FINM331/STAT339 Financial Data Analysis - Hanson - Winter 2010

Lecture 2 Homework:

(due by Lecture 3 in Chalk FINM331 Assignments submenu)

- You must show your work, code and/or worksheet for full credit.
- Justifying each non-trivial step with a reason is part of showing your work.
- There are $\mathbf{1 0 - 2 0}$ points per question if correct and best answer.
- Report numerical values in at least 4 significant digits (e.g., for errors use format like $\% 8.3 \mathrm{e}$).

1. Compute the Monte Carlo estimate for the risk-neutral pricing of a European put option, i.e., with discounted payoff $\exp (-r T) \max (K-A, 0)$ where K is the strike price, T is the expiration date, A is the asset price underlying the option, and r is the risk-free interest rate; use the parameter values $\{A 0=110 ; K=100 ; r=$ $0.035 ;$ std $=0.25 ; T=0.5 ; N=2 . e 5 ;\}$ for four (4) confidence interval percentiles $P C=[0.95,0.975,0.99,0.995]$. (See Lecture 2, p. 18 and Chalk/CourseDocs, code mcm4eurocall.m.) (10 points)
2. Compute the normalization constant $C^{(a \mathrm{c})}$, the mean $\mu^{(\mathrm{ac})}$ and standard deviation $\sigma^{(a c)}$ by the normal Monte Carlo method a illustrated in Lecture 2, pp. 14-16 acceptreject code (abbreviated version) mcm2acceptreject09.m, with complete test version in Chalk/CourseDocs. In particular, the acceptable or truncated density $f_{X}^{(\mathrm{ac})}(x)=$ $f_{X}(x) / C^{(\text {ac) }}$ on (c, d), where $f_{X}(x)$ is a normal probability density with mean μ and standard deviation σ. Let $\mu=2.4 \mathrm{e}-4, \sigma=0.011, c=-0.095$ and $d=0.110$. points)
(a) Show that $C^{(a c)}=\int_{c}^{d} f_{X}(x) d x$ and use MATLAB's normcdf to compute a benchmark numerical value.
(b) Modify the cited code to the extent necessary. Use sample sizes of $n=\left\{10^{2}, 10^{3}, 10^{4}, 10^{5}\right\}$ for the estimates expectations of each of $g(x)=\{1, x,(x-$ $\left.\left.\mu^{(\mathrm{ac})}\right)^{2}\right\}$ on the accepted interval (c, d), i.e, for the $g(x) \mathbf{1}^{(\mathrm{ac})}(x)$, where $\mathbf{1}^{(\mathrm{ac})}(x)$ is the indicator function for $x \in(c, d)$, to obtain Monte Carlo estimates of $C^{(\mathrm{ac})}, \mu^{(\mathrm{ac})}$ and $\left(\sigma^{(\mathrm{ac})}\right)^{2}$, respectively. Use the estimate of $\left(\sigma^{(\mathrm{ac})}\right)^{2}$ to compute the estimate of the standard error for the estimate of $\mu^{\text {(ac) }}$ (Lect. 2, p. 3, 15-17).
(c) Compare relative differences between the estimates of $C^{(\mathrm{ac})}$ from parts (b) relative to (a), means $\mu^{(a c)}$ relative to μ and standard deviations $\sigma^{(a c)}$ relative to σ, for each n. Tabulate, plot and discuss the estimated accepted results.
3. Consider the small time step, $\Delta t \ll 1$, so the zero-one Bernoulli jump law is valid for the jump part of the log-return asset time-series jump-diffusion model from Lecture 2, Eq. (28),

$$
\mathrm{LR}_{i}=\log \left(A_{i+1}\right)-\log \left(A_{i}\right) \stackrel{\Delta t}{=} \sigma \sqrt{\Delta t} Z_{i}+\left(\mu-\sigma^{2} Z_{i}^{2} / 2\right) \Delta t+Q_{i} Y_{i}
$$

where Z_{i} are IID normal with zero-mean and unit-variance, Y_{i} are IID Poisson with $\dot{\lambda} \Delta t$ mean and variance, and $Q_{i} \equiv \log \left(1+\nu_{i}\right)$ are IID with μ_{Q}-mean and σ_{Q}-variance. All three IID RVs are pairwise independent. The parameters $\left\{\mu, \sigma, \lambda, \mu_{Q}, \sigma_{Q}\right\}$ are constants. Find $\mathrm{E}\left[\mathrm{LR}_{i}\right]$ and $\operatorname{Var}\left[\mathrm{LR}_{i}\right]$ to $\mathrm{O}(\Delta t)$, i.e., neglect any power of Δt greater than one. \{Hint: $\operatorname{Var}\left[\mathrm{LR}_{i}\right]$ is easier if expanded in deviations from the mean.\} (10 points)

