FINM345/STAT390 Stochastic Calculus – Hanson – Autumn 2009

Lecture 6 Homework (HW6): Marked Jump-Diffusions Stochastic Calculus Continued

(Due by Lecture 7 in Chalk FINM345 Assignment Submenu) {Note: Dropped the Digital Dropbox}

You must show your work, code and/or worksheet for full credit. There are 10 points per question if correct answer and negative points for missing homework sets.

Corrections are in **Red** as are comments, November 4, 2009

1. Simulate X(t) for the log-normally distributed jump amplitude case with mean $\mu_j = E[Q] = 2.74$ and variance $\sigma_j^2 = Var[Q] = 1.38$ for the linear jump-diffusion SDE model for a population in a seasonal environment $\mu(t) = 0.1085 \sin(2\pi t - 0.75\pi)$, $\sigma(t) = 0.0485 - 0.0233 \sin(2\pi t - 0.75\pi)$, $\lambda(t) = 3.98 - 0.0115 \sin(2\pi t - 0.75\pi)$ per year, $\nu(t,Q) = \exp(Q) - 1$ with Q normally distributed, X(0) = 0.5, $t_0 = 0$, final time T = 2.0 years, N = 2,000 time-steps per state for M = 4 states.

{Hint: Modify the linear mark-jump-diffusion SDE simulator linmarkjumpdiff09fig1.mlinmarkjumpdiff09fig1.m on pp. L6-p(29-37) and found on Chalk/CourseDocuments. For consistency, you may want to change the randn to normrnd with a similar sequential call pattern as used with binornd.}

2. Show that the Itô mean square limit for correlated bond B(t) and stock S(t) price portfolio with diffusions $W_B(t)$ and $W_S(t)$, respectively, at time t, so that

$$dW_B(t)dW_S(t) \stackrel{\text{dt}}{=} \rho(t)dt , \qquad (1)$$

is valid, where

$$\operatorname{Cov}[\Delta W_B(t_i), \Delta W_S(t_i)] \simeq \rho(t_i) \Delta t_i$$

for sufficiently small Δt_i and with absolute integrability of the correlation coefficient $\rho(t)$, i.e.,

$$\int_0^t |\rho|(s)ds < \infty.$$

Are there any special treatments required if $\rho = 0$ or $\rho = \pm 1$? You may use the bivariate normal density in (B1.44) or Table B1 of selected moments of preliminaries Online Appendix B.

- 3. Provide background justification for the values of the mark deviation sums E[(∑_{i=1}^k(Q_i μ_j)^m] for m = 1 : 4 moments in Theorem 5.9 by proving Lemma Expectation of Mark Deviation Sums: If the set {Z_i : i = 1 : ∞} is a set of zero-mean IID random variables, i.e., E[Z_i] = 0 and Cov[Z_i, Z_j] = E[Z_i²]δ_{i,j} ≡ Z̄²δ_{i,j}, show that by induction (where necessary) that

 (a) E[∑_{i=1}^k Z_i] = 0;
 (b) E[(∑_{i=1}^k Z_i)²] = kZ̄², where Z̄² ≡ E[Z_j²], any j;
 - (c) $E[(\sum_{i=1}^{k} Z_i)^3] = k\overline{Z^3}$, where $\overline{Z^3} \equiv E[Z_j^3]$, any j;
 - (d) $\operatorname{E}[(\sum_{i=1}^{k} Z_i)^4] = k\overline{Z^4} + 3k(k-1)(\overline{Z^2})^2$, where $\overline{Z^4} \equiv \operatorname{E}[Z_j^4]$, any j.
- 4. Prove the corollary for the variance of X(t) from the solution of the linear mark-jumpdiffusion SDE (6.13) on L6-p15 (5.42, p. 142, textbook):

Corollary 6.2var. Variance of X(t) for Linear SDE.

Let X(t) be the solution of (6.13) (5.42, textbook) with $\overline{\nu^2}(t) \equiv \mathbb{E}[\nu^2(t,Q)]$ of (6.16:L6p15) (5.45, textbook) Then

$$\operatorname{Var}[dX(t)/X(t)] \stackrel{\mathrm{dt}}{=} \left(\sigma_d^2(t) + \lambda(t)\overline{\nu^2}(t)\right) dt$$

and

$$\operatorname{Var}[X(t)] = \operatorname{E}^{2}[X(t)] \left(\exp\left(\int_{t_{0}}^{t} \operatorname{Var}[dX(s)/X(s)]ds \right) - 1 \right).$$
(2)

Be sure to state what extra conditions on processes and precision are needed that were not needed for proving Corollary 6.2 on L6-p45 (Corollary 5.13, p. 146, textbook).