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9. Bayesian Methods in Financea:
• 9.1. Observed Variables, Unobserved Variables and Parameters:

In the previous lecture about Bayesian estimation, we had an observed
vector variable ~X that was used to estimate a scalar or vector parameter
~Θ that is unobserved. For instance in the basic log-normal model, the
observables ~X = ~LR are the log-returns of the asset prices and/or the
~X = ~C option prices based upon the underlying asset. The parameters for
~Θ are the {µ, σ2, r} are the mean and variance coefficients and the spot
rate, often a zero-coupon bond (ZCB) such that no interest is paid out
until maturity satisfying the usual assumptions on r.

aFor background to a good part of this lecture, see Michael Johannes and Nicholas Polson
(2003), MCMC Methods for Continuous-Time Financial Econometrics, 96 pages, preprint
for the Handbook of Financial Econometrics, edited by Yacine Ait-Sahalia and Lars Hansen.
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◦ 9.1.1. More Realistic Models:

However, since the variance plays so much importance in options and
other derivatives, it is important to recognize that it has its own dynamics
and hence include that dynamics with the asset dynamics. Also, rare jump
changes are very important because they can lead to severe losses or very
profitable gains, in spite of their sparse population count among all the
changes in price. Thus, our asset model might be a jump-diffusion in
differential form,

dS(t)=S(t)(µdt+
√

V (t)dWs(t)+(eQ−1)dP (t)), (9.1)

where E[dP (t)=λdt] in the mean number of jumps in (0, dt]and
Q ∈ [a, b] is the underlying jump IID RV, and a stochastic volatility

dV (t)=κv(θv−V (t))dt+σv

√
V (t)dWv(t). (9.2)

The diffusions are correlated by E[dWs(t)dWv(t)]=ρs,vdt and the
can be implemented by another diffusion, dW⊥(t), independent of
dWs(t) such that dWv(t)=ρs,vdWs(t)+

√
1−ρ2

s,vdW⊥(t).
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In terms of observable units of time, assumed sufficiently small like one
trading day, the difference equations for the log-return,
LRi =∆ log(Si)=log(S(ti)/S(ti−1)) for i=1:n from n + 1
asset prices, are

LRi =µld∆t+
√

Vi∆Ws,i+
∆Pi∑
k=1

Qk, (9.3)

for i=1:n, using the stochastic chain rule, where µld =µ−σ2/2 is the
log-diffusion connected drift. In case of sufficiently small ∆t such that
the probability of more than one jump is very small than the sum term can
be replaced by Qi∆Pi and this will be assumed in the rest of the lecture.

The stochastic volatility or variance difference equation becomes

Vi+1 =Vi+κv(θv−Vi)∆t+σv

√
VidWv,i, (9.4)

forfor i=0:n−1 given some V0.

Thus, observables still are the log-returns
~X = ~LR. (9.5)
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The dynamic parameters are
~Θ={µ, σ2, λ, a, b, κv, θv, σv, ρs,v}. (9.6)

However, the are unobserved variables, not observed, except perhaps for
some very large jumps, and they are

~Y =[~V ; ~Q; ~T ], (9.7)

where ~V = [Vi]ni=1 are the variances corresponding to each LRi

observation, ~Q = [Qi]ni=1 is the total jump-amplitude variable change
between observations, and ~T = [Ti]ni=1, if needed, is the jump-time if
there is a jump, else both Ti and Qi would be zero. The ~Y =[~V ; ~Q; ~T ]
as unobserved variables are also called latent variables or hidden
variables since there is either no data or incomplete data for them.
Hence, the models for them such as (9.42) for ~V or the cumulative
Poisson time between jumps distribution for ~T or the jump-amplitude RV
distribution for ~Q, all by simulation.
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In the case of the risk-neutral (RN) option pricing problem, the
stochastic-volatility jump-diffusion dynamics need to be revised to fit the
assumption that the mean growth rate of the asset be constrained to grow
at the spot rate r. Hence, we have

LRi
rn=(r−σ2/2)∆t+

√
Vi∆Ws,i+∆PiQi−µJλ∆t, (9.8)

for i=1:n, where µJ =E[Q]. Note that the basic risk-neutral
requirement is that

E[∆Si/Si|Si]=r∆t, (9.9)

based on the underlying asset price and not its log-return.

The stochastic volatility or variance difference equation becomes

Vi+1
rn=Vi+(κv(θv−Vi) + γvVi)∆t+σv

√
Vi∆Wv,i, (9.10)

for i=0:n−1 given some V0, where γv is the diffusive price of
volatility risk, which can be just be rescaled into RN values of {κv, θv}.
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The risk-neutral price of a European call option at current time ti,
maturing at T = tn with strike price K is the discounted,
conditionally-expected call payoff,

Ci = C(Si, ti, Vi, ~Θ(rn))
rn= e−r(T −ti)E(rn)[max[Si − K, 0]|Si, Vi, ~Θ(rn)],

(9.11)

where the purely risk-neutral parameters are
~Θ(rn) ={r, K, T}, (9.12)

which are in addition to the dynamic parameters
~Θ={µldσ2, λ, a, b, κv, θv, σv, ρv} (9.13)

and the total parameter set is ~Θ(tot) =[~Θ; ~Θ(rn)]. Note, that the only
genuine risk-neutral parameter is the spot rate r and that the estimate of
the dynamical model parameter set (9.6) is still required. Also, the data
vectors are needed, i.e.,

X = [~S; ~C]=[Si, Ci]ni=1. (9.14)
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• 9.2. Bayesian Formulation:

The starter Bayes rule will include both parameters and latent variables,
so is

f
(post)
~Θ,~Y | ~X

(~θ, ~y|~x)∝f ~X|~Θ,~Y (~x|~θ, ~y)×f
(prior)
~Θ,~Y

(~θ, ~y). (9.15)

The ~x = [xi]ni=1 are the observed data and the ~y = [yi]ni=1 are the
unobserved, simulated data.

Already there are signs of difficulty since there are three vectors in the
posterior distribution, parameters, latent variable and observation
conditioning suggesting high dimensional computational and statistical
complexity. Nonstandard distributions could easily arise. Monte Carlo
(MC) simulation or the Markov chain Monte Carlo (MCMC=(MC)2)
simulation variant can reduce these complexities but using Markov chain
approximations of the parameters.

Further, the joint density, especially in the posterior, make it inconvenient
in finding the marginal density for the individual parameters.
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Expanding the starter Bayes rule to separate out the parameters from the
latent variables in the posterior yields,

f
(post)
~Θ,~Y | ~X

(~θ, ~y|~x)∝f ~X|~Θ,~Y (~x|~θ, ~y)×f~Y |~Θ(~y|~θ)×f
(prior)
~Θ

(~θ). (9.16)

Here, f~Y |~Θ(~y|~θ) is the latent variable density and f
(prior)
~Θ

(~θ) is the
prior parameter density.

The full information likelihood is
f ~X|~Θ,~Y

(
~x
∣∣∣~θ, ~y

)
(9.17)

and the data-augmented likelihood is the conditional marginal
distribution, integrating out the latent variable,

f ~X|~Θ

(
~x
∣∣∣~θ)=

∫
R

f ~X,~Y |~Θ

(
~x, ~y

∣∣∣~θ) d~y

=
∫

R
f ~X|~Θ,~Y

(
~x
∣∣∣~θ, ~y

)
f~Y |~Θ

(
~y
∣∣∣~θ) d~y.

(9.18)

The application of these alternate forms depends on what information is
available from the model, when the distribution is not available then
simulation is necessary.
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The prior parameter density f
(prior)
~Θ

(~θ) is the place where the user
puts in additional information that is beyond the probability inference of
the prior.
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• 9.3. Bayesian Model Specification:

Model specification is used to compare models using the posterior
distribution, say for model Mi,

f
(post)

Mi| ~X
(Mi|~x)=f ~X|Mi

(~x|Mi) fMi
(Mi)/f ~X(~x) , (9.19)

for i=1:M . Then the posterior odds for model Mi versus Mj is

f
(post)

Mi| ~X
(Mi|~x)

f
(post)

Mj | ~X
(Mj|~x)

=
f ~X|Mi

(~x|Mi)

f ~X|Mj
(~x|Mj)

fMi
(Mi)

fMj
(Mj)

, (9.20)

where

BF[Mi, Mj]≡
f ~X|Mi

(~x|Mi)

f ~X|Mj
(~x|Mj)

(9.21)

is called the Bayes factor, such that if the Bayes is greater than one then
model i is favored over model j and vice-versa.
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• 9.4. Joint Density and Bivariate Full Conditional Densities, the
Hammersly-Clifford Theorem:

However, the graph-theoretic theorem of Hammersly and Clifford,
improved on by others, allows the relationship of the joint density to the
full conditional densities of the parameters in the following bivariate
forma

Theorem 9.4. Characterization of Joint Density by Full Conditional
Densities:

The joint distribution with density fX,Y (x, y) associated with the
conditional densities fX|Y (x|y) and fY |X(y|x) has the density,

fX,Y (x, y)=
fY |X(y|x)∫

R

fY |X(z|x)

fX|Y (x|z)
dz

, (9.22)

assuming all densities exist (and satisfy positivity).
aC.P. Robert and G. Casella (2004), Monte Carlo Statistical Methods, Springer, p. 344.

This book also clarifies a lot of the technical notions in Johannes and Polson (2003.2006).
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Proof: By alternate application of the multiplicative expansion in
conditional densities,

fX,Y (x, y)=fY |X(y|x)fX(x)=fX|Y (x|y)fY (y) (9.23)

then ∫
R

fY |X(y|x)

fX|Y (x|y)
dy=

∫
R

fY (y)

fX(x)
dy=

1

fX(x)
(9.24)

so

fX,Y (x, y)=fY |X(y|x)fX(x)=
fY |X(y|x)∫

R

fY |X(z|x)

fX|Y (x|z)
dz

. (9.25)

�

The validity of this theorem is related to global and local Markov
properties, so is useful for the Markov models we use in finance. The best
news that this theorem helps break down the high dimensional demands
of the more realistic financial models.
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• 9.5. Marginal Densities for Single Parameters:

For estimation or simulation, it is sometimes necessary to focus on a
single parameter, say θi, so it necessary to find the single parameter
posterior marginal distribution by integration over the parameter
complement,

~θ(−i) ≡ [θj]j 6=i, (9.26)

for for i=1:p parameters, so

f
(post)

Θi|~Y
(θi|~y )=

∫
R

f
(post)

Θi,~Θ(−i), ~X|~Y

(
θi, ~θ(−i), ~x

∣∣∣ ~y) d~xd~θ(−i). (9.27)

This marginal is useful for means, modes and and risk estimation, such as
standard errors, quantiles and credible sets (Bayes proper name for
Bayesian confidence intervals).
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• 9.6. Joint Density and Multivariate Full Conditional Densities, the
General Hammersly-Clifford Theorem:

Like the Gauss-Seidel method of successive approximations, some
important simulation methods will update another parameter at each
successive iteration, so that at the end of the ith iteration

~θ
(1)
i = [θ(1)

j ]ij=1 and ~θ
(0)
i = [θ(0)

j ]pj=i+1(1 − δi,p), (9.28)

denotes the updated part and the unupdated part, respectively.

Theorem 9.6. Characterization of Joint Density by Full Conditional
Densities in Successive Approximations:

The joint distribution with density f~Θ

(
~θ
)

, associated with the

conditional densities fΘi

(
θi|~θ(−i)

)
, has the density,

f~Θ(~θ(1))∝
p∏

i=1

fΘi

(
θ
(1)
i |~θ(1)

i−1, ~θ
(0)
i+1

)
fΘi

(
θ
(0)
i |~θ(1)

i−1, ~θ
(0)
i+1

) , (9.29)

assuming admissible θ
(0)
i , all densities exist (and satisfy positivity).
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This multi-parameter version of the bi-parameter version in Theorem 9.4,
but is less general than a similar version in Robert and Casella (2004) and
there exist even stronger versions. Dropping positivity takes much
stronger assumptions, but for simulation, you have to remember that
random simulation values are almost always on open intervals, but that
excludes the normal.
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• 9.7. Gibbs Sampler, a Simple MCMC Algorithma:

Given an initial parameter-latent variable guestimate [~Θ(0), ~Y (0)], the
Gibbs sampler, in the full block form, alternately draws samples from
the posterior full conditionals of the parameters and the latent variables
distributions,

~θ(g) dist∼ f
(post)
~Θ|~Y , ~X

(
~θ
∣∣∣ ~y(g−1), ~x

)
(9.30)

~y(g) dist∼ f
(post)
~Y |~Θ, ~X

(
~y
∣∣∣~θ(g), ~x

)
, (9.31)

for g=1:G Gibbs iterations or stopping for convergence at g∗

according to a specified stopping criterion, and if convergence then a
sample is drawn from the convergent limit

f
(post),g∗

~Θ,~Y | ~X

(
~θ, ~y

∣∣∣ ~x) , (9.32)

with possible kernel smoothing. However, if the block form is not usable,
then the scalar parameter form can be used.

aSee Rice (2007), p.297ff or see Johannes and Polson (2003,2006), pp. 14-15 or better
Robert and Casella (2004).
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In the parameter by parameter form, relying on joint density
decomposition of Theorem 9.6, then, given the [~Θ(0), ~Y (0)] block start,
the Gibbs sampler iteration is

θ
(1)
i

dist∼ f
(post)
~Θ|~Y , ~X

(
θi

∣∣∣~θ(1)
i−1, ~θ

(0)
i+1, ~y, ~x

)
(9.33)

for i=1:p and then the latent variables states are draw if possible in
block form or else component by component as with the parameters.
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• 9.8. Metropolis and Hastings MCMC Algorithm:
When the Gibbs Sampler is not convenient or practical, the classical
Monte Carlo method of Metropolis-Hastingsa can be used with the more
general acceptance and rejection technique of von Neumann.
In the simple case, the focus is on a single parameter θi and suppressing
other dependence, let

π(θi)≡fΘi

(
θi

∣∣∣~θ(−i), ~y, ~x
)

. (9.34)

For generating iteration samples of π(θi), it is necessary to propose a

candidate conditional transition density q
(
θ
(g+1)
i

∣∣∣ θ(g)
i

)
for each

iteration g+1=1:G, again suppressing dependence on necessary
parameters. The acceptance criterion for each new sample is the
threshold,

α(θ(g)
i , θ

(g+1)
i )=min

π
(
θ
(g+1)
i

)/
q
(
θ
(g+1)
i

∣∣∣ θ(g)
i

)
π
(
θ
(g)
i

)/
q
(
θ
(g)
i

∣∣∣θ(g+1)
i

) , 1

. (9.35)

aThe Monte Carlo method is often called is often called just the Metropolis method or
algorithm from Metropolis et al. (1953) and Metropolis and Ulam (1949), but Hastings (1970)
made some later improvements.
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The Metropolis-Hastings MCMC algorithm in this case is

Draw proposed θ̂
dist∼ q

(
θ| θ

(g)
i

)
; (9.36)

Draw acceptor u
dist∼ Uniform(0, 1); (9.37)

If u<α(θ(g)
i , θ̂), Then accept θ

(g+1)
i = θ̂; (9.38)

Else reject , θ
(g+1)
i =θ

(g)
i ; (9.39)

for g + 1=1:G.

If the sample draws are independent between iterations g, then let
q
(
θ
(g+1)
i

∣∣∣ θ(g)
i

)
= q̃

(
θ
(g+1)
i

)
and

α(θ(g)
i , θ

(g+1)
i )=min

π
(
θ
(g+1)
i

)/
q̃
(
θ
(g+1)
i

)
π
(
θ
(g)
i

)/
q̃
(
θ
(g)
i

) , 1

 . (9.40)

It is customary to discard the initial iterations from the distribution
iterations and is called burn-in since they are too crude to be used.
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• 9.9. Bayesian Formulation for Discretized Stochastic Asset and
Volatility/Variance:

As an example, the stochastic asset and variance equations, (9.3) and
(9.42), are rewritten for Bayesian implementation, asset prices, are

Xi =LRi =µld∆t+
√

Vi∆tZs,i+QiNi, (9.41)
and

Vi+1 =Vi+κv(θv−Vi)∆t

+σv

√
Vi∆t(ρs,vZs,i+

√
1−ρ2

s,vZ⊥,i),
(9.42)

where we set ∆Wj,i =
√

∆tZj,i for j =s :⊥ with

[Zs,i; Z⊥,i]
dist∼ N (~02, I2) and ∆Pi =Ni. For the jump-process,

Ni
dist∼ Bern(λs∆t), a Bernoulli for a (0−1) Poisson, and

Qi
dist∼ Π(a, b), a log-jump-amplitude distribution, openly specified.

Note that although the Xi =LRi are given as IID through the IIND Zs,i,
the variance Vi+1 depends directly on the previous value Vi, so are thus
interdependent.
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Consequently, the likelihood is decomposable,

f ~X|~Y ,~Θ

(
~x|~y, ~θ

)
=

n∏
i=1

fXi|Yi
~Θ

(
xi|yi, ~θ

)
, (9.43)

but is still a multivariate normal.

However, the latent state dynamics has variance coupling since
~Y =[~V , ~N, ~Q], (9.44)

so

f~Y |~Θ

(
~y|~θ
)
=
∏n

i=1 f
(
Vi, Ni, Qi|Vi−1, ~θ

)
=
∏n

i=1 f
(
Vi|Vi−1, Ni, Qi, ~θ

)
f
(
Ni, Qi|~θ

)
=
∏n

i=1 f
(
Vi|Vi−1, Ni, Qi, ~θ

)
f
(
Qi|Ni, ~θ

)
f
(
Ni|~θ

)
,

(9.45)

after multiple applications of Bayesian rules.
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For the prior parameter f~Θ(~θ), it is strongly suggested that conjugate
priors in coordination with the likelihood function be used and that a flat
prior be use so as not to strongly bias the posterior to a strongly desired
value. For instance, a normal prior could be used for the mean µld of a
pure diffusive log-return so that the the full conditional would be
f(µld|σ2

s , ~x).

For the precision or reciprocal variance ξ=1/σ2
s , we found previously

that the gamma distribution was a good conjugate prior. However,
working directly with the variance means that the appropriate conjugate
prior is the inverted or so-called inverse gamma function, f

(ig)
X , which is

derivable from the gamma function,

f
(g)
X (x; λ, α)=

λαxα−1

Γ(α)
e−λx. (9.46)
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By the transformation rule for densities, letting y = 1/x, yields the
inverted gamma densitya,

f
(ig)
X (x; λ, α)= f

(g)
X (1/x; λ, α)|d(1/x)/dx|

=
λαx−α−1

Γ(α)
e−λ/x,

(9.47)

There does not appear to by an inverted gamma RNG, but it is not needed
by the RV relationship the gamma distribution RNG can be used,

X(ig) =1/X(g) (9.48)

and

Prob[X(ig) ≤x]=Prob[X(g) ≥1/x]. (9.49)

Getting the Bayesian estimate of the variance rather than the precision
allows direct use of the posterior distribution of the variance, the prime
variable of interest.

aCaution: Johannes and Polson (2003) have a sign typo on p. 40 in the exponent of the
power term.
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Since MATLAB defines the gamma probability density function,
gampdf(x,a,b), as

f(x|a, b)=
1

baΓ(a)
xa−1e−x/b, (9.50)

then the inverted gamma density, called say
y=igampdf(x,lambda,alpha); (9.51)

is computed by
igampdf=gampdf(1/x,alpha,1/lambda)/x2; (9.52)

In theory this would need the qualification that x > 0, but technically the
random number generation is always on the open interval. The inverted
gamma complementary cumulative distribution function (CCDF) is given
by

igamccdf=gamcdf(1/x,alpha,1/lambda); (9.53)

Similarly, inverted gamma random samples can be generated by
igamrnd=1/gamrnd(alpha,1/lambda,m,n); (9.54)
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• 9.10. Bayesian Asset Pricing:

◦ 9.10.1. Geometric Brownian Motion (GBM) or Pure Diffusion
Example:

In the case to GBM with constant coefficients, the log-return has a simple
solution,

Xi =LRi =µld∆t+σs

√
∆tZs,i, (9.55)

where Zs,i
dist∼ N (0, 1). The Bayes rule for the posterior is simply,

f
(post)
~Θ| ~X

(
~θ|~y
)

∝f ~X|~Θ

(
~x|~θ
)
×f

(prior)
~Θ

(
~θ
)

. (9.56)

The likelihood is continuously compounded log-returns, assuming a
constant trading day ∆t, µ̃ld =µld∆t and σ̃2

s =σ2
s∆t,

f ~X|~Θ

(
~x|~θ
)
=f( ~X|µ̃ld, σ̃2

s)=
n∏

i=1

f (n)(xi; µ̃ld, σ̃s)

=(2πσ̃2
s)−n/2 exp

(
−

1

2σ̃2
s

n∑
i=1

(xi−µ̃ld)2
)

.

(9.57)
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The posterior parameter distribution is

f
(post)
~Θ| ~X

(
~θ|~x
)
=f~Θ| ~X

(
µ̃ld, σ̃2

s |~x
)
. (9.58)

Although the posterior is available in closed form, we will proceed to
demonstrate more general methods for more general problems.

By the Hammersley-Clifford theorems, we need only consider separated
posterior full conditionals assuming parameter independence,

f
(post)
Θ1

(
µ̃ld|σ̃2

s , ~x
)
∝f ~X(~x|µ̃ld, σ̃2

s)×f
(prior)
Θ1

(µ̃ld);

f
(post)
Θ2

(
σ̃2

s |µ̃ld, ~x
)
∝f ~X(~x|µ̃ld, σ̃2

s)×f
(prior)
Θ2

(σ̃2
s).

(9.59)

Next assuming conjugate priors, using normal for the mean parameter
and inverted gamma for the variance parameter,

f
(prior)
Θ1

(µ̃ld)
dist∼ N (m0, v0);

f
(prior)
Θ2

(σ̃2
s)dist∼ IG(lam0, alp0);

(9.60)

for prior parameters {m0, v0, lam0, alp0}, selected for distribution
flatness, but not too flat.
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The MCMC Gibbs sampler version uses the successive sampling updates
from the posterior conditionals (9.59) of similar distributions to the priors
(9.86) ,

µ̃
(g+1)
ld

dist∼ f (post)
(
µ̃ld|(σ̃2

s)(g), ~x
)
∝ N (m(g)

1 , v
(g)
1 );

(σ̃2
s)(g+1) dist∼ f (post)

(
σ̃2

s |µ̃(g+1)
ld , ~x

)
∝ IG(lam

(g+1)
1 , alp1).

(9.61)

Upon completing the square for the prior mean normal with the likelihood
normal and similarly combining the pair of gamma distributionsa,

m
(g)
1 =

nv0Xn+m0(σ̃2
s)(g)

nv0+(σ̃2
s)(g) ; v

(g)
1 =

v0(σ̃2
s)(g)

nv0+(σ̃2
s)(g) ;

alp1 = n
2 +alp0; lam

(g+1)
1 = n

2

(
S2

n+
(
Xn−µ̃

(g+1)
ld

)2)
+lam0.

(9.62)

aSee similar results on Lecture 8, pp. 50-52 for a similar problem using a proper conjugate
pair in the normal distribution example. See also Fink (1997) and Wikipedia page.
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◦ 9.10.2. Black Scholes European Option Pricing Example:

Option prices, though a mixed set of data are observed. In 1973 Black and
Scholes finally published their famous paper with Merton publishing a
lengthy justification and generalization of it at the same time. Their model
uses a geometric Brownian motion representation of the asset underling
the option. For the call European option with the possibility to buy the
asset at a strike price K and the time of maturity T from the beginning of
the contract results in the formula of Black and Scholes,

C(t)= BS(S(t), t; K, T, σs, r)

= S(t)F (n)(d1(S(t), t); 0, 1)

−e−r(T −t)KF (n)(d1(S(t), t)−σs

√
T − t; 0.1),

(9.63)

where the argument of the first standard normal distribution is

d1(S(t), t)=
log(S(t)/K)+(r+σ2

s/2)(T −t)

σs

√
T −t

(9.64)

and it is assumed that the spot rate of interest r is known.
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There is one technical problem them here which is called the stochastic
singularity that arises with the solution simultaneous equation where
there are some imperfection, so in the spirit of least square errors and
kernel smoothing we will add a small normal error to the discretized
call option price

Ci =BS(Si, ti; K, T, σs, r)+σcZc,i, (9.65)

where Zc,i
dist= N (0, 1), and couple this with the log-return equation

LRi =log(Si/Si−1)=µld∆t+σs

√
∆tZs,i = µ̃ld+σ̃sZs,i (9.66)

for i=1:n, where ∆t is known, ti = i∆t and tn =n∆t=T . Note
that the call price is a conditional normal mixture and not a simple normal
due to the nonlinear Black-Scholes function BS. The likelihood
function is joint with asset and option likelihoods,

fs,c

(
~S, ~C|µ̃ld, σ̃2

s , σ2
c

)
=
∏n

i=1 fc

(
Ci|Si, σ̃2

s , σ2
c

)
×fs

(
log(Si/Si−1)|µ̃ld, σ̃2

s

)
.

(9.67)
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Due to hedging, µ̃ld only appears in the asset part of the likelihood
distribution fs and this is the same as previously in (9.57) with
xi =LRi.

The option part of the likelihood fc inherits the normal distribution
from the heuristic error σcZc,i,

fc

(
Ci|Si, σ̃2

s , σ2
c

)
∝exp

(
−

1

2σ2
c

(Ci−B̃Si(Si; σ̃s))2
)

. (9.68)

where r̃=r∆t,

B̃Si(Si; σ̃s)= SiF
(n)
(
d̃1,i(Si; σ̃s); 0, 1

)
−e−er(n−i)F (n)

(
d̃1,i(Si; σ̃s)−σ̃s

√
n−i; 0, 1

) (9.69)

and

d̃1,i(Si; σ̃s)=(log(Si/K)+(r̃+σ̃2
s/2)(n− i))/(σ̃s

√
n−i). (9.70)
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For the MCMC simulation algorithm, again be can sample the joint
posterior distribution f

(post)
~Θ

(µ̃ld, σ̃2
s , σ2

c |~S, ~C) by the
Hammersley-Clifford theorem through the full posterior conditionals
f

(post)
Θ1

(µ̃ld|σ̃2
s , ~S), f

(post)
Θ2

(σ̃2
s |µ̃ld, ~S) and f

(post)
Θ3

(σ2
c |σ̃2

s , ~S, ~C).

The full conditional priors are assumed to be independent, such that

f
(prior)
Θ1

(µ̃ld)
dist∼ N (ms, vs);

f
(prior)
Θ2

(σ̃2
s)dist∼ IG(lams, alps);

f
(prior)
Θ3

(σ2
c)dist∼ IG(lamc, alpc).

(9.71)

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture9-page32 — Floyd B. Hanson



For the posterior MCMC sampling, the full conditional posteriors for
both µ̃ld and σ2

c will be conjugate to the prior, but since σ̃2
s is strongly

coupled to the option pricing formula of unknown distribution, the more
general Metropolis-Hastings algorithm will be needed. Thus, the
successive iterations are of the form

µ̃
(g+1)
ld

dist∼ f (post)
(
µ̃ld|(σ̃2

s)(g), ~S
)

∝ N (m̃(g)
s , ṽ(g)

s );

(σ2
c)(g+1) dist∼ f (post)

(
σ2

c |(σ̃2
s)(g), ~S, ~C

)
∝ IG(λ̃(g+1)

c , α̃c).

(σ̃2
s)(g+1) dist∼ f (post)

(
σ̃2

s |µ̃(g+1)
ld , (σ2

c)(g+1), ~S, ~C
)

∝ ??

(9.72)

An alternate way of sampling (σ̃2
s)(g+1) is to use the independence

version of the Metropolis algorithm which includes von Neumann’s
acceptance and rejection technique and was discussed on pp. 19-20 of
this lecture.
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◦ 9.10.2. Merton’s Jump-Diffusion Model Example:

This is a multivariate extension of Merton’s (1976) pioneering
jump-diffusion paper. The asset price vector is ~S = [Sj]Kj=1 and it
satisfies the geometric Brownian-Poisson motion,

d~S(t)= ~µ.∗ ~S(t)dt+~σ.∗ ~S(t).∗d ~W (t)

+~S(t).∗(e~Q−~1)dP (t),
(9.73)

where elemental MATLAB dot-multiplication is used, the
{~µ, ~W (t), ~Q,~1, P (t), ~λ} are all K dimensional vectors with, except
for dP (t), otherwise, the usual assumptions. The diffusion matrix is
Σ≡~σ~σ> Although is is assumed that the Poisson jumps are common
jumps so dP (t) is a scalar, the log-jump-amplitudes
~Q

dist= N (~µJ , ΣJ)are a multivariate normal with mean vector ~µJ and
covariance matrix ΣJ . There can be correlated log-jump-amplitudes.
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Transforming the component form of (9.73) to obtain the log-returns,
assuming that more than one jump per trading day is insignificant,

LRj(t)= log(Sj(t)/Sj(t−∆t))

= µj∆t+σj∆Wj(t−∆t)+ Qj∆P (t−∆t),
(9.74)

for j =1:K. Next descretizing to obtain the daily log-returns,
LRj,i = µj∆t+σj

√
∆tZj,i+ Qj,iNi, (9.75)

for i=1:n, with obvious substitution for certain terms. Finally,
converting back to vector form,

~LRi = ~µs+~σs.∗ ~Zi+ ~QiNi, (9.76)

where ~µs ≡ [µj∆t]Kj=1 and ~σs ≡
[
σj

√
∆t
]K

j=1
, Σs ≡~σs~σ

>
s =Σ∆t,

and E[Ni]=ΛJ ≡λ∆t, absorbing the time-step. Once ΛJ , the average
jump count, is found, then the validity of the Bernoulli 0-1 jump law can
be demonstrated by MATLAB computation if

P2=1-poisscdf(2,LamJ) (9.77)
is negligible, i.e., two or more jumps are unlikely.
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For the hybrid MCMC approximation, the unknown parameters are

Θ=[~µs; Σs, ΛJ , ~µJ , ΣJ ], (9.78)
a structure of a scalar, vectors and matrices. The latent or hidden
variables, due to the compound Poisson jump process, are

Y =[ ~N ; Q]=
[

~N ; [~Qi]ni=1

]
. (9.79)

The observation asset prices is an array of K-vectors,

X =[ ~Xi]ni=1 =[ ~LRi]ni=1 =[[LRj,i]Kj=1]
n
i=1. (9.80)

Assuming the that the log-returns are IID, then the full likelihood
distribution is decomposable,

fX|Θ,Y (x|θ, y)=
n∏

i=1

f ~Xi|Θ,~Yi

(
~xi|θ, Ni, ~Qi

)
, (9.81)

where

f ~Xi|Θ,~Yi

(
~xi|θ, Ni, ~Qi

)
∝ |Σs|−0.5exp

(
−0.5

(
~xi−~µs−Ni

~Qi

)>

Σ−1
s

(
~xi−~µs−Ni

~Qi

))
.

(9.82)

The linear algebra complexity grows with dimension.
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The observed likelihood in the (0-1) jump-case, is the conditional
marginal distribution

f ~Xi|Θ(~xi|θ)'
1∑

k=0

δk,0+ΛJδk,1

1+ΛJ

∫
RK

f ~Xi|Θ,~Yi
(~xi|θ, k, ~qi)

·f (n)(~qi; ~µJ , ΣJ)d~qi,

(9.83)

will still be a complicated mixture of multivariate normals.

By Hammersley-Clifford, the posterior parameter full conditionals
characterizing the full parameter posterior f

(post)
Θ|Y,X(θ|y, x) are

f
(post)
~Θs| ~N,Q,X

(~µs; Σs|~n, q, x);

f
(post)
~ΘJ | ~N,Q

(~µJ ; ΣJ |~n, q);

f
(post)

ΛJ | ~N
(ΛJ |~n).

(9.84)
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The latent state full conditionals characterizing the full latent state
posterior f

(post)
Y |Θ,X(y|θ, x)are

f
(post)

Ni|~Θ, ~Qi, ~Xi
(ni|θ, ~qi, ~xi);

f
(post)
~Qi|~Θ,Ni, ~Xi

(~qi|θ, ni, ~xi);
(9.85)

for i=1:n.
The standard conjugate priors are

f
(prior)
Θ1

(~µs)
dist∼ N (~ms, Σ(prior)

s );

f
(prior)
Θ2

(Σs)
dist∼ IW(Ψs, dofs);

f
(prior)
Θ3

(~µJ)dist∼ N (~mJ , Σ(prior)
J );

f
(prior)
Θ4

(ΣJ)dist∼ IW(ΨJ , dofJ);

f
(prior)
Θ5

(ΛJ)dist∼ B(aJ , bJ);

(9.86)

where B(a, b) is the beta distribution introduced in (8.8;L8-p5) and the
IW(Ψ, dof) is the inverse Wishart distribution, also denoted by W−1.
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The Wishart distribution is the distribution of the sample covariance
matrix for samples from multivariate normals, so the inverse Wishart is
conjugate to the multivariate normala. The Wishart and inverse Wishart
distribution are related by

If Σdist∼ W−1(Ψ, dof); Then Σ−1 dist∼ W(Ψ−1, dof); (9.87)

The Wishart and inverse Wishart densities are given by

fW (W |Σ, dof)∝ |W |(dof−K−1)/2

|Σ|dof/2 exp
(
−0.5Tr[Σ−1W ]

)
;

fW −1(W |Σ, dof)∝ |Σ|dof/2

|W |(dof+K+1)/2 exp
(
−0.5Tr[Σ W −1]

)
;

(9.88)

where |Σ| = Det[Σ| denotes the determinant of Σ. Note that the forms
are very similar except for interchanging the two K × K symmetric
positive semi-definite matrices Σ and W .

aSee Wikipedia on the three related articles Wishart Distribution, Inverse Wishart Dis-
tribution and Estimation of Covariance Matrices.
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Why are the exponents is the form of the trace,
Tr[AB]=

∑K
i=1

∑K
j=1 Ai,jBi,j of the product of two symmetric

matrices, rather than the normal quadratic form of the likelihood (9.82)?
The reason is that the trace of two matrices in easier to handle in the
Bayesian relations and do sum over the data using the trace form, making
it closer to the case to the inverted gamma distribution, which happens to
be the inverse Wishart distribution in K =1 dimension. If, in the
quadratic form in the exponent of (9.82), we let ~Di =(~xi−~µs−Ni

~Qi),
be the deviation, A= ~Di

~D>
i , B=Σ−1

s and noting that both are
symmetric by definition,

~DiB ~D>
i =

∑K
k=1

∑K
j=1Di,kBk,jDi,j =

∑K
k=1

∑K
j=1Ak,jBk,j

= Tr[AB]=Tr[ ~Di
~D>

i Σ−1
s ].

(9.89)
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The trace has some nice properties for establishing that prior-posterior
distribution pairs are conjugate to the likelihood distribution. The trace is
symmetric in its two arguments:

Tr[AB]=Tr[BA]. (9.90)
The trace is linear in each of its arguments:

Tr[AB]+Tr[CB]=Tr[(A+C)B]. (9.91)
Now, suppose that the likelihood distribution for the covariance parameter
Σ and a zero-mean, K-multivariate normal distribution N (0, Σ) with a
sample of size n, so

p(X|Σ)∝ |Σ|−n/2 exp
(
−0.5X>Σ−1X)

)
∝|Σ|−n/2 exp

(
−0.5Tr[AΣ−1])

)
,

(9.92)

X = [[Xj,i]Kj=1]
n
i=1 is the K×n data and A = XX> is roughly

related to n times the sample covariance. Then selecting a potential
inverse Wishart conjugate prior with parameter K×KΨ with m degrees
of freedom,

p(Σ)dist= W−1(Ψ, m) (9.93)
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By Bayes rule,

p(Σ|X)
dist∝ p(X|Σ)×p(Σ)

∝ |Σ|−n/2 exp
(
−0.5Tr[AΣ−1])

)
·|Ψ|m/2|Σ|−(m+K+1)/2 exp

(
−0.5Tr[ΨΣ−1]

)
∝ |Ψ|m/2|Σ|−(m+n+K+1)/2 exp

(
−0.5Tr[(A+Ψ)Σ−1]

)
dist∝ W−1(A + Ψ, m + n),

(9.94)

so the inverse Wisthart posterior parameters are Ψ(post) =A+Ψ and
m(post) =m+n.

MATLAB only has random number generators in the Statistics Toolbox,
W=wishrnd(sigma,dof) is the Wishart RNG and
IW=iwishrnd(sigma,dof) for the inverse Wishart RNGa.

aHowever, David Shera has a nice collection of MCMC and related codes in mcmc at
MATLAB Central, including codes for RNGs, densities, Metropolis-Hastings and a demo.
showing how to use the W−1 RNG and get basic statistics.
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The full conditional conjugate posteriors are as follows:
The posterior for the Bayesian calculation of the average jump count
parameter ΛJ is

f (post)(ΛJ | ~N)∝
∏n

i=1 f(Ni|ΛJ)×f (prior)(ΛJ)

∝ Λ
Pn

i=1 Ni

J ×ΛaJ−1
J (1−ΛJ)bJ−1 dist∝ B(a∗

J , b∗
J),

(9.95)

where we use a simple 0-1 law

f(Ni|Λ) 1=
1

(1+Λ)1−Ni

ΛNi

(1+Λ)Ni
=ΛNi , (9.96)

so a∗
J =aJ +

∑n
i=1 Ni and b∗

J =bJ =1, since it seems to be redundant
with the simpler form. However, Johannes and Polson (2006) use

alternate form f(Ni|Λ) 2=(1−Λ)1−NiΛNi which is closer to a full
beta conjugate prior fB(ΛJ |a, b) and b∗ =b+n−

∑n
i=1 Ni, but less

valid as a Poisson distribution when Λ is near one.
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The full conditional conjugate posterior for the log-jump-amplitude
vector ~Qi is

f (post)(~Qi| ~Xi, Ni, Θ)∝ exp
(
−0.5

(
~D>

i Σ−1
s

~Di

)
+
(

~Qi−~µJ

)>
Σ−1

s

(
~Qi− ~µJ

))
cts∝ exp

(
−0.5

(
~Qi− ~mi

)>
V −1

i

(
~Qi− ~mi

))
,

(9.97)

where

V −1
i =

(
Σ(post)

s,i

)−1

=NiΣ−1
s +Σ−1

J ;

~mi =~µ
(post)
J,i =Σ−1

J

(
NiΣ−1

s (~xi − ~µ)+Σ−1
J ~µJ

)
.

(9.98)
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The jump-counter Ni is discete with Bernoulli 0 − 1 values and so
must be handled as such. The probability of a jump is

Prob[Ni =1|~Qi, ~Xi, θ]∝ f(~xi|Ni =1, ~Qi, θ)Prob[Ni =1|θ]

∝ ΛJ
1+ΛJ

exp
(
−0.5 ~D>

i,1Σ
−1
s

~Di,1

)
,

(9.99)

where when Ni =1 then ~Di,1 =~xi−~µs− ~Qi.

Prob[Ni =0|~Qi, ~Xi, θ]∝ f(~xi|Ni=0, ~Qi, θ)Prob[Ni=0|θ]

∝ 1
1+ΛJ

exp
(
−0.5( ~Di,0)>Σ−1

s
~Di,0

)
,

(9.100)

where when Ni = 0 then ~Di,0 =~xi−~µs.

That completely specifies the MCMC algorithm of the multivariate asset
Merton jump-diffusion problem.
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Using the Gibbs sampler iterations, the full conditonal posterior
distributions can be sampled directly, given (9.96,9.99,9.100) for Ni and
(9.97) for ~Qi,

f
(post)
Θs1

(~µs|Σs, N, Q, X)dist∼ N (~ms, Vs);

f
(post)
Θs2

(Σs|~µs, N, Q, X)dist∼ IW(Ψs, dofs);

f
(post)
ΘJ1

(~µJ |ΣJ , N, Q, X)dist∼ N (~mJ , VJ);

f
(post)
ΘJ2

(ΣJ |~µJ , N, Q)dist∼ IW(ΨJ , dofJ);

f
(post)
Y1

(~Qi|Ni, ~Xi, θ)dist∼ N (µ(post)
J , (ΣJ)(post));

f
(post)
Y2

(Ni|~Qi, ~Xi, θ)dist∼ N (µJ ,(post) , (ΣJ)(post)).

(9.101)

For instance, by Bayes rule, the computational form for ~µs is

f
(post)
Θs1

(~µs|Σs, N, Q, X)∝fX(X|~µs, Σs, N, Q)

×f
(post)
Θs1

(~µs).
(9.102)

FINM 331/Stat 339 W10 Financial Data Analysis — Lecture9-page46 — Floyd B. Hanson



Figure 9.1: MCMC Table 1, page 47, results from Johannes and Polson
(2006)for K = 2 index asset example, the daily S and P500 (subscript 1) and
Nasdaq 100 (subscript 2; if no 1 or 2 subscript then is value in common) index
returns from 1986-2000 (note: includes 1987).
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Figure 9.2: MCMC Figure 2, page 48, trajectories of final Gibbs iterations
from Johannes and Polson (2006)for K =2 index asset example, the daily S and
P500 and Nasdaq 100 2 index returns from 1986-2000 (note: includes 1987).
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* Reminder: Lecture 9 Homework Posted in Chalk Assignments,
due in PDF by Lecture 10 in Chalk Assignments!

* Summary of Lecture 9:
1. Bayesian Estimation Estimation in Finance
2. More Realistic Models
3. Bayesian Formulation Summary
4. Bayesian Model Specification
5. Hammersley-Clifford and Full Conditionals
6. Marginal Densities
7. Hammersley-Clifford Multivariate Case
8. Gibbs Sampling
9. Metropolis MCMC Algorithm

10. Bayesian Estmation for SVJD e
11. Bayesian Estmation for Options
12. Bayesian Estmation for Diffusion Asset Pricing Example
13. Bayesian Estmation for Black-Scholes Example
14. Bayesian Estmation for Multivariate Merton JD Example
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