FINM345/STAT390 Stochastic Calculus - Hanson - Autumn 2009
Lecture 1 Homework: Stochastic Jump and Diffusion Processes
(Due by Lecture 2 in Chalk FINM345 Digital Dropbox)
You must show your work, code and/or worksheet for full credit. There are 10 points per question if correct answer.

1. Gaussian Process from Zero Mean - Unit Variance Wiener Process: Let $\left\{t_{i}: t_{i+1}=t_{i}+\Delta t_{i}, i=0: n, t_{0}=0 ; t_{n+1}=T\right\}$ be a variably spaced partition of the time interval $[0, T]$ with $\Delta t_{i}>0$. Show the following properties and justify them by giving a reason for every step, such as a property of the process or a property of expectations:
(a) Let $G(t)=\mu t+\sigma W(t)$ and $\Delta G\left(t_{i}\right) \equiv G\left(t_{i}+\Delta t_{i}\right)-G\left(t_{i}\right)$ with $\mu$ and $\sigma>0$ constants, then show that

$$
\begin{gathered}
\mathrm{E}\left[\Delta G\left(t_{i}\right)\right]=\mu \Delta t_{i} \\
\operatorname{Var}\left[\Delta G\left(t_{i}\right)\right]=\sigma^{2} \Delta t_{i}
\end{gathered}
$$

and

$$
\operatorname{Cov}\left[\Delta G\left(t_{i}\right), \Delta G\left(t_{j}\right)\right]=\sigma^{2} \Delta t_{i} \delta_{i, j}
$$

for $i, j=0: n$, where $\delta_{i, j}$ is the Kronecker delta.
(b) Simulate the trajectories of the processes $G(t)$ with a professional graph, using 4 samples, with constant parameter values $\mu=2.448 \mathrm{e}-4, \sigma=1.121 \mathrm{e}-2$ and $\Delta t=$ $1 / 252$, and $T=2$ is the total time interval, i.e., simulate the integral of $d G(t)=$ $\mu d t+\sigma d W(t)$.
2. Simple Poisson Process with Non-Unit Amplitude: Let $\left\{t_{i}: t_{i+1}=t_{i}+\Delta t_{i}, i=\right.$ $\left.0: n, t_{0}=0 ; t_{n+1}=T\right\}$ be a variably spaced partition of the time interval $[0, T]$ with $\Delta t_{i}>0$. Show the following properties and justify them by giving a reason for every step, such as a property of the process or a property of expectations:
(a) Let $H(t)=\nu P(t)$ and $\Delta H\left(t_{i}\right) \equiv H\left(t_{i}+\Delta t_{i}\right)-H\left(t_{i}\right)$ with $\lambda>0$ and $\nu>-1$ constants, then show that

$$
\begin{gathered}
\mathrm{E}\left[\Delta H\left(t_{i}\right)\right]=\nu \lambda \Delta t_{i}, \\
\operatorname{Var}\left[\Delta H\left(t_{i}\right)\right]=\nu^{2} \lambda \Delta t_{i},
\end{gathered}
$$

and

$$
\operatorname{Cov}\left[\Delta H\left(t_{i}\right), \Delta H\left(t_{j}\right)\right]=\nu^{2} \lambda \Delta t_{i} \delta_{i, j}
$$

for $i, j=0: n$.
(b) Simulate the trajectories of the process $H(t)$ with a professional graph, using 4 samples, with constant parameter values $\lambda=5.241, \nu=7.45 \mathrm{e}-3, \Delta t=1 / 252$, and $T=2$ years is the total time interval, i.e., simulate the integral of $d H(t)=\nu d P(t)$.

## 3. Wiener and Poisson Tables Partial Justification:

(a) Derive the $m=3: 4$ entries in Table 1 on page L1-p29 for $\mathrm{E}\left[|\Delta W(t)|^{m}\right]$.
(b) Derive the $m=3: 4$ entries in Table 1 on page L1-p58 for $\mathrm{E}\left[(\Delta P(t))^{m}\right]$ and $\mathrm{E}\left[(\Delta P(t)-\lambda \Delta t)^{m}\right]$.

## 4. Integral of Wiener Differential Squared:

(a) Simulate the integrals of $d X(t)=(d W(t))^{2}$ using four (4) samples of sample size $n=1000$ each and time interval $T=2$ units, plotting $X(t)$ versus $t$ on a professional graph.
(b) Do the same for sample size $n=10000$ to simulate convergence. simulated convergence.
(c) Verify the nondifferentiability of $W(t)$ by showing that $\mathrm{E}[\Delta W(t) / \Delta t]=0$, but $\operatorname{Var}[\Delta W(t) / \Delta t]=1 / \Delta t \rightarrow+\infty$ as $\Delta t \rightarrow 0^{+}$.

## 5. Integral of Product of Time and Wiener Differentials:

(a) Simulate the integrals of $d Y(t)=d t \cdot d W(t)$ using four (4) samples of sample size $n=1000$ each and time interval $T=2$ units, plotting $Y(t)$ versus $t$ on a professional graph.
(b) Do the same for sample size $n=10000$ to simulate convergence.

