FINM331/STAT339 Financial Data Analysis - Hanson - Winter 2010

Lecture 1 Homework: Introduction with Sampling

(due by Lecture 2 in Chalk FINM331 Assignments submenu)

- You must show your work, code and/or worksheet for full credit.
- Justifying each non-trivial step with a reason is part of showing your work.
- There are 10 points per question if correct and best answer.
- There are negative points for missing homework sets.

1. If X and Y are independent random variables with means $\left(\mu_{X}, \mu_{Y}\right)$ and variances $\left(\sigma_{X}^{2}, \sigma_{Y}^{2}\right)$, respectively, and $Z=X-Y$ find $\operatorname{Cov}[X, Z]$, the correlation between X and Z, and the correlation between Y and Z. (Adapted from Rice, p. 170, problem 47.)
2. Use the completing the square technique to evaluate the expectation $\mathrm{E}_{X}[\exp (\alpha+\beta X)]$ with respect to the normal density $f_{X}^{(n)}\left(x ; \mu, \sigma^{2}\right)$, i.e., with mean μ and variance σ^{2}, for constants (α, β). (See Lecture 1, pp. 39ff.)
3. Suppose that a measurement has mean $\mu=0.035$ and $\sigma=0.25$. Let \bar{X} be the average of n such measurements. Compute estimates, using the CLT, how large should n be so that $\operatorname{Prob}(|\bar{X}-\mu|<2 \sigma] \geq$ pci for each of the four (4) values pci $=[0.95,0.975,0.99,0.995]$. (Adapted from Rice, p. 189, problem 17, but see pp. 184ff and Lecture 1, p. 46.)
4. Select a standardized IID RVs X_{i} for $i=1: n$ that can be used to form a proper sample mean for the Central Limit Theorem (CLT), show that the X_{i} are independent, and find the standardized IID RVs appropriate for the CLT in each case. (See also, Rice, pp. 188ff.)
Do this for
(a) The additive asset model of Lecture 1, Sect. 1.4, p. 23, eq. (19).
(b) The multiplicative asset model of Lecture 1, Sect. 1.5, p. 27, eq. (25).
5. Compute the Monte Carlo estimate for the risk-neutral pricing of aEuropean put option, i.e., with discounted payoff $\exp (-r T) \max (K-A, 0)$ where K is the strike price, T is the expiration date, A is the asset price underlying the option, and r is the risk-free interest rate; use the parameter values $\{A 0=110 ; K=100 ; r=$ $0.035 ;$ std $=0.25 ; T=0.5 ; N=2 . e 5 ;\}$ for four (4) confidence interval percentiles $P C=[0.95,0.975,0.99,0.995]$. (See Lecture 1, p. 66, code mcm4eurocall.m.)
