FINM331/STAT339 Financial Data Analysis - Hanson - Winter 2010

Lecture 6 Homework:

(due by Lecture 7 in Chalk FINM331 Assignments submenu)

- You must show your work, code and/or worksheet for full credit.
- Justifying each non-trivial step with a reason is part of showing your work.
- There are 10 or more points per question if correct and best answer.
- Report numerical values in at least 4 significant digits (e.g., for errors use format like $\% 8$.3e).

1. (20 points) The $\mathrm{LVaR}_{N}(\boldsymbol{\alpha})$ to $\mathrm{LVaR}_{1}(\boldsymbol{\alpha})$ Conversion and \boldsymbol{k}-days to Probability α Problems Revisited from HW3-Prob2:
Let the \boldsymbol{k}-day log-returns be normally distributed with mean $\boldsymbol{\mu}_{\ell} \boldsymbol{k} \boldsymbol{\Delta} \boldsymbol{t}\left(\boldsymbol{\mu}_{\ell}=\boldsymbol{\mu}-\boldsymbol{\sigma}^{\mathbf{2}} / \mathbf{2}\right)$ and variance $\boldsymbol{\sigma}^{2} \boldsymbol{k} \boldsymbol{\Delta} \boldsymbol{t}$, i.e.,

$$
\mathrm{LR}_{i+k} \stackrel{\text { dist }}{=} \mathrm{F}_{Z}^{(n)}\left(z ; \mu_{\ell} k \Delta t, \sigma^{2} k \Delta t\right)
$$

for $\boldsymbol{k}=1: N$, where $\left\{\Delta t, \mu_{\ell}, \sigma^{2}\right\}$ is found from the daily log-return data.
(a) Derive the correction to the mean-less formula $\operatorname{LVaR}_{N}(\boldsymbol{\alpha})=\sqrt{\boldsymbol{N}} \cdot \operatorname{LVaR}_{1}(\boldsymbol{\alpha})$. Discuss how this would affect the \boldsymbol{N}-day \log-Value-at-Risk in both bearish and bullish market periods with a corresponding sign of $\boldsymbol{\mu}_{\boldsymbol{\ell}}$.
(b) Find the quadratic correction to the mean-less answer to HW3-Prob2(b), call that answer $\widehat{\boldsymbol{k}}_{\mathbf{0}}^{(\boldsymbol{m})}(\boldsymbol{\alpha})$ keeping extreme tail probability

$$
F_{Z}^{(n)}\left(-\left|\mathrm{LR}^{(m)}\right| ; \mu_{\ell} k \Delta t, \sigma^{2} k \Delta t\right)=\alpha<0.5
$$

arbitrary and not necessarily 0.25 with $\left|\mathbf{L} \mathbf{R}^{(\boldsymbol{m})}\right|$ being the maximal or minimal log-returns from your HW3-Prob1 data. From your data, can you determine which solution of the quadratic gives the best positive solution for both maximal or minimal log-returns. Discuss how that solution compares to your HW3-Prob2(b) $\widehat{k}_{0}^{(m)}(\boldsymbol{\alpha})$ for both maximal or minimal log-returns $\mathbf{L} \mathbf{R}^{(m)}$.
2. (35 points) Maximum Likelihood Estimation:

For this problem, assuming the market is a zero-one jump-diffusion with constant mean, volatility, jump-rate, uniform jump-amplitude distribution $(\boldsymbol{a}, \boldsymbol{b})$ parameters.
(a) Get 12/31/2005-12/31/2009 S\&P500 Index daily log-return data (or any other four-year (or more) data range);
(b) Compute the log-returns and the average trading day Δt in years for 2006-2009;
(c) Use the MATLAB optimizer general derivative-free fminsearch optimizer to find the optimal estimates of 5 unknown jump-diffusion parameters by the negative log-likelihood method (see L6-pp. 45-59); for starting parameter values, use an estimate from the log-return data for Gaussian mean and variance, and set lambda=0. 5 .
(d) Report the optimal estimates of the 5 parameters to 4 significant digits and the final MLE estimate; also report any changes in the fminsearch options, such as TolFun or Tolx using optimset.
(e) Clearly state and label your results and discuss them.

