
FINM345/STAT390 Stochastic Calculus – Hanson – Autumn 2009

Lecture 2 Homework: Stochastic Jump and Diffusion Processes

(Due by Lecture 3 in Chalk FINM345 Digital Dropbox)

You must show your work, code and/or worksheet for full credit.
There are 10 points per question if correct answer.

Corrections are in Red , 10/06/2009.

1. (a) Show that when 0 ≤ s ≤ t that

E
[
W 3(t)

∣∣ W (s)
]

= W 3(s) + 3(t− s)W (s) ,

justifying every step with a reason, such as a property of the process or a property
of conditional expectations.

(b) Use this result to derive the primary martingale property for Markov processes:

E
[
W 3(t)− 3tW (t)

∣∣ W (s)
]

= W 3(s)− 3sW (s).

{Remark: The general technique is to seek the expectation of mth power in the separable
form,

E
[
M

(m)
W (W (t), t)

∣∣∣ W (s)
]

= M
(m)
W (W (s), s) ,

where

M
(m)
W (W (t), t) = Wm(t) +

m−1∑
k=0

αk(t)W
k(t) ,

satisfied for the sequence of functions {α0(t), . . . , αm−1(t)}, that can be recursively
solved using the separable form αk(t) in the order k = 0 : m − 1; or just use the
binomial theorem. Obviously, m = 3 here.}

2. (a) Verify that when 0 ≤ s ≤ t and constant jump rate λ0 > 0 that

E
[
P 2(t)

∣∣ P (s)
]

= P 2(s)+2λ0(t− s)P (s)+λ0(t−s)(1+λ0(t− s)) ,

justifying every step with a reason, such as a property of the process or a property
of conditional expectations.

(b) Find the time polynomials α0(t) and α1(t) such that

M
(2)
P (t) = P 2(t) + α1(t)P (t) + α0(t)

is a Martingale. Assume αk(0) = 0 for k = 0 : 1.
{Remarks: The primary martingale property is that E[X(t)|X(s)] = X(s) for
some process X(t) and in this case X(t) = f(P (t)), but there are also additional
technical conditions to define a martingale form. Also, by a simple form of the
principle of separation of variables, if f(t) = g(s) for arbitrary values of t and s,
then f(t) = C = g(s) where C is a constant.}
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3. Show the limit in the IFA limit for

I [(dt)α] (t) ≡
∫ t

0

(ds)αdW (s)
ims
= 0 ,

provided α > 0 and is real (i.e., not necessarily an integer). {Hint: See text,
Lemma 2.22 for the case α = 1, noting that it says IMS, but means the IFA limit only
as in the “proof”.}

4. Instead of the IFA, considered the θ-rule of stochastic in integration. 0 < θ ≤ 1, for
the integral,

I[WdW ](t) =

∫ t

0

W (s)dW (s)
θ'

rule
I(θ)
n [WdW ] ≡

n∑
i=0

Wi+θ∆Wi,

where Wi+θ = W (ti+θ) and ti+θ ≡ ti + θ∆ti. Note that Wi+θ and ∆Wi and not
independent, since they correspond to overlapping intervals, but can be decomposed
into partial increments ∆θ[Wi] ≡ Wi+θ −Wi and ∆1−θ[Wi] ≡ Wi+1 −Wi+θ to separate
the independent parts from an dependent one.

(a) Assuming that E[I[WdW ](t)]
θ
=
rule

lim
n→∞

E[I(θ)
n [WdW ]] use the above decomposition

technique to show that

E[I(θ)
n [WdW ]] = θ

n∑
i=0

∆ti & E[I[WdW ](t)]
θ
=
rule

θt.

(b) Discuss how the result of part (a) is a counterexample to IFA Th. 2.4 on page
L2-p33 and how special the IFA case is among other integration rules.

(c) The result in part (a) suggests that the mean square result is

I[WdW ](t)
θ
=
ms

0.5W 2 + β(θ)t,

where β(θ) is a correction in θ. Show that β(θ) = θ − 0.5 for I[WdW ](t) in the
mean, not by the very difficult mean square limit.

(Comment: The case θ = 0.5 is the midpoint rule and the (Stratonovich) stochastic
calculus integrals are usually the same as in regular calculus. The mean square
convergence is very difficult so the Itô calculus is used to derive answers and that
is why you have not been asked to do it analytically.)

5. Computationally confirm the mean square limit for the non-Itô (Stratonovich) stochas-
tic integral I[WdW ](t) with θ = 0.5 of problem 4 by demonstrating that the midpoint-

approximating sum I
(0.5)
n [WdW ] gives a conjectured integral answer 0.5W 2 +β(0.5) for

sufficiently large n, using two samples with sizes n = 1000 and n = 10000. Plotting the
approximation In[W ](t) and the error En[W ](t) = In[W ](t)− (0.5W 2 + β(0.5)) versus
t for t ∈ [0, 2], using two graphs, one for each n with both approximation and error on
the same graph. List the standard deviation stdn of the error of each n. Compute the
rough estimate of the convergence rate α̂ assuming that stdn ' C/nα for constant C.
(Comment: You may modify the Wiener code wiener09fig1.m on pages L1-p33 to
L1-p35 for the current integrand approximation with θ = 0.5 and error.)
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6. Show that the power rules for Poisson jump integration can be written as the
recursions:∫ t

0

Pm(s)dP (s) =
1

m + 1

(
Pm+1(t)−

m+1∑
k=2

(
m + 1

k

)∫ t

0

Pm+1−k(s)dP (s)

)

using the jump form of the stochastic chain rule and the binomial theorem. Illus-
trate the application of the formulae for P (t) to confirm the results for m = 0 : 3 in
Table 2.2.1.

7. Show that ∫ t

0

eaP (s)dP (s) =

{
eaP (t) − 1

ea − 1
, ea 6= 1

P (t), ea = 1

}
,

for real constant a, showing that they give the same answers in two ways:

(a) Using the pure Poisson sum form of the theorem for
∑P (t)−1

k=0 h(k) for function h
and the geometric series partial sum.

(b) Using the Zero-One Jump Law and the Fundamental Theorem of Jump Calculus
applied to d exp(aP (t)) to evaluate the integral.
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