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8. Bayesian Distribution and Parameter
Estimation, and Simulation, Methods:

• 8.1. Bayesian Inference Introduction:a

The Bayesian approach is by probabilistic inference through exploring the
relationships between joint, conditional and marginal distributions,
different from previous approaches focused on the distribution or density
and called the frequentist approach. For the two random variable case,
X and Y , the approach involves various forms of the definition of the
conditional probability, i.e.,

fY |X(y|x)=
fX,Y (x, y)

fX(x)
, (8.1)

and many generalizationsb of this, often called Bayesian formulas.
aSee Rice (2007), pp. 94-95 & 285-312.
bAnother form follows from a pair of multiplicative decompositions of the joint density,

i.e., fY |X(y|x)fX(x)=fX,Y (x, y)=fX|Y (x|y)fY (y), then

fY |X(y|x)=
fX|Y (x|y)fY (y)

fX(x)
, (8.2)

Bayes theorem for the Bayesian posterior formula used later.
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◦ 8.1.1. Simple Bayesian Example:

Starting with a motivational example, suppose the market is in near
equilibrium, such that the probability of an up or down move is 1/2 either
way. Let the asset price be Si and the observed IID daily changes
∆Si =Si+1−Si for i=1:n, such that the up-count is

X =
n∑

i=1

I{∆Si>0}. (8.3)

Let Θ be the probability of an up or positive change, ∆Si >0.

The Bayesian prior distribution, in absence of other knowledge, is an
educated guess about a problem parameter, e.g, suppose that the
distribution is uniform on [0, 1] and the density is

fΘ(θ)'f
(prior)
Θ (θ)=1, θ∈ [0, 1]. (8.4)

Observation of the changes Xi can alter our knowledge of Θ yielding a
Bayesian posterior distribution, f

(post)
Θ|X (θ|x).
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The path to the posterior distribution involves several steps of Bayesian
analysis. First, the up-count X with given probability Θ must have a
binomial distribution for n trials and X successes (ups)

fX|Θ(x|θ)=

n

x

θx
(
1−θn−x

)
, for x = 0:n. (8.5)

Next, the continuous Θ and discrete count X have a joint distribution
according the Bayesian chain rule inverting the conditional definition
(8.1) and approximated with the prior density,

fΘ,X(θ, x)'fX|Θ(x|θ)f (prior)
Θ (θ)=

n

x

θx
(
1−θn−x

)
×1, (8.6)

for θ∈ [0, 1] and for x=0:n. Then, the marginal X-density with
integration is

fX(x)=
∫ 1

0

fΘ,X(θ, x)dθ'

n

x

∫ 1

0

θx
(
1−θn−x

)
dθ. (8.7)
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A quick way to integrate in (8.7), is to note that as a function of θ is
essentially a beta density on [0, 1],

f
(β)
U (u; a, b)=

Γ(a + b)

Γ(a)Γ(b)
ua−1(1−ub−1)

= (a + b − 1)!
(a − 1)!(b − 1)!u

a−1(1−ub−1),
(8.8)

by the gamma and factorial function properties on L7p10. Comparing
powers of the variables, setting u=θ, a−1=x and b−1=n−x, so
using the fact that f

(β)
U (u; a, b) is a proper density and the factorial form

of the binomial coefficient,

fX(x)'
(n)!

x!(n − x)!

x!(n − x)!

(n + 1)!
=

1

n + 1
, for x = 0:n. (8.9)

So, a uniform prior distribution leads to the discrete form of a uniform
distribution.
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Finally, the Bayesian paradigm leads to the parameter Bayesian
posterior distribution,

fΘ|X(θ|x)= fΘ,X(θ, x) × 1
fX(x) '(n + 1)

n

x

θx(1−θn−x)

= (n + 2)!
x!(n − x)!θ

x(1−θn−x)

= f
(β)
Θ (θ; x+1, n−x+1)≡f

(post)
Θ|X (θ|x)

(8.10)

the posterior density is a beta density in Θ given X =x with x=0:n.
The basic statisticsa are a mean of a

a+b
= x+1

n+2 , a mode of
a−1

a+b−2 = x
n , and a variance of

ab
(a+b)2(a+b+1)

= (x+1)(n−x+1)
(n+2)2(n+3)

. An approximate 95%

confidence interval can be calculated from

CI95=[betainv(0.025,a,b),betainv(0.975,a,b)]; (8.11)

aM. Evans, N. Hastings and B. Peacock (2000), Statistical Distributions. A very useful
handbook in handy pocketbook size.
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Figure 8.1: Bayes estimation example showing the Bayes posterior
density for the probability θ of a positive change from mean zero nor-
mal distribution sample with σ = 0.02 and n=[100,1600]. For
fΘ|X(θ|x), mean=[0.5098,0.4988], mode=[0.5100,0.4988], the
variance=[0.0493,0.0125].
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In Figure 8.1, it is seen that the distribution is much sharper the larger the
sample size, here n=1600>100 and the 95% confidence interval is
[0.4133, 0.6060] with 100 observations, but [0.4743, 0.5232] for
1600. In general, the larger the sample size the closer the parameter
estimate, either using the mean or the mode. Using the mode corresponds,
in principle, to the maximum likelihood estimate.
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◦ MATLAB Code for Bayes Posterior Distribution for Probability of
Positivity Change:
function BayesBetaTest2

clc

%

fprintf(’\nBayesBetaTest Output (%s):’,datestr(now));

mu=0; sigma=0.02;

dth=0.01; theta=0:dth:1;

ni=0;

ftheta=zeros(2,length(theta));

for n=[100,1600]

ni=ni+1;

ds=normrnd(mu,sigma,1,n);

x=sum((ds>0));

fprintf(’\nn=%i; mu=%5.2f; sigma=%5.2f; x=%i;’,n,mu,sigma,x);

a=x+1; b=n-x+1; mutheta=a/(a+b); modetheta=(a-1)/(a+b-2);

vartheta=a*b/((a+b)ˆ2*(a+b+1)); sigtheta=sqrt(vartheta);

fprintf(’\na=%i;b=%i;mutheta=%6.4f;modetheta=%6.4f;sigtheta=%7.5f;’...

,a,b,mutheta,modetheta,sigtheta);

th1=betainv(0.025,a,b); th2=betainv(0.975,a,b); % 95%CI

fprintf(’\n95%%CI: theta in [%6.4f,%6.4f];’,th1,th2);

ftheta(ni,:)=betapdf(theta,a,b);

end

%
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figure(1); nfig = 1;

scrsize = get(0,’ScreenSize’); % figure spacing for target screen

ss = [5.0,4.5,4.0,3.5]; % figure spacing factors

plot(theta,ftheta(1,:),’-b’,theta,ftheta(2,:),’--k’,’LineWidth’,2);

title(’Bayes Beta Test:’...

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’\theta’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’f(\theta)’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’f(\theta), n=100’,’f(\theta), n=1600’,’Location’,’NorthWest’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

fprintf(’\n ’);

================= OUTPUT ========================

BayesBetaTest Output (17-Feb-2010 13:46:40):

n=100; mu= 0.00; sigma= 0.02; x=51;

a=52; b=50; mutheta=0.5098; modetheta=0.5100; sigtheta=0.04926;

95%CI: theta in [0.4133,0.6060];

n=1600; mu= 0.00; sigma= 0.02; x=798;

a=799; b=803; mutheta=0.4988; modetheta=0.4988; sigtheta=0.01249;

95%CI: theta in [0.4743,0.5232];

>>
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◦ 8.1.2. Bayesian Estimation Approach Summary:
1. The given data ~X , providing the relationship of ~X to the given

parameter Θ=θ and the likelihood function, has probability
density f ~X|Θ(~x|θ).

2. The unknown parameter θ is treated as a RV Θ with prior
distribution density, often inferred from the likelihood function,

fΘ(θ)'f
(prior)
Θ (θ). (8.12)

3. The joint density of the data ~X and parameter Θ satisfy the law of
total probability reduced from the defiinition of the conditional
probability,

f ~X,Θ(~x, θ)'f ~X|Θ(x|θ)f (prior)
Θ (θ). (8.13)

4. The marginal distribution of the data ~X is

f ~X(~x)'
∫

R
f ~X|Θ(~x|θ)f (prior)

Θ (θ)dθ. (8.14)

5. Thus, the Bayes Theorem for the parameter Θ is, given the data
~X =~x and recalling the simpler Bayesian posterior formula (8.2),

fΘ| ~X(θ|~x)=
fΘ, ~X(θ, ~x)

f ~X(~x) '
f ~X|Θ(~x|θ)f (prior)

Θ (θ)∫
R

f ~X|Θ(~x|t)f (prior)
Θ (t)dt

. (8.15)
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Since the integral in the denominator of (8.15) can be viewed as the
normalization constant for the numerator is is often written omitting the
denominator, as the proportional relationshipa,

fΘ| ~X(θ|~x)∝f ~X|Θ(~x|θ) × f
(prior)
Θ (θ), (8.16)

where LH(θ|~x)=f ~X|Θ(~x|θ) is called the likelihood as a function of
θ, with reversed arguments, so Bayes theorem can be written in shorthand
as

PosteriorDensity∝Likelihood × PriorDensity. (8.17)

aUsing the rule that if C is a nonzero scalar constant, then Cf(x, y)∝f(x, y).
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◦ 8.1.3. Bayesian Fitting a Poisson Distribution:
In this example, there are IIPD, Poisson distributed data observations of
jump counts ~X = [Xi]n×1, so that the unknown parameter is the
Poisson parameter λ with prior distribution or densitya is
fΛ(λ)'f

(prior)
Λ (λ). Given λ, each jump-count observation is

distributed as

fXi|Λ(xi|λ)=e−λ λxi

xi!
, for xi =0, 1, 2, . . . & for i = 1:n(8.18)

and the joint distribution of all the observations, i.e., the total likelihood,
is

f ~X|Λ(~x|λ) iid=
n∏

i=1

fXi|Λ(xi|λ)=e−nλ λnXn∏n
i=1 xi!

(8.19)

where Xn = 1
n

∑n
i=1 xi.

aNotation Alert: In this Bayesian Poisson problem, capital letters (Λ) are used for the RV
with lower case for the given variable (λ), whereas in the stochastic dynamics Λ = λ∆t is
the parameter.
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Upon canceling the common factorial terms, the Bayes posterior density
is

fΛ| ~X(λ|~x)'f
(post)

Λ| ~X
(λ|~x)=

e−nλλnXnf
(prior)
Λ (λ)∫

R+

e−nttnXnf
(prior)
Λ (t)dt

. (8.20)

In the first example with a binomial conditional likelihood for the data, it
was demonstrated how to tighten up the Bayes parameter estimate by
using a larger sample size, although the smaller sample size yielded a
reasonable estimate. Also, a demonstration of a weak sensitivity to the
starting prior distribution approximation (“guestimate”) is presented.
Each statistics user can choose a prior from experience that complements
the data conditional likelihood distribution in a way that the combine
product is close to a recognizable distribution.
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Since the current data likelihood distribution is like a gamma distribution,
one might select a gamma distribution for the prior distribution, i.e.,

f
(prior,1)
Λ (λ)'f

(g)
Λ (λ; ν, α)=

ναλα−1

Γ(α)
e−νλ, (8.21)

where ν is a substitute for λ. Then, the Bayes posterior density is

f
(post,1)

Λ| ~X
(λ|x)=

λnXn+α−1e−(n+ν)λ∫ ∞

0

tnXn+α−1e−(n+ν)tdt

. (8.22)

Given the sufficient statistics Xn and n, the denominator is essentially a
constant normalizing the numerator and since the posterior distribution
must be proper, it must be a proper gamma distribution by inspection.
Thus,

f
(post,1)

Λ| ~X
(λ|~x)=f

(g)
Λ (λ; ν̃, α̃) (8.23)

where the new gamma parameters, called hyperparameters, are
α̃≡nXn+α and ν̃ ≡n+ν. Thus, the posterior mean estimate is
µ(post,1) = α̃/ν̃ with mode estimate λ(post,1,∗) =(α̃ − 1)/ν̃ and
standard deviation estimate σ(post,1) =

√
α̃/ν̃.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture8-page15 — Floyd B. Hanson



Another choice of the prior might be the uniform distribution, realistically
assuming that the jump parameter will be finite, so

f
(post,2)

Λ| ~X
(λ|~x)=f

(u)
Λ (λ; 0, b)=

1

b
I{λ∈[0,b]}. (8.24)

Then, the Bayes posterior density is

f
(post,2)

Λ| ~X
(λ|~x)=

λnXne−nλ∫ b

0

tnXne−ntdt

∼f
(g)
Λ (λ; ν̂, α̂) (8.25)

only for λ ∈ [0, b] and b�1, where the posterior gamma parameters are
α̂≡nXn and ν̂ ≡n, noting that the normalization in the denominator is
incomplete so that only an approximation for large b. In MATLAB, the
finite gamma density using the incomplete gamma function

fpost2=gamma(alpha)*gampdf(lambda,alpha,1/nu)...

/gammainc(b/nu,alpha);
(8.26)

where (lambda,alpha,nu)=(λ, α̂, ν̂). So, a simpler prior here
leads to a numerically complicated posterior.
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Figure 8.2: Bayes estimation example showing the Bayes posterior density
for Poisson parameter Λ = λ of Poisson distribution sample with Λ0 = 25

and n=100 simulated observations. For two different posterior distributions,
f

(post)
Λ|X (λ|x), there is only a 0.25% difference in either estimated mean or mode.
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In Figure 8.2, there is only a small difference between the two posterior
distributions with n=100 observations. The two means are
[25.40,25.46], modes are [25.39,25.45] and standard
deviations are [0.5014,0.5046]. The 95% confidence intervals are
[24.42, 26.39] and [24.48, 26.46], respectively for the first and second
posterior distribution.

This is just a demonstration that the the Bayesian estimation is not too
sensitive to a reasonable prior. Note that for the second prior, the
asymptotic form in (8.25) rather than the numerically more precise (8.26)
MATLAB formula. However, for smaller sample sizes n the tails will be
fatter and the latter form may be needed. An advantage of the uniform
prior is that it does not introduce bias toward the selection of the posterior.
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◦ MATLAB Code for Bayes Posterior Distribution for Poisson
Parameter Using Gamma and Uniform Priors:
function BayesGammaTest2
clc

%

fprintf(’\nBayesGammaTest Output (%s):’,datestr(now));
Lambda0=25; al=20; nu=1; % take meangamma=20/1=20;

fprintf(’\nLambda0=%5.2f; al=%5.2f; nu=%5.2f;’,Lambda0,al,nu);

dlm=0.01; lambda=0:dlm:2*Lambda0;
n=100;

X=poissrnd(Lambda0,1,n);

Xmean=mean(X);
fprintf(’\nn=%i; Xmean=%5.2f;’,n,Xmean);

al1=n*Xmean+al-1; nu1=n+nu; mugam1=al1/nu1; modegam1=(al1-1)/nu1;

vargam=al1/nu1ˆ2; siggam=sqrt(vargam); b1=1/nu1;

fprintf(’\nal1=%i;nu1=%i;mugam=%5.2f;modegam=%5.2f;siggam=%6.4f;’...
,al1,nu1,mugam1,modegam1,siggam);

lm1=gaminv(0.025,al1,b1); lm2=gaminv(0.975,al1,b1); % 95%CI

fprintf(’\n95%%CI: gamma in [%5.2f,%5.2f];’,lm1,lm2);
flm1(1,:)=gampdf(lambda,al1,b1);

%

al2=n*Xmean; nu2=n; mugam2=al2/nu2; modegam2=(al2-1)/nu2;
vargam=al2/nu2ˆ2; siggam=sqrt(vargam); b2=1/nu2;

fprintf(’\nal2=%i;nu2=%i;mugam=%5.2f;modegam=%5.2f;siggam=%6.4f;’...
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,al2,nu2,mugam2,modegam2,siggam);
lm1=gaminv(0.025,al2,b2); lm2=gaminv(0.975,al2,b2); % 95%CI

fprintf(’\n95%%CI: Lambda in [%5.2f,%5.2f];’,lm1,lm2);

flm2(1,:)=gampdf(lambda,al2,b2); % Approx. finite by full gamma
%

fprintf(’\nmugamdif=%5.2f%%; modegamdif=%5.2f%%;’...

,(mugam2/mugam1-1)*100,(modegam2/modegam1-1)*100);

%
figure(1); nfig = 1;

scrsize = get(0,’ScreenSize’); % figure spacing for target screen

ss = [5.0,4.5,4.0,3.5]; % figure spacing factors
plot(lambda,flm1(1,:),’-b’,lambda,flm2(1,:),’--k’,’LineWidth’,2);

title(’Bayes Beta Test:’...

,’Fontsize’,24,’FontWeight’,’Bold’);
xlabel(’\Lambda’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’f(\Lambda)’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’fpost1(\Lambda), n=100’,’fpost2(\Lambda), n=100’...
,’Location’,’NorthWest’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...
,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

fprintf(’\n ’);
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================= OUTPUT ========================

BayesGammaTest Output (17-Feb-2010 23:00:28):

Lambda0=25.00; al=20.00; nu= 1.00;

n=100; Xmean=25.46;

al1=2565; nu1=101; mugam=25.40; modegam=25.39; siggam=0.5014;

95%CI: gamma in [24.42,26.39];

al2=2546; nu2=100; mugam=25.46; modegam=25.45; siggam=0.5046;

95%CI: Lambda in [24.48,26.46];

mugamdif= 0.25%; modegamdif= 0.25%;

>>
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◦ 8.1.4. Bayesian Fitting a Normal Distribution:
In the case of a normal distribution problem the data ~X =[Xi]n×1

belong to an IIND RV sample with likelihood distribution
f

(n)
Xi|M,S2(xi|µ, σ2). However, it would be better to work with the

variance itself v=σ2 as a parameter and better yet to work with the
precision ξ≡1/σ2 to also avoid the reciprocal in the density exponent.
Hence, let the better likelihood density, setting θ=µ for notational
convenience, f

(n)
Xi|M,S2(xi|µ, σ2)

fXi|Θ,Ξ(xi|θ, ξ)=

√
ξ

2π
exp

(
−0.5ξ(xi−θ)2

)
. (8.27)

Since the previous example had only a single parameter and the
complexity grows rapidly with the number of parameter, we will first
work on the smaller problem with θ as the unknown parameter and
ξ=ξ0 fixed, then ξ unknown and θ=θ0 fixed, before tackling both
(θ, ξ) unknown.
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? 8.1.4(a) Only Mean θ Unknown Normal Case:

Let the normal precision be given, ξ=ξ0, and used for the likelihood
(8.27). The prior of the mean Θ is assumed to be normal with mean θ0

and variance 1/ξ1, with ξ1 �1 for a low bias prior, i.e.,

f
(prior,1)
Θ (θ)=

√
ξ1

2π
exp

(
−0.5ξ1(θ − θ0)2

)
. (8.28)

The posterior distribution in the Bayesian shorthand is

f
(post,1)

Θ| ~X
(θ|~x)∝ f ~X|Θ(~x|θ) × f

(prior,1)
Θ (θ)

=
n∏

i=1

(√
ξ0

2π
exp

(
−0.5ξ0(xi−θ)2

))

×
√

ξ1

2π
exp

(
−0.5ξ1(θ−θ0)2

)
∝ exp

(
−0.5

(
ξ0

n∑
i=1

(xi−θ)2+ξ1(θ−θ0)2
))

(8.29)

using the law of exponents and dropping constant coefficients.
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By centering the data about the mean, Xn =
∑n

i=1 xi/n, more
constant terms can be eliminated as follows,∑n

i=1(xi−θ)2 =
∑n

i=1((xi−Xn) + (Xn−θ))2

= n(S2
n + (Xn−θ)2),

(8.30)

where S2
n =

∑n
i=1(xi−Xn)/n is the biased sample variance which is

constant respect to θ. Note there is no cross term in (8.30) since∑n
i=1(xi−Xn)=0. Thus,

f
(post,1)

Θ| ~X
(θ|~x)∝ exp

(
−0.5

(
nξ0

(
Xn−θ

)2
+ξ1(θ−θ0)2

))
≡ exp(−φ(θ)),

(8.31)

defining the positive part of the exponent φ(θ). Since
exp(−φ(θ))′ =−φ′(θ) exp(−φ(θ)), (8.32)

the critical point of the exponential will be the critical point of φ(θ),
φ′(θ∗)=0,

θ̂(post,1)
n =θ∗ =

nξ0Xn+ξ1θ0

nξ0+ξ1

, (8.33)

unfortunately depending on three guesses {ξ0, ξ1, θ0}.
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However, for large samples, n�1, the asymptotic result is that

θ̂(post,1)
n =θ∗ ∼Xn, (8.34)

which is also the MLE result. Note that

exp(−φ)′′(θ)=
(
−φ′′(θ)+(φ′)2(θ)

)
exp(−φ(θ)), (8.35)

so that exp(−φ)′′(θ∗)<0, ensuring a maximum, since φ′(θ∗)=0 and
φ′′(θ∗)=nξ0+ξ1 >0.

The asymptotic MLE result (8.34) is valid as long as ξ1 �nξ0, assuming
Xn =O(1). This may be a weak assumptions if n is not large, but the
result would be usable for a flat prior, i.e., ξ1 �1. Anyway, in the
asymptotic limit we have ξ(post,1) ∼nξ0 from (8.31), so

σ(post),1 =1/
√

ξ(post,1) ∼1/
√

nξ0 =σ0/
√

n∼SE
[
θ̂(post,1)

n

]
,(8.36)

which is a estimate of the standard error of the Bayes estimate of the
mean under constant variance.
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? 8.1.4(b) Only Precision ξ Unknown Normal Case:

Fix the mean µ=θ=θ0 and let the data likelihood be normal distributed
as another variant of (8.27) with mean θ0 and variance 1/ξ,

fXi|Ξ(xi|ξ)=

√
ξ

2π
exp

(
−0.5ξ(xi − θ0)2

)
. (8.37)

Holding off on the prior distribution of the precision until a more
compatible one can be chosen, the posterior distribution in the Bayesian
shorthand is

f
(post,2)

Ξ| ~X
(ξ|~x)∝ f ~X|Ξ(~x|ξ)×f

(prior,2)
Ξ (ξ)

=
n∏

i=1

(√
ξ

2π
exp

(
−0.5ξ(xi−θ0)2

))
×f

(prior,2)
Ξ (ξ)

∝ ξn/2 exp

(
−0.5ξ

n∑
i=1

(xi−θ0)2
)
×f

(prior,2)
Ξ (ξ).

(8.38)

Note that there is an simple gamma-like dependence of the posterior on
the precision ξ with the product of a power and a regular exponential,
rather than normal, suggesting the a gamma prior would be compatible.
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Consequently, let prior be a gamma distribution with parameters (α, λ),

f
(prior,2)
Ξ (ξ)=

λαξα−1

Γ(α)
e−λξ (8.39)

and the posterior becomes

f
(post,2)

Ξ| ~X
(ξ|~x)∝ξn/2+α−1exp

(
−0.5ξ

n∑
i=1

(xi−θ0)2−λξ

)
, (8.40)

so the posterior gamma parameters are

α̂(post,2)
n =

n

2
+ α (8.41)

and

λ̂(post,2)
n =

1

2

n∑
i=1

(xi−θ0)2+λ=
n

2
(S2

n+(Xn−θ0)2)+λ. (8.42)
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For a flat prior with α�1 and λ�1, only the n-terms count
asymptotically, so the mean and modes are,

ξ̂
(post,2)

n =
α̂(post,2)

n

λ̂
(post,2)
n

∼
1

S2
n+(Xn−θ0)2

(8.43)
and

(̂ξ∗)
(post,2)

n =
α̂(post,2)

n −1

λ̂
(post,2)
n

∼
1

S2
n+(Xn−θ0)2

, (8.44)

asymptotically the same if also n�1. However, we usually are
interested in the variance, v=σ2 =1/ξ, but the mean and mode are not
quite the reciprocals (Cf. Rice, p. 292.), i.e.,

v̂
(post,2)

n =
(

1

ξ

)(post,2)

n

=
λ̂(post,2)

n

α̂
(post,2)
n −1

∼S2
n+(Xn−θ0)2 (8.45)

and

(̂v∗)
(post,2)

n =
λ̂(post,2)

n

α̂
(post,2)
n +1

∼S2
n+(Xn−θ0)2, (8.46)

where (8.44) is from finding the critical point by differentiating density,
fV (v)=v−2fΞ(1/v)= λ̃eαv−eα−1 exp(−λ̃/v)/Γ(α̃).
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? 8.1.4(c) Both Mean θ and Precision ξ Unknown Normal Case:

From the two previous parts, the mean and precision are taken to be
independent, such that the mean is normally distributed

fΘ(θ)(prior,3) =

√
ξ3

2π
exp

(
−0.5ξ3(θ − θ3)2

)
, (8.47)

with the constants {θ3, ξ3}and the precision is gamma distributed

f
(prior,3)
Ξ (ξ)=

λαξα−1

Γ(α)
e−λξ. (8.48)

Then, the Bayesian posterior is, combining the full component data
likelihood (8.27) by their independence property,

f
(post,3)

Θ,Ξ| ~X
(θ, ξ|~x)∝ f ~X|Θ,Ξ(~x|Θ, ξ)×f

(prior,3)
Θ (θ)×f

(prior,3)
Ξ (ξ)

∝ ξn/2 exp

(
−0.5ξ

n∑
i=1

(xi−θ)2
)

×exp
(
−0.5ξ3(θ − θ3)2

)
×ξα−1e−λξ.

(8.49)

Note that although the mean and precision were independent as priors,
they are interrelated in the posterior by the data likelihood.
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Due to the interdependence, normalization will be need to compute
moments and other properties. There are software for treating problems
like this and worse.

We can also consider the marginal distributions, one parameter at a time.
However, selecting either one, θ as normally distributed or ξ as gamma
distributed, leads to more complications.

However, seem later when these problems are eliminated.
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◦ 8.1.5. Large Sample Maximum Likelihood Normal Approximation for
the Posterior:
It was demonstrated earlier how the posterior distribution becomes much
tighter around the mode as the sample size n becomes larger. This
suggests the tendency to a posterior normal approximation and toward a
maximum likelihood distribution.

Let the log-likelihood function for scalar parameter θ and data
~X = [Xi]n×1, which will be supressed to focus on θ, denoted as

LLH(θ)=log
(
f ~X|Θ(~x|θ)

)
(8.50)

and let the maximum likelihood estimate be θ̂=θ∗ such that
LLH′(θ∗)=0. (8.51)

Then the posterior approximation becomes

f
(post)

Θ| ~X
(θ|~x)∝ f ~X|Θ(~x|θ)×f

(prior)
Θ (θ)

= exp(LLH(θ)) exp
(
log
(
f

(prior)
Θ (θ)

))
.

(8.52)
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As the sample size n becomes large the log-likelihood LLH(θ) will
dominate the log-prior log(f (prior)

Θ (θ)), which becomes relatively
negligible. Also at the posterior becomes tighter, i.e., the spread narrows,
the posterior becomes concentrated in a small neighbor hood of the mode
or θ̂, so a Taylor approximation becomes increasingly valid. Hence,

f
(post)

Θ| ~X
(θ|~x)∝ exp(LLH(θ))

= exp
(
LLH

(
θ̂
)

+ LLH′
(
θ̂
)(

θ−θ̂
)

+0.5LLH′′
(
θ̂
)(

θ−θ̂
)2
)

∝ exp
(
0.5LLH′′

(
θ̂
)(

θ−θ̂
)2
)

,

(8.53)

upon using the MLE critical point condition (8.51) and losing the constant
from LLH(θ̂), so that the posterior is asymptotically proportional to a
normal distribution with mean and variance

µ̂
(post)
θ ∼ θ̂ & (̂σ2)

(post)

θ ∼−1/LLH′′
(
θ̂
)

. (8.54)

respectively, inserting a minus sign for the needed negative log-likehood.
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In the case when the parameter is not a scalar, but a vector ~θ = [θi]m×1,
say, then the log-likelihood becomes a scalar-valued function of two
vector variables,

LLH(~θ)=log
(
f ~X|~Θ(~x|~θ)

)
(8.55)

and the maximum likelihood estimate be θ̂=~θ∗ satisfies the vector
system of MLE equations

∇θ[LLH](~θ∗)=~0. (8.56)

The posterior approximation is

f
(post)
~Θ| ~X

(~θ|~x)∝ f ~X|~Θ(~x|~θ)×f
(prior)
~Θ

(~θ)

= exp(LLH(~θ)) exp
(
log
(
f

(prior)
~Θ

(~θ)
))

.
(8.57)
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In the limit of large sample size, n�1, the posterior is approximated by

f
(post)
~Θ| ~X

(~θ|~x)∝ exp
(
LLH

(
θ̂
)
+
(
~θ−θ̂

)>
∇θ[LLH]

(
θ̂
)

+0.5
(
~θ−θ̂

)>
∇θ

[
∇>

θ [LLH]
](

θ̂
)(

~θ−θ̂
))

∝ exp
(
0.5
(
~θ−θ̂

)>
∇θ

[
∇>

θ [LLH]
](

θ̂
)(

~θ−θ̂
))

,

(8.58)

again using the MLE critical condition and absorbing the maximum
likelihood, making the posterior asymptotically proportional to a
multivariate normala, using the negative log-likelihood, with mean
vector and covariance matrix,

µ̂
(post)
θ ∼ θ̂ & Σ̂(post)

θ ∼−
(
∇θ

[
∇>

θ [LLH]
])−1

(
θ̂
)

. (8.59)

respectively.
aSee Hanson (2007), Online Appendix B, pp. B46-B48.
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? 8.1.5(a) Revisit for Large Samples: Both Mean θ and Precision ξ

Unknown Normal Case, (but more about MLE than Bayes):

Returning to the data likelihood for the previous normal posterior
example in (8.27) or (8.49 for large sample sizes n�1, we have the
log-likelihood, letting v=1/ξ to work directly with the variance of
interest rather than the precision and also µ = θ,

LLH(µ, v)= log
(
f

(post,3)

Θ,Ξ| ~X
(µ, 1/v|~x)

)
∝ log

(
v−n/2 exp

(
−0.5v−1

n∑
i=1

(xi−µ)2
))

= −0.5n
(
log(v)+v−1

(
S2

n+(Xn−µ)2
))

.

(8.60)

Computing the first order critical point components,
∂LLH

∂µ
(µ, v)= +nv−1(Xn−µ) ∗=0;

∂LLH
∂v

(µ, v)= −0.5n
(
v−1−v−2

(
S2

n+(Xn−µ)2
)) ∗=0.

(8.61)
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Solving these two equations simultaneously at critical point (µ∗, v∗), the
asymptotic estimate the respective means are

µ̂(post)
µ =µ∗∼Xn & µ̂(post)

v =v∗∼S2
n. (8.62)

Next calculating the second partial derivatives evaluated at the critical
parameters for the estimate of the covariance matrix,

∂2LLH
∂µ2 (µ∗, v∗)= − n

v∗ =− n
S2

n

;

∂2LLH
∂v2 (µ∗, v∗)= −0.5n

(
− 1

(v∗)2
+ 2

(v∗)3
(
S2

n+(Xn−µ∗)2
))

= − n
2S4

n

;

∂2LLH
∂v∂µ

(µ∗, v∗)= ∂2LLH
∂µ∂v

(µ∗, v∗)=− n
(v∗)2

(Xn−µ∗)=0,

(8.63)

so the mean and variance estimate are independent in the bivariate
normal. Hence the negative inverse is easy to calculate,

Σ̂(post)
n =−LLH−1(µ∗, v∗)=

 S2
n/n 0

0 2S4
n/n

. (8.64)
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The negative inverse of a diagonal matrix is a diagonal matrix that has
negative reciprocals for diagonal elements. Thus, the asymptotic normal
variance of the parameters are

(̂σ2)
(post)

µ ∼
S2

n

n
& (̂σ2)

(post)

v ∼
2S4

n

n
& ρ̂(post)

µ,v =0, (8.65)

where ρ̂(post)
µ,v is the correlation coefficient between the estimates of µ

and v=σ2. The first two relationships can also be expressed as standard
errors,

SEn[µ̂(post)
µ ]∼

Sn√
n

& SEn[µ̂(post)
v ]=SEn[µ̂(post)

σ2 ]∼
√

2

n
S2

n.(8.66)

Note that the S2
n = 1

n

∑n
i=1(xi − Xn)2 is the biased sample variance,

but that is what naturally appears.
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Figure 8.3: Large sample MLE normal approximation for Bayesian estima-
tion example using a normal likelihood for the data. Two data samples are used
from the 2008 S&P 500 log-returns, one daily and another every other day. The
mean asymptotic estimate density has been plotted against the mean coefficient
µ=nk∗mean, ∆t=1/nk and there is good agreement on the mode.
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Figure 8.4: Large sample MLE normal approximation for Bayesian estima-
tion example using a normal likelihood for the data. Two data samples are used
from the 2008 S&P 500 log-returns, one daily and another every other day. The
variance asymptotic estimate density has been plotted against the variance coeffi-
cient σ2 =nk∗variance, ∆t=1/nk and there is NO mode agreement.
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The objective of Figs. 8.3-8.4 is to demonstrate the large sample normal
approximation by means of the relationship to the maximum likelihood
estimation and also the sensitivity to the sample size n. Two sample sizes
were chosen from the 2008 S&P500 log-returns, one the complete daily
data and the other for every other day, so n1 =235 and n2 =126. These
are now very large samples. However, the results the two sample, after
adjusting the x-axis for the difference in time step using ∆t in the first
and converting the approximately 2∆t in the second.

The estimate around the mode for µ is not very sensitive to the sample
size, but those of the variance are not even close and this reflects the
some 38% difference in the σ2 from the data. The same would be true
for the precision ξ = 1/v. This leads to a question about whether the σ

is a constant and whether the variance v∝∆t is a good assumption. This
merits further investigation, since one sample case is not sufficient.

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture8-page40 — Floyd B. Hanson



Another observation is that in using the log-returns there is a bias due to
the five day trading week. Since if one week has the 3 days MWF than the
next week has 2 day TT, missing 60% of the week and that was a week of
big 2008 changes that could have an effect.

The variance estimate in the normal approximation is strange, since no
positivity constraint was used, although the could be embedded in the
prior and posterior distributions. Perhaps appearance of the terms like
log(v) and reciprocals like 1/v behave like penalties to negative
behavior in the log-likelihood. The real problem with the 1/v dependence
is that it does not lead to as easy a conjugate prior as does the precision ξ.

Note that prior parameters are sometimes arbitrary or educated guesses to
initiate the Bayesian estimation, but with a sufficiently large sample size
the posterior estimates will be less dependent on those initial prior
parameter guesses.
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◦ MATLAB Code for Bayes Posterior Distribution for Large Sample
Normal Distribution:
function BayesNormalTest2
clc

%

fprintf(’\nBayesNormalTest Output (%s):’,datestr(now));
load -ASCII S.mat; % Note: Change GSPC2008adjC.txt name for load function.

n1=length(S)-1; fprintf(’\nn1=NLR=%3i;’,n1);

X1=log(S(2:n1+1))-log(S(1:n1)); %Log-return,dt=1/n1
X1mean=mean(X1); X1var=var(X1,1); X1std=std(X1,1);%LR2008

fprintf(’\nX1mean=%8.6f; X1std=%7.5f; X1var=%9.7f;’,X1mean,X1std,X1var);

X1mu=n1*X1mean; X1sig2=n1*X1var; X1sig=sqrt(X1sig2);%LR X1mu=mu-sigˆ2/2;
X1mucor=X1mu+X1sig2/2;

fprintf(’\nX1mu=%8.6f; X1sig=%7.5f; X1sig2=%9.7f;’,X1mu,X1sig,X1sig2);

fprintf(’\nX1mucor=X1mu+X1sig2/2=%8.6f;;’,X1mucor);

% LR every 2 days:
X2=log(S(3:2:n1))-log(S(1:2:n1-2));%Roughly half the sample size

n2=length(X2); fprintf(’\nn2=%3i;’,n2);% Every 2 days; dt=1/n2;

X2mean=mean(X2); X2var=var(X2,1); X2std=std(X2,1);%LR2008
X2mu=n2*X2mean; X2sig2=n2*X2var; X2sig=sqrt(X2sig2);%LR X2mu=mu-sigˆ2/2;

X2mucor=X2mu+X2sig2/2;

fprintf(’\nX2mu=%8.6f; X2sig=%7.5f; X2sig2=%9.7f;’,X2mu,X2sig,X2sig2);
fprintf(’\nX2mucor=X2mu+X2sig2/2=%8.6f;;’,X2mucor);

% Bayesian Asymptotic estimates:
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meanhat1=X1mean; meanhat2=X2mean;

muhat1=n1*meanhat1; muhat2=n2*meanhat2;%Correct for time-steps

muhatdif=100*(muhat2/muhat1-1);

fprintf(’\nmuhat1=%8.6f; muhat2=%8.6f; muhatdif=%5.2f%%;’...

,muhat1,muhat2,muhatdif);

varhat1=X1var; varhat2=X2var;

sig2hat1=n1*varhat1; sig2hat2=n2*varhat2;%Correct for time-steps

sig2hatdif=100*(sig2hat2/sig2hat1-1);

fprintf(’\nsig2hat1=%9.7f; sig2hat2=%9.7f; sig2hatdif=%5.2f%%;’...

,sig2hat1,sig2hat2,sig2hatdif);

SEmean1=X1std/sqrt(n1); SEvar1=X1var*sqrt(2/n1);

SEmean2=X2std/sqrt(n2); SEvar2=X2var*sqrt(2/n2);

SEmeandif=100*(SEmean2/SEmean1-1); SEvardif=100*(SEvar2/SEvar1-1);

fprintf(’\nSEmean1=%8.6f; SEmean2/2=%8.6f; SEmeandif=%5.2f%%;’...

,SEmean1,SEmean2,SEmeandif);

fprintf(’\nSEvar1=%10.8f; SEvar2/2=%10.8f; SEvardif=%5.2f%%;’...

,SEvar1,SEvar2,SEvardif);

%

scrsize = get(0,’ScreenSize’); % figure spacing for target screen

ss = [5.0,4.5,4.0,3.5]; % figure spacing factors

figure(1); nfig = 1;

mean10=meanhat1-2*SEmean1;

mean1f=meanhat1+2*SEmean1;

dmean1=(mean1f-mean10)/(100-1);
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mean1plot=mean10:dmean1:mean1f;

mean20=meanhat2-2*SEmean2;

mean2f=meanhat2+2*SEmean2;

dmean2=(mean2f-mean20)/(100-1);

mean2plot=mean20:dmean2:mean2f;

mu1plot=mean1plot*n1; mu2plot=mean2plot*n2;

fmean1=normpdf(mean1plot,meanhat1,SEmean1); %normal approx. mean;

fmean2=normpdf(mean2plot,meanhat2,SEmean2); %but plot vs LR mu=mean/dt

plot(mu1plot,fmean1,’-b’,mu2plot,fmean2,’--k’,’LineWidth’,2);

axis tight;

title(’Bayes Normal Test: \mu=mean_k*n_k estimate’...

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’\mu=mean_k*n_k’,’Fontsize’,24,’FontWeight’,’Bold’);

ylabel(’fpost_k(mean_k)’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’fpost_1(mean_1), n_1=253’,’fpost_2(mean_2), n_2=126’...

,’Location’,’SouthEast’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

%

figure(2); nfig = 2;

var10=varhat1-2*SEvar1;

var1f=varhat1+2*SEvar1;

dvar1=(var1f-var10)/(100-1);
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var1plot=var10:dvar1:var1f;

var20=varhat2-2*SEvar2;

var2f=varhat2+2*SEvar2;
dvar2=(var2f-var20)/(100-1);

var2plot=var20:dvar2:var2f;

sig21plot=var1plot*n1; sig22plot=var2plot*n2;

fvar1=normpdf(var1plot,varhat1,SEvar1); %normal approx. var;
fvar2=normpdf(var2plot,varhat2,SEvar2); %but plot vs LR sig2=var/dt

plot(sig21plot,fvar1,’-b’,sig22plot,fvar2,’--k’,’LineWidth’,2);

axis tight;
title(’Bayes Normal Test: \sigmaˆ2=var_k*n_k estimate’...

,’Fontsize’,24,’FontWeight’,’Bold’);

xlabel(’\sigmaˆ2=var_k*n_k’,’Fontsize’,24,’FontWeight’,’Bold’);
ylabel(’fpost_k(var_k)’,’Fontsize’,24,’FontWeight’,’Bold’);

legend(’fpost_1(var_1), n_1=253’,’fpost_2(var_2), n_2=126’...

,’Location’,’NorthWest’);
set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’LineWidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

fprintf(’\n ’);
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================= OUTPUT ========================

BayesNormalTest Output (20-Feb-2010 17:04:49):

n1=NLR=253;

X1mean=0.001921; X1std=0.02578; X1var=0.0006645;

X1mu=0.485902; X1sig=0.41001; X1sig2=0.1681075;

X1mucor=X1mu+X1sig2/2=0.569956;;

n2=126;

X2mu=0.471359; X2sig=0.32445; X2sig2=0.1052685;

X2mucor=X2mu+X2sig2/2=0.523993;;

muhat1=0.485902; muhat2=0.471359; muhatdif=-2.99%;

sig2hat1=0.1681075; sig2hat2=0.1052685; sig2hatdif=-37.38%;

SEmean1=0.001621; SEmean2/2=0.002575; SEmeandif=58.89%;

SEvar1=0.00005908; SEvar2/2=0.00010526; SEvardif=78.17%;

>>
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◦ 8.1.6. Likelihood and Prior Conjugate Pairs:

When given a likelihood distribution and a prior distribution such that the
posterior distribution is of the same type as the prior distribution,
then the likelihood and prior are considered conjugate pairs or the prior
is said to be the conjugate distribution to the likelihood distribution.
The big advantage of finding a conjugate pair then the Bayes theorem
calculations are usually much simpler and very convenient than that of
nonconjugate pairs.

In the binomial likelihood example in subsection 8.1.1, pp. 3-6, a beta
prior produced a beta posterior, i.e., a Binomial-Beta conjugate pair or
symbolically,

PosteriorBeta∝LikelihoodBinomial×PriorBeta. (8.67)
In the Poisson likelihood example in subsection 8.1.3, pp. 13-16, we used
a Poisson-Gamma conjugate pair,

PosteriorGamma∝LikelihoodPoisson×PriorGamma. (8.68)
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In the normal likelihood we considered several cases, depending if the
precision was known or the mean was known or both were the unknown.
Each was a different conjugate problem. In 8.14(a), a conjugate
Normal-Normal pair was used for fixed precision ξ1 = 1/σ2

1 ,

PosteriorNormal∝LikelihoodNormal|ξ1
×PriorNormal. (8.69)

In 8.14(b), a conjugate Normal-Gamma pair was used for fixed mean θ0,

PosteriorGamma∝LikelihoodNormal|θ0
×PriorGamma.(8.70)

In 8.14(c), with both mean and precision unknown, the situation became
too complicated since we did not have a conjugate pair. However, in a
Wikipedia table of conjugate pairs, Wikipedia: Conjugate Prior,a a
normal gamma hybrid distribution is given as the conjugate distribution,
so

PosteriorNormal Gamma∝ LikelihoodNormal
×PriorNormal Gamma.

(8.71)

aFor even for information, see the background paper by D. Fink (1997), A Compendium
of Conjugate Priors.
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Some other conjugate pairs of interest are

PosteriorPareto∝LikelihoodUniform×PriorPareto; (8.72)

PosteriorGamma∝ LikelihoodExponential
×PriorGamma.

(8.73)

Other advice on prior distributions:a

• They should be proper densities, in that they are integrable with other
moments.

• They should be unbiased such that they do not appear to constrain the
posterior distribution to a particular type or estimate.

• They should not produce unrealistic estimates for the unknown
parameter or any parameter which is derived from it, e.g., a precision
which leads to a peculiar variance.

aSee Rice (2007) for more discussion.
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◦ 8.1.7. The Bayesian Normal Likelihood with Proper Conjugate Pair:

Applying the Normal-Gamma prior distribution, combining partial
problems 8.14(a) and (b), to the Bayesian normal estimation problem for
unknown mean and precision, bivariate parameters, ~θ = (µ, ξ),

f
(prior,4)
~Θ

(
~θ
)
= f

(prior,4)
M (µ)f (prior,4)

Ξ (ξ)

=

√
ξγ

2π
exp

(
−0.5ξγ(µ − µ0)2

) λαξα−1

Γ(α)
e−λξ,

(8.74)

with prior parameters (µ0, γ, λ, α), as conjugate to the total data
likelihood

f ~X|M,Ξ(~x|µ, ξ)=

√
ξ

2π
exp

(
−0.5ξ

(
S2

n +
(
Xn−µ

)2))
. (8.75)

The target template for the Normal-Gamma posterior distribution is the
conjugate closure,

f
(post,4)

Θ| ~X
(θ|~x)=

√
ξeγ
2π

e−0.5ξeγ(µ−eµ)2 eλ eαξ eα−1

Γ(eα)
e−eλξ, (8.76)

with hyperparameters (µ̃, γ̃, λ̃, α̃) for the distribution of Θ and the
Bayesian value estimate Θ̂=(µ̂, ξ̂).
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However from the prior and likelihood, we have

f
(post,4)

Θ| ~X
(θ|~x)∝ ξn/2+α−1(ξγ)1/2

×e− nξ
2 (S2

n+(Xn−µ)2
)− ξγ

2 (µ−µ0)
2−λξ,

(8.77)

where right away we see α̃= α̃n =n/2 + α and γ̃ = γ̃n =n + γ from
the coefficient of µ2 in the exponent. Let φ be the exponent of the
exponential then

φ= −nξ
2 (S2

n +
(
Xn−µ

)2
)− ξγ

2 (µ−µ0)2−λξ

= −nξ
2 (µ2−2Xnµ+X

2

n+S2
n)− ξγ

2 (µ2−2µ0µ+µ2
0)−λξ

cts= −ξγ̃
2 (µ−µ̃)2−ξ

(
λ+ n

2 S2
n+ nγ

2(n + γ)
(
Xn−µ0

)2)
,

(8.78)

where the following hyperparameters have been used:

µ̃= µ̃n =
nXn + γµ0

n + γ
∼Xn (8.79)

and
λ̃= λ̃n =λ+

n

2
S2

n+
nγ

2(n + γ)

(
Xn−µ0

)2∼
n

2
S2

n, (8.80)

which we sought to show to specify the target posterior (8.76).

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture8-page51 — Floyd B. Hanson



Previously, presented the problem from Rice (2007), but this derivation
failed to close the posterior with a proper conjugate pair to obtain a
posterior of the same family of distributions and seemed have been
missing a full set of proper prior parameters, namely for the precision.
See Fink (1997) for background for this part of the lecture, but watch out
for serious typos in the introduction.
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* Reminder: Lecture 8 Homework Posted in Chalk Assignments,
due in PDF by Lecture 9 in Chalk Assignments!

* Summary of Lecture 8:

1. Bayesian Estimation Introduction

2. Simple Bayesian Counting Example

3. Bayesian Estimation Summary

4. Poisson Bayesian Estimation

5. Normal Bayesian Estimation in 3 Variations

6. Bayesian Large Sample Limit → MLE

7. Bayesian Normal Large Sample Limit

8. Bayesian Normal with Proper Conjugate Priors
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