FINM331/STAT339 Financial Data Analysis – Hanson – Winter 2010 Lecture 2 Homework:

(due by Lecture 3 in Chalk FINM331 Assignments submenu)

- You must show your work, code and/or worksheet for full credit.
- Justifying each non-trivial step with a reason is part of showing your work.
- There are 10-20 points per question if correct and <u>best</u> answer.
- Report numerical values in at least 4 significant digits (e.g., for errors use format like %8.3e).
- 1. Compute the Monte Carlo estimate for the risk-neutral pricing of a European put option, i.e., with discounted payoff $\exp(-rT) \max(K A, 0)$ where K is the strike price, T is the expiration date, A is the asset price underlying the option, and r is the risk-free interest rate; use the parameter values $\{A0 = 110; K = 100; r = 0.035; std = 0.25; T = 0.5; N = 2.e5; \}$ for four (4) confidence interval percentiles PC = [0.95, 0.975, 0.99, 0.995]. (See Lecture 2, p. 18 and Chalk/CourseDocs, code mcm4eurocall.m.) (10 points)
- 2. Compute the normalization constant $C^{(ac)}$, the mean $\mu^{(ac)}$ and standard deviation $\sigma^{(ac)}$ by the normal Monte Carlo method a illustrated in Lecture 2, pp. 14-16 accept-reject code (abbreviated version) mcm2acceptreject09.m, with complete test version in Chalk/CourseDocs. In particular, the acceptable or truncated density $f_X^{(ac)}(x) = f_X(x)/C^{(ac)}$ on (c, d), where $f_X(x)$ is a normal probability density with mean μ and standard deviation σ . Let $\mu = 2.4\text{e-}4$, $\sigma = 0.011$, c = -0.095 and d = 0.110. (20 points)
 - (a) Show that $C^{(ac)} = \int_c^d f_X(x) dx$ and use MATLAB's normcdf to compute a benchmark numerical value.
 - (b) Modify the cited code to the extent necessary. Use sample sizes of $n = \{10^2, 10^3, 10^4, 10^5\}$ for the estimates expectations of each of $g(x) = \{1, x, (x \mu^{(ac)})^2\}$ on the accepted interval (c, d), i.e., for the $g(x)\mathbf{1}^{(ac)}(x)$, where $\mathbf{1}^{(ac)}(x)$ is the indicator function for $x \in (c, d)$, to obtain Monte Carlo estimates of $C^{(ac)}, \mu^{(ac)}$ and $(\sigma^{(ac)})^2$, respectively. Use the estimate of $(\sigma^{(ac)})^2$ to compute the estimate of the standard error for the estimate of $\mu^{(ac)}$ (Lect. 2, p. 3, 15-17).
 - (c) Compare relative differences between the estimates of $C^{(ac)}$ from parts (b) relative to (a), means $\mu^{(ac)}$ relative to μ and standard deviations $\sigma^{(ac)}$ relative to σ , for each *n*. Tabulate, plot and discuss the estimated accepted results.
- 3. Consider the small time step, $\Delta t \ll 1$, so the zero-one Bernoulli jump law is valid for the jump part of the log-return asset time-series jump-diffusion model from Lecture 2, Eq. (28), LP = log(t) $\Delta t = \sqrt{2\pi^2} (a) \Delta t = 0.14$

(a), $\operatorname{LR}_{i} = \log(A_{i+1}) - \log(A_{i}) \stackrel{\Delta t}{=} \sigma \sqrt{\Delta t} Z_{i} + (\mu - \sigma^{2} Z_{i}^{2}/2) \Delta t + Q_{i} Y_{i},$

where Z_i are IID normal with zero-mean and unit-variance, Y_i are IID Poisson with $\lambda \Delta t$ mean and variance, and $Q_i \equiv \log(1 + \nu_i)$ are IID with μ_Q -mean and σ_Q -variance. All three IID RVs are pairwise independent. The parameters $\{\mu, \sigma, \lambda, \mu_Q, \sigma_Q\}$ are constants. Find E[LR_i] and Var[LR_i] to O(Δt), i.e., neglect any power of Δt greater than one. {*Hint:* Var[LR_i] *is easier if expanded in deviations from the mean.*} (10 points)