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6. More Maximum Likelihood Estimation,
But First Some Problem Review:

• 6.1PS: Lecture5-page28, Revison of Robustfit Results for WLS
Fit Example with Normal-Poisson Error:
Since is seemed that MATLAB’s robustfit function was not working
as well as advertised, we will revise the implementation of the weighting
functions with the non-default form;

b=robustfit(x,y,wfun,tune); (6.1)
where as we previously used the default form,

[prob,statrob] = robustfit(x,y); (6.2)
in which the scaled residual weight function wfun=’bisquare’,

w=(abs(r)<1).∗(1−r.2).2; (6.3)
where

r=resid/(tune∗s∗
√

1−h); (6.4)
h is the hat function (leverage) vector, with a tuning value tune=4.685.
This means that the outlier residuals (abs(r)≥1) had zero weight.
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So, a revised computation uses the weight function wfun=’fair’,
w=1./(1 + abs(r)); (6.5)

which has unrestricted range, with tuning parameter selected higher at
tune=2*4.685 and lower at the ’fair’default tune=1.4 for two
contrasting cases. Also, a larger sample size of (n=500) replaces the prior
size of (n=100). The two constrasting ’fair’ cases are closer to the
OLS regress fit, but all are below the true straight line.

Another problem seemed to be some bias due to the fact that the zero
mean, constant variance jump-diffusion noise was not symmetric, in that
the jumps were all positive. This was changed to up and down jumps
using compound Bernoulli-Poisson noise,

ei =σe∗randn + νe∗unifrnd(−1, +1)∗binornd(1, Λe); (6.6)
and this seemed to make all statistical code have similar results. You can
check that E[ei]=0 and Var[ei]=σ2

e + ν2
eΛe/3.
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Figure 6.1: Revised figure for weighted least squares robustfit, with
similar results for a straight line fit with scatterplot data (n=500)
from combined normal-Poisson random error. A sample plot was cho-
sen from several simulations that was not as good matching the true value.
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◦ MATLAB Code for Ordinary & Weighted Least Squares Application
with Normal-Poisson Error:
function RegRobtest2
clc

fprintf(’\nRegRobtest2 Output (%s):’,datestr(now));

m = 1; b = 0.25; % True parm values;
fprintf(’\nTrue: b = %7.4f; m = %7.4f;’,b,m);

ptrue = [b;m];

n = 500;
fprintf(’\nSample: n = %i;’,n);

x = rand(n,1); % Simulated Uniform x-data;

sigma_e = 0.30; nu_e = 1.5; Lambda_e = 0.05;
% JD-Simulation Zero-Mean error:

err = sigma_e*randn(n,1) ...

+ nu_e*(poissrnd(Lambda_e,n,1)-Lambda_e*ones(n,1));

fprintf(’\nsigma_e = %7.4f; nu_e = %7.4f; Lambda_e = %7.4f; var_e = %7.4f’...
,sigma_e,nu_e,Lambda_e,sigma_eˆ2+Lambda_e*nu_eˆ2);

errmean = mean(err); errvar = var(err);

fprintf(’\nmean(err) = %9.3e; var(err) = %9.3e;’,errmean,errvar);
y = b+m*x+err; % Simulated y-data with linear model;

TSS = (n-1)*var(y);

fprintf(’\nTSS = %9.3e’,TSS);
A = [ones(n,1) x];

fprintf(’\nsize(A)=[%i,%i]; size(y)=[%i,%i];’,size(A),size(y));
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[preg,pci,res,resci,statreg] = Regress(y,A); % Multlinear Regression;

breg = preg(1); mreg = preg(2);

yhatreg = breg+mreg*x;

fprintf(’\nRelResReg =%9.3e;’,sqrt(norm(y-yhatreg)/norm(y)));

[probdef] = robustfit(x,y); % Def. Weighted Least Sqs Method;

[prob,statrob] = robustfit(x,y,’fair’,9.370); % WLS Method, deftune*2;

[problo] = robustfit(x,y,’fair’,2.3425); % WLS, deftune/2;

yhatrob = prob(1)+prob(2)*x;

fprintf(’\nRelResRob =%9.3e;’,sqrt(norm(y-yhatrob)/norm(y)));

fprintf(’\nTrue: b =%7.4f; m =%7.4f;’,b,m);

fprintf(’\nRegress: b =%7.4f; m =%7.4f;’,breg,mreg);

fprintf(’\nRobustfit: b =%7.4f; m =%7.4f;’,prob(1),prob(2));

fprintf(’\nsqrt(norm(preg-ptrue)/norm(ptrue)) =%7.4f;’ ...

,sqrt(norm(preg-ptrue)/norm(ptrue)));

fprintf(’\nsqrt(norm(prob-ptrue)/norm(ptrue)) =%7.4f;’ ...

,sqrt(norm(prob-ptrue)/norm(ptrue)));

fprintf(’\nsqrt(norm(preg-prob)/norm(prob)) =%7.4f;’ ...

,sqrt(norm(preg-prob)/norm(prob)));

SSEreg = sum((y-yhatreg).ˆ2); % Also, RSS=ResSumSqs

SSErob = sum((y-yhatrob).ˆ2); % Also, RSS=ResSumSqs

fprintf(’\nRSS: SSEreg =%9.3e; SSErob =%9.3e;’,SSEreg,SSErob);

Rsqreg = 1-SSEreg/TSS; Rsqrob = 1-SSErob/TSS;

fprintf(’\nRsqreg =%9.3e; Rsqrob =%9.3e;’,Rsqreg,Rsqrob);

fprintf(’\nstatreg: Rˆ2 =%7.4f; F = %7.4f;’ ...

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture6-page6 — Floyd B. Hanson



,statreg(1,1),statreg(1,2));

fprintf(’ P-value)(F) =%7.4f; Var(error) =%7.4f;’ ...
,statreg(1,1),statreg(1,1));

fprintf(’\nstatrob Sigmas: OLS_s=%7.4f; Robust_s=%7.4f;’ ...

,statrob.ols_s,statrob.robust_s);
fprintf(’ MAD_s=%7.4f; final_s=%7.4f;’ ...

,statrob.mad_s,statrob.s);

fprintf(’\nstatrob: SE_p = [%7.4f; %7.4f];’,statrob.se);
fprintf(’\nstatrob: Corr_ps=[%7.4f, %7.4f; %7.4f, %7.4f];’ ...

,statrob.coeffcorr);

statrob,

%
xg = 0:0.1:1;

ytrue = b+m*xg;

yhatregg = breg+mreg*xg;
yhatrobdefg = probdef(1)+probdef(2)*xg;

yhatroblog = problo(1)+problo(2)*xg;

yhatrobg = prob(1)+prob(2)*xg;
%

figure(1); nfig = 1;

scrsize = get(0,’ScreenSize’); % figure spacing for target screen
ss = [5.0,4.5,4.0,3.5]; % figure spacing factors

scatter(x,y,8); hold on;

plot(xg,ytrue,’-g’,xg,yhatregg,’:k’,xg,yhatrobg,’--b’ ...

,xg,yhatrobdefg,’--r’,xg,yhatroblog,’--c’,’LineWidth’,2);
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axis tight; hold off;
title(’Ordinary & Weighted Least Square Linear Example:’...

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’x’,’Fontsize’,24,’FontWeight’,’Bold’);
ylabel(’y’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’scatter plot’,’ True y=m+bx’,’ Regress fit’ ...

,’ Robustfit (fair/hi)’,’ Robustfit (wt:def.)’ ...

,’ Robustfit (fair/lo)’,’Location’,’NorthWest’);
set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]
fprintf(’\n ’);

================= OUTPUT ========================

RegRobtest2 Output (02-Feb-2010 18:34:00):
True: b = 0.2500; m = 1.0000;

Sample: n = 500;

sigma_e = 0.3000; nu_e = 1.5000; Lambda_e = 0.0500; var_e = 0.2025
mean(err) = -2.947e-02; var(err) = 2.208e-01;

TSS = 1.535e+02

size(A)=[500,2]; size(y)=[500,1];
RelResReg =7.185e-01;

RelResRob =7.189e-01;

True: b = 0.2500; m = 1.0000;

Regress: b = 0.2228; m = 0.9955;
Robustfit: b = 0.1993; m = 1.0036;
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sqrt(norm(preg-ptrue)/norm(ptrue)) = 0.1636;

sqrt(norm(prob-ptrue)/norm(ptrue)) = 0.2221;

sqrt(norm(preg-prob)/norm(prob)) = 0.1558;

RSS: SSEreg =1.102e+02; SSErob =1.104e+02;

Rsqreg =2.822e-01; Rsqrob =2.810e-01;

statreg: Rˆ2 = 0.2822; F = 195.7897; P-value)(F) = 0.2822;

Var(error) = 0.2822;

statrob Sigmas: OLS_s= 0.4704; Robust_s= 0.4106; MAD_s= 0.3186;

final_s= 0.4111;

statrob: SE_p = [ 0.0361; 0.0622];

statrob: Corr_ps=[ 1.0000, -0.8609; -0.8609, 1.0000];

>>
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• 6.2PS: Review of Homework 3, Problem 2(a), the N-Day Count:
Theorem 3.1. LVaR

√
N Factor from Daily Basis to N-days:

Let the k–day log-returns be IID, distributed normally, with zero-mean
and σ2k∆t-variance, where ∆t is one trading day in years and k is an
integer, then for the log-VaR at risk level α satisfies

LVaRN(α) =
√

N · LVaR1(α). (6.7)

Proof: Let LRk,i be k-day log-turns, then the distribution is normally
distributed as

FLRk,i
(z) = F

(n)
Z (z; 0, σ2k∆t) (6.8)

and the LVaRk(α) for LRk,iis defined by

α= Prob[LRk,i <−LVaRk(α)]

= F
(n)
Z (−LVaRk(α); 0, σ2k∆t)

= F
(n)
Z (−LVaRk(α)/(σ

√
k∆t); 0, 1),

(6.9)

upon standardization.
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Thus, setting k to N or 1 and letting
Zk√

k
≡

LVaRk(α)

(σ
√

k∆t)
, (6.10)

F
(n)
Z (−ZN/

√
N ; 0, 1)=α=F

(n)
Z (−Z1; 0, 1), (6.11)

inverting while making reasonable assumption that α < 0.5,

− ZN/
√

N =(F (n)
Z )−1(α; 0, 1)=−Z1, (6.12)

and restoring the original variables,
LVaRN(α) =

√
N · LVaR1(α). � (6.13)

{Remark: The case of non-zero mean distribution is left as an
exercise.}
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Homework 3, Problem 2, Part (b):
Using the same k-day IID normal distribution with variance σ2k∆t

and zero-mean of the theorem to find the number of days k that it would
take to make the cumulative tail probability (i.e., the probability on
(−∞, −|LRi|]) at least 0.25, if possible, for the both the minimum
and maximum 2009 daily log-returns in Problem 1, using the the
variance and average trading day ∆t in year units.

Let the extreme tail probability be
F

(n)
Z (−|LR(m)|; 0, σ2k∆t) = 0.25; (6.14)

where LR(m) is the daily (k=1) log-return mini(LR1,i) or
maxi(LR1,i). Since the data is daily returns LR = [LR1,i]n×1, then
the MATLAB std(LR)'σ

√
∆t gives an estimate of

σ'
√

n·std(LR) using ∆t=1/n is the trading day in trading year
units.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture6-page12 — Floyd B. Hanson



Converting, the k-day distribution to standard form, we have

F
(n)
Z

(
−

|LR(m)|
σ

√
k∆t

; 0, 1

)
= 0.25; (6.15)

and inverting

−
|LR(m)|
σ

√
k∆t

= F −1
Z (0.25; 0, 1); (6.16)

or as the estimate of the number of days,

k= k̂(m)(0.25)= |LR(m)|2(
σ

√
∆tF −1

Z (0.25; 0, 1)
)2

' |LR(m)|2(
std(LR)F −1

Z (0.25; 0, 1)
)2 ;

(6.17)

Assuming that the k-day distribution is valid for k days and that this
inverse solution exists.
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◦ MATLAB Code for K-day Estimation for 2008 S&P500 Index
Log-Return Extremes:
function N_DayProblem10HW3P2b

% Get Histogram for S&P500 ˆGSPC (Yahoo Finance) for Year 2008
% Dates 2007/12/31-2008/12/31, Daily Adjusted Closings.

clc

fprintf(’\nN_DayProblem10HW3P2b Output (%s):\n’,datestr(now));
% Get S&P500 ˆGSPC Adjusted Closings for 2008 From Yahoo Finance;

S = textread(’GSPC2008adjC.txt’,’%f’); % Xcel.cvs deleted to 1 column.

L = length(S);
fprintf(’\nlength(S)=%3i; mean(S)=%6.1f; std(S)=%5.1f;\n’...

,L,mean(S),std(S));

%

LR = log(S(2:L))-log(S(1:L-1)); % Note: Vector Log Difference!
LRlen = length(LR); LRmean = mean(LR); LRstd = std(LR);

fprintf(’\nlength=%i; mean(LR)=%8.6f; std(LR)=%7.5f;’ ...

,LRlen,LRmean,LRstd);
Dt = 1/LRlen; sigma = sqrt(LRlen)*LRstd;

fprintf(’\nDt=%8.6f; sigma=%8.6f;’,Dt,sigma);

LRmin = min(LR); LRmax = max(LR);
fprintf(’\nLRmin=%8.6f; LRmax=%8.6f;’,LRmin,LRmax);

alpha = 0.25;

FZinv = norminv(alpha,0,1);
kmin = LRminˆ2/(LRstd*FZinv)ˆ2;
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kmax = LRmaxˆ2/(LRstd*FZinv)ˆ2;

fprintf(’\nalpha=%7.4f; kmin=%7.4f; kmax=%7.4f;\n’,alpha,kmin,kmax);

fprintf(’\n+Probability Alpha Dependence:’);

for alp = 0.1:0.05:0.5

FZinv = norminv(alp,0,1);

kmin = LRminˆ2/(LRstd*FZinv)ˆ2;

kmax = LRmaxˆ2/(LRstd*FZinv)ˆ2;

fprintf(’\nalpha=%4.2f; kmin=%7.2f; kmax=%7.2f;’,alp,kmin,kmax);

end

fprintf(’\n ’);

================= OUTPUT ========================

N_DayProblem10HW3P2b Output (03-Feb-2010 16:41:50):

length(S)=254; mean(S)=1221.0; std(S)=191.7;

length=253; mean(LR)=0.001921; std(LR)=0.02583;

Dt=0.003953; sigma=0.410822;

LRmin=-0.109572; LRmax=0.094695;

alpha= 0.2500; kmin=39.5605; kmax=29.5473;
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+Probability Alpha Dependence:

alpha=0.10; kmin= 10.96; kmax= 8.18;

alpha=0.15; kmin= 16.75; kmax= 12.51;

alpha=0.20; kmin= 25.41; kmax= 18.98;

alpha=0.25; kmin= 39.56; kmax= 29.55;

alpha=0.30; kmin= 65.45; kmax= 48.88;

alpha=0.35; kmin= 121.22; kmax= 90.54;

alpha=0.40; kmin= 280.40; kmax= 209.43;

alpha=0.45; kmin=1139.75; kmax= 851.27;

alpha=0.50; kmin= Inf; kmax= Inf;

>>

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture6-page16 — Floyd B. Hanson



◦ Stories Behind the K-Day Estimation for 2008 S&P500 Index
Log-Return Extremes (Winter 2009 Lecture 3):

1. Joe Nocera, Risk Mismanagement, New York Times Magazine,
January 4, 2009, http://www.nytimes.com/2009/01/04/
magazine/04risk-t.html?pagewanted=1&ref=business .
{Commentary: This was a good, recent Times article on the uses and
abuses of VaR and the Black-Scholes model, in particular, the uses
of normal distributions rather than nonnormal distributions for
calculations. As a magazine article it was popularized for general
audiences, so there is no math or graphical illustrations except for
investor cartoons. In spite of practitioner criticisms on both sides it is
still worth reading for historical and more recent background. }
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2. Anonomous (posted byYves Smith) Woefully Misleading Piece on
Value at Risk in New York Times, naked capitalism website, January
4, 2009, http://www.nakedcapitalism.com/2009/01/woefully-
misleading-piece-on-value-at.html . {Commentary: This is a
anonymous and likely practitioner’s trashing of Nocera’s
popularized article on the problems of the Black-Scholes model and
VaR, with much more emphasis on the strongly nonnormal and
fat-tail view of the market. This article is a little more technical, with
a few graphs on skewness and Cauchy distribution fat tails, as well
as links to related articles elsewhere. }
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3. Paul De Grauwe, Leonardo Iania, Pablo Rovira Kaltwasser, HOW
ABNORMAL WAS THE STOCK MARKET IN OCTOBER 2008?,
EVRO Eurointelligence website, November 11, 2008,
http://www.eurointelligence.com/article.581+M5f21b8d26a3.0.html
{Commentary: This article is one of the cross-referenced by
Anonymous, that comes with some striking illustrations about the
extreme rarity of some of the changes of October 2008, some that
from a normal distribution that should happen only once in a number
of years that is astronomically largely than the known age of the
universe. Also displayed are the great differences in the actual Dow
Jones Industrial Average time trajectories 1928 to 2008 and the
“toy” normal process trajectories. }
However, the class should have shown that the results are
ridiculous on their homework for reasonable probabilities.
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4. Extreme Rarity of October 2008 Events (De Grauw, etal., 2008):

Figure 6.2: De Grauwe, etal. table of the largest DJIA movements in
October 2008. Note, the largest rally (10/13) has an estimated frequency
of 6·1023 years, while the largest crash (10/15) is at 1·1011 years. The
current estimate of the known age of the universe is about 2 ·1010years.
More ridiculous than the normal model itself?
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5. Dow Jones Industrial Average (DJIA) time trajectories during the
years 1928 to 2008 (De Grauwe, etal., 2008):

Figure 6.3: De Grauwe , etal. 2008 graph of the DJIA movements in 1928
to 2008, with October tickmarks. Note the biggest spike in 1987.
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• 6.3 General Maximum Likelihood Function in MATLAB:
[chat,cci]=mle(Y,’distribution’,’DistName’,’alpha’,

alpha): This is a maximum likelihood estimator for a large number of
specialized distributions. The required input is data Y, but the optional
input is the ’distribution’ parameter paired with the name value
’DistName’ which can be ’bernoulli’, ’binomial’,
’exponential’, ’generalized pareto’, ’lognormal’,
’normal’ (default), ’poisson’, ’uniform’ and others. The output
is the estimated parameters chat and the parameter confidence interval
cci at complementary level alpha, but if pair ’alpha’, alpha is
omitted then the CI is at the MATLAB default of 0.05 or 95% CI. Many
of the mle special distributions are prepackaged, such as binofit,
normfit or poissfit. The auxiliary function mlecov with similar
arguments outputs the parameter estimate covariance matrix.
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◦ 6.4 MLE for Linear Diffusion with Variable
Trading-Day Intervals:a

In the previous example of the asset price in a linear diffusion
environment, it was assumed that the time between trading days. ∆t, was
constant and while this is the usual assumption among market
practitioners justified by hand-waiving as well as more substantial
arguments, there are non-constant time differences for the many
weekends and fewer holidays.

aContinuing from the end of Lecture 5 with more variations on MLE for financial appli-
cations. This section is original as far as my experience indicates.
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Returning to the discrete log-return asset pricing model and replacing
∆t > 0 and ∆ti > 0 for i=1:n data observations,

LRi = ∆Xi = ∆ log(Ai) = m̃∆ti +
√

ṽ∆tiZi (6.18)

where, m̃ ≡ µ − σ2/2 and ṽ ≡ σ2 > 0 are log-coefficients from

using ∆Wi =
√

∆tiZi with Zi
dist=
IID

N (0, 1) ∀ i. The the standard

RV X has been changed to ∆Xi for the consistency between increments
in the variable time-step revised results.

The log-return distribution becomes,

F∆Xi
(∆xi)

alg
= Prob[Zi ≤ (∆xi − m̃∆ti)/

√
ṽ∆ti]

N= F
(n)
Zi

(
(∆xi − m̃∆ti)/

√
ṽ∆ti; 0, 1

)
.

(6.19)
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Upon differentiation with respect to ∆xi yields the ith likelihood
function or density function form,

LHi(m̃, ṽ)= ∂F∆Xi

∂∆xi
(∆xi)=f∆Xi(∆xi)

=
∂F

(n)
Zi

∂∆xi

(
(∆xi−m̃∆ti)√

ṽ∆ti

; 0, 1
)

= 1√
ṽ∆ti

f
(n)
Zi

(
(∆xi−m̃∆ti)√

ṽ∆ti

; 0, 1
)

N= 1√
2πṽ∆ti

exp
(
−(∆xi−m̃∆ti)2

2ṽ∆ti

)
.

(6.20)

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture6-page25 — Floyd B. Hanson



Recall, the Zi are IID normal, so the total likelihood (TLH) is the
product of all the individual density for the log-return data count for
i=1:n,

TLHn(m̃, ṽ)= f ~∆X( ~∆x) IID=
n∏

i=1

f∆Xi
(∆xi)

N=
n∏

i=1

exp
(
−0.5(∆xi−m̃∆ti)2/(ṽ∆ti)

)√
2πṽ∆ti

.

(6.21)

Taking logarithms, LLHn =log(TLHn) turning the products into
sums, to get the log-likelihood (LLH) function,

LLHn(m̃, ṽ)= log
(
f ~∆X( ~∆x)

)
=

n∑
i=1

log(f∆Xi
(∆xi))

= −
n∑

i=1

(
(∆xi−m̃∆ti)2

2ṽ∆ti

+
1

2
log(2πṽ∆ti)

)
,

(6.22)

which again is a least squares objective modified by the log of a
normalization term.
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Seeking critical points,
∂LLHn

∂m̃
(m̃, ṽ) =

n∑
i=1

(∆xi − m̃∆ti)∆ti

ṽ∆ti

∗= 0, (6.23)

and
∂LLHn

∂ṽ
(m̃, ṽ) =

n∑
i=1

(
(∆xi − m̃∆ti)2

2ṽ2∆ti

−
1

2ṽ

)
∗= 0, (6.24)

gives the simultaneous estimates,

m̂ = m̃∗ =
n∑

i=1

∆xi

/
n∑

i=1

∆ti ≡ ∆x
/

∆t (6.25)

and

v̂ = ṽ∗ =
1

n

n∑
i=1

(∆xi − m̃∗∆ti)2

∆ti

=
1

n

n∑
i=1

(
∆xi√
∆ti

−
∆x√
∆t

√
∆ti

∆t

)2

≡ σ̂2
∆x/

√
∆t

,

(6.26)

a somewhat unusual definition of estimated variance of a normalized
linear combination (NLC), but fits the model application.
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Finally, converting back to standard model coefficient,

σ̂ = σ̂∆x/
√

∆t & µ̂ = ∆x/∆t + σ̂2
∆x/

√
∆t

/
2, (6.27)

the latter form seems to contradict the practice of throwing out the mean

m̃ since σ̂2
∆x/

√
∆t

/
2 > 0.

Notice that when ∆ti = ∆t, a constant,

σ̂2
∆x/

√
∆t

= σ̂2
∆x/∆t (6.28)

so then

σ̂ = σ̂∆x/∆t & µ̂ =
(
∆x + σ̂2

∆x/2
)
/∆t. (6.29)

Hence, there is not a great deal of difference as Hull (2006) comments
on in his book, so the time between trading days is taken to be a
constant.
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• 6.5 MLE for Linear Jump-Diffusion with Compound
Poisson and Otherwise Constant Coefficients:
Consider the asset price compound jump-diffusion model

dA(t) = A(t)(µdt + σdW (t) + ν(Q)dP (t)), (6.30)

where σ>0, ν(Q)>−1 is the jump-amplitude, dP (t)=dP (t; Q)
is the differential Poisson jump process, such that only one jump is
likely with jump-rate λ in the infinitesimally small time step dt, and
E[dP (t; Q)]=λfQ(q; a, b)dqdt>0. The underlying Poisson
jump-amplitude random variables Q are IID RVs with density
fQ(q; a, b) on (a, b). The combination of random jump process and
jump-amplitude, ν(Q)dP (t) is called a compound Poisson process.
Using the doubly-stochastic form of the chain rule for jump-diffusion
processesa with independent continuous and jump-changes, the
logarithmic change of variables X(t) = log(A(t)) results in

dX(t)=(µ−σ2/2)dt+σdW (t)+log(1+ν(Q))dP (t)). (6.31)
aHanson (’07) book, Chapters 4-5.
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However, the given FinM 331/Stat 339 class problem begins with the
approximate discretized Gaussian-Poisson mixture model for
sufficiently small constant time-steps ∆t producing the log-return,

LRi = ∆Xi = m̃∆t +
√

ṽ∆tZi + QiBi(pb), (6.32)

where m̃ ≡ µ − σ2/2, ṽ ≡ σ2 and letting

Qi ≡ log(1 + ν(Qi)) or ν(Qi) = exp(Qi) − 1 (6.33)

has been selected for underlying jump-amplitude simplicity. Also, we
have replaced the assumed zero-one jump incremental Poisson process
∆Pi by its equivalent, the Bernoulli processa, Bi(pb), with parameter
pb ≡ Λ

1+Λ �1b, Λ ≡ λ∆t, which is the probability of one jump,

while the complementary probability is 1−pb = 1
1+Λ for no jump, as if

this were for an unfair (i.e., pb 6=1/2) coin-flips.
aRecall call that MATLAB Statistics Toolbox does not have a Bernoulli RNG

because the binomial RNG with parameter n=1, binornd(1,pb,M,N), is equivalent.
bAlternatively, pb =Λ is used, but then 1−pb =1−Λ, which is positive as a probability

only for Λ<1 and that is an inconsistent formulation that is often used.
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The log-return distribution is found using Law of Total Probability
(LTP)a, which basically states that if X is a RV and {Yk}∞

k=1 is a
countable set of discrete RVs, then

Prob[X ≤ x] LTP=
∞∑

k=1

Prob[X ≤ x|Yk]·Prob[Yk]. (6.34)

Letting the Gaussian or general normal part be

∆Gi ≡m̃∆t +
√

ṽ∆tZi (6.35)

which has distribution F
(n)
∆Gi

(x; m̃∆t, ṽ∆t), then

F
(jd)
∆Xi

(x)≡ Prob[∆Xi ≤x]=Prob[∆Gi+QiBi(pb)≤x]

LTP=
1∑

k=0

Prob[∆Gi+QiBi(pb)≤x| Bi(pb)=k]

·Prob[Bi(pb)=k]

= (1−pb)Prob[∆Gi ≤x]+pbProb[∆Gi+Qi ·1≤x].

(6.36)

aHanson (2007) Online Appendix B, Sect. B.3.2, pp. B29-B30
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• 6.6 MLE for Linear Jump-Diffusion with Simple Poisson
and Simpler, Single Jump-Amplitude Q = q0:
If the Qi = q0, where q0 is a single fixed value, i.e., Qi is discretely
distributed, and we have a simple Bernoulli-Poisson process rather than
a compound one. Returning to (6.36) with a single, discrete jump
Qi = q0,

F
(jd)
∆Xi

(x)= (1−pb)Prob[∆Gi ≤x]+pbProb[∆Gi+q0 ≤x]

= (1−pb)F
(n)
∆Gi

(x; m̃∆t, ṽ∆t)

+pbF
(n)
∆Gi

(x; m̃∆t+q0, ṽ∆t),

(6.37)

a binary mixture of fixed Gaussian distributions.
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Differentiating produces in the ith likelihood function or density function
mixture form,

LHi(xi; m̃, ṽ, λ, q0)= f
(jd)
∆Xi

(xi)

= (1−pb)f
(n)
∆Gi

(xi; m̃∆t, ṽ∆t)

+pbf
(n)
∆Gi

(xi; m̃∆t+q0, ṽ∆t),

(6.38)

which depends on four (4) unknown parameters.

Applying the general independence of the component processes in the
simple Bernoulli-Poisson jump-diffusion yields the total data likelihood
function,

TLHn(~x; m̃, ṽ, λ, q0)= f
(jd)
~X

(~x) IID=
∏n

i=1f
(jd)
Xi

(xi)

=
∏n

i=1

(
(1−pb)f

(n)
∆Gi

(xi; m̃∆t, ṽ∆t)

+pbf
(n)
∆Gi

(xi; m̃∆t+q0, ṽ∆t)
)
.

(6.39)
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Taking logs only reduces the product symbol to a sum, leading to a
complicated log-likelihood function,

LLHn(~x; m̃, ṽ, λ, q0)=
∑n

i=1log
(
f

(jd)
∆Xi

(∆xi)
)

=
∑n

i=1log
(

(1−pb)f
(n)
∆Gi

(xi; m̃∆t, ṽ∆t)

+pbf
(n)
∆Gi

(xi; m̃∆t+q0, ṽ∆t)
)
,

(6.40)

clearly too big a problem to try to think about solving analytically, but to
think about solving computationally with approximations.

{Remark: Since it is not a single Gaussian or normal, the MATLAB
functions like normfit or any of the mle options will not work, so a
general optimizer is needed.}
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• 6.7 Numerical Optimization and fminsearch General
Direct Search:a

Since the simple Poisson jump-diffusion model is already sufficiently
computationally complex and it is unlikely that the one-jump probability
pb will be small compared to the zero-jump probability 1−pb, recalling
our multijump results for 2008 and 2009 S&P 500 Index log-returns.

In addition, having discrete data, we have a need for efficient
derivative-free and nonsmooth optimum solvers.

aSee help fminsearch in MATLAB command window or search for fminsearch
in MATLAB helpwindow or for much more information see the Optimization Toolbox(TM)
4 User’s Guide as
http://www.mathworks.com/access/helpdesk/help/pdf doc/optim/optim tb.pdf .
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◦ MATLAB Optimization Decision Table, Part 1:

Figure 6.4: From Optimization Toolbox, Choosing a Solver.
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◦ MATLAB Optimization Decision Table, Part 2:

Figure 6.5: From Optimization Toolbox, Choosing a Solver.
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◦ MATLAB fminsearch Details:
[x,fval,exitflag,output]=fminsearch(@f,x0,options);
Solves the local minimum problem for a scalar valued function f of a
single, vector argument x, with minimum locationa at

x∗ ' argminx[f(x)], (6.41)
given an initial multivariable start x0 and objective function f appearing
as the first argument as the pointer or handle @f pointing to a subfunction
within the main function m-file. The fval'minx[f(x)]'f(x∗).

1. Parameter or other variable arguments must be passed indirectly and
not with the single argument x. It is recommended that the global
declaration be used, e.g., global a b c placed in both f and
main function codes, where (a,b,c) is a known parameter and
variable set.b

aFor maxima of g(x), x∗ =argminx[f(x)] where f(x)= −g(x), using a mini-
mizer functions. For MLE computations, the unlikely term negative-likelihood is used.

bContrary to MATLAB advice, avoid anonymous function dynamic input in command
window, except for testing, and nested function input, as its documentation demonstrates
their messy approaches.
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2. Also for parameter estimation, the meaninngs are reversed, x=
parameter vector and [a, b, c]= data vector.

3. The entities that are global variables must have the same name in
both calling function and the objective subfunction, so order and
count in global declarations does not matter, in fact mlint will
complain if a parameter or variable is not used in the current function
or subfunction.

4. Constraints can be embedded in function directly or by sufficiently
large values not mistaken for a minimum.

5. Function f must have a proper form for a genuine minimum
problem, e.g., negative of the maximum likelihood objective and in
that application x is the unknown parameter vector, while the usual
state data vector is passed to f along with known parameters.

6. fminsearch is a general or derivative-free function and is not
bothered by discontinuities except near the minimum location, i.e., is
very robust.
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Other input and output arguments are
1. options is an optional input structure argument that is usually set

by the optimset function to handle fields such as Display,
FunValCheck, MaxFunEvals, MaxIter, OutputFcn,
PlotFcns, TolFun, TolX, but see help optimset for
more information. Use optimset fminsearch in the command
window to get a listing of the default settings for these options, e.g.,
both options TolFun and TolX have default values of 1.e-4, while
options MaxFunEvals and MaxIter have default values of
200*length(x). Most other values are set to null, [ ]. These
values can be reset if desired by parameter-value pairs, separated by
commas, executed in the command window, e.g.,

options = optimset(’Display’, ’Iter’,
’MaxIter’, 500, ’TolFun’, 1e-6, ’TolX’, 1e-8)

Notice that script arguments are in single quotes while numerical
values are without quotes.
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2. x is the fminsearch output local minimum location (depends on x0) .
3. fval is the minimal function value f(x) for output x,
4. exitflag is the value of a flag on the condition of the exit of

fminsearch, i.e., +1 if convergence, 0 if maximum function
evaluations MaxFunEvals or iterations MaxIterattained or if -1
output ended by objective f.

5. output is an output structure with elements output.algorithm
saying what algorithm was used, output.funcCount is the
number of function evaluations, output.iterations is the
number of iterations, and output.messsage is exit message.

P.S. For general nonlinear least square objectives of the form

x∗ = min
x

[
‖~f(~x)‖2

]
= min

x

[
n∑

i=1

(fi(~x))2
]

, (6.42)

then least squares, nonlinear optimizer lsqnonlin should be used, but
is not derivative-free and is for a continuous f, as is fminunc for large
scale unconstrained problems.
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• Algorithm of fminsearch — Nelder and Mead’s Downhill
Simplex Method:a

Let m be the dimension of the unknown, e.g., parameter, vector
~x=[xi]m×1, then form a simplex of m+1 vertices with locations
{~xj =[xi,j]m×1 for j =1:m+1}, i.e., similar to polygons in the plane
where the triangle is a simplex, but in multidimensions.

1. The values of all vertices are calculated, Fj =f(~xj) for
j =1:m+1, then ordered the ~xj such that Fj ≤Fj+1;

2. The vector ~xm+1 of the largest value is replaced by a reflection,
~r=2xm−~xm+1, about the center, xm =

∑m
k=1 ~xk/m, of the rest

of simplex;
aSee section fminsearch algorithm in help Unconstrained Nonlinear

Optimization page of the Optimization Toolbox, but has been in regular MAT-
LAB; J. Lagarias, J. Reeds, M. H. Wright and P. Wright, “Convergence Properties of the
Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optmization, vol. 9, No. 1,
pp. 112-147, 1998; J. A. Nelder and R. Mead, A Simplex Method for Function Minimization,
Computer Journal, vol, 7, pp. 308-313, 1965.
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3. If the reflection value is in the remainder F1 ≤f(~r)<Fm] then ~r

replaces ~xm+1 and a new iteration begins;
4. If f(~r)<F1 then the reflection becomes an expansion, ~s=2~r−xm

and if f(~s)<f(~r), an improvement, then ~s is the replacement for
the largest, else ~r is that replacement, and in either case go to a new
iteration where either replace will become the new ~x1;

5. Otherwise there are several variations of contractions (contraction
outside (~c), contraction inside ( ~cc), shrink (~v)).

The iterations continue until a combination of tolerances, TolFcn and
Tolx, is satisfied, unless the count limits MaxFunEvals or MaxIter
are reached first.
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Figure 6.6: MATLAB Down-Hill Simplex Algorithm Illustration:
Fminsearch Algorithm, Unconstrained Nonlinear Optimization page, Op-
timization Toolbox, 2008. Triangular with (x(1), x(2), x(n+1)≈x(3)).
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• 6.8 MLE for Linear Jump-Diffusion with a Zero-One
Jump Compound Poisson Continued with Jump-Amplitude
Distribution:
Previously in Eq. (6.36), we considered the zero-one jump-amplitude
Qi in a binary Gaussian mixture that was not simplistic as the single
discrete jump q0 as in (6.37), but there are still the underlying Poisson
jump-amplitude IID RVs, Qi, in the jump-diffusion distribution,

F
(jd)
∆Xi

(x)= (1−pb)Prob[∆Gi ≤x]+pbProb[∆Gi+Qi ≤x]

= (1−pb)F
(n)
∆Gi

(x; m̃∆t, ṽ∆t)+pbF∆Gi+Qi(x),
(6.43)

where pb =Λ/(1+Λ) is the one-jump probability, while (1−pb) is the
zero-jump probability, and ∆Gi =m̃∆t+

√
ṽ∆tZi is the dominating

Gaussian term. The underlying the Qi are usually continuous IID RVs
and thus do not nicely fit into LTP form.
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We have the linear combination of two distributions in (6.43), one is an
obvious nonstandard normal or Gaussian distribution, but the other is a
distribution for the sum of two independent RVs, say Y = Qi for the
jump-amplitude and Z = ∆Gi for the Gaussian. However, the sum
provides a constraint to their independence as we shall see.

When we have two independent RVs, Y and Z, then their constrained
sum Y +Z ≤x connects their distributions to a integral relation called a
convolutiona of distributions, denoted with a symmetry property by
(FZ ∗fY )(x)=(FY ∗fZ)(x) and follows from these steps:

Prob[Y +Z ≤x] I=
∫∞

−∞ dyfY (y)
∫∞

−∞ dzfZ(z)1{y+z≤x}

=
∫∞

−∞ dyfY (y)
∫ x−y

−∞ dzfZ(z)
dist=
def

∫∞
−∞ FZ(x−y)fY (y)dy≡(FZ ∗fY )(x).

(6.44)

aSee Hanson (2007), Online Appendix B, p. B30ff.
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Consequently, with
Prob[∆Gi ≤x]=F

(n)
∆Gi

(x)=F
(n)
∆Gi

(x; m̃∆t, ṽ∆t),

F
(jd)
∆Xi

(x)= (1−pb)F
(n)
∆Gi

(x)+pb(F
(n)
∆Gi

∗fQ)(x)

= (1−pb)F
(n)
∆Gi

(x)+pb

∫ b

a
F

(n)
∆Gi

(x−q)fQ(q)dq

= (1−pb)F
(n)
∆Gi

(x)+pb

∫ b

a
dqfQ(q)

∫ x−q

−∞ dzf
(n)
∆Gi

(z)
int=
↔

(1−pb)F
(n)
∆Gi

(x)+pb

(∫ x−b

−∞ dzf
(n)
∆Gi

(z)
∫ b

a
dqfQ(q)

+
∫ x−a

x−b
dzf

(n)
∆Gi

(z)
∫ x−z

a
dqfQ(q)

)
= (1−pb)F

(n)
∆Gi

(x)+pb

(
F

(n)
∆Gi

(x−b)·1

+
∫ x−a

x−b
dzf

(n)
∆Gi

(z)
∫ x−z

a
dqfQ(q)

)
.

(6.45)

We cannot do much more until be specify the jump-amplitude density
fQ(q)≡fQ(q; a, b).
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Technique Alert — Double Integral Interchanges:

Upon substituting the density integral for the distribution F
(n)
∆Gi

(x−b),∫ b

a

dqfQ(q)
∫ x−q

−∞
dzf

(n)
∆Gi

(z) int=
↔∫ x−b

−∞
dzf

(n)
∆Gi

(z)
∫ b

a

dqfQ(q)+
∫ x−a

x−b

dzf
(n)
∆Gi

(z)
∫ x−z

a

dqfQ(q).
(6.46)

The original domain is a single trapezoid z ∈(−∞, x−q) on q∈(a, b)
and changing the order of integrations changes the domain into two
pieces, a rectangle q∈(a, b) on z ∈(−∞, x−b) plus a triangle
q∈(a, x−z) on z ∈(x−b, x−a) with q-integral nested inside the
zq-double integral.
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The simplest fat-tail distribution is the uniform distribution, and it all
tail, on (a, b), a <0<b for bear and bull tails, and its density is

fQ(q; a, b)=
1

b − a

 1, q ∈ (a, b)

0, else

 . (6.47)

Thus, the uniform-amplitude jump-diffusion (UJD) distribution
becomes, after simplifying a normal integral with a linear coefficient,

F
(ujd)
∆Xi

(x)= (1−pb)F
(n)
∆Gi

(x)+pb

(
F

(n)
∆Gi

(x−b)

+
∫ x−a

x−b

dzf
(n)
∆Gi

(z)
x−z−a

b−a

)
= (1−pb)F

(n)
∆Gi

(x)+pb

b+m̃∆t−x

b−a
F

(n)
∆Gi

(x−b)

+pb

x−m̃∆t−a

b−a
F

(n)
∆Gi

(x−a)

+pb

ṽ∆t

b−a

(
f

(n)
∆Gi

(x−b)−f
(n)
∆Gi

(x−a)
)
.

(6.48)
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Technique Alert — Normal Integral Over Linear Term:

Upon collecting the Gaussian deviation argument, (z−fm∆t), to obtain
an exact integral for the density,∫ x−a

x−b
dzf

(n)
∆Gi

(z)x−z−a
b−a

=
∫ x−a

x−b
dzf

(n)
∆Gi

(z)(x−fm∆t−a)−(z−fm∆t)
b−a

= x−fm∆t−a
b−a

(
F

(n)
∆Gi

(x−a)−F
(n)
∆Gi

(x−b)
)

+ ev∆t
b−a

(
f

(n)
∆Gi

(x−b)−f
(n)
∆Gi

(x−a)
)
.

(6.49)
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Differentiating, the jump-diffusion distribution, using the easier first
equality of (6.48), becomes

f
(ujd)
∆Xi

(x)= (1−pb)f
(n)
∆Gi

(x)

+
pb

b−a

(
F

(n)
∆Gi

(x−a)−F
(n)
∆Gi

(x−b)
)

,
(6.50)

after several cancellations. The last term is in a difference form that is the
secant approximation of a derivative,

f
(sn)
Z (z1, z2)≡

F
(n)
Z (z2)−F

(n)
Z (z1)

z2−z1

, (6.51)

so is called the secant-normal (SN) density.a Here, we have

f
(ujd)
∆Xi

(x)=(1−pb)f
(n)
∆Gi

(x)+pbf
(sn)
∆Gi

(x−b, x−a). (6.52)

aHanson (2007), p. 156. See also, online Errata. Also note that as z2 → z1,
f

(sn)
Z (z1, z2)→f

(n)
Z (z1).
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From Eq. (6.40), the log-likelihood function for UJD is

LLHn(~x; ~p)=
∑n

i=1log
(
f

(ujd)
∆Xi

(xi)
)

=
∑n

i=1log
(
(1−pb)f

(n)
∆Gi

(xi; m̃∆t, ṽ∆t)

+pbf
(sn)
∆Gi

((x−b, x−a; m̃∆t ṽ∆t)
)
,

(6.53)

where the yearly trading day ∆t and and log-returns ~x=[xi]n×1 are
assumed to be simply known directly from the market data and the
unknown UJD parameter set ~p=[m̃, ṽ, λ, a, b] need to be estimated
by maximum likelihood or better methods.

In the negative log-likelihood (NLLH) form for minimizing code,

NLLHn(~x; ~p)= −LLHn(~x; ~p). (6.54)
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• 6.9 MLE for Linear Jump-Diffusion with a K-Jump
Compound Poisson Continued with Jump-Amplitude
Distribution:
For market data that has a lower frequency than daily data,a e.g., weekly
or monthly data, then the jump-diffusion has a higher probability of
more then one jump in (t, t + k∆t), where k is the number of days
between data collections, and the jump probability is governed by the full
Poisson process and not the Bernoulli process special case. So, instead of
the Bernoulli jump-diffusion in (6.32), we get from (6.31) a compound
Poisson jump-diffusion,

LRi = ∆Xi = m̃∆t +
√

ṽ∆tZi +
∆Pi∑
j=1

Qj, (6.55)

where m̃≡µ − σ2/2, ṽ≡σ2 and ∆Pi is the Poisson increment
counter for time-step ∆t in place of “k∆t” and parameter Λ=λ∆t.

aRecall that the daily data has a ∆t'0.04 that is only marginally small in trading year
units.
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Again, letting the Gaussian or general normal part be

∆Gi ≡m̃∆t +
√

ṽ∆tZi, (6.56)

then the jump-diffusion log-return distribution, assuming an reasonable,
finite upper limit K for the jump-count, will be

F
(jd)
∆Xi

(x)≡ Prob[∆Xi ≤x]=Prob
[
∆Gi+

∑∆Pi

j=1 Qj ≤x
]

LTP=
∑K

k=0Prob
[
∆Gi+

∑∆Pi

j=1 Qj ≤x
∣∣∣∆Pi =k

]
·Prob[∆Pi =k]

=
∑K

k=0F∆Pi
(k)Prob

[
∆Gi+

∑k
j=1 Qj ≤x

]
.

(6.57)

where the count-limited Poisson discrete distribution, for k≤K, is

F∆Pi
(k)=Prob[∆Pi =k]=

Λk

k!CK

, where CK =
K∑

j=0

Λj

j!
, (6.58)

the CK being the proper renormalization constant. One way of choosing
K, by analogy with confidence intervals, is to require F∆Pi

(K+1)<α

for some small, positive α.
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Just as the K =1 case (6.45) leads to a single convolution distribution,
the general K jump-case leads to a K-nested convolution,

F
(jd)
∆Xi

(x)≡ Prob[∆Xi ≤x]=Prob

∆Gi+
∆Pi∑
j=1

Qj ≤x


LTP=

K∑
k=0

Prob

∆Gi+
∆Pi∑
j=1

Qj ≤x

∣∣∣∣∣∣∆Pi =k

Prob[∆Pi =k]

=
K∑

k=0

F∆Pi(k) Prob

∆Gi+
k∑

j=1

Qj ≤x


=

K∑
k=0

F∆Pi(k)
(
F

(n)
∆Gi

(∗fQ)K
)
(x)

(6.59)

where the nested convolution can be expanded several ways. For instance,
with K =2, (F (n)

∆Gi
(∗fQ)2)(x)=(F (n)

∆Gi
∗(fQ∗fQ))(x) or

(F (n)
∆Gi

(∗fQ)2)(x)=((F (n)
∆Gi

∗fQ)∗fQ)(x), where (fQ∗fQ)(x) is
the 2-jump distribution.a

aHanson(2007), p. 157, the K =2 distribution is given and has be used for JD options.
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By differentiation, the JD density is

f
(jd)
∆Xi

(x)=
K∑

k=0

F∆Pi
(k)
(
f

(n)
∆Gi

(∗fQ)K
)
(x) (6.60)

Then, from Eq. (6.53), the log-likelihood function for the K-jump JD,
assuming the same uniform JD and parameters, is

LLHn(~x; ~p)=
∑n

i=1log
(
f

(ujd)
∆Xi

(xi)
)

=
∑n

i=1log
(∑K

k=0F∆Pi
(k)
(
f

(n)
∆Gi

(∗fQ)K
)
(x)
)
,

(6.61)

where the trading day ∆t in years and and log-returns [xi]n×1 are
assumed to be simply known directly from the market data and the
unknown UJD parameter set ~p=[m̃, ṽ, λ, a, b] need to be estimated by
maximum likelihood or better methods.
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It is important to keep the maximum jump-count K down to a few jump
in the model, otherwise the statistical fitting will suffer.

For instance, for K =2, the log-likelihood takes the form:

LLHn(~x; ~p)=
n∑

i=1

log
((

f
(n)
∆Gi

(x)+Λ
(
f

(n)
∆Gi

∗fQ

)
(x)

+1
2
Λ2
(
f

(n)
∆Gi

∗(fQ∗fQ)
)
(x)
)/

C2

)
,

(6.62)

where C2 =1+Λ+ 1
2
Λ2. For k=2 jumps, the distribution is triangular

on (2a, 2b), double the original (a, b) interval,

(fQ ∗ fQ)(x)=
1

(b − a)2


x −2a, 2a<x< a + b

2b−x, a+b≤x<2b

0, otherwise

 . (6.63)
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• 6.10 MLE Computational Issues:
• General MLE problems do not fit in with the generic mle functions

for elementary distribution functions when there is a distribution
mixture.

• General MLE problems do not fit easily in with the least squares
(LS) functions (e.g., lsqnonlin), especially for the log-likelihood
formulation of non-separable terms.

• One of the most general methods, fminsearch, is a basic MATLAB
optimizer, so does not include the statistics output of MLE or LS
functions.

• The fminsearch function has to be reinterpreted for MLE: in the
function help, the x is the MLE parameter vector,
p=[mu,sigsq,lambda,a,b], and so-called parameters are the
input log-return data vector, y=[x,Dt].

• The fminsearch function does not take constraints, but
{sigsq,lambda,-a,b} all need to be positive and MATLAB will
not do it for the programmer, so test each parameter iterate at each
call to function being minimized, resetting positivity new values.
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• Hence, with the main code declared a function
function main (6.64)

the negative log-likelihood subfunction
function f=NLLH(p) (6.65)

could read, for example, as
global x Dt
f=-LLHn(x,p);

(6.66)

where the data can be passed by a global variables declared with the
same names in both main and NLLH functions; the call to
fminsearch in main should have the form,

[p,fval]=fminsearch(@NLLH,p0); (6.67)
where @NLLN is the function handle for passing the function name as
a calling function argument and p0 is some good starting value for p,
which can come by a pure Gaussian estimate using the log-return
statistics, but lambda has to be positive as does sigsq.

• The fminsearch default options can be listed by a plain call to
optimset, i.e., without input or output arguments.
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* Reminder: Lecture 6 Homework Posted in Chalk Assignments,
due by Lecture 7 in Chalk Assignments!

* Summary of Lecture 6:

1. Review of RobustFit Results

2. Review of N-Day and K-Day Problems

3. MLE Specialized Functions

4. MLE for Variable ∆ti Linear Diffusions

5. MLE for Linear Zero-One Jump-Diffusions

6. MLE for Linear One-Fixed Jump-Diffusions

7. Numerical Optimization and General fminsearch

8. MLE for Jump-Amplitude Distributed Jump-Diffusions

9. MLE for K-Jump Limited Jump-Diffusions

10. MLE Computational Issues
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