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7. Method of Moments, Options, Calibration,
Implied Volatility, and NonParametric

Regression:
• 7.1. Method of Moments:
The method of moments estimation (MME) of parameters
~p = [pi]1×m of a given distribution FX(x; ~p) of the RV X by matching
sample moments to true moments of FX(x; ~p). If there are m
parameters, then a least m moments are ideally required,

µ
(k)
X (~p)=E[Xk] for k=1:m, (7.1)

where, for example, µ
(1)
X (~p)=µ the usual distribution mean.

Let ~X =[Xi]1×n be a sample of IID RV observations from the assumed
known distribution, then the estimated sample means are

µ̂(k)
n =

1

n

n∑
i=1

Xk
i for k=1:m, (7.2)

where the sample mean µ̂n = µ̂(1)
n and the biased sample variance is

S2
n = µ̂(2)

n − µ̂2
n.
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The estimates of the parameters p̂n '~p are determined by the moment
method equations, assuming a solution exists for m equations in m

unknowns,
µ

(i)
X (p̂n)= µ̂(i)

n for i=1:m (7.3)

◦ 7.1.1. Poisson Moment Method Example:

Suppose the population distribution is a static Poisson so that the RV

X
dist= P (Λ) with single parameter Λ = E(p)[X]. Let the

~X =[Xi]1×n be the Poisson IID (IIPD) sample, then estimated MM
Poisson parameter is

Λ̂n = Xn =
1

n

n∑
i=1

Xi, (7.4)

The estimated parameter Λ̂n is an RV that is Poisson distributed, since

Prob
[
Λ̂n=K

]
=Prob

[
n∑

i=1

Xi=nK

]
= e−nΛ (nΛ)nK

(nK)!
, (7.5)

as will be shown. Knowing the estimate distribution is needed to estimate
the error of the estimate.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture7-page3 — Floyd B. Hanson



This can shown directly by first considering the n=2 as a discrete
convolution,

Prob[X1+X2=2K] iid=
∗

e−2Λ
∞∑

k1=0

Λk1

k1!

∞∑
k2=0

Λk2

k2!
I{k1+k2=2K}

k1≤2K
= e−2Λ

2K∑
k1=0

Λk1Λ2K−k1

k1!(2K)!

= e−2Λ Λ2K

(2K)!

2K∑
k1=0

2K

k1


bin= e−2Λ Λ2K

(2K)!
(1 + 1)2K

= e−2Λ (2Λ)2K

(2K)!
,

(7.6)

so the rest for general n follows by induction though binomial
additivity.
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It is nice to be able to derive something through first principles as on the
prior page, but there is a simpler way using the moment generating
function (MGF) which has the advantage of easily decomposing up the
IID RV parts. Since for a single RV when n = 1, the exponential
transform MGF for the Poisson distribution yields

MGF(p)[Xi]=E(p)
[
etXi

]
=e−Λ

∞∑
k=0

Λketk

k!
=eΛ(et − 1), (7.7)

an exponential of an exponential. Hence of the IID sum MGF is

MGF(p)[
∑n

i=1 Xi]= E(p)
[
exp

(
t
∑n

i=1 Xi

)]loe=
iid

∏n
i=1 E(p)

[
etXi

]
=
∏n

i=1 eΛ(et − 1) loe= enΛ(et − 1),
(7.8)

which is the same form as (7.7), except with the parameter Λ replaced by
nΛ and thus proving (7.5), so E(p)[

∑n
i=1 Xi] = nΛ. Consequently,

we have that Λ̂n is unbiased, i.e.,

E(p)[Λ̂n]=
1

n
E(p)

[
n∑

i=1

Xi

]
=

1

n
nΛ=Λ. (7.9)
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Also, the estimated parameter sample variance is

Var(p)
[
Λ̂n

]
=

1

n2
Var(p)

[
n∑

i=1

Xi

]
=

1

n2
nΛ=

Λ

n
=SE2

[
Λ̂n

]
(7.10)

and the standard error is

SE
[
Λ̂n

]
=

√
Var(p)

[
Λ̂n

]
=

Λ
√

n
, (7.11)

which goes to zero as n → ∞. However, SE[Λ̂n] can be used as an
estimate of the order of the error in Λ̂n and using the estimate for the
standard error gives an actual estimate of the standard error, i.e.,

SE
[
Λ̂n

]
'

Λ̂n√
n

. (7.12)

As n → ∞, the Λ̂n can be asymptotically approximated by a normal
distribution using the central limit theorem,

Λ̂n
dist∼ N (Λ, Λ/

√
n) (7.13)

and can be approximated by the 2-sigma or 95% confidence interval rule,

Λ̂n 'Λ(1 ± 2Λ̂n/
√

n). (7.14)
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◦ 7.1.2. Normal Moment Method Example:

Now suppose we have a normal distribution N (µ, σ) and an sample of n

IID normal (IIND) observations ~X . The moment method involves two
parameters ~p = (µ, σ2) and two true moments, the first moment

µ
(1)
X (~p)=E(n)[X]=µ (7.15)

and the second moment

µ
(2)
X (~p)=E(n)[X2]=σ2 + µ2. (7.16)

As before the mean estimate is

µ̂n ≡ Xn, (7.17)

but now the variance estimate is

σ̂2
n ≡(X2)n − X

2

n. (7.18)

The mean estimate is unbiased since

E(n)[Xn]=E(n)[µ̂n]=
1

n
E(n)[Xi]=µ. (7.19)
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The variance of the mean estimate is then

Var(n)[µ̂n]= E(n)
[
(Xn−µ)2

]
=

1

n2

n∑
i=1

n∑
j=1

E(n)[(Xi−µ)(Xj −µ)]

=
1

n2

n∑
i=1

σ2 =
σ2

n
=SE2[µ̂n]

(7.20)

and the standard error of the mean estimate is

SE[µ̂n]=
σ

√
n

. (7.21)

It can also be shown that

µ̂n = Xn
dist= N (µ, σ/

√
n). (7.22)

so normally distributed for any n, not just asymptotically normal
distributed.
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For the normal distribution F
(n)
X (x; µ, σ2), the MGF for a single IIND

RV is

MGF(n)[Xi]= E(n)
[
etXi

]
=

1
√

2πσ2

∫ ∞

−∞
dx e− (x−µ)2

2σ2 +tx

= eµt+σ2t2/2,

(7.23)

so the for the sample mean,

MGF(n)[Xn]= E(n)
[
et

Pn
i=1 Xi/n

]ind=
∏n

i=1 E(n)
[
etXi/n

]
=
∏n

i=1 eµt/n+σ2(t/n)2/2 =eµt+(σ2/n)t2/2,
(7.24)

justifying the estimated mean distribution in (7.22).

Further, Rice (2007; p. 263 with cross-references) shows that the
estimated variance scaled by SE2[µ̂n] behaves as a Chi-squared
distribution with n−1 degrees of freedom, i.e.,

σ̂2
n

σ2/n

dist∼ χ2
n−1. (7.25)
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◦ 7.1.3. Gamma Moment Method Example:
The gamma distribution is a generalization of the exponential
distribution. Its density on (0, ∞) is given by

f
(g)
X (x; λ, α)=

λαxα−1

Γ(α)
e−λx, (7.26)

where α>0 and λ>0 for integrability, while its normalization depends
on the gamma function Γ(α)

Γ(α)=
∫ ∞

0

xα−1e−xdx, (7.27)

such that Γ(1)=1 and Γ(α+1)=αΓ(α)=α!. The true moments can
be deduced from the gamma function MGF, letting X be a gamma
distributed IID RV and t < λ, so from the MGF moment coefficients,

MGF (g)[X]= E(g)[etX ]= λα

Γ(α)

∫∞
0

xα−1e−(λ−t)xdx

= λα

Γ(α)(λ−t)α

∫∞
0

yα−1e−ydy= 1
(1−t/λ)α

∼ 1+ αt
λ

+ α(α + 1)t2

2λ2 =1+µ
(1)
X (~p)t+µ

(2)
X (~p)t2

2 .

(7.28)
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Reading the moments from the expansion in the last line of (7.28), we
have the true the first moment,

µ
(1)
X =E(g)[X]=

α

λ
(7.29)

and the second moment

µ
(2)
X =E(g)[X2]=

α(α + 1)

λ2 . (7.30)

Since the moment method produces moments first and the parameters can
be derived second, we need the inverse of the nonlinear relationship
between the distribution defined parameters and the moments,

λ=
µ

(1)
X

µ
(2)
X −

(
µ

(1)
X

)2 (7.31)

and

α=λµ
(1)
X =

(
µ

(1)
X

)2

µ
(2)
X −

(
µ

(1)
X

)2 . (7.32)
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Letting ~X = [Xi]1×n be a set of IID gamma distributed (IIGD)
observations, the parameter estimates are

λ̂n =
µ̂n

µ̂(2)
n −(µ̂n)2

=
µ̂n

σ̂2
n

(7.33)

and

α̂n =
µ̂2

n

σ̂2
n

. (7.34)

{Remark: Due to the complexity of estimated parameters, λ̂n and α̂n,
in relation to the estimated moments, µ̂n and µ̂(2)

n , finding the
distribution of the parameter estimates for estimating the parameter
errors is too difficult. Rice (2007, pp. 263-266) suggests bootstrapping a
large family of samples { ~Xj : j =1:M} to simulate empirical
distributions of λ̂n and α̂n, using that to estimate the errors.}
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However, the parameter distribution of the moment estimates can be
calculated using the MGF, but the product distribution needs to be
generated. Hence, for the sample mean µ̂n =Xn,

MGF(g)[Xn]= E(g)
[
et

Pn
i=1 Xi/n

]ind=
∏n

i=1 E(g)
[
etXi/n

]
=
∏n

i=1
1

(1 − t/(nλ))α =
1

(1 − t/(nλ))nα ,
(7.35)

so
µ̂n =Xn

dist∼ F
(g)
X (x; nλ, nα). (7.36)

Thus
E(g)[Xn] =

α

λ
, (7.37)

E(g)
[
X

2

n

]
=

nα(nα + 1)

(nλ)2
=

α

λ

(
α

λ
+

1

nλ

)
(7.38)

and

Var(g)
[
Xn

]
=

α

λ

(
α

λ
+

1

nλ

)
−
(

α

λ

)2

=
α

nλ2 . (7.39)
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The standard error of the estimated first moment is then,

SE
[
Xn

]
=

1

λ

√
α

n
. (7.40)

◦ 7.1.4. Consistent Parameter Estimates:

Definition of Consistency: A parameter estimate p̂n of a single
parameter p from sample size n is a consistent estimate if p̂n converges
in probability to p as n→∞,

Prob[|p̂n−p|>ε]→0 as n→∞, (7.41)
for any ε>0.
The weak law of large numbers is support for this definition. Conisistency
in probability justifies the use of the standard error of the estimate,
SE[p̂n]=σ/

√
n where σ=σ(p) is the true standard error. An

approximate form of consistency is the use of the estimated standard
error such that

SE[p̂n]' ŜE[p̂n]≡σ(p̂n)/
√

n, (7.42)

assuming continuity of σ(p) then p̂n →p implies σ(p̂n)→σ(p), in
theory.
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{MME versus MLE Remarks: The method of moments parameter
estimation (MME) is very old and predates the maximum likelihood
method of estimating parameters. Maximum likelihood method
estimation was introduced by the legendary statistician R. A. Fisher as
an improvement over the method of moments to have a higher
probability of closer estimations, as the name maximum likelihood
suggests, so MLE is said to be more efficient. The method of moments
can produce improper answers with small samples, so large samples are
important. The same can be said for a larger number of parameter,
since it may be difficult to solve the system of moment equations.}
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◦ 7.1.5. Generalized Moment Method:
The are a number of variants of the ordinary moment method and one was
introduced by Lars Peter Hansen (1982) of the University of Chicago
called the generalized moment method (GMM) which uses a general
function of the observation RV X and the parameter ~p, with expectation

~µ(~p)=EX [~g(X, ~p)], (7.43)

such that the otherwise general ~g has mean zero,
~µ(~p)=EX [~g(X, ~p)]=~0, (7.44)

in analogy to the critical point conditions of MLE.

The sample mean is the usual,

µ̂n(~p)=
1

n

n∑
i=1

~g(Xi, ~p)] (7.45)

and since by the law of large numbers µ̂n(~p)→~µ(~p) as n→∞,
leading to the parameter estimation condition,

µ̂n(p̂n)'~0. (7.46)
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The optimal objective is model on the idea of robust, weighted least
squares with the sample size dependent, positive definite weight matrix
Wn such that the optimal estimated parameter vector is given by

p̂n =argmin
~p

[
µ̂>

n(~p)Wnµ̂n(~p)
]
. (7.47)

A good, efficient choice is the inverse of the ~g-covariance matrix,

Cov
[
~g(X, ~p)~g>(X, ~p)

]
= E

[
~g(X, ~p)~g>(X, ~p)

]
' 1

n
∑n

i=1 ~g(Xi, p̂(0)
n )~g>(Xi, p̂(0)

n ).

= ~g~g>(0)

n ≡(W (0)
n )−1,

(7.48)

recalling that ~g has mean zero, where p̂(0)
n is a starting or current

parameter estimate. The parameter estimate using such a weight matrix
estmate can be computed using a robust or nonlinear regression or an
optimal search method.a

aA short description of additional conditions and other information can be found at
Wikipedia: Generalized method of moments. For code, go to MATLAB Central File Ex-
change, GMM: gmmestimation.m by Cao Zhiguang (2006). Be aware that “GMM” is also
used as an acronym for Gaussian mixture model in MATLAB and elsewhere.
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PS: Another often used advanced moment method is the efficient
moment method (EMM) which successively combines the efficiency of
the maximum likelihood estimation (MLE) and simulation moment
method (SMM). For a compact, readable account and SAS example code
see Efficient Method of Moments Estimation of a Stochastic Volatility
Model. The EMM was used in a paper often quoted in class for results
showing the importance of both jumps and stochastic volatility: T. G.
Andersen, L. Benzoni and J. Lund, “An Empirical Investigation of
Continuous-Time Equity Return Models,” J. Fin., vol. 57, 2002,
pp. 1239–1284.
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• 7.2. Vanilla, European Options:a

◦ 7.2.1. Black-Scholes European Call and Put Options:
With delta-hedgingb to eliminate the risk due to volatility terms and
arbitrage-free conditions restricting portfolio growth to the risk-free rate,
r, we are effectively dealing with the modified, underlying stock price
S(t) diffusion SDE,

dS(t)=S(t)(rdt+σdW (t)), S(0)=S0, (7.49)

where both r and the volatility σ are assumed to be constant, although
that is not necessary.

aIn part, adapted from Carmona (’04) Ch. 4.; Hull (6th Ed., ’06); D. Higham (’04); Han-
son’s Applications in Financial Engineering, Chapter 10; CBOE’s Stock Options brochure
http://www.cboe.com/LearnCenter/pdf/understanding.pdf .

bThe Greek delta, ∆ = ∂C/∂S is used to hedge away the uncertainty risk, where for
example C is the call option price and S is the stock price.
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Black and Scholes (Spring 1973) derived a solution for a European style
call option contract to buy the stock for a strike price K at a specified
contract maturity date paying the call option contract price or premium
C(S(t), t; K, T, r, σ) at current time t when underlying price S(t), all
governed by the final gain or strike payoff function

C(S(T ), T ; K, T, r, σ)=G(S(T ), K)=max[S(T )−K, 0].(7.50)

Presumably, G(S0, K)=0, i.e., S0 <K, otherwise there would be no
incentive to sell the contract to the buyer, the buyer betting that the stock
price will rise over K and if G(S(T ), K)=0 the rational buyer would
walk away from the contract since the stock could be purchased more
cheaply in the market.

Note that index optionsa are different, mainly that there is a cash
settlement replacing the opportunity to buy stock at K and thus is closer
to real betting.

aAgain, see CBOE’s Understanding Index Options brochure:
http://www.cboe.com/LearnCenter/pdf/understandingindexoptions.pdf .
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Black and Scholes’ well-known solution formula uses the solution of the
SDE (also a backward problem for a PDE) and is

C(bs)(S, t; K, T, r, σ)= SF
(n)
X (d1; 0, 1)

−e−r(T −t)KF
(n)
X (d2; 0, 1),

(7.51)

where

d1 = d1(S/K, T −t, r, σ)

≡
(
log(S/K)+(r+σ2/2)(T −t)

)
/
(
σ

√
T −t

)
;

d2 = d2(S/K, T −t, r, σ)

= d1(S/K, T −t, r, σ)−σ
√

T −t,

(7.52)

noting the natural dependence is on the time to maturity τ ≡T −t, also
called the time-to-go, and the moneynessa , the ratio
M =M(τ )≡Serτ/K, so that log(M)=log(S/K)+rτ is the
log-moneyness.

aMoneyness can also be defined as the reciprocal K/(Serτ ) when the focus is on K as
for a put option. See, for instance, Prof. R. Lee’s (2004) thorough paper on Implied Volatility.
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Note that Ser(T −t) is the future value of the current price S to maturity
from t compounded at the risk-free rate r or alternately e−r(T −t)K is
the present value of the strike price K, available at maturity T , but
discounted at the risk-free rate r back to present time ta. If M =1 then
the option is at the money (ATM), else if M >1 then it is in the money
(ITM) for a call option, else M <1 then it is out the money (OTM) for
a call option, but ITM for the put option. Note that at exercise,
M =S(T )/K, so then ITM or ATM mean K ≤S(T ). Also, ITM is
not the same as in the profit “ITP”, since that requires a net profit or
Profit=S−K−Premium>0 for the call option.

aIn general, the discount rate β is different than the interest rate r as the present value
differs from the future value. They both can depend on time t.
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Thus, for financial and numerical purposes, we may define a more
computational finance form of the call option price

C̃(bs)(M, τ ; σ)≡ C(bs)
(
e−rτ KM, T −τ ; K, T, r, σ

)
/
(
e−rτ K

)
= MF

(n)
X (d1; 0, 1)−F

(n)
X (d2; 0, 1),

(7.53)

where d1 =log(M)/σ̃+σ̃/2 and σ̃≡
√

σ2τ which is the scaled
volatility. You can verify that the scaled call price goes to the correct limit
as τ →0+.

The corresponding European put option is a contract to sell stock to the
contract maker at K at T under an asymmetric version of the payoff,

P(S(T ), T ; K, T, r, σ)= G(−S(T ),−K)=max[K−S(T ), 0],(7.54)

with solution,

P(bs)(S, t; K, T, r, σ)= −SF
(n)
X (−d1; 0, 1)

+e−r(T −t)KF
(n)
X (−d2; 0, 1).

(7.55)

Note that moneyness for the put should literally be the opposite of money
for the call, i.e. 1/M makes more sense for the put option.
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Equations (7.51) and (7.55) connect a maximum and replicated portfolio
derivation called the put-call parity,

P(bs)(S, t)+S =C(bs)(S, t)+e−r(T −t)K, (7.56)

suppressing parameter arguments.

However, as we have previously discussed, the Black-Scholes model,
despite its extensive service in quantitative finance for almost 37 years,
has many deficiencies, like unrealistic constant coefficients (though
Merton’s (also Spring 1973) justification paper generalized it to variable
coefficients and many other things), lack of fat tails subsequent poor risk
assessment, skewness, jumps, stochastic volatilities, etc.
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◦ 7.2.2. Market Calibration and Implied Volatility:

One work-around the deficiencies with Black-Scholes formula, is to find
a volatility that better fits market values of the instrument of interest,
say the European call option. Hence, given market data C(mkt)(Ki, Ti)
for a discrete number of strikes Kiand corresponding maturities Ti f or
any given call option, the financial engineer will make an estimate of the
volatility, and possibly other parameters, that is implied by option market
rather than the underlying stock market.

When the underlying stock price data is used to to estimate the underlying
volatility, then the log-return LRi ≡ log(Si+1/Si) is used, with
estimated mean

LR =
1

n

n∑
i=1

LRi. (7.57)
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The unbiased estimated volatility

σ̂(hist) =

√√√√ 1

(n−1)∆t

n∑
i=1

(LRi−LR)2 (7.58)

is called the historical volatility; note that in the difference
approximation to the asset SDE (S∆E), E[LRi]=(µ̂−σ̂2/2)∆t rather
than the risk-neutral (r−σ̂2/2)∆t.

However, the call market prices are not usually given directly, but, for
instance in the delayed quotes at the Chicago Board of Options
Exchange (CBOE)a, they are given in terms of the latest bid and ask
quotes, so usually one takes the average of the bid and the ask quotes
for C(mkt)(Ki, Ti) for each contract pair (Ki, Ti).

aCBOE Delayed Market Quotes page is found for downloadat the URL:
http://www.cboe.com/delayedquote/QuoteTableDownload.aspx.
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The option market implied estimate is the so-called Black-Scholes
implied volatility (IV), σ

(iv)
i , by solving the inverse problema, matching

the BS call price to the market call price,

C(bs)
(
Mi, Ti; σ

(iv)
i

)
=C(mkt)(Ki, Ti), (7.59)

defining σ
(iv)
i for each i=1:n, given options data {Ki, Ti, S0}, where

Mi =S0/Ki, C(bs)is given in (7.51), and for fixed r and t = 0 as the
current time.

One problem in estimating volatility or variance is that they can not be
directly observed but must be deduced from other observations like stock
or option prices. There are also many methods for estimating implied
volatility including Newton’s method, maximum likelihood, kernel
smoothing, and Monte Carlo, but for a single scalar variable like σ the
derivative-free root-finder fzero of MATLAB could be used.

aNote that vega=‘ν ‘=∂C(bs)/∂σ >0, a volatility sensitivity measure. Hence, the
inverse should exist for Black-Scholes. See D. Highham (2004), An Introduction to Financial
Option Valuation, p. 101 and 132; also for a simple justification of put-call parity.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture7-page27 — Floyd B. Hanson



However, there is not that much strike-maturity data, so pooled data is
sometimes used, e.g., short maturity, medium maturity and long maturity
options, or long-run historical data. Getting historical data has been
harder to get, e.g., for European options, in the public domain, unless
available in a company or business school.
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◦ 7.2.3. Risk-Neutral Option Pricing and Implied Volatility:
While a relatively simple solution to European call or put option pricing
problem with delta (∆(bs) ≡∂C(bs)/∂S) hedging, the multiple sources
of randomness in jump-diffusions or stochastic-volatility jump-diffusions
do not allow for delta hedging to eliminate the purely diffusive risks.
However, a risk-neutral formulation of the discounted, expected,
conditional payoff simulates the principal properties of delta hedging. In
addition, the arbitrage-free condition must be used by setting the
instantaneous mean rate to the risk-free rate,

E[dS(t)|S(t)=s]/(sdt)=r, (7.60)

e.g., µ=r for linear diffusions or µ + λν = r for linear
compound-jump-diffusions.
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Thus, for linear diffusions and more general cases, the current
risk-neutral (RN) European style call or put option prices are given by

[
C

P

](rn)(
s, t; K, T, r, ~θ

)
= e−r(T −t)

·E(rn)[G(±S(T ), ±K)|S(t)=s],

(7.61)

where again G(±S, ±K)=max[±(S−K), 0]≡ [±(S − K)]+ is
the payoff function and ~θ is the vector of other model parameters.
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◦ 7.2.4. Risk-Neutral Option Pricing Application
to Compound-Jump-Diffusion (CJD) Underlying Asset:

As a good example of a genuine risk-neutral options model, consider the
risk-neutral version of the constant-coefficient, zero-one jumps on
(t, t + ∆t] compound-Poisson, jump-diffusion (CJD) SDE asset price
model (Merton, 1976) underlying the option,

dS(rn)(t)=S(t)((r−λν)dt+σdW (t))+ν(Q)dP (t; Q)), (7.62)

where the IID ν(Q)=exp(Q)−1, ν =EQ[ν(Q)] and the required
risk-neutral property is E[dS(t)|S(t)]=rS(t)dt. Converting to the
log-return variable Y (t)=log(S(t)) using the hybrid independent
continuous and jump process stochastic chain, leads to a state
independent right-hand-side,

dY (rn)(t)=(r−σ2/2−λν)dt+σdW (t)+QdP (t; Q), (7.63)

where Q=log(1+ν(Q)) has been used, provided ν(Q)>−1.
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Integrating from current time t to final, contract exercise time T , with
τ =T −t, and exponentiating yields,

S(rn)(T )=S(t)exp

(r−σ2/2−λν)τ +σW (τ )+
P (τ)∑
j=1

Qj

. (7.64)

Since the time-to-maturity time-interval (t, T ] is not infinitesimal nor is
sort of small a the trading day in years, we have to count the number of
jumps in (t, T ] and the probable number of jumps in (t, T ] is the same as
the number of jumps in (0, T −t]=(0, τ ], so P (T )−P (t)=P (τ )
and ∫ T

t

QdP (t)=
P (τ)∑
j=1

QjI{P (τ)>0} =
P (τ)∑
j=1

Qj, (7.65)

with the no-jump convention that
∑0

j=1Qj ≡0 and I{S} is the indicator
function for set S.
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The property of both diffusion and time-homogeneous Poisson processes
that their increments depend only on the time step is called the stationary
property, then W (T )−W (t)=W (τ ) and P (T )−P (t)=P (τ ).
Next the scaled diffusion form, W (τ )=

√
τZ where Z is a mean-zero,

variance-one normal RV. For notational simplicity, the P (τ )=k

jump-sum is Sk ≡
∑k

j=1Qj of jump-amplitudes.

Substituting formula (7.64) for S(T ) into the risk-neutral formula for the
call option price with parameter vector ~p=[K, T, r, ~θ], along with
normal density, Poisson distribution and IID RV expectation, yields,

C(rn)(s, t; ~p)= e−rτ
∞∑

k=0

pk(λτ )ESk

[∫ ∞

−∞
dzf

(n)
Z (z; 0, 1)

·max
[
s e(r−σ2/2−λν)τ +σ

√
τz+Sk −K,0

]]
.

(7.66)
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Next, the payoff maximum operator will be eliminated by finding the
break even point (BEP) for the payoff by finding the zero Z0 of the first
argument

s e(r−σ2/2−λν)τ +σ
√

τZ0+Sk −K =0, (7.67)

whose solution is

Z0
alg
=−

(
log(s/K)+(r−σ2/2−λν)τ +Sk

)
/
√

σ2τ

−d2+(λντ +Sk)/
√

σ2τ

≡ −d2,k ≡−d1,k+σ
√

τ ,

(7.68)

borrowing from Black and Scholes normal argument notation, since
we are following the risk-neutral procedure for the Black-Scholes formula
modified for jumps.
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Substitution back into the current version of risk-neutral call option price,
cutting off the left tail of the integral,

C(rn)(s, t; ~p)= e−rτ
∞∑

k=0

pk(λτ )ESk

[∫ ∞

−d2,k

dzf
(n)
Z (z; 0, 1)(

s e(r−σ2/2−λν)τ +σ
√

τz+Sk −K

)]
alg
=

∞∑
k=0

pk(λτ )ESk

[
s e−(σ2/2+λν)τ+Sk

∫ ∞

−d2,k

dzf
(n)
Z (z; 0, 1)eσ

√
τz

−e−rτ K

∫ ∞

−d2,k

dzf
(n)
Z (z; 0, 1)

]
.

(7.69)
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Either using the complete the square technique or letting y=z−σ
√

τ ,
along with exp(σZ) normal integral formula, then

C(rn)(s, t; ~p)=
∞∑

k=0

pk(λτ )ESk

[
s eSk−λντF

(n)
Z (d1,k; 0, 1)

−e−rτ KF
(n)
Z (d2,k; 0, 1)

]
,

(7.70)

where we have used the identities, −d2,k ≡−d1,k+σ
√

τ and∫∞
−d

=
∫ d

−∞ for even integrable integrands. Finally, we form the
compound-jump-diffusion risk-neutral European call option price as a
compound-Poisson mixture of Black-Scholes call option prices,

C(rn)(s, t; ~p)=
∞∑

k=0

pk(λτ )

·ESk

[
C(bs)

(
seSk−λντ, t; K, t + τ, r, σ

)]
,

(7.71)

where, for example, in the case of a single uniform jump amplitude
model, ~θ=[σ, λ, a, b]>. The formula reduces to the Black-Scholes if
λ=0 and ~θ=[σ].
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Due to the complex nature of this call option price formula with Poisson
and IID RV expectations, perhaps Monte Carlo simulationsa would be
most practical, especially since a Poisson simulation of the number of
jumps would keep the Poisson sum finite and the Poisson sum and the IID
RV expectation could be combined. For instance, following Zhu and
Hanson (2005), we can replace the Poisson sum and the sum Sk in the
single uniform distribution case, with sample IID Poisson variates Pi for
i=1:n and standard RVs Ui,j for j =1:Pi, on (a,b) by the estimate

Ŝi =
Pi∑

j=1

Qi,j =
Pi∑

j=1

(a+(b−a)Ui,j)=aPi+(b−a)
Pi∑

j=1

Ui,j. (7.72)

aZhu and Hanson (2005) give elaborate Monte Carlo procedures with variance reduction
techniques for European options in a jump-diffusion model with uniformly distributed jump-
amplitudes, showing that jump-diffusion options are worth more than Black-Scholes diffusion
options, in the paper at
http://www.math.uic.edu/ hanson/pub/CDC2005/cdc05zhweb.pdf .
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Then for the Poisson sample size n, the Monte Carlo estimate of the call
option price, starting at t=0, is simply,

Ĉn =
1

n

n∑
i=1

C(bs)
(
S0e

bSi−λνT, 0; K, T, r, σ
)

≡
1

n

n∑
i=1

C
(bs)
i , (7.73)

where C
(bs)
i is IID compound Poisson variate along with Ŝi, so

Ĉn →C(rn)(S0, 0; K, T, r, σ) as n→∞ (7.74)

with probability one, with standard deviation,

σ bCn
=

1
√

n

√
Var[C(bs)

i ]'
1

√
n

√√√√ 1

n−1

n∑
i=1

(C(bs)
i −Ĉn)2, (7.75)

where in the last term the unbiased sample variance estimate was used.

There is more to the Monte Carlo application than these basic estimates,
i.e., there are variance and bias reduction techniques to improve
performance and accuracy.
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◦ 7.2.5. Nonparametric, Multivariate Kernel Regression:a

Kernel smoothers are useful for smoothly fitting data to a curve or
surface, particularly when the user wants to do some continuous
operations on the curve, like plotting and finding optima. Whereas,
splines fit smooth curves by numerical interpolation by matching values
and derivatives at data points using a low degree polynomial (cubics are
often used, fitting up to second derivatives or more) interpolation. The
kernel smoothers are related to the kernel density estimators, except that
kernel smoothing regression gives an estimation of an expectation the
response scalar variable, the y, relative to the explanatory m-vector, the
~x.

aThis and other sections comes from Carmona (’04) Chapter 4, but the kernel smoothing
part is not recommended for students.
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For independent or explanatory vector, the distribution is represented
by a normalized kernel, K~X , with common scaled bandwidth bx, the
estimated smooth function for a sample of n independent observations,
{ ~Xi, Yi|i=1:n}, has the form

y
dist
' φ(~x; bx)=

n∑
i=1

YiK~X

(
~x− ~Xi

bx

)/
n∑

j=1

K~X

(
~x− ~Xj

bx

)
, (7.76)

where the kernel K~X(~ξ ) is some model proper (i.e., integrates to one on
the domain) density like normal, uniform or triangular and is used with a
standardized argument ~ξ centered about some data point ~xi and
normalized with the scale of the bandwidth bx for better computational
properties. Standardized variables reduces the effects of floating point
truncation errors. The normal kernel is often used because of supporting
theory. Also, due to centered arguments, usually the kernel is assumed to
symmetric, i.e., K~X(−~ξ )=K~X(~ξ ).
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Actually, the smoothed function φ(~x; bx) is basically a simulation of
the conditional expectation of a dependent or response variable y

conditioned on the independent or explanatory variable ~x, since

E[Y | ~X =~x]=
∫ +∞

−∞
yfY | ~X(y| ~X =~x)dy

=
∫ +∞

−∞
yf ~X,Y (~x, y)dy/f ~X(~x),

(7.77)

by a Bayes’ rule for densities,

fY | ~X(y| ~X =~x)=
f ~X,Y(~x, y)

f ~X(~x)
, (7.78)

following from the definition of conditional probability.a

aHanson (2007), Preliminaries Online Appendix B, p. B26.
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For motivation, consider the univariate kernel estimation of fX(x),

fX(x)' f̂X(x)=
1

nbx

n∑
i=1

KX

(
x − Xi

bx

)
. (7.79)

Assuming that the joint kernel is separable, i.e.,

KX,Y (ξ, η)=KX(ξ)·KY (η), (7.80)

and that the joint density has the estimate,

fX,Y (x, y)' f̂X,Y (x, y)=
1

nbxby

n∑
i=1

KX,Y

(
x−Xi

bx

,
y−Yi

by

)
, (7.81)

then

f̂X,Y (x, y)=
1

nbxby

n∑
i=1

KX

(
x−Xi

bx

)
KY

(
y−Yi

by

)
. (7.82)
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Also, by the conditional expectations,

fX(x)E[Y |X =x]=
∫ +∞

−∞
yfX,Y (x, y)dy

'
1

nbxby

n∑
i=1

KX

(
x−Xi

bx

)
·
∫ +∞

−∞
yKY

(
y−Yi

by

)
dy

=
1

nbx

n∑
i=1

YiKX

(
x−Xi

bx

)
,

(7.83)

since, in the y-integral, letting η=(y−Y i)/by ,∫ +∞

−∞
yKY

(
y−Yi

by

)
dy = by

(
Yi+

∫ +∞

−∞
ηKY (η)dy

)
=byYi, (7.84)

by the fact that KY is also a symmetric and proper density like KX .
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Finally by reassembling our formulas, we have the desired motivational
result,

E[Y |X =x]'
n∑

i=1

YiKX

(
x−Xi

bx

)/ n∑
j=1

KX

(
x−Xj

bx

)
, (7.85)

the denominator sum coming from using another approximation
fX(x) ' f̂X(x) consistent with the joint density estimated
approximation.

The kernel smoothing regression formula (7.85) has been implemented
using a univariate Gaussian kernel by Yi Cao as ksr.m and posted on the
MATLAB Central File Exchange at

Univariate Kernel Regression MATLAB code.
Cao refers to kernel estmators such as (7.85) as Nadaraya-Watson
kernel regressions.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture7-page44 — Floyd B. Hanson

http://www.mathworks.com/matlabcentral/fileexchange/19195-kernel-smoothing-regression


The multivariate kernel smoothing case is more complicated, or rather
tedious, due to dimensional complexity, even if the kernel is separable
in vector variable ~x=[xj]1×m with corresponding observations
X =[Xi,j]n×m =[ ~Xi]n×1, i.e., in the separable case,

K ~X

(
(~x− ~Xi)./~bx

)
=

m∏
k=1

KXk

(
xk−Xi,k

bxk

)
. (7.86)

for i=1:n vector observations, where the vector bandwidth scaling is
~bx =[bxj ]1×m, and ./ denotes the element by element division of
MATLAB. Substituting (7.86) into (7.85) in place of the univariate kernel
gives the needed objective.

E[Y | ~X =~x]'
n∑

i=1

YiK ~X

(
(~x− ~Xi)./~bx

)/ n∑
j=1

K ~X

(
(~x− ~Xj)./~bx

)
,(7.87)

Cao also has implemented a multivariate kernel regression code, again the
kernel is Gaussian kernel, and is called ksrmv.m at

Multivariate Kernel Regression MATLAB code.
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◦ 7.2.6. Kernel Regression for Implied Volatility (IV) Computations:

In the Black-Scholes implied volatility (BSIV) inverse problem, here
starting at t = 0, given options data {Ki, Ti, S0}, the match is

C
(bs)
0

(
Mi, Ti; σ

(iv)
i

)
=C

(mkt)
0 (Mi, Ti), (7.88)

defining σ
(iv)
i for each i=1:n, where the moneyness variable for t=0

Mi ≡S0/Ki
a for k=1:n helps to reduce the problem dimensionality.

Similarly, the C
(bs)
0 and C

(mkt)
0 are defined with t = 0 to suppress the

current time, so τi = Ti from (7.59). We also assume here the risk-free
rate ri is taken from the current U.S. Federal Reserve Target Rate, so is
fixed in this computation.

aRecall, sometimes the reciprocal K/S0 is used for moneyness, a more suitable form for
put options.
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One can solve try to solve the inverse problem (7.88) directly by a
root-finding method like fzero.m or several of the variations of
Newton’s method, obtaining the estimate σ̂

(bsiv)
i (Mi, Ti).

Then the kernal smoothing using the σ̂
(bsiv)
i (Mi, Ti) data gives us the

smoothed BSIV estimate

σ̂
(bsiv)
ks (M, T )=

n∑
i=1

σ̂
(bsiv)
i (Mi, Ti)KM

(
M −Mi

bM

)
KT

(
T −Ti

bT

)
/

n∑
j=1

KM

(
M −Mj

bM

)
KT

(
T −Tj

bT

)
,

(7.89)

using the usual kernel smoothing procedure (7.87), designated by the ks

in σ̂
(bsiv)
ks (M, T ). This estimate should be suitable for plotting an

estimated BSIV volatility surface with a 2D-grid for (M, T ), and this
can also be used for the CJD model replacing the BS model. Gaussian
kernels are acceptable for both M and T , so the kernel can be of the form
KX(x)=normpdf(x, 0; 1) in MATLAB notation.
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A second approach tries to handle data error robustly by combining
Nadaraya-Watson smoothing with a least squares, approach. A recent
least squares kernel smoothing estimator is by Fengler et al. (2003)a

seemed to be more appropriate for (7.88) IV inverse problem and efficient
using a robust weighting W (Mi) depending on the moneyness and
regression on a weighted least squares with respect to the strike price Ki

and time to maturity Ti. That is, the BSIV least squares estimate.

σ̂
(bsiv)
ls (M, T )= argmin

σ

[
n∑

i=1

(
C

(mkt)
i −C

(bs)
i (σ)

)2

W (Mi)

·KM

(
M −Mi

bM

)
KT

(
T −Ti

bT

)]
,

(7.90)

where C
(mkt)
i =C(mkt)(Ki, Ti), C

(bs)
i (σ)=C

(bs)
0 (Mi, Ti; σ),

Mi =S0/Ki and M =S0/K. This can also be used for a volatility
surface with 2D-grid for either BS model or CJD model.

aM.R. Fengler and Q. Wang, Fitting the Smile Revisited: A Least Squares Kernel Estima-
tor for the Implied Volatility Surface, Least Squares Kernel Estimator paper.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture7-page48 — Floyd B. Hanson

http://www.econstor.eu/bitstream/10419/22240/1/dpsfb200325.pdf


The semi-bandwidth terms, bM and bT , should be reasonable estimates
of the variability of M and T , respectively. A convenient selection of the
bandwidth scaling is the bandwidth of the data, i.e.,

bX =std( ~X, 0; 1) (7.91)

where ~X =[Xi]n×1, such that Xi is either {Mi or M̃i =1/Mi}, or
Ti. An alternate optimal formulation is that of Bowman and Azzalini
(1997)a using median values, so that
bX =median(abs( ~X−median( ~X)))/0.6745∗(4/3/n)0.2. (7.92)

aA.W. Bowman, A. Azzalini (1997), Applied Smoothing Techniques for Data Analysis:
the Kernel Approach With S-Plus Illustrations, Oxford University Press, Oxford, UK. See
also Y. Cao (2008), ksr.m, ksrlin.m or any other of Cao’s series on kernel smoothing
regression in MATLAB Central for a code applications of Bowman & Azzalini’s bandwidth
scaling or Nadaraya-Watson’s least squares smoothing.
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A convenient weighting function, suggested by use of robustfit.m is
the ’fair’ weighting function mentioned on (6.5; L6p3), i.e.,

W (M)=1/(1+abs(M)). (7.93)
The moneyness weights should give less weight to the less traded ITM
options and the Fengler et al. (2003) suggest using

W (M̃)=atan(±β(1−M̃))/π+0.5, (7.94)
where they use the reciprocal moneyness M̃ = 1./M here and in the
kernel, with speed control β ' 9 and where the (±) is the usual sign for
calls (+) and puts (−).

One of my Singapore FINM 331 Winter 2009 students, Rudy Sitter, put
his volatility surface code for Black-Scholes implied volatility on
MATLAB Central as VolSsurface.m from one of his class projects.
BSIV Volatility Surface Code LINKa.

a In fact, much of the updates to this lecture comes from the feedback of the Winter 2009
students in Singapore, in particular, Stephen Huang, and other campuses. There seem to be a
healthy intersection between this course and Professor R. Lee’s numerical methods class.
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◦ 7.2.7. CBOE Market Quotes:

The market European call (or put) option price can be obtained from the
CBOE Delayed Market Quotes, Quote Table Download pagea using an
appropriate market symbolb. The first two items listed in the first column
of the quote table will be the 2- digit year and the exercise month
followed by the strike price.

ahttp://www.cboe.com/delayedquote/QuoteTableDownload.aspx (See description on
how change comma-delimited format to Excel, if wanted.

bE.G., for S&P 500 Index option SPX (Caution: some companies also use that symbol and
you have to avoid getting the index itself, rather than the option.) the product specification is
at http://www.cboe.com/products/indexopts/spx spec.aspx.
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The expiration datea, in case of the SPX option is the Saturday after
the third Friday of the month (e.g., if 09 Febb is the expiration month then
21 Feb. is the expiration date.). Prices are listed in CBOE points and
come with a current multiplier of $100, so for example 200.00 points
is $20,000.00. SPX is a European style option as is XEO is an option
on the S&P100 Index, while OEX options on that index are American,
early exercise, style. Index options are different from stock options in
many ways. Mileage, i.e., specifications will vary for other options.

aSee Hull (2006, 6th Edition) for very practical description the CBOE quote table of hard
to find information, pp. 187 & 316-317 (recommended).

b A fragment of the top left corner of the SPX quote table looks like

SPX (S&P 500 INDEX) 826.84 -8.35
Feb 15 2009 @ 13:45 ET
Calls LastSale Net Bid Ask
09 Feb 200.00 (SPV BD-E) 635.10 0.0 619.50 622.40

so a market call estimate would C(mkt)(20000, 4/252), counting 4 trading days due
to the market Monday Holiday. Note for the SPX, there are no weekly options (ticker:
JX[A,B,D,E]) and weeklys are different from monthlys and long-term versions.
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SPX (S&P 500 INDEX) 826.84 -8.35

Feb 15 2009 @ 13:45 ET

Calls Last Sale Net Bid Ask Vol Open Int

09 Feb 200.00 (SPV BD-E) 635.10 0.0 619.50 622.40 0 1

09 Feb 300.00 (SPV BT-E) 0.0 0.0 519.60 522.30 0 0

09 Feb 325.00 (SPV BE-E) 0.0 0.0 494.50 497.40 0 0

09 Feb 350.00 (SPV BJ-E) 0.0 0.0 469.60 472.40 0 0

09 Feb 375.00 (SPV BO-E) 0.0 0.0 444.60 447.40 0 0

09 Feb 400.00 (SZU BT-E) 421.05 0.0 419.60 422.40 0 70

09 Feb 425.00 (SZU BE-E) 403.45 0.0 394.60 397.40 0 98

09 Feb 450.00 (SZU BJ-E) 377.10 0.0 369.60 372.40 0 100

09 Feb 475.00 (SZU BO-E) 0.0 0.0 344.60 347.40 0 0

09 Feb 490.00 (SZU BR-E) 0.0 0.0 329.50 332.20 0 0

09 Feb 500.00 (SYU BT-E) 326.00 0.0 319.60 322.40 0 2875

09 Feb 525.00 (SYU BE-E) 330.30 0.0 294.60 297.40 0 98

09 Feb 550.00 (SYU BJ-E) 265.00 0.0 269.60 272.40 0 130

09 Feb 560.00 (SYU BL-E) 269.00 0.0 259.60 262.40 0 50

09 Feb 575.00 (SYU BP-E) 356.00 0.0 244.60 247.50 0 75

09 Feb 580.00 (SYU BY-E) 0.0 0.0 239.60 242.50 0 0

09 Feb 590.00 (SYU BR-E) 0.0 0.0 229.60 232.50 0 0

09 Feb 600.00 (SYG BT-E) 231.05 0.0 219.60 222.50 0 1959

09 Feb 610.00 (SYG BB-E) 221.15 0.0 209.60 212.50 0 2

09 Feb 620.00 (SYG BD-E) 0.0 0.0 199.60 202.50 0 0

09 Feb 625.00 (SYG BE-E) 202.90 0.0 194.60 197.60 0 53

09 Feb 630.00 (SYG BF-E) 0.0 0.0 189.70 192.60 0 0

09 Feb 635.00 (SYG BG-E) 0.0 0.0 184.70 187.60 0 0

09 Feb 640.00 (SYG BH-E) 0.0 0.0 179.70 182.60 0 0

09 Feb 645.00 (SYG BI-E) 0.0 0.0 174.70 177.60 0 0

09 Feb 650.00 (SYG BJ-E) 182.50 +9.30 169.70 172.70 5 146

09 Feb 655.00 (SYG BK-E) 0.0 0.0 164.70 167.70 0 0

09 Feb 660.00 (SYG BL-E) 167.00 +12.50 159.80 162.60 3 13

09 Feb 665.00 (SYG BM-E) 165.45 0.0 154.80 157.70 0 20

09 Feb 670.00 (SYG BN-E) 0.0 0.0 149.80 152.80 0 0

09 Feb 675.00 (SYG BO-E) 154.60 0.0 144.80 147.70 0 95

09 Feb 680.00 (SYG BP-E) 0.0 0.0 140.00 142.80 0 0

09 Feb 685.00 (SYG BQ-E) 0.0 0.0 135.00 137.80 0 0

Figure 7.1: CBOE Quote Table for S&P 500 Index Options with only call
option columns (put columns supressed) from page 1 of Delayed Quote
Download page from February 15, 2009.
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09 Feb 1050.00 (SPQ BJ-E) 0.0 -0.05 0.0 0.05 2 20430

09 Feb 1055.00 (SPQ BK-E) 0.10 0.0 0.0 0.10 0 1293

09 Feb 1060.00 (SPQ BL-E) 0.05 0.0 0.0 0.10 1 827

09 Feb 1065.00 (SPQ BM-E) 0.10 0.0 0.0 0.10 0 257

09 Feb 1070.00 (SPQ BN-E) 0.05 -0.05 0.0 0.10 1 2488

09 Feb 1075.00 (SPQ BO-E) 0.05 0.0 0.0 0.05 0 6145

09 Feb 1080.00 (SPQ BP-E) 0.10 0.0 0.0 0.05 0 1405

09 Feb 1085.00 (SPQ BQ-E) 0.05 0.0 0.0 0.10 0 513

09 Feb 1090.00 (SPQ BR-E) 0.05 0.0 0.0 0.05 0 347

09 Feb 1095.00 (SPQ BS-E) 0.05 0.0 0.0 0.05 0 185

09 Feb 1100.00 (SPT BT-E) 0.05 0.0 0.0 0.05 0 19166

09 Feb 1105.00 (SPT BA-E) 0.05 0.0 0.0 0.05 0 50

09 Feb 1110.00 (SPT BB-E) 0.05 0.0 0.0 0.05 0 337

09 Feb 1115.00 (SPT BC-E) 0.05 0.0 0.0 0.05 0 20

09 Feb 1120.00 (SPT BD-E) 0.05 0.0 0.0 0.05 0 2013

09 Feb 1125.00 (SPT BE-E) 0.05 0.0 0.0 0.05 0 8318

09 Feb 1130.00 (SPT BF-E) 0.05 0.0 0.0 0.05 0 3050

09 Feb 1140.00 (SPT BH-E) 0.05 0.0 0.0 0.05 0 1396

09 Feb 1150.00 (SPT BJ-E) 0.05 0.0 0.0 0.05 0 19733

09 Feb 1160.00 (SPT BL-E) 0.05 0.0 0.0 0.05 0 48

09 Feb 1175.00 (SPT BO-E) 0.05 0.0 0.0 0.05 0 1729

09 Feb 1180.00 (SPT BP-E) 0.25 0.0 0.0 0.05 0 43

09 Feb 1200.00 (SZP BT-E) 0.05 0.0 0.0 0.05 0 482

09 Feb 1225.00 (SZP BE-E) 0.05 0.0 0.0 0.05 0 939

09 Feb 1250.00 (SZP BJ-E) 0.50 0.0 0.0 0.05 0 21

09 Feb 1275.00 (SZP BO-E) 1.20 0.0 0.0 0.05 0 30

09 Feb 1300.00 (SXY BT-E) 0.20 0.0 0.0 0.05 0 18003

09 Feb 1325.00 (SXY BE-E) 0.65 0.0 0.0 0.05 0 504

09 Feb 1350.00 (SXY BJ-E) 0.0 0.0 0.0 0.05 0 0

09 Feb 1375.00 (SXY BO-E) 0.0 0.0 0.0 0.05 0 0

09 Feb 1400.00 (SXZ BT-E) 0.40 0.0 0.0 0.05 0 25

09 Feb 1450.00 (SXZ BJ-E) 0.0 0.0 0.0 0.05 0 0

09 Feb 1500.00 (SXM BT-E) 0.05 0.0 0.0 0.05 0 2802

09 Mar 200.00 (SPV CD-E) 707.60 0.0 618.00 620.80 0 360

09 Mar 300.00 (SPV CT-E) 0.0 0.0 518.10 520.90 0 0

09 Mar 325.00 (SPV CE-E) 0.0 0.0 493.10 495.90 0 0

Figure 7.2: CBOE Quote Table for S&P 500 Index Options with only
call option columns from page 4 of Delayed Quote Download page from
February 15, 2009.
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09 Mar 1450.00 (SLQ CJ-E) 1.60 0.0 0.0 1.00 0 253

09 Mar 1500.00 (SQP CT-E) 1.25 0.0 0.0 1.00 0 1

09 Mar 1550.00 (SQP CJ-E) 0.0 0.0 0.0 1.00 0 0

09 Apr 200.00 (SPV DD-E) 0.0 0.0 615.80 620.30 0 0

09 Apr 300.00 (SPV DT-E) 0.0 0.0 516.10 520.60 0 0

09 Apr 350.00 (SPV DJ-E) 0.0 0.0 466.30 470.80 0 0

09 Apr 375.00 (SPV DO-E) 0.0 0.0 441.50 446.00 0 0

09 Apr 400.00 (SZU DT-E) 0.0 0.0 416.70 421.20 0 0

09 Apr 425.00 (SZU DE-E) 0.0 0.0 392.10 396.60 0 0

09 Apr 450.00 (SZU DJ-E) 0.0 0.0 367.30 371.80 0 0

09 Apr 480.00 (SZU DP-E) 0.0 0.0 337.90 342.40 0 0

09 Apr 490.00 (SZU DR-E) 0.0 0.0 328.10 332.60 0 0

09 Apr 500.00 (SYU DT-E) 334.15 0.0 318.30 322.80 0 7

09 Apr 510.00 (SYU DB-E) 0.0 0.0 308.60 313.10 0 0

09 Apr 515.00 (SYU DU-E) 0.0 0.0 303.70 308.20 0 0

09 Apr 520.00 (SYU DD-E) 0.0 0.0 298.90 303.40 0 0

09 Apr 525.00 (SYU DE-E) 0.0 0.0 294.10 298.60 0 0

09 Apr 530.00 (SYU DF-E) 0.0 0.0 289.20 293.70 0 0

09 Apr 540.00 (SYU DH-E) 0.0 0.0 279.60 284.10 0 0

09 Apr 550.00 (SYU DJ-E) 0.0 0.0 270.00 274.50 0 0

09 Apr 560.00 (SYU DL-E) 0.0 0.0 260.40 264.90 0 0

09 Apr 570.00 (SYU DN-E) 0.0 0.0 250.90 255.40 0 0

09 Apr 575.00 (SYU DP-E) 0.0 0.0 246.20 250.70 0 0

09 Apr 580.00 (SYU DY-E) 0.0 0.0 241.50 245.90 0 0

09 Apr 585.00 (SYU DQ-E) 0.0 0.0 236.80 241.20 0 0

09 Apr 590.00 (SYU DR-E) 0.0 0.0 232.10 236.50 0 0

09 Apr 600.00 (SYG DT-E) 0.0 0.0 222.70 227.10 0 0

09 Apr 610.00 (SYG DB-E) 0.0 0.0 213.40 217.80 0 0

09 Apr 620.00 (SYG DD-E) 0.0 0.0 204.20 208.60 0 0

09 Apr 625.00 (SYG DE-E) 0.0 0.0 199.60 204.00 0 0

09 Apr 630.00 (SYG DF-E) 0.0 0.0 195.00 199.40 0 0

09 Apr 640.00 (SYG DH-E) 0.0 0.0 186.00 190.40 0 0

09 Apr 650.00 (SYG DJ-E) 264.50 0.0 177.00 181.40 0 50

09 Apr 660.00 (SYG DL-E) 0.0 0.0 168.10 172.50 0 0

09 Apr 670.00 (SYG DN-E) 0.0 0.0 159.30 163.70 0 0

09 Apr 675.00 (SYG DO-E) 242.00 0.0 155.00 159.40 0 50

Figure 7.3: CBOE Quote Table for S&P 500 Index Options with only
call option columns from page 10 of Delayed Quote Download page from
February 15, 2009.
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10 Dec 2500.00 (SYZ LU-E) 0.05 0.0 0.05 0.95 0 9617

11 Dec 250.00 (SZJ LE-E) 543.70 0.0 544.00 549.80 0 13

11 Dec 280.00 (SZJ LP-E) 519.00 0.0 519.20 524.80 0 102

11 Dec 300.00 (SZJ LF-E) 497.80 0.0 503.50 509.00 0 82

11 Dec 350.00 (SZJ LG-E) 0.0 0.0 463.80 469.70 0 0

11 Dec 400.00 (SZJ LB-E) 423.40 0.0 426.20 432.00 0 32

11 Dec 450.00 (SZJ LI-E) 388.80 0.0 390.60 395.90 0 5

11 Dec 500.00 (SZJ LC-E) 360.00 0.0 355.90 361.50 0 3

11 Dec 550.00 (SZJ LK-E) 331.60 0.0 323.20 328.70 0 5

11 Dec 600.00 (SZJ LR-E) 352.50 0.0 291.90 297.90 0 5

11 Dec 650.00 (SZJ LM-E) 324.50 0.0 263.10 268.80 0 5

11 Dec 700.00 (SZJ LA-E) 245.00 0.0 234.90 240.90 0 50

11 Dec 800.00 (SZJ LL-E) 197.50 0.0 185.00 191.00 0 865

11 Dec 850.00 (SZJ LJ-E) 172.55 -2.45 162.20 168.00 3 4210

11 Dec 900.00 (SZJ LT-E) 148.00 +8.50 141.40 147.20 10 2647

11 Dec 950.00 (SZJ LS-E) 128.00 0.0 122.30 128.20 0 456

11 Dec 1000.00 (SZT LR-E) 131.35 0.0 105.00 111.00 0 353

11 Dec 1100.00 (SZT LT-E) 81.00 -7.00 76.00 81.90 300 1088

11 Dec 1200.00 (SZT LU-E) 56.60 0.0 53.40 59.10 0 1970

11 Dec 1300.00 (SZT LW-E) 40.00 0.0 36.20 41.90 0 811

11 Dec 1400.00 (SZT LA-E) 32.00 0.0 23.60 29.30 0 95

11 Dec 1500.00 (SZV LT-E) 20.70 0.0 15.40 19.60 0 1151

11 Dec 1600.00 (SZV LO-E) 15.00 0.0 9.90 12.90 0 5750

11 Dec 1700.00 (SZV LA-E) 17.70 0.0 5.70 8.70 0 25

11 Dec 1800.00 (SZV LD-E) 0.0 0.0 3.00 5.80 0 0

11 Dec 1900.00 (SZV LI-E) 0.0 0.0 1.40 4.00 0 0

11 Dec 2000.00 (SZV LE-E) 2.50 0.0 0.55 2.60 0 4260

Figure 7.4: CBOE Quote Table for S&P 500 Index Options with only
call option columns from page 23 of Delayed Quote Download page from
February 15, 2009 (Long term LEAP options, up to 3 years).
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◦ 7.2.8. Implied Volatility Algorithm with Kernel Regression and
Numerical Inversion:

Returning to the implied volatility computations, here is our
pseudo-algorithm:

1. Select an option to study and download the quote table from the
CBOE, or other exchange that allow public domain downloads, from
the delayed quote page.

2. Select a few exercise times Ti, some in weeks and others in months
(do not forget to convert to years, since the FRB risk-free rates are in
years and that dominates the units. Also, short exercise times are
more likely to produce implied volatility smiles (like a minimum
curve), while long times produce smirks (like a maximum curve). If
you have a volatility surface in mind and you should, then you will
need more than a few exercise times.
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3. Next select a number of strike values Ki, enough data to produce a
respectable implied volatility curve of the σi (do not forget to
account for quote table scaling) versus moneyness Mi =S0/Ki,
where S0 is the current price of the underlying asset which should be
on the top of your quote table (CBOE rules).

4. Compute the model call (or put) option price data using a grid of
volatility values, collected in a single index for simplicity, σi for
i=1:n that produce a realistic range of option prices
Ci ≡ C(Ki, Ti; σi) with your set of contract parameters (Ki, Ti)
or equivalently (Mi, Ti) given S0 using the Black-Scholes model
(7.53) or (7.51). Else, using the Black-Scholes model as a test case,
the compound-jump-diffusion (CJD) model, replacing the match
difference (C(mkt)

i −C
(bs)
i (σ)) by (C(mkt)

i −C
(cjd)
i (σ)), where

C
(cjd)
i (σ) = Ĉn in (7.73), using a full Monte Carlo simulationa,

or the simpler partial Monte Carlo with simulated jump-part only.
aSome estimates of jump-parameters, such as an maximum likelihood estimates (MLE)

on the CJD zero-one jump daily log-return model would be needed.
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5. Now form the function forming the estimated market option price
curve for each value of the moneyness Mi with fixed Ti and other
parameters using the kernel smoothing technique, using either
regular kernel smoothing regression estimation as with
σ̂

(∗iv)
ks (M, T ) (7.89) with ∗=bs or cjd, or the more robust least

squares kernel smoothing regression estimation with
σ̂

(∗iv)
ls (M, T ) (7.90). Gaussian kernel and one of several bandwidth

formulas can be used, where Xi = Mi or Ti and Yi = σ̂
(∗iv)
i

or (C(mkt)
i −C

(bs)
i (σ))2 or (C(mkt)

i −C
(cjd)
i (σ))2, with other

parameters suppressed. However, in particular, the user needs to keep
track of the contract set (Mi, Ti) each i-kernel smoothing
operation.a

a See the MATLAB public domain kernel smoothing regression (KSR) code ksr, po-
tentially a vector-argument kernel so could use ~xi = [Mi, Ti]

′ with output response Yi,
described later. Also, other regression methods such as maximum likelihood could be used
or other smoothing methods such as spline interpolation.
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6. Then, for the implied volatility step is basically a nonlinear
zero-finding problem: find an σ∗ such that g(σ∗, ·) = C

(mkt)
i , for

each fixed i, where
C

(mkt)
i ≡ C(mkt)(Ki, Ti) or C(mkt)(Mi, Ti), which in

principle could determine a volatility surface. There are many basic
methods that could be used here, such as the classic univariate zero
finder fzero for scalar function of a scalar variable that is in
MATLAB or Newton’s methods or any of its quasi-variants.

7. When the roots for each i data pair for i=1:n are assembled, then
implied volatility curves versus moneyness and parameterized by
exercise time can be plotted. Also, the implied or local volatility
surface should be plotted against both moneyness and exercise or
maturity time is three-dimensional graphs with surf or mesh

using a 2D-grid in (M, T ).
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◦ 7.2.9. Kernel Smoothing Regression (KSR):a

1. Syntax: function r=ksr(x,y,b,n),
computes the Gaussian kernel regression of y versus x and outputs
the structure r. Part of a KSR-series with ksrlin, ksrmv . . . .

2. Input: The x is the explanatory data n-vector, y is the response data
n-vector, b or h is a specified bandwidth of the kernel (if the user
wants ksr to compute an optimal bandwidth then use r=ksr(x,y)
form, and n is specified data length but should not be needed.

3. Output: The r is a structure, such that r.h is the computed
bandwidth b or h and r.n is the number of samples and
r.f(r.x)=y(x)+e is the form of the regression computed, all
when the short form is used. The regression is plotted for the forms
r=ksr(x,y) and r=ksr(x,y,b).

See the MATLAB Central Exchange for more documentation and code.
aKernel Smoothing Regression by Yi Cao, 2008,

http://www.mathworks.com/matlabcentral/fileexchange/19195.
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◦ 7.2.10. Univariate Root or Zero Finder (fzero):
1. Syntax:

[x,fval,exitflag,output]=fzero(@f,x0,options);

solves the zero or root problem for a scalar valued function f of a
single scalar argument x, for an x∗ such that f(x∗)=0 given a start
x0 and objective function f appearing as the first argument as the
pointer or handle @f usually pointing to a subfunction within the
main function m-file.

2. Additional parameter can be passed to the (sub-)function f using a
global statement in called and calling functions, as with
fminsearch of Lecture 5, in fact, the syntax is much like that of
fminsearch, except of the multivariate properties.

3. The output arguments have essentially the same descriptions as those
in fminsearch and all but x are optional.

See D. Higham (2004) Chapters 14 and 20 for other methods for implied
volatility, including Monte Carlo. For instance, h(x)=g(x)−C

(mkt)
i and

x0=σi.
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Figure 7.5: Black-Scholes implied volatility by SPX European call options of
5 different maturities, using a maximum likelihood to minimize the mean square
error (MSE) between market observations and BS predictions. Option prices were
quoted on April 10, 2006 (G. Yan, PhD Thesis, 2006).
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* Reminder: Lecture 7 Homework/Project Posted in Chalk
Assignments, due in PDF by Lecture 9 in Chalk Assignments!

* Summary of Lecture 7:

1. Method of Moments
2. Vanilla, European Options
3. Market Calibration and Implied Volatility
4. Risk-Neutral Pricing and Implied Volatility
5. Compound-Jump-Diffusions and Option Pricing
6. Nonparametric, Multivariate Kernel Regression
7. Kernel Regression for Implied Volatility (IV) Computations
8. CBOE Market Quotes
9. Implied Volatility (pseudo) Algorithm

10. Kernel Smoothing Regression in MATLAB
11. Hybrid Root Finder fzero
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