FINM331/STAT339 Financial Data Analysis - Hanson - Winter 2010

Lecture 4 Homework:

(due by Lecture 5 in Chalk FINM331 Assignments submenu)

- You must show your work, code and/or worksheet for full credit.
- Justifying each non-trivial step with a reason is part of showing your work.
- There are 10 or more points per question if correct and best answer.
- Report numerical values in at least 4 significant digits (e.g., for errors use format like $\% 8$. 3 e).

1. (10 points) Let $\boldsymbol{X}_{0} \stackrel{\text { dist }}{=} \mathcal{N}(0,1)$, i.e., a standard normal, and $\operatorname{Prob}\left[\boldsymbol{Z}_{i}=-1\right]=0.5=$ $\operatorname{Prob}\left[\boldsymbol{Z}_{i}=+\mathbf{1}\right]$ for $\boldsymbol{i}=\mathbf{1 : 2}$ be three independent RVs. Then, define $\boldsymbol{X}_{\mathbf{1}} \equiv \boldsymbol{Z}_{\mathbf{1}} \cdot \boldsymbol{X}_{\mathbf{0}}$ and $\boldsymbol{X}_{2} \equiv \boldsymbol{Z}_{2} \cdot \boldsymbol{X}_{0}$.
(a) Prove that $\boldsymbol{X}_{1} \stackrel{\text { dist }}{=} \mathcal{N}(0,1), \boldsymbol{X}_{\mathbf{2}} \stackrel{\text { dist }}{=} \mathcal{N}(0,1)$ and that $\rho_{\boldsymbol{X}_{1}, \boldsymbol{X}_{\mathbf{2}}}=\mathbf{0}$.
(b) Show that \boldsymbol{X}_{1} and \boldsymbol{X}_{2} are NOT independent.

Remark: This problem is is a standard counterexample problem that zero correlation does not imply independence, in general. (Adapted from Carmona (2004) p.100)
2. (20 points) In order to convert an invertible, fully infinite domain distribution $\boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{x} ; \overrightarrow{\boldsymbol{\theta}})$, with parameter vector $\overrightarrow{\boldsymbol{\theta}}$, to a realistic, renormalized finite domain (FD) distribution, on $\left[\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right], \boldsymbol{R}_{1}<\boldsymbol{\mu}<\boldsymbol{R}_{\mathbf{2}}$, with basic statistics $\left(\boldsymbol{\mu}, \sigma^{2}\right) \in \overrightarrow{\boldsymbol{\theta}}$,

$$
\begin{equation*}
u=F_{X}^{(\mathrm{fd})}\left(x ; \vec{\theta}, R_{1}, R_{2}\right) \equiv\left(F_{X}(x ; \vec{\theta})-F_{X}\left(R_{1} ; \vec{\theta}\right)\right) /\left(F_{X}\left(R_{2} ; \vec{\theta}\right)-F_{X}\left(R_{1} ; \vec{\theta}\right)\right) \tag{1}
\end{equation*}
$$

where \boldsymbol{u} is clearly a standard uniform sample variable, i.e., on $(0,1)$.
(a) Show that the finite domain sample variable \boldsymbol{x} on $\left(\boldsymbol{R}_{\mathbf{1}}, \boldsymbol{R}_{2}\right)$ is related to the standard uniform sample variable by

$$
\begin{equation*}
x=\left(F_{X}\right)^{-1}\left(\left(F_{X}\left(R_{2} ; \vec{\theta}\right)-F_{X}\left(R_{1} ; \vec{\theta}\right)\right) \cdot u+F_{X}\left(R_{1} ; \vec{\theta}\right)\right) \tag{2}
\end{equation*}
$$

(b) In general, the properties of the parameter vector will not be preserved except partially in the some cases with symmetric ranges, so show this for the case of the finite-domain normal (FDN) with statistics $\left(\boldsymbol{\mu}^{(\mathrm{fdn})},\left(\boldsymbol{\sigma}^{(\mathrm{fdn})}\right)^{2}\right)$ by showing

$$
\begin{equation*}
\mu^{(\mathrm{fdn})}=\mu-\sigma^{2}\left(f_{2}-f_{1}\right) / F_{12} \tag{3}
\end{equation*}
$$

where $\boldsymbol{F}_{1} \equiv \boldsymbol{F}_{X}^{(\mathrm{n})}\left(\boldsymbol{R}_{1} ; \mu, \sigma^{2}\right), \boldsymbol{F}_{2} \equiv \boldsymbol{F}_{X}^{(\mathrm{n})}\left(\boldsymbol{R}_{2} ; \mu, \sigma^{2}\right), \boldsymbol{F}_{12} \equiv \boldsymbol{F}_{2}-\boldsymbol{F}_{1}$, $f_{1} \equiv f_{X}^{(\mathrm{n})}\left(R_{1} ; \mu, \sigma^{2}\right), f_{2} \equiv f_{X}^{(\mathrm{n})}\left(R_{2} ; \mu, \sigma^{2}\right)$, and

$$
\begin{align*}
\left(\sigma^{(\mathrm{fdn})}\right)^{2}= & \left(\mu-\mu^{(\mathrm{fdn})}\right)^{2}+\sigma^{2}\left(1-\left(\left(R_{2}-\mu\right) f_{2}+\left(\mu-R_{1}\right) f_{1}\right) / F_{12}\right. \tag{4}\\
& \left.-2\left(\mu-\mu^{(\mathrm{fdn})}\right)\left(f_{2}-f_{1}\right) / F_{12}\right)
\end{align*}
$$

$\{$ Hint: Try integration by parts only with powers of $(\boldsymbol{x}-\boldsymbol{\mu})$ multiplying the density.\}
(c) Show, if $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}$ are symmetrically located about the mean $\boldsymbol{\mu}$, then $\boldsymbol{\mu}^{(\mathrm{fdn})}=\boldsymbol{\mu}$, but that

$$
\begin{equation*}
\left(\sigma^{(\mathrm{fdn})}\right)^{2}=\sigma^{2}\left(1-2\left(R_{2}-\mu\right) f_{2} / F_{12}\right) \leq \sigma^{2} \tag{5}
\end{equation*}
$$

3. (20 points) For the 2009 S\&P 500 Index data log-returns of Homework 3 - Problem 1, pick the POT (peak over threshold value) with sufficient tail count for the left tail, so that a GP fit function is viable. Then (1) extract the values less than or equal to the POT into a vector, (2) reverse the sign, and (3) sort the values in ascending order. Then,
(a) Display and hold on to this sorted tail vector with a histogram.
(b) Use the GP distribution function gpfit.m, or equivalent, to fit to a GP power law. Display the fit GP density scaled to plot with the histogram of part (a) on its scale for comparison.
(c) use the fast exponential analysis function expan.m directly or the class modification or equivalent to fit to an exponential. Display separately.
Discuss the results.
