
FINM345/STAT390 Stochastic Calculus – Hanson – Autumn 2009

Lecture 7 Homework (HW7): Compound-Jump-Diffusion Distributions,
Black-Sholes & Merton Option Pricing

(Due by Lecture 8 in Chalk FINM345 Assignment Submenu)

{Note: Dropped the Digital Dropbox}
You must show your work, code and/or worksheet for full credit.

There are 10 points per question if correct answer and negative points for
missing homework sets.

November 9, 2009

1. Construct the MATLAB (or other reasonable code) for simulating the Normal-Uniform
Hybrid Mark random variables discussed on L6-p2 & L6-p3.

(a) Present the simulation results in a histogram with a reasonable bin size. Let the
simulation sample size be N = 5e+3. Use the sample parameters, a = −0.0947,
b = +0.1096, µn = 2.448e-4, σn = 1.121e-2 and pu = 0.60.

(b) Also, compute and report the simulated mean, standard deviation, coefficient of
skewness and coefficient of kurtosis.

{Hint: For the truncated normal part of the hybrid distribution, you will need to simu-
late a sufficient number of normal variates in (a, b), rejecting those outside the interval,
so that the accepted total is at least N .}

2. Let dWb(t) and dWs(t) be correlated diffusion differentials with correlation coefficient

ρ(t) to precision dt. Let dWp(t) be uncorrelated with dWs(t), i.e., dWp(t)dWs(t)
dt
= 0.

(a) Show that if dWb = α(t)dWs+β(t)dWp), then find expressions for the deterministic
constants α(t) and β(t) in terms of ρ(t).

(b) If the corresponding increment versions of the differentials are ∆Wb(t), ∆Ws(t)
and ∆Wp(t), then evaluate

E
[
(∆Wb)

2(t) · (∆Ws)
2(t)

]
(1)

in terms of ρ(t) and ∆t.

{Please note that this is Guoquan’s problem, given with a hint for solving.}

3. Formally show by differentiation and limits that Black-Scholes formulas (7.16-7.17) on
L7-p36 satisfy the Black-Sholes PDE problem (7.15) on L7-p34 including the showing
the limiting final conditions on L7-p35 (note that the formulas are singular in the
limit). Do this both for the European call and put prices.

4. The Greeks (Sensitivity Coefficients): From the Black-Scholes formula,

(a) The deltas of both calls and puts, i.e.,

∆C =
∂C

∂s
(s, t) & ∆P =

∂P

∂s
(s, t).

(b) The vegas of both calls and puts, i.e.,

VC =
∂C

∂σ0

(s, t; K, T, r0, σ0) & VP =
∂P

∂σ0

(s, t; K, T, r0, σ0).
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5. Black-Scholes European Option Pricing: Let S0 = $100, r0 = 2.25% per year
(p.a.) and σ0 = 21% without dividends.

(a) Compute the Black-Scholes call prices for strike prices K = 80 : 5 : 120 in US
dollars for each exercise time T = 0.25:0.25:1.00 years.

(b) Similarly, compute the European put price directly from Black-Scholes pricing for
puts.

(c) Plot the call prices versus the strike prices K with T -values as the parameter for
each respective curve using different symbols or other distinct markings.

(d) Separately plot the put prices similarly.

(e) Verify the Put-Call Parity using the Black-Scholes put and call prices, plotting
the percentage errors relative to the Black-Scholes put prices versus K and pa-
rameterized by T on one plot.

Comments:

• You may code your own programs, or use modifications of the Global Derivatives
Black-Scholes MATLAB code, as long as you verify it,
http://www.global-derivatives.com/code/matlab/BlackScholesEuro.m

with instructions in the m-code preface and further explanations in
http://www.global-derivatives.com/index.php?option=com content&task=view&id=52&Itemid=31

• It is suggested that when your main MATLAB m-code calls other functions, you
can avoid path and structure problems by naming your main program a function
and copy-pasting all available called–functions at the end of main so that they
are proper subfunctions (name is still function).
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