
FINM 345/STAT 390 Stochastic Calculus,
Autumn 2009

Floyd B. Hanson, Visiting Professor

Email: fhanson@uchicago.edu

Master of Science in Financial Mathematics Program
University of Chicago

Lecture 1, Corrected Post-Lecture October 9, 2009
7:30-9:30 pm, 28∗ September 2009, Kent 120 in Chicago

8:30-10:30 pm, 28 September 2009 at UBS Stamford

8:30-10:30 am, 29 September 2009 at Spring in Singapore
∗{Monday 28 September Yom Kippur is an official U. Chicago holiday, but since we
would miss a whole week of classes, we will have the usual evening class in Chicago

starting at 7:30pm. The religious holiday ends 42 minutes after sunset, so there is an
overlap only in Chicago. Individuals, of course, are free to follow their conscience.

Sorry, for any inconvenience.}
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0.01 Histogram of S&P500 Log-Returns 1988-2008:

−0.05 0 0.05 0.1
0

10

20

30

40

50

60

70

Fig04: LR Histogram Vs. NormPDF+1, ’88−’08

LR, Log−Returns

Fr
eq

. &
 S

ca
le

d 
N

or
m

PD
F

 

 

LR Hist.
NormPDF+1

Figure 0.01: S&P500 Daily Log-Return Adjusted Closings from 1988
to 2008 (post-1987) showing long-tails of rare events. Normal kernel-
smoothed graph, in red, plus one which accounts for non-central and nor-
mally invisible, but financially important, rare jumps.
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0.02 Extreme Negative Tail Events for Log-Returns
(’88-’08):
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(a) Extreme Negative Tails.
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(b) Extreme Positive Tails.

Figure 0.02: Extreme Negative and Positive Log-Return Tail Events, with
Thresholds POT =−0.04 and +0.048, respectively. POT means Peaks
Over (or Under) Threshold. These represent the significant crashes or
bonanzas during the time period. {Note: vertical scale differences.}
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Course Outline (tentative)
1. Introduction to Stochastic Diffusion and Jump Processes: Basic

properties of Poisson and Wiener stochastic processes. Based on the
calculus model, differential and incremental models are discussed.
The continuous Wiener processes model the background or central
part of of financial distributions, while the Poisson jump process
models the extreme, long tail behavior of crashes and bubbles of
financial distributions.

2. Stochastic Integration for Stochastic Differential Equations:
While the stochastic differentials and increments are useful in
developing stochastic models and numerically simulating solutions,
stochastic integration is important for getting explicit solutions or
more manageable forms.

3. Elementary Stochastic Differential Equations (SDEs): The
stochastic chain rules for jump-diffusions with simple Poisson jump
processes, starting from diffusion chain rules to jump chain rules to
jump-diffusion chain rules.
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4. Stochastic Differential Equations for General Jump-Diffusions:
Stochastic differential equations with compound Poisson processes,
i.e., including randomly distributed jump-amplitudes, state-time
dependent coefficients, multi-dimensional SDEs, Martingales and
finite rate Levy jump-diffusion formulations.

5. Applications to Financial Engineering: Generalized
Black-Scholes-Merton option pricing analysis, option pricing for
jump-diffusions and stochastic volatility, using risk-neutral measures;
also the important event, Greenspan process. Of course, financial
models and motivations will be used throughout the course.

6. Time Series Introduction and the relationship to SDE models:
Time series models such as the discrete AR (autoregressive), MA
(moving average), ARMA (combined), and ARCH (conditional
“volatility”) models, as time allows.
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Comments:

• This will be a more applied course than in the past, starting from
stochastic differentials and stochastic integrals, as in the regular
calculus, except with basic probabilities, then building up to
stochastic differential equations and their solutions, eventually
leading to financial applications and some useful abstract notions in
stochastic calculus.

• Knowledge of basic probability is assumed, but you can review
background preliminaries from online sources given below.

• For running, current Extended Syllabus for Finm 345, see

https://chalk.uchicago.edu/ ∗

OR see
http://www.math.uchicago.edu/ hanson/finm345a09.html ∗

∗ PDF Pine Green fonts mean Click to GO, Active URL Links.
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Course Business
• Professor: Floyd B. Hanson

◦ Email: fhanson@uchicago.edu;
◦ Office Hour: Mondays, 5PM (tentative), Eckhart Lounge/Lab,

except in Singapore weeks 3-4.
◦ Webpages:
∗ F. B. Hanson Short Homepage, Financial Mathematics

Program, University of Chicago.
∗ F. B. Hanson Long Home Page, Professor Emeritus,

Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago.

• TAs in Chicago, Singapore & Stamford: TBA
◦ Email: TBA
◦ Office Hours: TBA.
◦ Review Sessions: TBA.
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Texts:
• Primary Text: Class explanatory FINM 345 Lecture Notes.
• Optionally and Highly Recommended: Floyd B. Hanson, Applied

Stochastic Processes and Control for Jump-Diffusions: Modeling,
Analysis, and Computation, SIAM Books, October 2007.
(Comments: There is a 30% discount that a registered student can
get at Text and Order Page with Coupon Code BKUC09, special for
this class. Amazon and other book sellers charge list price.) Some
online material is freely available:

◦ Sample Chapter (5) Stochastic Calculus for Compound Poisson
Jump-Diffusions;

◦ Online Appendix B Preliminaries in Probability and Analysis.
◦ Online Appendix C: MATLAB Code Listings, 46 pages.
◦ MATLAB Source Codes Table of Contents.
◦ MATLAB Source Codes Directory, 27 files plus directory zipped.
◦ Post Publication Errata. (Please send additional errors.)
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http://www.ec-securehost.com/SIAM/DC13.html
http://www.ec-securehost.com/SIAM/DC13.html
http://www.ec-securehost.com/SIAM/DC13.html
http://www.ec-securehost.com/SIAM/DC13.html
http://www.siam.org/books/dc13/DC13samplechpt.pdf
http://www.siam.org/books/dc13/DC13samplechpt.pdf
http://www.math.uic.edu/~hanson/pub/SIAMbook/bk0BprelimAppendfinal.pdf
http://www.math.uic.edu/~hanson/pub/SIAMbook/bk0CcodeAppendfinal.pdf
http://www.math.uic.edu/~hanson/pub/SIAMbook/MATLABCodes/MATLABCodes08TOC.html
http://www.math.uic.edu/~hanson/pub/SIAMbook/MATLABCodes/
http://www.math.uic.edu/~hanson/pub/SIAMbook/Errata09PostPub.pdf


• Supplemental Text: Ruey S. Tsay, Analysis of Time Series, Wiley,
August 2005. (Comments: Text on time series by U. Chicago
business professor; we will have a short introduction of time series in
the context of stochastic calculus, but topic is moved from FINM 331
Winter 2009 and will not be in FINM 331 Winter 2010.)

• Optional Text: Steven E. Shreve, Stochastic Calculus for Finance
II: Continuous-Time Models, Springer Finance, April 2008.
(Comment: This is the Carnegie Mellon Computational Finance
course, but is more abstract and much less applied, primarily about
diffusions, getting to jumps much later in the book; however, this
book is often used in the Financial Mathematics courses here.)
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• Text for Recommended Computational System — MATLAB:
Desmond J. Higham and Nicolas J. Higham, MATLAB Guide,
SIAM Books, 2nd Edition, Order Code OT92, 2005. (Comments:
There is a 30% discount with SIAM student membership, but you can
get a complimentary membership if sponsored by a SIAM member.
This is probably the best mathematical MATLAB book. Also, R, S,
Excel, Maple and Mathematica are acceptable for assignments, but
you are on your own.)
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Grading:
• Homework:

◦ There will be about 8-10 graded homework sets or course
projects;

◦ You may consult with other student about the ideas involved;

◦ Submitted homework must be the individual student’s own work;

◦ Similar solutions will receive discounted grades with divided
credit;

◦ Codes and/or worksheets need to be submitted with
computational solutions.

• Exams: There will be at least one, the final exam, likely take-home.

• Final Grade: The grade will be based upon an average of homework
and final exam scores, weighted to reflect the number of points
involved, i.e., homework will substantially count.
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Prerequisite Knowledge:
1. Introductory Probability:

• F. B. Hanson, Online Appendix B Preliminaries in Probability
and Analysis,

• Niels O. Nygaard, Introduction to Stochastic Processes, a
concise review of background measure theory, probability theory
and stochastic processes, but more abstract than in this course.

2. Very Basic MATLAB:
• The (MATLAB Student Version); comes with the Statistics and

other toolboxes.
• MATLAB will be introduced in the course as examples and

demonstration codes will be given in the lectures as well as posted
online. You should rely heavily on MATLAB Help Windows.

• See also Hanson’s Online MATLAB Programs mentioned above.
• See also Professor Nygaard’s review sessions on various topics

for examples, in particular reviews on statistics.
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Some Related Resources of the Professor, plus prior FINM 345:
1. Prior course: Math 586 Computational Finance, Computational

Finance, UIC, Spring 2008.
2. Another Prior course: Math 574 Applied Optimal Control:

Jump-Diffusion Stochastic Processes, UIC, Fall 2006. (Comment:
First part of course was on stochastic processes and his book was
written for this course and several related courses.)
• Online Appendix C: MATLAB Programs (listings of sample

codes used to make book figures);
• MATLAB Source Codes Directory, source m-files as individual

files or zip-file of all m-files.
3. Quantitative Finance References and Related References,

annotated books and links in finance and related topics.
4. Autumn 2008 FINM 345 Stochastic Calculus, Professor Per

Mykland.

END of Course Extended Syllabus Review and Begin Course −→
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http://www.math.uic.edu/~hanson/math586/Math586Spring2008QuantFinanceReferences.html
http://galton.uchicago.edu/~mykland/345A08/index.html


FINM 345 Stochastic Calculus:
1. Introduction to Stochastic Diffusion and Jump Processes:

1.1 Stochastic (Random) Nature of Financial Data:
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Figure 3: S&500 Index Daily Adjusted Closings AC(t) for t=1:NAC,
from 1988 to 2008 (post-1987) showing scattered behavior of the price
without any recognizable probability distribution seen. (NAC=AC-count.)
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Figure 4: S&500 Index Daily Absolute Returns or Differences AR(t) =
AC(t+1)-AC(t)≡ ∆AC(t) for t=1:NAC-1, from 1988 to 2008 (post-1987)
showing more organized behavior, resembling a very narrow normal dis-
tributions with many discrete deviations from the normal.
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Figure 5: S&500 Index Daily Relative Returns RR(t) = AC(t+1)/AC(t)-1
≡ ∆AC(t)/AC(t) for t=1:NAC-1, from 1988 to 2008 (post-1987) showing
a more developed normal distribution with wider spread due to reduction
of the scale of the returns and many rare tail events.
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Figure 6: S&500 Index Daily Log Returns LR(t) = log(AC(t+1))-
log(AC(t)) = log(1+RR(t)) ∼ RR(t) for t=1:NAC-1 & RR(t) � 1, from
1988 to 2008 (post-1987) showing wide spread and tail event behavior
similar to RR(t). In red, an approximate normal density is overlaid with
an added unit to account for fat tails from jump of crashes and bonanzas.
So, the infinite normal tails have little probability compared to jumps.
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1.2. General Markov Processes in Continuous
Time: Background for a Toolbox of a Mixture of

Central–Normal and Tail–Jump Returns:
• Definition 1.1: A process X is simply a function of time t

(in this class), X = X(t).

• Definition 1.2: A deterministic process X(t) is a
process without any random component, it does not
involve chance or it has one reality, so that its average or
expectation is the same as the process for all time, i.e.,
E[X(t)] = X(t), ∀t.

FINM 345/STAT 390 Stochastic Calculus — Lecture1–page18 — Floyd B. Hanson



• Definition 1.3: A stochastic process, X(t), is a process
with random components, i.e., a random variable that is a
function of time.1

• Definition 1.4: A Markov process, X(t), is a stochastic
process such that the conditional probability satisfies

Prob[X(t + ∆t) = x|X(s), 0 ≤ s ≤ t]

= Prob[X(t + ∆t) = x|X(t)],

for any t≥0 and ∆t≥0, and x is in the state space Dx.
{Comment: That is, the change of a Markov process
depends on the current time and not on the past.}

1Given a probability space {Ω,F ,P} of sample space Ω, a σ-algebra F of subsets of Ω

and proper probability measureP on Ω. See Nygaard, Introduction to Stochastic Processes.
(This boilerplate is obligatory for abstract probability foundations, but it is mentioned here
once and will not be mentioned again since it will not be needed in these applied lectures.)
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• Definition 1.5: The stochastic process X(t) is a stationary
process if the distribution of the increment process
∆X(t) ≡X(t+∆t)−X(t) depends only on the
time-step ∆t and is independent of the current time t.
{For example, the distribution for a stationary X(t) can
be written

Prob[∆X(t) ≤ x] = f(x; ∆t)

= Prob[∆X(s) ≤ x]

= Prob[∆X(0) ≤ x],

= Prob[X(∆t) ≤ x],

for some function f , assuming
t>0, s>0 & X(0)=0.}
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1.3. Properties of Standard Wiener Process W(t)
(Brownian Motion or Diffusion) for

Central–Normal Returns:
• Initially, W(0) = 0 with probability one.
• W(t) is a continuous process, i.e.,

W (t+) = W (t) = W (t−).
• W(t) has independent increments, i.e., the increments

∆W (ti)≡W (ti+∆ti)−W (ti) = W (ti+1)−W (ti),
are mutually independent for all ti with nonoverlapping
time-intervals (excluding pointwise overlap); for
example, if the increments ∆W (ti) and ∆W (tj) are
nonoverlapping, then the joint probability
Prob[∆W (ti)≤wi, ∆W (tj)≤wj] =

Prob[∆W (ti)≤wi]·Prob[∆W (tj)≤wj];
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for continuous time processes pointwise is permissible
since points of zero measure due not count in probability
integrals; however, it is usually assumed the the
associated time-intervals are open on the right, [ti, ti+1)

and [tj, tj+1), with ti+1 ≤ tj or tj+1 ≤ ti,
corresponding to discrete jump processes.

• The distribution of ∆W (t) = W (t + ∆t) − W (t) by
definition depends only the increment ∆t, but is
independent of the current time t, so W(t) is a stationary
(increment) process. {Caution: invalid for variable coefficients.}

• The process W(t) is a Markov process by definition, so
Prob[W (t + ∆t) = w | W (s), 0 ≤ s ≤ t]

= Prob[W (t + ∆t) = w | W (t)].
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• The W (t) is normally distributed with mean µ = 0

and variance σ2 = t, i.e., the density of W (t) is

φW (t)(w) = φn(w; 0, t) =
1

√
2πt

exp

(
−

w2

2t

)
,

when −∞ < w < +∞ and t > 0. The actual
distribution function for W (t) is denoted by
ΦW (t)(w) = Φn(w; 0, t) =

∫ w

−∞ φn(v; 0, t)dv.
Summarizing basic statistics, E[W (t)] = 0 and
Var[W (t)] = t. (The general notation φn(w; µ, σ2)

means a normal distribution with mean µ and variance
σ2, see Online Appendix B, Eq. (B.22). Also, when
t = 0+ then φW (0+)(w) = δ(w), where δ(w) is
Dirac’s delta function, a generalized distribution
function with mass concentrated at w = 0.)
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• Substituting the time-step ∆t for t and the corresponding
Wiener increment process
∆W (t)=W (t+∆t)−W (t) for W (t), the density is

φ∆W (t)(w)=φn(w; 0, ∆t)=
1

√
2π∆t

exp

(
−

w2

2∆t

)
,

such that E[∆W (t)]=0 and Var[∆W (t)]=∆t.
• Since the infinitesimal dt = (t + dt) − t is also an

increment, then the Wiener process scales down to the
Wiener differential process
dW (t)=W (t+dt)−W (t) with density

φdW (t)(w)=φn(w; 0, dt)=
1

√
2πdt

exp

(
−

w2

2dt

)
,

such that E[dW (t)]=0 and Var[dW (t)]=dt.
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• The relationship to the standard normal, i.e., the
zero-mean and unit-variance normal, follows from a
change of variables,

ΦW (t)(w)=
∫ w

−∞ exp(−v2/(2t))dv/
√

2πt

=
∫ w/

√
t

−∞ exp(−y2/2)dy/
√

2π = Φn(x; 0, 1),

where x = w/
√

t is the standard normal variate
transformation, so w =

√
t · x. (Also see Theorem 1.12

in Hanson’s (2007) text for a more detailed statement and
proof.)

• The Wiener increment process and differential process
are stationary, Markov processes, since their
distributions depend only on ∆t or dt, respectively, but
are independent of the current time t.
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• Theorem 1.1. W(t) is Nondifferentiable: For any fixed
x > 0 and t > 0,

Prob

[
lim

∆t→0+

[∣∣∣∣∆W (t)

∆t

∣∣∣∣ > x

]]
= 1.

For a proof, see Hanson’s book, p. 9.
• Theorem 1.2. Covariance of W(t). If W(t) is a Wiener

process, then Cov[W (t), W (s)] = min[t, s].

For a proof using overlap, see Hanson’s book, p. 4.
• Corollary 1.1. If {ti, i = 0 : N} is a time mesh with N

steps {∆ti = ti − ti−1, i = 1 : N} on [0,T], then
Cov[∆W(ti), ∆W(tj)]=Var[∆W(ti)]δi,j =∆ti δi,j

for the increment process, where δi,j is the discrete
Kronecker delta. (Note that there is no overlap in time
except at a common endpoint.)
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• Corollary 1.2. If t & s are positive, then
Cov[dW(t), dW(s)]=Var[dW(t)]δ(s−t)=dt δ(s−t)

for the differential process, where again δ(s − t) is the
continuous Dirac delta function. (Note that only the
pointwise overlap counts for infinitesimals.)

• Wiener Increment Process Moments:

1. First, the odd powers: E[(∆W (t))2k+1] = 0 when
k = 0, 1, 2, . . . by integrand oddness on a symmetric
interval, (−∞, +∞).
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2. Second, the even powers:

E
[
(∆W (t))2k

]
=

∫ +∞
−∞ φn(w; 0, ∆t)w2kdw

= 2√
2π∆t

∫ +∞
0

exp
(
− w2

2∆t

)
w2kdw

= (2∆t)k
√

π

∫ +∞
0

exp (−u) uk−1/2du

= (2∆t)kΓ(k+1/2)

Γ(1/2)

for k = 0, 1, 2, . . . , where Γ is the gamma function
defined by Γ(x) ≡

∫ ∞
0

e−uux−1du, x > 0, with
initial condition Γ(1)≡1 and special value
Γ(1/2)=

√
π and recursive form Γ(x+1)=xΓ(x),

so that Γ(x+1)=x! is the usual factorial function.
3. Lastly, for odd powers of the absolute value,

E[|∆W (t)|2k+1]=(2∆t)(2k+1)/2Γ(k+1)/Γ(1/2),
for k = 0, 1, 2, . . . .
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Table 1.1. Expected moments of absolute value of Wiener increments:
m E[|∆W (t)|m]

0 1

1
p

2∆t/π

2 ∆t

3 2∆t
p

2∆t/π

4 3(∆t)2

5 8(∆t)2
p

2∆t/π

6 15(∆t)3

...
...

2k (2k − 1)!!(∆t)k

2k+1 k!(2∆t)k
p

2∆t/π

Here, the double factorial function is
(2k − 1)!! = (2k − 1) · (2k − 3) . . . 1.
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1.4. MATLAB Simulation of Wiener Processes:
• MATLAB’s standard normal distribution

(pseudo-)random number generator is randn, such
each call to randn produces one “independent” normal
variate for each call, randn(n,1) produces a
column-vector of n rows, randn(1,n) produces a
row-vector of n columns that is the same size as the
construct 1:n, randn(m,n) produces an m × n

matrix, but randn(n) produces an n × n matrix like
randn(n,n) while higher dimensional arrays are
available.
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• Given even time-steps ∆t=(T −0)/(n−0), with
ti =0+i∆t for i=0:n, t0 =0, tn =T and
∆W (ti)=W (ti+1)−W (ti) for i=0:n − 1, then
W (tj)=W (0)+

∑j−1
i=0 ∆W (ti) for j =1:n with

W(0)=0.
• Following the previous transformation of the Wiener

increment distribution to MATLAB’s standard normal
implies DW=sqrt(DT)*randn; yields one increment,
while DW=sqrt(DT)*randn(n,1); yields all n
increments for the mesh on [0, T ] and
W=zeros(n+1,1); W(2:n+1,1)=cumsum(DW);
yields all n+1 Wiener process values, including the initial
W(0) = 0. {Caution: MATLAB is unit subscript based,
so only positive subscripts are legal.}
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Figure 7: Wiener or Diffusion sample paths for four (4) random states
or streams using MATLAB. (See also sample Wiener trajectory code in
Hanson’s (2007) Applied stochastics text, page 6. Corrected 10/06/09.)
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Wiener Sample Paths MATLAB code example (edited for space):
function wiener09fig1

% Fig. 1.1a Book Illustrations for Wiener/Diffusion;

% RNG Simulation for t in [0,1] with sample variation.

% Generation is by summing Wiener increments DW;

clc % clear workspace of prior output.

clear % clear variables, but must come before globals;

fprintf(’\nfunction wiener09fig1 OutPut:’);% figure name

nfig = 0;

n = 1000; T = 1.0; dt = T/n; % Set initial time grid.

np = n + 1; % Number of points.

sqrtdt = sqrt(dt); % Set std. Wiener increment moments;

% for dX(t) = mu*dt + sigma*dW(t); here mu=0, sigma=1,

% and scaled dW(t) = sqrt(dt)*randn;

t = 0:dt:T; % time row-vector

nstate = 4; % number of states

[s1,s2,s3,s4] = RandStream.create(’mrg32k3a’ ...

,’NumStreams’,nstate);
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DW = zeros(nstate,n); W = zeros(nstate,np); % arrays;

% Also sets initial W(j,1) = 0;

for j = 1:nstate

if j==1,s=s1;elseif j==2,s=s2;elseif j==3,s=s3;

else s=s4;end

DW = sqrtdt*randn(s,[1,n]); % n-sample row-vector;

W(j,2:np) = cumsum(DW); % Includes W(0)=0 & Vector;

end

fprintf(’\nsize(DW)=[%i,%i]; size(W)=[%i,%i];’ ...

,size(DW),size(W));

nfig = nfig + 1;

scrsize = get(0,’ScreenSize’); % figures screensize;

ss = [5.0,4.0,3.5]; % For ease in finding figures;

fprintf(’\n\nFigure(%i): Diffusion Sample Path(4)\n’ ...

,nfig)

figure(nfig)

marks = {’k-’,’k-o’,’k-ˆ’,’k-x’}; % change marks;

%

FINM 345/STAT 390 Stochastic Calculus — Lecture1–page34 — Floyd B. Hanson



for j = 1:nstate

plot(t,W(j,1:np),marks{j},’linewidth’,1); hold on;

end

hold off

title(’Diffusion Simulated Sample Paths (4)’...

,’FontWeight’,’Bold’,’Fontsize’,24);

ylabel(’W(t), Wiener State’...

,’FontWeight’,’Bold’,’Fontsize’,24);

xlabel(’t, Time’...

,’FontWeight’,’Bold’,’Fontsize’,24);

hlegend=legend(’Stream 1’,’Stream 2’,’Stream 3’ ...

,’Stream 4’,’Location’,’SouthWest’);

set(hlegend,’Fontsize’,20,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.6 scrsize(4)*0.8]);

% End wiener09fig1 Code
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Figure 8: Wiener sample paths for four (4) different time-steps using MAT-
LAB. (See also sample Wiener trajectory code in Hanson’s (2007) Ap-
plied stochastics text, page 6.)
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Wiener Sample Paths for Different Time-Steps MATLAB code example:
function wiener09fig2

% Fig. 1.1b Book Illustration for Wiener/Diffusion;

% Generation is by summing Wiener increments;

clc % clear workspace of prior output.

clf % clear figures, else accumulative.

clear % clear variables, but must come before globals;

fprintf(’\nfunction wiener09fig2 OutPut:’);%figure name

nfig = 1;

n = 1000; T = 1.0; dt = T/n; % Several dt’s.

np = n+1; % Total number of Points.

% for dX(t) = mu*dt + sigma*dW(t); here mu=0, sigma=1

% and scaled dW(t) = sqrt(dt)*randn

ndt = 3; % number of local dt’s.

randn(’state’,1); % Set state for repeatability;

% Ignore MATLAB mlint "deprecated" warning;

Rn = randn(1,n); % common random sample of n points.

W = zeros(ndt,np); % W array of local vectors;
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% Also sets all W(kdt,1) = 0 for t(1) = 0; unit based.

ts = zeros(ndt,np); % Declare maximal local time vectors;

%%%%% Begin Plot:

nfig = nfig + 1;

scrsize = get(0,’ScreenSize’); % figures screensize;

ss = [5.0,4.0,3.5]; % For ease in finding figures;

fprintf(’\n\nFigure(%i): Diffusion Sample Paths(4)\n’...

,nfig)

figure(nfig)

marks = {’k-’,’k-o’,’k-ˆ’,’k-x’}; % change marks;

for kdt = 1:ndt % Test different dt’s:

sc = 10ˆ(kdt-1); % dt scalar factor;

ns = n/sc; nps = ns+1; % Local counts;

dts = sc*dt; % Local time steps;

sigs = sqrt(dts); % Local diffusion scaling;

ts(kdt,1:nps) = 0:dts:T; % Local times; W=cumsum;

W(kdt,2:nps) = sigs*cumsum(Rn(1,sc*(1:ns))); %vector;

plot(ts(kdt,1:nps),W(kdt,1:nps),marks{kdt} ...
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,’linewidth’,2); hold on;

end

hold off

title(’Diffusion Simulations: \Delta{t} Effects’...

,’FontWeight’,’Bold’,’Fontsize’,24);

ylabel(’W(t), Wiener State’...

,’FontWeight’,’Bold’,’Fontsize’,24);

xlabel(’t, Time’...

,’FontWeight’,’Bold’,’Fontsize’,24);

hlegend=legend(’\Delta{t =10ˆ{-3},n=1000’...

,’\Delta{t}=10ˆ{-2},n=100’ ...

,’\Delta{t}=10ˆ{-1},n=10’,’Location’,’SouthWest’);

set(hlegend,’Fontsize’,20,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.6 scrsize(4)*0.8]);

% End wiener09fig2 Code
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1.3. Properties of Simple Poisson Process P(t) for
Rare, Fat Tail Returns (Also called Point

Processes or Counting Processes):
• Initially, P(0) = 0 with probability one.
• P(t) is a piecewise-right-continuous process, i.e., P(t+)

= P(t) = P(t−), except at Poisson Jump Times, t = Tj ,
when P (T +

j ) = P (Tj) = P (T −
j ) + 1, so there are

instantaneous jumps (discontinuities) of unit magnitude;
Poisson jumps are assumed to be sufficiently rare that
only one jump can occur at any instant of time.

• The Poisson process P(t) has independent increments,
i.e., the increments ∆P (ti)≡P (ti+∆ti)−P (ti)

= P (ti+1)−P (ti), are mutually independent for all ti

with nonoverlapping time-intervals;
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for example, if the increments ∆P (ti) and ∆P (tj) are
nonoverlapping, then the joint probability
Prob[∆P (ti)≤pi, ∆P (tj)≤pj] =

Prob[∆P (ti)≤pi]·Prob[∆P (tj)≤pj]; for
right-continuous time processes it is usually assumed the
the associated time-intervals are open on the right, but
closed on the left for continuity from the right, [ti, ti+1)

and [tj, tj+1), with ti+1 ≤ tj or tj+1 ≤ ti.
• The distribution of ∆P (t) = P (t + ∆t) − P (t) by

definition depends only the increment ∆t, but is
independent of the current time t, so P(t) is a stationary
(increment) process. {Caution: This applies to the
constant jump rate λ case, so is invalid for variable
coefficients.}

FINM 345/STAT 390 Stochastic Calculus — Lecture1–page41 — Floyd B. Hanson



• The process P(t) is a Markov process by definition, so

Prob[P (t + ∆t) = p | P (s), 0 ≤ s ≤ t]

= Prob[P (t + ∆t) = p | P (t)].

• The P (t) is Poisson distributed with the mean
µP = E[P (t)] = Λ = λt = σ2

P = Var[P (t)]

equaling the variance, in the constant rate λ case , i.e., the
distribution of P (t) with parameter Λ is

ΦP (t)(k; Λ) = Prob[P (t) = k] = pk(Λ) = e−ΛΛk

k!
,

for k = 0, 1, 2, . . . , constant Λ > 0 and t > 0, with
pk(0

+) = δk,0. (Note that Λk/k! is the kth Taylor term
in the expansion of exp(Λ), a fact useful in calculations.)
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• Substituting the time-step ∆t for t and the corresponding
Poisson increment process ∆P (t)=P (t+∆t)−P (t)
for P(t), the distribution is

Φ∆P (t)(k; λ∆t)=Prob[∆P (t)=k]=pk(λ∆t)=e−λ∆t (λ∆t)k

k!
,

such that E[∆P (t)]=λ∆t and Var[∆P (t)]=λ∆t,
with parameter ∆Λ = λ∆t.

• Since the infinitesimal dt = (t + dt) − t is also an
increment, then the Poisson process scales down to the
Poisson differential process dP (t)=P (t+dt)−P (t)
with distribution

ΦdP (t)(k; λdt)=Prob[dP (t)=k]=pk(λdt)=e−λdt (λdt)k

k!
,

such that E[dP (t)]=λdt and Var[dP (t)]=λdt,
with parameter dΛ = λdt.
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• The Poisson increment process and differential process
are stationary, Markov processes, since their
distributions depend only on ∆t or dt, respectively, but
are independent of the current time t, in the constant jump
rate case.

• Theorem 1.3. Covariance of P(t). If P(t) is a Poisson
process with constant jump rate λ, then
Cov[P (t), P (s)] = λ min[t, s].

For a proof using overlap, see Hanson’s book, p. 16.
• Corollary 1.3. If {ti, i = 0 : N} is a time mesh with N

steps {∆ti = ti − ti−1, i = 1 : N} on [0,T], then
Cov[∆P(ti), ∆P(tj)]=Var[∆P(ti)]δi,j =λ∆ti δi,j

for the increment process with constant λ, where δi,j is
the Kronecker delta.
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• Corollary 1.4. If t & s are positive, then
Cov[dP(t), dP(s)]=Var[dP(t)]δ(s − t)=λdt δ(s − t)

for the differential process with constant λ, where
δ(s − t) is the Dirac delta function.

(Comment: Note that only the pointwise overlap counts
for infinitesimals. The Dirac delta function only has
meaning under and integral sign, e.g.,∫ ∞

−∞
f(s)δ(s − t)ds = f(t)

for some nice function f.)

FINM 345/STAT 390 Stochastic Calculus — Lecture1–page45 — Floyd B. Hanson



• Lemma 1.1. Exponential Distribution of Time
Between Jumps: Let P(t) be a simple Poisson process,
with fixed jump-frequency λ > 0, and let Tj denote the
jth jump-time, then the distribution of the interjump-time
∆Tj = Tj+1 − Tj for j = 0, 1, 2, . . . , defining
T0 = 0, conditioned on Tj , is

Φ∆Tj
(∆t) = Prob[∆Tj ≤ ∆t] = 1 − e−λ∆t.

(Comment: The basic idea of this proof is that the probability of the

time between jumps ∆Tj = Tj+1 − Tj less than ∆t, conditioned

on the prior jump-time Tj , will be the same as the probability that

there is at least one jump in the time interval, which is the same as

one minus the probability that there are no jumps in the time interval.

See Hanson’s (2007) book for the proof details.)
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• Two Poisson Probability Complementary
Representations:
1. First, given a fixed average jump count per time step ∆t,

∆Λ(t)≡
∫ t+∆t

t

λ(s)ds ' λ(t)∆t

(in the simple case, fixed λ(t) = λ & ∆t, calling dLambda=
λ(t)∆t, we can simulate jump counts N = [Nj]1×n =

poissrnd(dLambda,1,n) using the Poisson distribution. In
finance modeling, an example would be the simulations of jumps at
each of T daily closings given some λ>0 with ∆t=1/252 years.
(On average there are 252 daily market closing per year in the
U.S.; rates per year are standard units.) In this case, the jump-
trajectory is {(tj, Pj) : tj =(j−1)∆t, Pj =

∑j−1
i=1 Nj; j =1 :

n+1; P1 = 0}, where Nj is the number of jumps per day.
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2. Second, given a fixed jump-rate λ>0, samples of the time intervals
for the next jump DT = [DTj]1×m can be generated from the
exponential distribution in a Lemma 1.1 and thus general the full
Poisson trajectory {(Tj, Pj) : (T1, P1) = (0, 0); (Tj, Pj) =

(
∑j/2

i=1 DTi, j/2−1) for j =2:2:2m; (Tj, Pj)=(Tj−1, (j−
1)/2) for j =3:2:2m + 1} from the whole sample DT .

(Note that it takes one more than twice the time-steps to include the
dual pre- and post-jump values at each jump-time; it is much easier
in MATLAB vector code with DT=exprnd(1/lambda,1,m),
noting that the mean of the exponential distribution is
µe =1/λ = E[∆Tj].)

Comment: The Poisson process distribution and
Poisson Inter-Jump distribution equivalent
representations are illustrated in the following two
qualitatively similar graphs.
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Figure 9: Poisson jump sample paths for four (4) random streams using
MATLAB Poisson random generator poissrnd with fixed λ and ∆t =
1/252 years. (See also Hanson’s (2007) Applied stochastics text, page
15, for older version.)
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Poisson Sample Paths from Poisson Jump Times MATLAB
code example:
function poisson09fig1

% Fig. 1.2b Book Illustration for Incremental (9/2009)

% Simple Poisson/Jump Process RNG Simulation for

% Delta{P}(t)=N(t)=P(t+Delta{t})-P(t)=1:K jumps;

% Time t is unnecessary if Lambda = constant.

% Generation by MATLAB’s Poisson random generator:

% DP = poissrnd(Lambda,1,n);

clc % clear variables, but must come before globals.

clf % clear figures, else accumulative.

%

fprintf(’\nfunction poisson09fig1 OutPut:’)

n = 252;dt = 1/n;T = n*dt; % n market days, T years;

ksamples = 4; marks = {’k-’,’k:’,’k-.’,’k--’};

lambda = 5.241e+00; dLambda = lambda*dt; % histspc88To08

fprintf(’\nn=%i;dt=%7.1e;T=%7.1e;lambda=%7.1e;dLambda=%7.1e;’ ...

,n,dt,T,lambda,dLambda);
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% Begin Calculation:

P = zeros(ksamples,n+1);

t = 0:dt:T;

nfig = 1;

figure(nfig);

scrsize = get(0,’ScreenSize’); % figure for target screen

ss = [5.0,4.0,3.5]; % figure spacing factors

for ks = 1:ksamples; % Multiple Sample Paths:

DP = poissrnd(dLambda,1,n);

P(ks,2:n+1) = cumsum(DP); % P(ks,1) = 0 already;

plot(t,P(ks,1:n+1),marks{ks},’LineWidth’,2), hold on

end

hold off

fprintf(’\n\nFigure(%i): Jump Sample Paths\n’,nfig);

title(’Simulated Simple Jump Sample Paths’ ...

,’FontWeight’,’Bold’,’Fontsize’,24);

ylabel(’P(t), Poisson State’ ...

,’FontWeight’,’Bold’,’Fontsize’,24);
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xlabel(’t, Time’,’FontWeight’,’Bold’,’Fontsize’,24);

hlegend=legend(’Sample 1’,’Sample 2’,’Sample 3’...

,’Sample 4’,’Location’,’Northwest’);

set(hlegend,’Fontsize’,20,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.6 scrsize(4)*0.8]);

% End Code poisson09fig1
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Figure 10: Poisson sample paths for four (4) different time-steps us-
ing MATLAB exponential random generator exprnd for simulated jump
times. (See also Hanson’s (2007) Applied stochastics text, page 15, for
different older version.)
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Poisson Sample Paths Using Time-Steps MATLAB code
example:
function poisson09fig2 % (9/2009)

% Fig. 1.2a Book Illustration for Simple Poisson Process

% RNG Simulation for the jump times T(j) of P(t).

% Generation is by Poisson Jump Exponentially dist.

% increments T(j+1)-T(j), T(j+1) = jth jump time,

% T(1) == 0.

clc % clear variables, but must come before globals.

clf % clear figures.

%

fprintf(’\nfunction poisson09fig2 OutPut:’)

nfig = 1;

m = 10; me = 2*m; mo =2*m+1; % jump & dual values;

lambda = 5.241e+00; % histspc88To08 est. for lambda;

mue = 1/lambda; % exponential dist. mean is 1/lambda;

ksamples = 4; marks = {’k-’,’k:’,’k-.’,’k--’};
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% Jump-time have dual pre- and post-values of P.

P = zeros(ksamples,mo);

T = zeros(ksamples,mo);

for ks = 1:ksamples; % Multiple exp. dist. Paths:

DT = exprnd(mue,1,m);

% OR -mue*log(rand(m,1)); if no StatToolbox.

T(ks,2:2:me) = cumsum(DT); T(ks,3:2:mo) = cumsum(DT);

P(ks,2:2:me) = 0:m-1; P(ks,3:2:mo) = 1:m;

plot(T(ks,1:mo),P(ks,1:mo),marks{ks},’LineWidth’,2)

hold on

end

hold off

nfig = nfig + 1;

scrsize = get(0,’ScreenSize’); % figure for target screen

ss = [5.0,4.0,3.5]; % figure spacing factors

fprintf(’\n\nFigure(%i): Simulated Jump Sample Paths\n’...

,nfig)

figure(nfig)
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title(’Simple Jump Sample Paths from Jump Times’...

,’FontWeight’,’Bold’,’Fontsize’,24);

xlabel(’t, Time’,’FontWeight’,’Bold’,’Fontsize’,24);

ylabel(’P(t), Poisson State’ ...

,’FontWeight’,’Bold’,’Fontsize’,24);

hlegend=legend(’Sample 1’,’Sample 2’,’Sample 3’ ...

,’Sample 4’,’Location’,’Northwest’);

set(hlegend,’Fontsize’,20,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.6 scrsize(4)*0.8]);

%%%%%%%%%%%%%%%%%%%%%%

function DT = exprnd(mu,m,n)

% Use if Statistics Toolbox is not available, else %-out;

DT = -mu*log(rand(m,n));

% End Code poisson09fig2
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• Poisson Increment Process Moments:

1. Lemma 1.2. Poisson Expectation Sums by
Differentiation. If λ independent of time,

E[(∆P )m(t)]= e−λ∆t

∞∑
k=0

(λ∆t)kkm

k!

=

[
e−u

(
u

d

du

)m

eu

]∣∣∣∣
u=λ∆t

for m = 0, 1, 2, . . . .
(Comment: The proof is by induction, using properties
of the exponential function and its series
representation; see Hanson’s (2007) text, p. 17, for
more information and a Maple code for Poisson
moment calculations.)
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2. The results for the first few powers are summarized in the

following Table:

Table 1.2. Some expected moments (powers)
of Poisson increments and their deviations:

m E[(∆P )m(t)] E[(∆P (t)− λ∆t)m]

0 1 —

1 λ∆t 0

2 λ∆t(1 + λ∆t) λ∆t

3 λ∆t(1 + 3λ∆t + (λ∆t)2) λ∆t

4 λ∆t(1 + 7λ∆t + 6(λ∆t)2 + (λ∆t)3) λ∆t(1 + 3λ∆t)

5 λ∆t(1 + 15λ∆t + 25(λ∆t)2 + 10(λ∆t)3 + (λ∆t)4) λ∆t(1 + 10λ∆t)

(Comment: In the limit of dt-precision (as ∆t→0 then ∆t→dt,

keeping only O(dt)) it is easy to guess that the Poisson process will
have an infinite number of moments of O(dt), the the Wiener

process only has two, not counting the zeroth moment.)

FINM 345/STAT 390 Stochastic Calculus — Lecture1–page58 — Floyd B. Hanson



• Poisson Zero-One Jump Law — Bernoulli Process:
1. Theorem 1.4. ∆P (t) Zero-One Jump Law Error

Magnitude: As ∆t → 0+ with constant and bounded
λ, then

Prob[∆P (t) = 0]= 1 − λ∆t + O2(λ∆t),

Prob[∆P (t) = 1]= λ∆t + O2(λ∆t),

Prob[∆P (t) > 1]= O2(λ∆t),

Prob[(∆P )m(t) = ∆P (t)]= 1 −
1

2
(λ∆t)2 + O3(λ∆t),

m ≥ 2.

(Comment: The proof is by asymptotic expansion by Taylor ap-
proximation and, in the last line, relying on the algebraic zero-one
law that xm = x only if x=0 or x=1.
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This result is the basis for the infinitesimal or short time interval

formulation of the Poisson process. However, care must be taken

NOT to misapply the result to situations where the time-step ∆t is

moderate or more accurately when the product λ∆t is has a mod-

erate value, invalidating the 1-jump limit.)

2. Definition 1.6. Equality to Precision-dt: Let f(dt;x)
and g(x) be bounded functions for dt > 0 and param-
eter x. The function f is equal to g to precision-dt and

write f(dt; x)
dt
=g(x)dt if f(dt; x)=g(x)dt+o(dt)

as dt→0+ and fixed x.

(Comments: A basic condition for much of continuous-time mod-

eling is precision-dt. The approximate precision-∆t is similarly

defined.)
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3. Theorem 1.5. Zero-One Jump Law for dP(t): Let
dt > 0 and λ(t) > 0 as well also be bounded. Then

Prob[dP (t) = 0]
dt
= 1 − λ(t)dt,

Prob[dP (t) = 1]
dt
= λ(t)dt,

Prob[dP (t) > 1]
dt
= 0,

Prob[(dP )2(t) = dP (t)]
dt
= 1,

Prob[(dP )m(t) = dP (t)]
dt
= 1 , m > 0.

(Comment: This follows from the previous theorem,
except that it is consistent in the infinitesimal case to
allow time dependent jump rates λ(t).)
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4. Corollary 1.5. Zero-One Jump Law Distribution and
Expectation for dP(t): In precision-dt,

ΦdP (t)(k)=pk(λ(t)dt)
dt
=(1−λ(t)dt)δk,0+λ(t)dtδk,1

is a generalized representation of the differential Pois-
son distribution and

E[f(dP (t))]
dt
=(1−λ(t)dt)f(0)+λ(t)dtf(1)

is the expectation, provided f(p) is a bounded and con-
tinuous function.
(Comment: The Poisson zero-one jump law is a special case of a

Bernoulli distribution, concerning Bernoulli trials that have only

two outcomes, here with failure probability p = 1−λ(t) dt for

zero jump or success probability 1−p = λ(t) dt for one jump,

provided λ(t)dt�1. )
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5. Validity of Zero-One Jump Law?
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Figure 11: Poisson distribution for S&P ’88-’08 estimate λ = 5.241 per
year, ∆t = 1/252 years, ∆Λ = 2.151e-2 and n = 5292 poissrnd

simulations, leading to maximal 2-jump-count = [2,0,1,1,3,2], while
poisspdf predicts pk(∆Λ) = [9.794e-1,2.037e-2,2.118e-4,1.468e-6]
for k = [0,1,2,3] jumps.
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Figure 12: Poisson distribution for one year of S&P ’88-’08 estimate
λ = 5.241 per year, ∆t = 1/252 years, ∆Λ = 2.151e-2 and n = 252
(for one year only!) poissrnd simulations, leading to maximal 2-jump-
count =[0,0,1,0,0,0] so chances of a 2-jump is rare, while poisspdf pre-
dicts pk(∆Λ) = [9.794e-1,2.037e-2,2.118e-4,1.468e-6] for k = [0,1,2,3]
jumps.
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Summary: So the validity of zero-one jump law for
daily observations in financial markets is marginal,
since there will be rare two or more jumps that may
occur, more so after a long period and less so for
a short period such as a year. This is because the
fraction of a year in a market day (∆t ' 1/252) is
small, but not too small.

However, the zero-one jump law is a reasonable
approximation, but not a highly accurate one.
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Validity of Zero-One Jump Law MATLAB code example:

function poisson09fig3

% Validity of the Zero-One Jump Law for Poisson Processes

clc % clear variables, but must come before globals.

clf % clear figures, else accumulative.

fprintf(’\nfunction poisson09fig3.m OutPut:(%s):\n’...

,datestr(now)’); nfig = 3-1;

scrsize = get(0,’ScreenSize’); % figure spacing: target screen

ss = [5.0,4.0,3.5,3.0]; % figure spacing factors

nsamples = 6; % marks = {’k-’,’k:’,’k-.’,’k--’};

lambda = 5.241e+00; % histspc88To08 for lambda

xc = 0:3; nxc = length(xc); % Begin Calculation:

fprintf(’\nsize(xc)=[%i,%i],length(xc)=%i;’,size(xc),length(xc));

avdays = 252;

for Years = [21,1]

ndays=Years*avdays; dt=Years/ndays; %days/year, T years;

dLambda = lambda*dt;

fprintf(’\nYears=%i;ndays=%i;dt=%7.1e;lambda=%7.1e;dLambda=%7.1e;’...

,Years,ndays,dt,lambda,dLambda);

pk = poisspdf(xc,dLambda);
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fprintf(’\nBinCenters=[%9i,%9i,%9i,%9i];’,xc);

fprintf(’\n pk=[%9.3e %9.3e %9.3e %9.3e];’,pk);

DP = zeros(nsamples,ndays);

nhist = zeros(nsamples,nxc);

for ks = 1:nsamples; % Test Multiple Simulated Sample Paths:

DP(ks,:) = poissrnd(dLambda,1,ndays);

fprintf(’\nks=%i;max(DP)=%i;sum(DP)=%i;’...

,ks,max(DP(ks,:)),sum(DP(ks,:)));

nhist(ks,:) = hist(DP(ks,:),xc);

fprintf(’\nBinCenters=[%3i,%i,%i,%i];’,xc);

fprintf(’\nBinCounts =[%i,%i,%i,%i];’,nhist(ks,:));

end

nfig = nfig + 1; figure(nfig);

fprintf(’\n2-Jump-Count=[%i,%i,%i,%i,%i,%i];’,nhist(:,3));

fprintf(’\nFigure(%i): Simulated Jump Sample Paths\n’,nfig);

bar(xc,nhist’,’grouped’); % rearrange: rows[nhist]=length[xc];

title([’Jump Distribution using poissrnd and hist, years=’...

,num2str(Years)],’FontWeight’,’Bold’,’Fontsize’,24);

ylabel(’Counts per Bin’,’FontWeight’,’Bold’,’Fontsize’,24);

xlabel(’N, Jump Number’,’FontWeight’,’Bold’,’Fontsize’,24);

hlegend=legend(’Sample 1’,’Sample 2’,’Sample 3’,’Sample 4’...
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,’Sample 5’,’Sample 6’,’Location’,’Northeast’);

set(hlegend,’Fontsize’,20,’FontWeight’,’Bold’);

set(gca,’Fontsize’,20,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.6 scrsize(4)*0.8]);

end % End Code poisson09fig3
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To be Completed in Lecture 2!
1.4. Time-Dependent (NonHomogeneous)

Poisson Process:
• Financial markets are very time-dependent, so modelers

need to think critically about constant coefficient models,
understanding that in some cases time-dependence of
coefficients may be difficult to estimate, but perhaps not
much more difficult to analyze. Thus, consider λ = λ(t)

so the Poisson process P(t) will be nonstationary.

• Thus, the Poisson parameter differential is
dΛ(t) ≡ λ(t)dt, while the integral parameter, assuming
Λ(0) = 0 as in the constant jump rate case, is

Λ(t) =

∫ t

0

λ(s)ds.
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• Then, the Poisson parameter increment is defined by

∆Λ(t) ≡ Λ(t + ∆t) − Λ(t) =

∫ t+∆t

t

λ(s)ds.

Thus, ∆Λ(t) ∼ λ(t)∆t only when ∆t � 1, i.e., is
small, but if not use the integral.

• The temporal Poisson distributions
Prob[dP (t) = k] = pk(Λ[1:3](t)) for the three cases
∆P[1:3](t) = [dP (t), ∆P (t), P (t)] and parameters
∆Λ[1:3](t) = [dΛ(t), ∆Λ(t), Λ(t)], are the same

Φ∆Pi(t)(k; ∆Λi(t)) = e−∆Λi(t) (∆Λi(t))
k

k!
,

for i = 1:3 and k = 0, 1, 2, . . . jumps, t ≥ 0 and
∆t ≥ 0. (Comment: In MATLAB, 1:n=[j]1×n is a row-vector. )
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• Note that all three Poisson processes are increment
processes, even ∆P3(t) = P (t) = P (t) − P (0),
where P (0) ≡ 0. Also, Λ(t) is continuous as integrals
with λ(t) > 0 for t > 0.

• While the basic statistics for the set of Poisson increment
processes are similar to the simple constant rate case, i.e.,
E[∆Pi(t)] = ∆Λi(t) = Var[∆Pi(t)]. However, the
exponential distribution of the interjump times are much
more complicated, but see Hanson’s (2007), pp. 22-23,
and cited background references.
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1.5. Martingale Properties of Markov Processes
— Expectations Conditioned on the Past:

• Simple Definition 1.7: A martingale M(t) is a stochastic
process that principally satisfies

E[M(t) | M(s), 0 ≤ s < t] = M(s),

with some technical side conditions in probability space
that M(t) is absolutely integrable, i.e., E[|M(t)|] < ∞
on [0,T] for some finite horizon time T < ∞.
(Comment: The term Martingale comes from horse
racing and abstractly symbolizes a fair game since

E[M(t) − M(s) | M(s)] = 0, 0 ≤ s < t,

i.e., there being no net gain on the average conditioned on
past data. Alternately, E[∆M(t) | M(t)] = 0, t ≥ 0.)
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• Poisson Examples (assuming 0 ≤ s < t):

1. Expanding in increments, E[P (t)|P (s)]=E[(P (t)−
P (s)) + P (s)|P (s)] = Λ(t; s)+ P (s), where
Λ(t; s) ≡ Λ(t)−Λ(s) so P (t) is not a martingale,
but the zero-mean Poisson, P̂ (t) ≡ P (t)−Λ(t) is
a martingale, because E[P̂ (t)|P̂ (s)] = P̂ (s); hence
E[∆P̂ (t)|P̂ (t)]=0, so implies a fair game.

2. Again expanding,E[P 2(t)|Pt)]=E[((P (t)−P (s))+

P (s))2|P (s)] = Λ(t; s)− 2P (s)Λ(t; s)+P 2(s),
so P 2(t) cannot be converted into a martingale since
the cross-term 2P (s)Λ(t; s) prevents additive separa-
bility into t and s terms.
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• Wiener Examples (assuming 0 ≤ s < t):

1. Since the Wiener process is a zero mean process
W(t) is a martingale, i.e., E[W (t)|W (s)] =

E[(W (t) − W (s)) + W (s)|W (s)] = W (s) and
E[∆W (t)|W (t)]=0 implies a fair game. (Comment:
Zero-meanness helps, but is not sufficient in general.
Note also that E[|W (t)|] =

√
2t/π <

√
2T/π < ∞

by Table 1.1.)

2. Expanding, E[W 2(t)|W (s)]=E[((W (t)−W (s))+

W (s))2|W (s)] = (t − s)−2W (s) · 0+W 2(s),
so rearranging we see that (W 2(t) − t) is a martin-
gale, 0 ≤ t < T < ∞, since E[W 2(t)−t|W (s)] =

W 2(s)−s. (Comment: Note no time-dependent coefficients.)
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