FINM345/STAT390 Stochastic Calculus - Hanson - Autumn 2009

Lecture 9 Homework (HW9): Stochastic Volatility

(Due by Lecture 10 in Chalk FINM345 Assignment Submenu)
\{Note: Dropped the Digital Dropbox\}
You must show your work, code and/or worksheet for full credit.
There are 10 points per question if best correct answer and negative points for missing homework sets.
Corrections are in Red as are comments, November 22, 2009

1. Show that the nonsingular, explicit, exact solution [L9-p16:(9.13)],

$$
\begin{equation*}
V(t)=e^{-\bar{\kappa}_{v}(t)}\left(\sqrt{V_{0}}+0.5 \int_{0}^{t} e^{\bar{\kappa}_{v}(s) / 2}\left(\sigma_{v} d W_{v}\right)(s)\right)^{2} \tag{1}
\end{equation*}
$$

when $\sigma_{v}^{2}(t)=4 \kappa_{v}(t) \theta_{v}(t) \forall t$, is a solution satisfying the mean-reverting, square-root diffusion [L9-p16:(9.2)],

$$
\begin{equation*}
d V(t)=\kappa_{v}(t)\left(\theta_{v}(t)-V(t)\right) d t+\sigma_{v}(t) \sqrt{V(t)} d W_{v}(t), \quad V(0)=V_{0}>0 \tag{2}
\end{equation*}
$$

by the Itô calculus or by increment expansion of $\boldsymbol{V}(\boldsymbol{t})$ solution (9.13) in the limit of $d t$-precision.
2. Simulate a solution to the SV-SDE in Eq. (1) using the the more robust finite difference form that is less sensitive to numerical problems for small values of the variance, i.e., use

$$
\begin{equation*}
V^{(\varepsilon)}(t+\Delta t)=\max \left(V^{(\varepsilon)}(t)+\kappa_{v} \cdot\left(\theta_{v}-V^{(\varepsilon)}(t)\right) \cdot \Delta t+\sigma_{v} \cdot \sqrt{V^{(\varepsilon)}(t)} \cdot \Delta W_{v}(t), \varepsilon_{v}\right), \tag{3}
\end{equation*}
$$

$V^{(\varepsilon)}(0)=V_{0}$, where ε_{v} is some small positive cutoff to avoid very small variance values and Δt is the simulation time step.
In addition, consider the deterministic solution for constant coefficients,

$$
\begin{equation*}
V^{(\mathrm{det})}(t)=V_{0} \cdot \exp \left(-\kappa_{v} \cdot t\right)+\theta_{v} \cdot\left(1-\exp \left(-\kappa_{v} \cdot t\right)\right), \quad V^{(\mathrm{det})}(0)=V_{0}>0 \tag{4}
\end{equation*}
$$

Let $V_{0}=0.25$ per year, $\kappa_{v}=2.0$ per year, $\theta_{v}=0.15$ per year, $\sigma_{v}=0.20$ per year, $T=2$ years and $N=8000 \cdot T$ giving ΔT and $\varepsilon_{v}=\sqrt{\Delta t}$ to ensure $\Delta t / \varepsilon_{v} \ll 1$ for $\Delta t \ll 1$.
Then
(a) Simulate the cutoff modified solution $V^{(\varepsilon)}(t)$ in (3) with the given parameters.
(b) Simulate the deterministic solution $V^{(\operatorname{det})}(t)$ in (4), i.e., with $\sigma_{v}=0$, on $[0, T]$ using the same time steps.
(c) Plot the simulations of $V^{(\varepsilon)}(t)$ and $(\Delta S V)$, and the difference $\delta V(t)=V^{(\varepsilon)}(t)-V^{(\mathrm{det})}(t)$ on a single plot with appropriate legend. Also, print out the maximun of absolute value of $\delta V(t)$.
(d) Discuss the results. Also, justify why $\left\{V_{0}, \kappa_{v}, \theta_{v}, \sigma_{v}\right\}$ all are in units per year when t by convention has those units; and tell what are the units of σ_{s}, the Black-Scholes stock price volatility are.

