FINM331/STAT339 Financial Data Analysis - Hanson - Winter 2010

Lecture 3 Homework:

(due by Lecture 4 in Chalk FINM331 Assignments submenu)

- You must show your work, code and/or worksheet for full credit.
- Justifying each non-trivial step with a reason is part of showing your work.
- There are 10 or more points per question if correct and best answer.
- Report numerical values in at least 4 significant digits (e.g., for errors use format like $\% 8.3 e$).

1. For the 31-December-08 to 31-December-09 get the daily S\&P500 Index adjusted closings with symbol ^GSPC. For example, Yahoo! Finance has Historical Prices for each quote symbol where you can enter a range of dates for daily (or other) prices, then download spreadsheet (comma-separated, 'name'.cvs), and use MATLAB to convert the Adj Close (last) column to a MATLAB readable 'name'.mat file ${ }^{1}$
(a) Compute the 2009 year of log-returns between the day and the day before;
(b) Compute the mean, unbiased variance, unbiased standard deviation, coefficient of skew and coefficient of kurtosis, assuming the daily 2009 log-return data consists of IID RVs.
(c) Compute the quartiles of the 2009 log-returns for the probabilities $P=[0.00,0.01,0.05,0.10,0.25,0.50,0.75,1.00]$;
(d) Plot the histogram of the 2009 log-returns with an appropriate bin size that gives an unbiased presentation of the tail and central parts.
(e) Get a Quantile-Quantile plot for the 2009 daily log-returns against a comparable normal simulation so that it has the same sample size, mean and standard deviation of part (b). (25 points)
2. The N-day Count:
(a) Prove Theorem 3.1 (L3-p45) on the Log-Value-at-Risk LVaR \sqrt{N} factor to convert from the daily $\operatorname{LVaR}_{1}(\alpha)$ to $\operatorname{LVaR}_{N}(\alpha)$, in Lecture 3, page 45.
(b) Using the same k-day IID normal distribution with variance $\sigma^{2} k \Delta t$ and zeromean of the theorem to find the number of days k that it would take to make the cumulative tail probability (i.e., the probability on $\left.\left(-\infty,\left|L R_{i}\right|\right]\right)$ at least 0.25 , if possible, for the both the minimum and maximum 2009 daily log-returns in Problem 1, using the the variance and average trading day Δt in year units. (10 points)
3. Using the 2009 log-return data and comparable normal of Problem 1:
(a) For both, compute Log-VaR LVaR for risk probabilities, $\boldsymbol{\alpha}=[0.001,0.01 .02,0.025,0.050]$; and again compute the relative differences (errors of the normal?). Discuss the normal bias toward tail data.
(b) Do the same for the Quantile-VaR QVaR. (10 points)
[^0]
[^0]: ${ }^{1}$ Every student seems to have own procedure for this, but a crudely simple way is open 'name'. cvs file in spreadsheet to make columns; copy column minus Adj Close heading; paste to named Variable in MATLAB Workspace; save as 'name'.mat in code directory; use in 'code'.m code with load 'name'.mat; command.

