfit
fits with Cauchy (ht.) cauchypdf height-adjusted to LR height, with
Cauchy (ht.) (red —), cauchyfit (red —) and normfit Normal
(green - - -), showing differences in tail thickness.
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• MATLAB Code for Cauchy PDFs with S&P500 Log-Return
histogram, Two Q-Q Plots of Cauchy Simulations Against
Log-Returns, and Cauchy-Normal Fits Comparison:

function histspc2008cauchy
% Get Cauchy vs Histogram for Log-Returns Density

% for 2008 S&P500 ˆGSPC (Yahoo Finance) Data;

% Dates 2007/12/31-2008/12/31, Daily Adjusted Closings.
clc

load -ASCII S08.mat; % Note: load function use.

fprintf(’\nhistspc2008cauchy.m Output for Log-Returns (%s):’,datestr(now));
L = length(S08);

LR = log(S08(2:L))-log(S08(1:L-1)); % Note: Vector Log Difference!

NLR = L-1;

minLR = min(LR); maxLR = max(LR); dLR = maxLR-minLR;
fprintf(’\nminLR = %7.5f; maxLR = %5.3f;’,minLR,maxLR);

a = median(LR); h1 = 34.5; b1 = 1/(pi*h1); % h = height from histogram

fprintf(’\ncauchy height fit: a = %7.3e; b1 = %7.5f; h1 = %7.5f;’,a,b1,h1);
h2 = 8; b2 = 1/(pi*h2); % h = height from histogram

fprintf(’\ncauchy tail fit: a = %9.3e; b2 = %7.5f; h2 = %7.5f;’,a,b2,h2);

%
figure(1); nfig=1;

nb = 50;

hist(LR,nb); hold on; % hold hist for adding;
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dz = dLR/(nb-1); z = minLR + dz*(0:nb-1);

fzc1 = cauchypdf(z,a,b1);

fzc2 = cauchypdf(z,a,b2);

[mleparms,res] = cauchyfit(LR);

fprintf(’\ncauchy output: mleparms,res; size(mleparms)=[%i,%i];’...

,size(mleparms));

afit = mleparms(1,1); bfit = mleparms(1,2);

fprintf(’\n[afit,bfit]=[%9.3e,%9.3e]’,afit,bfit);

fzcfit = cauchypdf(z,afit,bfit);

res

scrsize = get(0,’ScreenSize’); % figure spacing for target screen

ss = [5.0,4.5,4.0,3.5]; % figure spacing factors

plot(z,fzc1,’-r’,z,fzc2,’--g’,z,fzcfit,’--k’,’LineWidth’,4);

axis tight; hold off;

title(’Cauchy vs Histogram from S&P Data’...;

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’LR, Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’Histogram’,’Cauchy (ht.)’,’Cauchy (tail)’,’cauchyfit’);

set(gca,’Fontsize’,18,’FontWeight’,’Bold’);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

%

figure(2); nfig=2;
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Xcsims1 = cauchyrnd(afit,bfit,1,NLR);

qqplot(LR,Xcsims1); axis([minLR maxLR minLR maxLR]) % tight;

title(’Q-Q Plot of cauchyfit Sims vs. Log-Ret.’...;

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’QLR, 2008 Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’QCS, cauchyfit Sims’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

%

figure(3); nfig=3;

Xcsims2 = cauchyrnd(a,b2,1,NLR);

qqplot(LR,Xcsims2); axis([minLR maxLR minLR maxLR]) % tight;

title(’Q-Q Plot of Cauchy-tailfit vs. Log-Ret.’...;

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’QLR, 2008 Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’QCS, Cauchy (tail) Sims’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

%

figure(4); nfig=4;

%sigma = 1/(sqrt(2*pi)*h1); % same height h1 at x = a;

[muhat,sigmahat,muci,sigmaci] = normfit(LR); % Special MLE
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fprintf(’\nnormfit: muhat=%9.3e; sigmahat=%9.3e;’...
,muhat,sigmahat);

fprintf(’\nnormfit: muci=[%8.2e,%8.2e]; sigmaci=[%8.2e,%8.2e];’...

,muci,sigmaci);
fznormfit = normpdf(z,muhat,sigmahat);

plot(z,fzc1,’-r’,z,fzcfit,’--k’,z,fznormfit,’--g’,’LineWidth’,3);

axis tight;

title(’Cauchy vs Normal (same height at x=a)’...;
,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’LR, Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);
legend(’Cauchy (ht.)’,’cauchyfit’,’normfit’);

set(gca,’Fontsize’,18,’FontWeight’,’Bold’);

set(gcf,’Color’,’White’,’Position’ ...
,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

fprintf(’\n’);
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===================Output=====================

histspc2008cauchy.m Output for Log-Returns (20-Jan-2010 21:40:29):

minLR = -0.10957; maxLR = 0.095;

cauchy height fit: a = 0.000e+00; b1 = 0.00923; h1 = 34.50000;

cauchy tail fit: a = 0.000e+00; b2 = 0.03979; h2 = 8.00000;

cauchy output: mleparms,res; size(mleparms)=[1,2];

[afit,bfit]=[4.518e-04,1.058e-02]

res = iterations: 40

funcCount: 41

cgiterations: 29

firstorderopt: 6.0140e-04

algorithm: ’large-scale: trust-region reflective Newton’

message: [1x444 char]

call: ’fmincon’

exitflag: 2

normfit: muhat=1.921e-03; sigmahat=2.583e-02;

normfit: muci=[-1.28e-03,5.12e-03]; sigmaci=[2.38e-02,2.83e-02];

>>
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4.2 Data Estimation of Distribution Functions:
Again let ~X = [xi]n×1 denote the data observations, hopefully IID with
common CDF FX(x) and the corresponding CDF estimate by
F̂n(x) ' FX(x) where

F̂n(x) ≡
1

n

n∑
i=1

1{xi≤x} =
K(x)

n
, (4.12)

where 1{xi≤x} is the indicator function for the set {xi ≤ x} for each
i = 1:n, one in the set and zero out of the set, so the above sum
represents the cumulative count, K(x), of all the observations less than
or equal x. This averaged count will be piece-wise continuous but by the
Fundamental Law of Statisticsa,

F̂n(x) → FX(x) as n → ∞. (4.13)

For the corresponding estimate of some example financial functionals,
thus for example, we write V̂aRN [F̂n](α)'VaRN [FX ](α) for value
at risk or ÊS[F̂n](α)'ES[FX ](α) for the expected shortfall.

a Carmona (2004), p. 29.
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4.3 Order Statistics:
Ordered observations of samples ~X = [Xi]n×1 of size n satisfy,

min( ~X)≡x(1)
n ≤x(2)

n ≤· · ·≤x(n−1)
n ≤x(n)

n ≡max( ~X), (4.14)

upon sorting (see MATLAB function sort), allowing for nonunique
values due to ties. They play an essential role in constructing quantiles,
[qi]m×1, empirically estimated CDFs, F̂n(x), and other statistical
quantities, usually in the background with computational software.

It is assumed that the ordered observations, x(k)
n for for k=1:n,

correspond to realizations of RVs X(k)
n called kth order statistics. For

example, the quantile marks qk associated with probabilities pk can be
reformulated as

q̂k = qk[F̂n] = x(k)
n , for

k − 1

n
< pk ≤

k

n
. (4.15)
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Thus, with FX(q) = p and FX invertible,

Prob
ˆPn

i=1 1{xi∈(q,1]} = k
˜
= Prob

h
q ∈ [X

(n−k)
n , X

(n−k+1)
n )

i
FX
=

inverse
Prob[p ∈ [FX(X

(n−k)
n ), FX(X

(n−k+1)
n ))]

= Prob[k objects in n bins]

bino
=

prob

0@ n

k

1A (1 − p)kpn−k,

(4.16)

noting that the usual binomial p is replaced by (1−p) since we are
counting bins from the right rather than from the left.
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4.4 Extreme Values, Fat Tails, Pareto Distributions, and
POTs (Peaks Over Threshold):
The Cauchy distribution is a simple example of fat tails attached to a
bell-shaped central distribution, but once the median or mode is
determined there is only one parameter that specifies the shape to fit to the
tail. Then there is the generalized Pareto (GP) distribution of power
distributions that are used to fit just the tail part of the distribution.
There are many variations of the Pareto distribution, so we just list the
form of the density or PDF used by MATLAB,

f
(gp)
X (x; K, b, θ) =

1

b

(
1 +

K

b
(x − θ)

)−1−1/K

, (4.17)

where K is the shape parameter (if K = 0, then a limiting
exponential form is used as K → 0), b is the scale parameter and θ is
the location parameter. The θ is usually not used, so a usual form it
more like

f
(gp)
X (x; K, b, 0) =

1

b

(
1 +

Kx

b

)−1−1/K

. (4.18)
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There are many restrictions to the generalized Pareto (GP) parameters
and the user can check MATLAB Help for them.

MATLAB has the typical family of GP support functions named for
functionality, such a gppdf, gpcdf, gpinv, gpstat, gprnd,
maximum likelihood function [pg2parms,gpci]=gpfit(Xpg);
gives [K,sigma]=pg2parms with 95% confidence interval given
threshold theta, so use Xpg=X-theta, and
neglogLH=gplike(pg3parms,Xpg) separately gives the negative
log-likelihood value given all 3 parameters.

For separating a tail from the central part of the distribution, the technique
of Peak Over Threshold (POT) is used by picking a value a location
where the ordered observations differ markedly from the normal
distribution, often by eye-balling the Q-Q plot of the observation
quantiles against the normal quantiles for the observation value that
markedly differs from the linear line, but sample size must be sufficient.
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For example, examining the Q-Q plot comparing the 2008 S&P 500
log-returns against the normal distribution in Lecture 3 on page 25
indicates that LRpot = −0.04 looks like a good POT value, but
LRpot = −0.02 yields just a sufficient number of points for fitting.
Then the user can sort the observation date in ascending values (e.g.,
using MATLAB sort function), next peel off the tail observations that
do not exceed LRpot and finally storing the positive parts (the GP
fitting functions and economist/sociologist Vilfredo Pareto expect a
positive tail) into another vector, say

LRtail={−LRi : LRi <LRpot}. (4.19)
In MATLAB it can be implemented using logical expressions as an
indicator function (without a * sign), i.e.,

LRtail=-LR(LR<=LRpot); (4.20)
However, gpfit.m did not fit with a boundary warning for POTs too
short for sufficient sample size.a

a The public domain MATLAB code expan.m for fast exponential analysis: Expan.m
of POT data by Pieter Van Gelder was tested and be edited for class presentation purposes,
results follows several pages later.
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• Q-Q Plot, Reprinted from Lecture 3, page 25, Comparing 2008
Log-Returns Against Corresponding Normal Distribution:
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Figure 4.5: Q-Q Plot of S&P500 Index log-returns for the whole year
2008 compared to a simulated normal distribution with the same mean (µ)
and standard deviation or volatility (σ). Look at those really fat tails!
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• Histogram of Negative Tail of 2008 S&P 500 Log-Returns Up To
the POT:
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Figure 4.6: The histogram display the negative tail of the Log-Returns with sign
reversed on [−POT, −LRmin], where POT = −0.02 (big, count=31). The
fitted red — line is from gpfit (Only works if POT ≥ −0.02 for sufficient
sample, so transition jump-tail.) and closely fitting black - - - line is from expfit.
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• MATLAB Code for Histogram of Negative Tail (Sign Reversed)
of 2008 S&P 500 Log-Returns, with POT, gplike and expplike:

function tailfitspc2008potvary

% Get Tail Fit on Left for Log-Returns Density

% for 2008 S&P500 ˆGSPC (Yahoo Finance) Data;

% Dates 2007/12/31-2008/12/31, Daily Adjusted Closings.

clc

load -ASCII S08.mat; % load function used for 2008 data.

fprintf(’\ntailfitspc2008potvary Output, (%s):’,datestr(now));

L = length(S08); % NLR = L-1;

LR = log(S08(2:L))-log(S08(1:L-1)); % Note: Vector Log Difference!

minLR = min(LR); maxLR = max(LR);

fprintf(’\nminLR = %7.5f; maxLR = %5.3f;’,minLR,maxLR);

% LRsort = sort(LR)’; % get order statistics transpose

POT = -0.02; % "guestimate" Peak Over Threshold from Q-Q plot

LRtail = -LR(LR<=POT); % gpfit data must be positive;(LR<=POT)=indicator;

Npot = length(LRtail);

fprintf(’\nPOT = %7.5f; Npot = %3i;’,POT,Npot);

fprintf(’\nLRtail=’);

for i=1:Npot,fprintf(’%5.3f;’,LRtail(i));end, % fprintf(’\n ’);

theta = -POT; % 0; % -(minLR+POT)/2;

fprintf(’\ntheta = %7.4f;’,theta);

Xgp = LRtail-theta; % gpfit assumes theta known, gives K and sigma;

[parmhat,parmci] = gpfit(Xgp); % Works for POT >= -0.2, else
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% Warning: Else Max likelihood has converged to a boundary point;

K = parmhat(1); sigma = parmhat(2);

fprintf(’\ngpfit: K = %7.4f; KCI = [%7.4f,%7.4f];’,K,parmci(1:2,1));

fprintf(’\ngpfit: sigma = %7.4f; sigmaCI = [%7.4f,%7.4f];’...

,sigma,parmci(1:2,2));

[muhat,expci] = expfit(Xgp); % Works for POT >= -0.2, else

% Warning: Else Max likelihood has converged to a boundary point;

fprintf(’\nexpfit: muhat = %7.4f; expCI = [%7.4f,%7.4f];’ ...

,muhat,expci(1:2,1));

%

figure(1);

nbins = 12;

hist(Xgp,nbins); hold on;

xmin = min(Xgp); xmax = max(Xgp);

fprintf(’\nnbins = %2i; xmin = %7.5f; xmax = %5.3f;’,nbins,xmin,xmax);

X = xmin+(xmax-xmin)*(0:10)/10;

fgp = gppdf(X,K,sigma,0); % theta_arg=0, since in X.

Ns = max(fgp)/10; % normalize to hist height.

fprintf(’\nFit Rescaling: Ns = %7.5f;’,Ns);

plot(X,fgp/Ns,’-r’,’LineWidth’,3); axis tight; hold on;

fexp = exppdf(X,muhat); %

plot(X,fexp/Ns,’--k’,’LineWidth’,3); axis tight; hold off;

title(’LR-Tail & fit for 2008 S&P Data, POT=-0.02;’,’Fontsize’,24,...

’FontWeight’,’Bold’);
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xlabel(’LRtail-|POT|’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’LRtail-|POT| Histogram’,’gppdf/Ns’,’exppdf/Ns’);

set(gca,’Fontsize’,18,’FontWeight’,’Bold’);

fprintf(’\n’);

==========OUTPUT ====================

ttailfitspc2008.m Output for Log-Returns, (22-Jan-2010 16:47:29):

minLR = -0.10957; maxLR = 0.095;

POT = -0.02000; Npot = 31;

LRtail=0.024;0.050;0.038;0.036;0.026;0.039;0.035;0.063;0.061; ...

theta = 0.0200;

gpfit: K = 0.0153; KCI = [-0.3655, 0.3960];

gpfit: sigma = 0.0205; sigmaCI = [ 0.0122, 0.0345];

expfit: muhat = 0.0208; expCI = [ 0.0151, 0.0307];

nbins = 12; xmin = 0.00030; xmax = 0.090;

Fit Rescaling: Ns = 4.79952;

>>
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• Exponential Analysis of LR Left-Tail POT Data:

0 0.05 0.1 0.15 0.2 0.2510−4
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Figure 4.7: Semi-Log plot of exponential fit to S&P 500 log-return left-
tail POT data (sign reversed) using modified expan.m code from MAT-
LAB Central File Exchange. Note that near center points (left) fit the ex-
ponential very well whereas the two largest jumps are not as close to the
fit, but are within Q-uncertainty of α=0.05 or 5%.
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MATLAB Code for Fast Exponential Analysis Fit 0f Left-Tail POT
Data, with semi-log function of y semilogy, so log(exp) fit=−kx:
function tailexpanspc2008

% Get Tail Exponential (expan.m) Fit on Left (POT) for Log-Returns
% for 2008 S&P500 ˆGSPC (Yahoo Finance) Data;

% Dates 2007/12/31-2008/12/31, Daily Adjusted Closings.

clc
load -ASCII S08.mat; % Note: load function used for 2008 data;

fprintf(’\ntailexpanspc2008.m Output for Log-Returns, 1/16/2009:’);

L = length(S08); NLR = L-1;

tp = 1; p = 0.05;% One year’s collection time, p = alpha = 5\%.
LR = log(S08(2:L))-log(S08(1:L-1)); % Note: Vector Log Difference!

minLR = min(LR); maxLR = max(LR);

fprintf(’\nminLR = %7.5f; maxLR = %5.3f;’,minLR,maxLR);
POT = -0.04; % "guestimate" Peak Over Threshold from Q-Q plot

LRtail = -LR(LR<=POT); % (LR<=POT)=indicator;

Npot = length(LRtail);
fprintf(’\nPOT = %7.5f; Npot = %3i;’,POT,Npot)

%

figure(1); % expan figure with POT data, exponential fit, uncertainty
% bounds by crosses around the extrapolation to the p-value

fprintf(’\nexpan Input: tp = %3.1f years; alpha = %4.2f’,tp,p);

[xp,sp,mu] = expan(LRtail,tp,p); %[xp,sp] = expan(X,tp,p); Add exp. mean
fprintf(’\nexpan Output: xp = %5.3f Q; sp = %4.2f uncert.;’,xp,sp);
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fprintf(’\nexpdist Output: mean mu=%6.4f; rate lambda=%5.1f;’,mu,1/mu);
fprintf(’\n’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [xp,sp,l] = expan(X,tp,p)
% expan Performs a fast exponential analysis on the POT dataset

% stored in array X

% INPUT:

% X: array or scalar values with POT data (peaks over threshold)
% tp: time period over which the data is collected

% p: probability for which quantile has to be calculated

% OUTPUT:
% xp: quantile value corresponding to exceedance probability p

% sp: uncertainty in quantile value expressed as 1 standard dev.

% Figure, showing the POT data, exponential fit, and uncertainty
% bounds by crosses around the extrapolation to the p-value

% EXAMPLE:

% Dataset e, generated from an exponential dist. with scale 1:
% for i=1:10, e(i)=2-log(rand(1)); end

% Assume the data are the peaks above 2 (meters) measured during

% 100 years. Perform exponential analysis for the 10ˆ-4 quantile
% with: expan(e,100,10ˆ(-4))

%

% Author: P.H.A.J.M. van Gelder

% eMail: p.vangelder@ct.tudelft.nl
% Website:
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% http://www.hydraulicengineering.tudelft.nl/public/gelder/homepg.htm

% $Revision: 1.0 $ $Date: 2004/08/28 $; FINM Revision 2009/01/23 FBH

% Source FBH: http://www.mathworks.com/matlabcentral/fileexchange/5808

% *********************************************************************
%

n=length(X);

l=mean(X-min(X));

ratio=n/tp;

xp=min(X)-l*log(p/ratio);

sp=-log(p/ratio)*l/sqrt(n);

xx=min(X):(xp-min(X))/10:xp+3*sp;

Fx=1-exp(-(xx-min(X))/l);

%

semilogy(sort(X),ratio*(1-([1:n]-0.3)/(n+0.4)),’o’...

,xx,ratio*(1-Fx),[min(X),xp+3*sp]...

,[p,p],[xp-sp,xp+sp],[p,p],’x’,’LineWidth’,3);

title(’POT Data, Exp. Fit, Q-Uncert. (1 std)’...

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’X, Left Tail POT Data’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’POT points’,’POT Exp. fit’,’5% Q-Uncert.’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,2);

grid
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===================Output=====================

tailexpanspc2008.m Output for Log-Returns, 1/16/2009:

minLR = -0.10957; maxLR = 0.095;

POT = -0.04000; Npot = 12;

expan Input: tp = 1.0 years; alpha = 0.05

expan Output: xp = 0.148 Q; sp = 0.03 uncert.;

expdist Output: mean mu = 0.0197; rate lambda = 50.7;

>>
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4.5 Bivariate (m = 2 dimensions) and Multivariate
(m ≥ 2 dimensions) Distributionsa:
• Bivariate Distributions:

In this case, our observations are n sets of 2-tuples or 2-vectors of
observations in two variables x and y,

x = [(xi, yi)]n×1 = [~xi]n×1, (4.21)
in effect at n × 2 array. The corresponding two-dimensional random
variables have the same form:

X = [(Xi, Yi)]n×1 = [ ~Xi]n×1. (4.22)
The bivariate distribution is a joint distribution defined by a joint
probability,

F ~X(~x) ≡ FX,Y (x, y) ≡ Prob[X ≤ x, Y ≤ y] (4.23)
and if a joint density exists, we usually assume it will except in
pathological situations, then

FX,Y (x, y) =
∫ x

−∞

∫ y

−∞
fX,Y (x′, y′)dx′dy′. (4.24)

aSee also Carmona (’04), Chapter 2.
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It follows from taking two partial derivatives, one with respect to x and
one with respect to y, that

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y). (4.25)

Note, for students uncomfortable with partial derivatives, that we only
take one partial derivative with respect to one variable at a time while
holding the other fixed as if calculating an ordinary derivative, i.e., first,

∂

∂x

(
FX,Y |y fixed

)
(x, y) =

∫ y

−∞
fX,Y (x, y′)dy′, (4.26)

using the fundamental theorem of calculus and second,

∂

∂y

(
∂FX,Y

∂x

∣∣∣∣
x fixed

)
(x, y) = fX,Y (x, y), (4.27)

again using the fundamental theorem of calculus. Note also that the
evaluation at (x, y) is always logically done after the differentiation,
otherwise could lead to errors, e.g., ∂(FX,Y (1, 2))/∂x ≡ 0.
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Sometimes we need just the density with regard to only one of the two
variables and these are called marginal densities, so

fX(x)≡
∫ +∞

−∞
fX,Y (x, y′)dy′,

fY (y)≡
∫ +∞

−∞
fX,Y (x′, y)dx′.

(4.28)
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• Correlation Coefficients and Covariances:
Much of the random variables that we have considered so far were
assumed to be independence, but that may not be strictly true in financial
markets due to large and rapid electronic trading. Important
announcements can trigger herd behavior. So it would be important to
have measures of interdependence.

The correlation coefficient between RVs X and Y is defined as the
volatility normalized, hence dimensionless, covariance,

ρX,Y ≡
Cov[X, Y ]

σXσY

, (4.29)

which is also called Pearson’s correlation coefficient. The covariance
between X and Y is defined as
Cov[X, Y ]≡σX,Y ≡E[(X−µX)(Y −µY )]=E[XY ]−µXµY , (4.30)

where µX = EX [X] and µY = EY [Y ] are the respective means of X

and Y . The standard deviations or volatilities are
σX =

√
EX [(X − µX)2] and σY =

√
EY [(Y − µY )2].
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• Sample Correlation Coefficients and Related Sample Moments:

Recall the unbiased sample means,

(x, y) = (µ̂X , µ̂Y ) =
1

n

n∑
i=1

(xi, yi), (4.31)

and the sample (biased) variances,

(σ̂2
X , σ̂2

Y ) =
1

n

n∑
i=1

((xi − x)2, (yi − y)2), (4.32)

standard deviations or volatilities the square roots of the corresponding
quantities. Whereas, the sample covariances are

ĈovX,Y = σ̂X,Y =
1

n

n∑
i=1

(xi − x)(yi − y) (4.33)

and the sample correlation coefficient is

ρ̂X,Y =
ĈovX,Y

σ̂X σ̂Y

=
σ̂X,Y

σ̂X σ̂Y

. (4.34)

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture4-page37 — Floyd B. Hanson



The correlation coefficients ρX,Y and ρ̂X,Y are bounded in [−1, +1]:

* If ρX,Y = ±1, then Y = ±σY X/σX + αa, an affine function of
X .

* If X and Y are independent, then ρX,Y = 0, but the converse is not
true, in general.

aHanson (2007), Online Appendix B, Th. B.59.
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• Multivariate Normal Density: For jointly distributed normal RVs,

~X = [Xi]m×1, then the multivariate normal density can be written in
compact form through linear algebra,

f
(n)
~X

(~x)=
1√

(2π)m(det)[Σ]
exp

(
−

1

2
(~x−~µ)>Σ−1(~x−~µ)

)
, (4.35)

where ~µ=E[ ~X]=[µi]m×1 is the m×1 mean and

Σ=Cov[ ~X, ~X>]=[σi,j]m×m (4.36)

is the m × m covariance matrix, with determinant Det[Σ] and
σi,i ≡σ2

i are the diagonal variance terms for i=1:m. For notational

simplicity, we say ~X
dist= N (~µ, Σ) for ~X is normally distributed with

mean ~µ and covariance matrix Σ. By linear transformation this can be
decomposed into multivariate standard normal forma, ~X =~µ+

√
Σ~Z

where ~Z
dist= N (~0, Im) is the standard multivariate random variable, Im

being the m×m identity matrix.
aCarmona (2004), Chapter 1, Appendix 1, p. 92ff.
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• Independent Normal Multivariate Random Variables:

If the ~X are pairwise independent then the distribution and density by
definition of independence must be separable, so
Σ = Vm ≡ [σ2

i δi,j]m×m where Vm is a diagonal matrix with the
individual variances along the diagonal and δi,j is the Kronecker delta, 1
if j = i and otherwise 0. The multivariate normal distribution takes the
form,

f
(n)
~X

(~x)=
m∏

i=1

f
(n)
Xi

(xi)=
m∏

i=1

1√
2πσ2

i

exp
(
−

(xi−µi)2

2σ2
i

)
. (4.37)
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• Normal Bivariate Density Example:a

The bivariate normal distribution, i.e., the two-dimensional case, needs
several conditions to keep the density well-defined: σi > 0 for = 1 : 2,
σ1,2 = ρσ1σ2, where ρ = ρ1,2 is the correlation coefficient between
state 1 and state 2 such that −1 < ρ < +1. Thus,

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , (4.38)

Σ−1 =
1

1 − ρ2

 1/σ2
1 −ρ/(σ1σ2)

−ρ/(σ1σ2) 1/σ2
2

 . (4.39)

The Σ−1 follows upon calculating the two-dimensional inverse of Σ,
while substituting for Σ−1 and

Det[Σ] = (1 − ρ2)σ2
1σ2

2, (4.40)

aThis Section from Hanson (2007), Online Appendix B, pp. B.47ff.
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Substitution yields the more explicit density form:

f
(n)
~X

 x1

x2

; ~µ, Σ

= 1
2πσ1σ2

√
1−ρ2

exp
(
− 0.5

1 − ρ2

[(
x1−µ1

σ1

)2
− 2ρ(x1−µ1)(x2−µ2)

σ1σ2
+
(
x2−µ2

σ2

)2])
.

(4.41)

Remark: The bivariate normal density becomes singular when σ1 →0+

or σ2 →0+ or ρ2 →1− and the density becomes degenerate. If ρ>0,
then X1 and X2 are positively correlated, while if ρ<0, then X1 and
X2 are negatively correlated.
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Some of the first few moments are tabulated (results from the Maple
symbolic computation system) in Table 1a.

Table 1: Some expected moments of bivariate normal distribution.

Some Binormal Expectations

E[1]=1

E[xi]=µi, i=1:2

Var[xi]=σ2
i , i=1:2

Cov[x1, x2]=ρσ1σ2

E[(xi−µi)3]=0, i=1:2

E[(xi−µi)4]=3σ4
i , i=1:2

E[(x1−µ1)2(x2−µ2)2]=(1+2ρ2)σ2
1σ2

2

aThis Table from Hanson (2007), Online Appendix B, p. B.48.
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4.6 Bivariate Graphical Analysis:

• Bivariate Histograms:
The MATLAB Stat Toolbox bivariate histogram hist3([X,Y],

[nbin1,nbins2]); can be used for comparing two data
column-vectors X and Y, with user selected bin sizes, nbin1 and
nbins2. This gives a projected three dimensional qualitative graphical
display of the density on a rectangular grids. It also comes in several
forms, letting XY=[X,Y], such as hist3(XY); displays on in
3-dimensions on a default 10 × 10 grid. Also, there is
hist3(XY,centers); that allows the user to select bin centers with
array centers=[xcenters,ycenters] where xcenters and
ycenters are the center vectors.
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• Bivariate Histogram (hist3) Merging 2008 Log-Returns and
Reference Normal Simulations:

Figure 4.8: Bivariate plot of the bivariate histogram of the 2008 S&P500
Index log-returns merged with the reference normal simulations.
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Figure 4.9: Histograms of previous 2008 Log-Returns and the Reference Nor-
mal Simulations to show the components that are combined to make the bivariate
histogram by hist3 in Figure 4.10.
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• Bivariate Histogram (hist3) Merging 2008 Log-Return Data and
Reference Normal Simulations MATLAB Code:
function hist3kde2spc2008normal

% Get Bivariate Histogram for Log-Returns Density

% Similar Normal Simulation.

% for 2008 S&P500 ˆGSPC (Yahoo Finance) Data;

% Dates 2007/12/31-2008/12/31, Daily Adjusted Closings.

clc

load -ASCII S08.mat; % Note: load function used for 2800 data;

fprintf(’\nhist3kde2spc2008normal Output (%s):’,datestr(now));

L = length(S08); fprintf(’\nsizeS = [%3i,%3i];’,size(S08));

LR = log(S08(2:L))-log(S08(1:L-1)); % Note: Vector Log Difference!

NLR = L-1; sizeLR = size(LR); % size=NLR X 1

meanLR = mean(LR); stdLR = std(LR);

fprintf(’\nmeanLR = %7.5f; stdLR = %5.3f;’,meanLR,stdLR);

figure(1);

nb = 50;

Ynorm = normrnd(meanLR,stdLR,NLR,1);

sizeY = size(Ynorm);

fprintf(’\nsizeLR = [%3i,%3i]; sizeY = [%3i,%3i];’,sizeLR,sizeY);

XY = [LR,Ynorm]; % Caution: both must be column vectors of same size.

nbins = [nb,nb];

hist3(XY,nbins); axis tight;

title(’[Log-Return,Normal] Hist3’...;
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,’Fontsize’,16,’FontWeight’,’Bold’);

xlabel(’LR, Log-Returns’,’Fontsize’,16,’FontWeight’,’Bold’);

ylabel(’Normal Sims.’,’Fontsize’,16,’FontWeight’,’Bold’);

zlabel(’Frequency’,’Fontsize’,16,’FontWeight’,’Bold’);

set(gca,’Fontsize’,16,’FontWeight’,’Bold’);

figure(2)

hist(LR,nb); axis tight;

title(’Log-Return Histogram’,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’LR, Log-Returns’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

figure(3)

hist(Ynorm,nb); axis tight;

title(’Normal Sims. Histogram’,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’Normal Sims.’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’Frequency’,’Fontsize’,24,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

%

%

%

%

%

%

%
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figure(4);

[bandwidth,density,X,Y]=kde2d(XY);

% % plot the data and the density estimate

contour3(X,Y,density,50), hold on;

plot(XY(:,1),XY(:,2),’r.’,’MarkerSize’,5);

title(’[Log-Ret.,Normal] kde2d’,’Fontsize’,16,’FontWeight’,’Bold’);

xlabel(’LR, Log-Returns’,’Fontsize’,16,’FontWeight’,’Bold’);

ylabel(’Normal Sims.’,’Fontsize’,16,’FontWeight’,’Bold’);

zlabel(’Frequency’,’Fontsize’,16,’FontWeight’,’Bold’);

set(gca,’Fontsize’,16,’FontWeight’,’Bold’);

fprintf(’\n’);
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• Bivariate Kernel Smoothing Density Estimator:
The bivariate kernel density estimator is similar to that of the univariate
case except for the extra dimension and the corresponding extra scaling so
letting the scaled coordinates be
(x̃, ỹ) = ((x − xi)/xbw, (y − yi)/ybw) with positive bandwidth
vector (xbw, ybw) and change of variables dx̃dỹ = dxdy/(xbwybw),
a common dxdy canceling out between original and tranformed
densities, i.e., fX,Y (x, y) = f eX, eY (x̃, ỹ; xbw, ybw)/(xbwybw). The
sample estimator with nonnegative kernel K is

f̂X,Y (x, y; xbw, ybw)=
1

nxbwybw

n∑
i=1

K

(
x − xi

xbw

,
y − yi

ybw

)
. (4.42)

If the variables (x, y) are similar in physical dimensions and other
attributes, the bandwidth could be the same, i.e., xbw = ybw then very
simplified form (Carmona’s (2004)) could be used,

f̂X,Y (x, y; xbw, xbw)=
1

nx2
bw

n∑
i=1

K

(
(x − xi, y − yi)

xbw

)
. (4.43)
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The [fs,xs]=ksdensity(X), from the Statistical Toolbox

used in the univariate case, ONLY takes single Vector data X , so cannot
be used in the bivariate case.

However, Zdravko I. Botev, the University of Queensland in Australia,
has created a nice bivariate kernel density estimated that does assume
normal or Gaussian data or mixtures of Gaussian data and is named
kde2d.m that contains very clear instructions about the input, output and
several very good examples, infact better than that of ksdensity. It can
be found at
Bivariate Kernel Density Estimation Code Webpage

on the Mathworks Matlab Central File public domain directory.
Included in the preface comments of kde2d.m is Botev’s technical
report on the univariate version,
A Novel Nonparametric Density Estimator.
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• Bivariate Kernel Smoothing (kde2d) of 2008 Log-Returns and
Normal Simulations:
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Figure 4.10: Bivariate plot of the kernel smoothed bivariate density of
the 2008 S&P500 Index log-returns together with the reference normal
simulations. Extreme jumps are presented by the small islands.
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4.7 Multivariate Sample Statistics and Principal
Component Analysis (PCA):a

As the number of variates or states, say variables xj for j =1:m, gets
large and the number of observations per variate, say observations
Xi,j for i=1:nj , becomes large, some times large with m, then we
may need to find some way to reduce the dimension to m̂ < m by
looking for some combinations of variates that are most important for the
problem, i.e., the principal components contributing the most variance.
Often the techniques involve finding appropriate orthogonal
transformations for the reduction. In order to keep things simple, it will
be assumed the number of observations per variate are constant or
nj =n, ∀j with Xi,j data observations.b

aSee Carmona (2004), p. 84ff for PCA or these notes for clarification.
bNote that we have a choice of since X = [Xi,j ]n×m or its transpose X > =

[Xj,i]m×n, but having former with the jth state sample data in the jth column is con-
sistent with prior use in univariate sample in a column.
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• Curse of Dimensionality with Computational Complexity:
The computational statistic problem is not just due to the total data
dimension, X =[Xi,j]n×m, of n·m. Depending on the application, we
will be looking at the data array X in at least two ways, one as an
observation vector ~X

(o)
j =[Xi,j]n×1 for fixed j or as a variate vector

~X
(v)
i =[Xi,j]1×m for fixed i. The real curse of dimensionality appears

as large scale computational complexity in many multivariable problems
due to functions and integrals that arise. In computational statistics, we
usually have to consider the total frequencies of all observations,

fX =fX(X )=fX

„h
~x

(v)
i

i
n×1

«
, (4.44)

so depending on how we look at all this information, we either have mn

or nm for the total amount of information and usually the former
mn =exp(n log(m)) is the most serious since usually n>>m. This
exponential computational complexity is called

The Curse of Dimensionality!a

aFor a general computational or numerical account, see Hanson (Book ’07), p. 230-231
or Hanson (CDC03), p. 5, http://www.math.uic.edu/ hanson/pub/CDC03/cdc03web.pdf.
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• Multivariate Sample Means:
The sample mean depends on how the variables and observations are
interpreted, so for example, the sample mean could be the average score
for one student i with respect to all for j =1:m questions or variables
(v), so

X
(v)

i ≡
1

m

m∑
j=1

Xi,j, (4.45)

or the sample mean could be average of all observations (o), e.g., for
i=1:n students, with average grade on question j,

X
(o)

j ≡
1

n

n∑
i=1

Xi,j. (4.46)

Often in PCA we are looking at variances or covariances and other
quadratic forms, in general, so it is convenient to use normalized linear
combinations (NLCs) such as

X̃
(v)

i ≡
1

√
m

m∑
j=1

Xi,j. (4.47)
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• Variance-Covariance Matrices:
0em The estimated, observational covariance matrix is defined by the
elements,

Ĉ
(o)
x,j,j′ ≡ Ĉx

[
~X

(o)
j , ~X

(o)
j′

]
=

1

n

n∑
k=1

(
Xk,j −X

(o)

j

)(
Xk,j′ −X

(o)

j′

)
,(4.48)

for j, j′ =1:m and estimated covariance matrix Ĉ(o)
x ≡

[
Ĉ

(o)
x,j,j′

]
m×m

and estimated (biased) variances σ̂
(o)
j ≡ Ĉ

(o)
x,j,j . Clearly, this matrix is

symmetric since the transpose is
(
Ĉ(o)

x

)>
= Ĉ(o)

x with transposed element

Ĉ
(o)>
x,j,j′ ≡ Ĉ

(o)
x,j′,j = Ĉ

(o)
x,j,j′ . Also, the matrix is non-negative definite

(NND), Ĉ(o)
x ≥0 by the Cauchy-Schwarz inequality, i.e.,

|~x>~y|≤|~x|·|~y|, for the same reason that the correlation coefficient is
bounded,

|ρ̂j,j′ |=

∣∣∣Ĉ(o)
x,j,j′

∣∣∣
σ̂

(o)
j σ̂

(o)
j′

≤ 1, with Ĉ
(o)
x,j,j′ =

(
δ ~X

(o)
j√
n

)>(
δ ~X

(o)
j√
n

)
, (4.49)

in normalized form, provided σ̂
(o)
j >0 and δ ~X

(o)
j ≡

[
Xi,j −X

(o)

j

]
m×1

.
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• Covariance Eigenvalue (Characteristic Value) Problem:
From the NND property, Ĉ(o)

x ≥0, it follows for the eigenvalue
problem (EVP) if full rank X , (else singular value decomposition (SVD) ),

Ĉ(o)
x

~Ck =λk
~Ck, (4.50)

that the eigenvalues have the same property, λk ≥0 for k=1:m (not to
be confused with the Poisson jump rate) and can be sorted into
descending order, taking λ1 as the principal eigenvalue,

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, (4.51)
with associated eigenvectors, ~Ck =[Ci,k]m×1, (called loadings), having

the same index order, assumed normalized to unit modulus
∣∣∣ ~Ck

∣∣∣=1 and

pairwise orthogonal (“⊥” : ~C>
i

~Cj =δi,j), subject to no multiple
eigenvalues. If we load the eigenvectors into a matrix C ≡ [Ci,j]m×m

by columns and use the eigvalues to form a diagonal matrix
Λ=[λiδi,j]m×m then we have the following orthogonal
decomposition of the estimated covariance matrix,

Ĉ(o)
x =C>ΛC, (4.52)

modulo the sign of the eigenvectors C with regard to uniqueness.
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• MATLAB Principal Component Analysis Functions:
[pcacoeffs,score,latent] = princomp(X);

Given input of n×m observation data matrix X, with rows containing
observed data and columns containing variables, princomp outputs:

1. m×m matrix pcacoeffs of PCA Coefficients where the jth
column, [pcacoeffs(i, j)]m×1, contains the jth
nonstandardized principal component or loadings or
eigenvectors ~Cj in decreasing order of component variance σj ;

2. n×m vector score of the representation of X in principal
component space with rows corresponding to observations and
columns to variables;

3. m×1 vector latent of principal component variances or
eigenvalues ~λ of the covariance matrix Cx of the data matrix X.

If a fully standardized analysis is needed, then the data X should be
replaced by the standardizing zscore(X), scaled by the element-wise
standard deviation.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture4-page58 — Floyd B. Hanson



(Another form for data input function besides princompa.)

[pcacoeffs,latent,explained]=pcacov(C);

Given input of m×m Covariance matrix Cx, pcacov outputs:
1. m×m matrix pcacoeffs of PCA Coefficients where the jth

column, [pcacoeffs(i, j)]m×1, contains the jth
nonstandardized principal component or loadings or
eigenvectors ~Cj in decreasing order of component variance σj ;

2. m×1 vector latent of principal component variances or
eigenvalues ~λ of Cx;

3. m×1 vector explained of the percentage of the total variance
explained by each principal component.

aCarmona (2004), pp. 87-93, using the S-Plus princomp version, gives several fi-
nancial examples of a sets of related assets that can be reduced to smaller sets of the most
important assets in the relevant markets.
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[residuals,reconstructed]=pcares(X,npca);

Given input of n×m observation data matrix X, with rows containing
observed data and columns containing variables, and also given npca
retained principal components of X, npca=m̂≤m, pcares outputs:

1. n×m residual matrix residuals of PCA Coefficients where
the jth column, [pcacoeffs(i, j)]m×1, contains the jth
nonstandardized principal component or loadings or
eigenvectors ~Cj in decreasing order of component variance σj ;

2. n×m optional vector reconstructed of the reconstructed
observations, approximating PCA by the npca principal
components;

If standardized analysis is needed, then the data X should be replaced by
the standardized Z-scores form with zscore(X), centering
with respect to the mean and scaled by the element-wise standard
deviation.
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* Reminder: Lecture 4 Homework Posted in Chalk Assignments,
due by Lecture 5 in Chalk Assignments!

* Summary of Lecture 3:

1. Cauchy Distribution

2. Sample CDFs

3. Order Statistics

4. Pareto Distribution and POTs in Tail Distributions

5. Multivariate and Bivariate Distributions

6. Bivariate Graphical Analysis

7. N -Dim. Sample Statistics & Principal Component Analysis
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