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Continuation of Lecture 1:
1.4. Time-Dependent (NonHomogeneous)

Poisson Process:
• Financial markets are very time-dependent, so modelers

need to think critically about constant coefficient models,
understanding that in some cases time-dependence of
coefficients may be difficult to estimate, but perhaps not
much more difficult to analyze. Thus, consider λ = λ(t)

so the Poisson process P(t) will be nonstationary.
• Thus, the Poisson parameter differential is

dΛ(t) ≡ λ(t)dt, while the integral parameter, assuming
Λ(0) = 0 as in the constant jump rate case, is

Λ(t) =

∫ t

0

λ(s)ds.

FINM 345/Stat 390 Stochastic Calculus — Lecture2–page2 — Floyd B. Hanson



• Then, the Poisson parameter increment is defined by

∆Λ(t) ≡ Λ(t + ∆t) − Λ(t) =

∫ t+∆t

t

λ(s)ds.

Thus, ∆Λ(t) ∼ λ(t)∆t only when ∆t � 1, i.e., is
small, but if not the integral must be used.

• The temporal Poisson distributions
Prob[dP (t) = k] = pk(Λ[1:3](t)) for the three cases
∆P[1:3](t) = [dP (t), ∆P (t), P (t)] and parameters
∆Λ[1:3](t) = [dΛ(t), ∆Λ(t), Λ(t)], are the same

Φ∆Pi(t)(k; ∆Λi(t)) = e−∆Λi(t) (∆Λi(t))
k

k!
,

for i = 1:3 and k = 0, 1, 2, . . . jumps, t ≥ 0 and
∆t ≥ 0. (Hint: In MATLAB, 1:n=[j]1×n is a row-vector. )

FINM 345/Stat 390 Stochastic Calculus — Lecture2–page3 — Floyd B. Hanson



• Note that all three Poisson processes are increment
processes, even ∆P3(t) = P (t) = P (t) − P (0),
where P (0) ≡ 0. Also, Λ(t) is continuous as integrals
with λ(t) > 0 for t > 0.

• While the basic statistics for the set of Poisson increment
processes are similar to the simple constant rate case, i.e.,
E[∆Pi(t)] = ∆Λi(t) = Var[∆Pi(t)]. However, the
exponential distribution of the interjump times are much
more complicated, but see Hanson’s (2007), pp. 22-23,
and cited background references.

• Some theory becomes more complicated in the
nonstationary case, but changing the clock from t to
Λ(t), by changing the rate to the constant one, will
remove most of the difficulties (see text, p. 22).
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1.5. Martingale Properties of Markov Processes
— Expectations Conditioned on the Past:

• Simple Definition 1.7: A martingale M(t) is a stochastic
process that principally satisfies

E[M(t) | M(s), 0 ≤ s < t] = M(s),

with some technical side conditions in probability space
that M(t) is absolutely integrable, i.e., E[|M(t)|] < ∞
on [0,T] for some finite horizon time T < ∞.
(Comment: The term Martingale comes from horse
racing and abstractly symbolizes a fair game since

E[M(t) − M(s) | M(s)] = 0, 0 ≤ s < t,

i.e., there being no net gain on the average conditioned on
past data. Alternately, E[∆M(t) | M(t)] = 0, t ≥ 0.)

FINM 345/Stat 390 Stochastic Calculus — Lecture2–page5 — Floyd B. Hanson



• Poisson Examples (assuming 0 ≤ s < t):

1. Expanding in increments, E[P (t)|P (s)]=E[(P (t)−P (s))+
P (s)|P (s)]=Λ(t; s)+P (s), where E[P (t)−P (s)|P (s)]=
Λ(t; s) ≡ Λ(t) − Λ(s) so P (t) is not a martingale, but the
zero-mean Poisson, P̂ (t)≡P (t)−Λ(t) is a martingale, because
E[P̂ (t)|P̂ (s)] = P̂ (s); hence E[∆P̂ (t)|P̂ (t)] = 0, so implies
a fair game.

2. Again expanding, E[P 2(t)|P 2(s)] = E[((P (t) − P (s) −
Λ(t; s))+(P (s)+Λ(t; s)))2|P (s)]=Var[P (t)|P (s)]+2 ·
0+(P (s)+Λ(t; s))2=P 2(s)+Λ(t; s)(2P (s)+Λ(t; s)+1),
so P 2(t) cannot be converted into a martingale since the cross-
term Λ(t; s)(2P (s)+Λ(t; s)+1) prevents additive separability
into t and s terms.
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• Wiener Examples (assuming 0 ≤ s < t):

1. Since the Wiener process is a zero mean process
W(t) is a martingale, i.e., E[W (t)|W (s)] =

E[(W (t) − W (s)) + W (s)|W (s)] = W (s) and
E[∆W (t)|W (t)]=0 implies a fair game. (Comment:
Zero-meanness helps, but is not sufficient in general.
Note also that E[|W (t)|] =

√
2t/π <

√
2T/π < ∞

by Table 1.1.)

2. Expanding, E[W 2(t)|W (s)]=E[((W (t)−W (s))+

W (s))2|W (s)] = (t − s)−2W (s) · 0+W 2(s),
so rearranging we see that (W 2(t) − t) is a martin-
gale, 0 ≤ t < T < ∞, since E[W 2(t)−t|W (s)] =

W 2(s)−s. (Caution: Note no time-dependent coefficients.)
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FinM 345 Stochastic Calculus:
2. Stochastic Integration

for Stochastic Differential Equations:
2.0. Somewhat General Jump-Diffusion Stochastic

Differential Equation (SDE):
Our interest in stochastic calculus is the integration or
numerical simulation of given jump-diffusion stochastic
differential equations of a type like
dX(t)=f(X(t), t)dt+g(X(t), t)dW (t)+h(X(t), t)dP (t),

X(0) = x0 initially with probability one, with stochastic
jump-diffusion terms like differential Wiener process dW (t)

and a simple Poisson differential process dP (t) here.
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The coefficients {f(x, t), g(x, t), h(x, t)} could be
nonlinear in the state X(t), e.g., an asset, but most likely to
be linear or affine in finance, e.g., f(x, t)=f0(t)+f1(t)x.
More generally and usefully, the Poisson process will be a
compound Poisson process dP (t) = dP (t; Q), doubly
stochastic with a independent, identically distributed (IID)
amplitude variable Q and will be treated later in the course.

Integration of SDEs is not the same as those for ODEs (else
there would not be this course) due to the facts that W (t) is
nondifferentiable and P (t) is discontinuous (but piecewise
continuous) and because of this the above SDE is really
symbolic since the integrated or simulated solution depends
on the integration rule, which must be specified.
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2.1. Stochastic Integration for Diffusions:
We will follow the regular calculus model, but modified for
jumps and nondifferentiability in a nonabstract way. Unlike
regular calculus where the integral in independent of the
approximation point as in the Riemann integral,

F (t)=

∫ t

0

f(X(s), s)ds'
n∑

i=0

f(X(ti+θ), ti+θ)∆ti,

which converges to F (t) as n→∞ for sufficiently nice
f(X(t), t), where ti = t0+i∆ti, ti+θ = ti+θ∆ti, t0 =0,
tn+1 = t and θ is the fractional approximation point
spacing, 0≤θ≤1. In the case of fixed (n+1) time-steps,
∆ti = t/(n+1), so

∑n
i=0 ∆ti = t.
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Of more interest in stochastic calculus is the Stieltjes or
Riemann-Stieltjes integral,

G(t)=

∫ t

0

g(X(s), s)dX(s)'
n∑

i=0

g(X(ti+θ), ti+θ)∆X(ti),

which converges to G(t) as n→∞ for sufficiently nice
g(X(t), t) and continuous X(t), having bounded variation,
where ∆X(t)≡X(ti+1)−X(ti). However, one can show
that W (t) does not have bounded variation anywhere.
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The primary stochastic calculus used today is the Itô calculus
developed for the Wiener process in the 1940s by Kyosi Itô
(d. 11/10/2008) apparently in his PhD thesis research, but he
also extended the calculus to Poisson processes in his 1954
memoir. Although also known for his abstract analysis on
stochastic processes. For real application simulation or
integration purposes, his emphasis on the forward or Euler
or left-hand integration rule, i.e., θ≡0, is of interest since
the forward rule is consistent with the Markov properties of
forgetting the past and independent increments, as in the
diffusion and jump processes considered, but the stochastic
property requires at least mean square convergence. When
θ 6=0, then integrals vary with θ and calculations are very
complicated since they must be split into many combinations
of independent increments for calculations. . . .
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. . . (See Itô appreciation Homework #4 ¨̂ .)

For integration of a derivative, the fundamental theorem of
calculus holds for W (t), so

∫ t

0
dW (s)=W (t) or∫ t

0
dG(W (s))=G(W (t))−G(0). For general Wiener

integration,

I[WdW ](t)≡
∫ t

0

W (s)dW (s)

is the fundamental “counter-example” to regular integration,
e.g.,∫ t

0

X(s)dX(s)=

∫ t

0

dX2(s)/2=(X2(t)−X2(0))/2,

if X(t) is differentiable.
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The Itô forward approximation (IFA) when θ ≡ 0 is

In[WdW ](t)≡
n∑

i=0

W (ti)∆W (ti),

noting that W (ti) = W (ti) − W (0) and
∆W (ti)=W (ti+1) − W (ti) are independent increments,
preserving a crucial Markov property. Hence, since for each
increment E[∆W (t)]=0, then by independence and
zero-mean properties, E[In[WdW ](t)]=

∑n
i=0 0 · 0=0.

In the following, we simplify the index notation by letting
Wi ≡W (ti) and ∆Wi ≡∆W (ti).
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For approximating and resumming, we need the following
from Hanson (2007),

• Lemma 2.1.1. Critical Sum Identities: Let
{xi|i=0:n+1} be any sequence of numbers, and let
∆xi =xi+1−xi for i = 0 : n. Then

n∑
i=0

∆xi= xn+1−x0,

n∑
i=0

xi∆xi=
1

2

(
x2

n+1−x2
0−

n∑
i=0

(∆xi)
2

)
.

Proof: See the text, p. 35, but first part is trivial and is a
generalization of the identity

∑n
i=0 ∆ti = t for partitions of

[0, t] .
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As a deterministic example, in the case of a variable mesh,
∆ti is not constant, but then a maximal mesh size must be
specified, 0<∆ti ≤δtn ≡maxi[∆ti], such that
δtn →0+ to avoid degeneracy as n→+∞, along with
n∑

i=0

∆ti = t fixed. Using the forward approximation (θ ≡ 0)

on elementary integrals,∫ t

0

ds =
n∑

i=0

∆ti = t, exactly;∫ t

0

(ds)2 '
n∑

i=0

(∆ti)
2 ≤ δtn

n∑
i=0

∆ti = t · δtn →0+;∫ t

0

(ds)1+α '
n∑

i=0

(∆ti)
1+α ≤(δtn)α

n∑
i=0

∆ti = t·(δtn)α →0+,

where 0 < α, reaffirming the notion of dt-precision.
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Thus,

In[WdW ](t)=
1

2

(
W 2(t)−

n∑
i=0

(∆Wi)
2

)
.

So, using Table 1.1 from Lecture 1 for the mean of the
squared Wiener increment,

E[In[WdW ](t)]=
1

2

(
t−

n∑
i=0

∆t

)
=(t − t)/2=0

preserving the original zero mean but suggesting that

I[WdW ](t)≈
1

2

(
W 2(t)−t

)
,

but the real target and more fundamental integral is

I[(dW )2](t)=

∫ t

0

(dW )2(s)≈ t,

but note that the expectation above is no indicator of equality.
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You should have demonstrated the t limit for I[(dW )2](t)

in Homework Set 1, using the Itô forward approximation,

In[(dW )2](t)≡
n∑

i=0

(∆Wi)
2,

for simulation. In order to establish a weak version of
equality, Itô’s mean square (IMS) limit will be used:
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• Definition 2.1.1. Mean Square Limit or Convergence:
The random variable In(t) converges in the mean square to
the random variable I(t) if

E
[
(In(t) − I(t))2] → 0 (1)

as n → ∞, assuming that both random variables have
bounded mean squares, i.e., E [(In)2(t)] < ∞ and
E [I2(t)] < ∞. If the limit (1) exists, then denote the mean
square limit as

I(t) =
ms

lim
n→∞

[In(t)].

As an abbreviation, sometimes ims
= will be used for =

ms

lim
n→∞

,

where ims
= means equals in the Itô mean square.

(Comment: Mean square convergence is related to other
types of convergence in Hanson (2007), p. 37-38.)
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• Theorem 2.1.1: Let

In

[
(dW )2

]
(t) ≡

n∑
i=0

(∆Wi)
2; (2)

then

t =
ms

lim
n→∞

[
In

[
(dW )2

]
(t)
] ims

= I
[
(dW )2

]
(t). (3)

Proof: The mean t of In[(dW )2](t) is absorbed into the
summation by the critical sums with xi = ti; the square of
the mean square argument leads to a double sum which is
separated by the diagonalization technique into diagonal
parts (j = i) and off-diagonal parts (j 6= i), allowing the
splitting of the expectations using the independent increment
property, so
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E
[(

In[(dW )2](t) − t
)2]

= Var [In[(dW )2](t)] = E
[(∑n

i=0 (∆Wi)
2 − t

)2]
= E

[(∑n
i=0

(
(∆Wi)

2 − ∆ti

))2]
= E

[∑n
i=0

(
(∆Wi)

2 − ∆ti

)∑n
j=0

(
(∆Wj)

2 − ∆tj

)]
=
∑n

i=0 E
[(

(∆Wi)
2 − ∆ti

)2]
+
∑n

i=0 E
[
(∆Wi)

2 − ∆ti

]∑n
j=0

j 6=i
E
[
(∆Wj)

2 − ∆tj

]
=
∑n

i=0 Var [(∆Wi)
2] +

∑n
i=0 0

∑n
j=0

j 6=i
0

=
∑n

i=0 (E [(∆Wi)
4] − E2 [(∆Wi)

2])

=
∑n

i=0 (3(∆ti)
2 − (∆ti)

2) = 2
∑n

i=0(∆ti)
2.

(Comment: Note you need that (
P

i Ai)
2 =(

P
i Ai)(

P
j Aj), where j is a

dummy index to avoid confusion with the original index j; try for i=0:1.)
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The last two of steps relying on the results of Table 1.1 of
Lecture 1. Since a variable grid must have a maximal
constraint, ∆ti ≤ δtn = maxj[∆tj], we then have

E
[(

In[(dW )2](t)−t
)2]

= 2
n∑

i=0

(∆ti)
2 ≤ 2δtn

n∑
i=0

∆ti

= 2tδtn → 0

as n → ∞ showing that

t =
ms

lim
n→∞

[In[(dW )2](t)].

Clearly both In[(dW )2](t) and t have bounded mean
squares for bounded t.
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Summarizing, we have
• Theorem 2.1.2:∫ t

0

W (s)dW (s) ims=
1

2

(
W 2(t)−t

)
=

ms

lim
n→∞

[In[WdW ](t)], (4)

where t < ∞ and

In[WdW ](t) =
n∑

i=0

Wi∆Wi.

(Comment: See Hanson (2007), pp. 39-42, for more proof
details. Such discrete analysis is usually only needed at the
start and, as in the regular calculus for the most basic
results, once we get to the chain rule, here for stochastic
processes, we will not use this kind of analysis again, until
there is something with complexity beyond the chain rule.)
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• Definition 2.1.2. General Itô Mean Square (IMS) Limit:
Let

I[g(W, t)dW ](t) =

∫ t

t0

g(W (s), s)dW (s), (5)

where 0 ≤ t0 ≤ t and the integrand process g(W (t), t)
has a bounded mean integral of its square, i.e.,

E
[∫ t

t0

g2(W (s), s)ds

]
< ∞.

Further, let the forward integration approximation be, with
mesh {ti+1 = ti+∆ti, tn+1 = t, δtn =maxi[∆ti]�1,n�1} ,

In[g(W, t)dW ](t)
ifa
=

n∑
i=0

g(W (ti), ti)∆W (ti)),

then the IMS limit of (5) is

I[g(W, t)dW ](t)
ims
=

ms

lim
n→∞

[In[g(W, t)dW ](t)]. (6)
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Figure 1: Simulated sample path for the Itô forward integration approxi-

mating sum of
∫
(dW )2(t) ims= t '

∑
i(∆Wi)2 for n=104 MATLAB

randn sample size. Note, the IMS limit t is deterministic: a paradox?
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• Fundamental Stochastic Calculus Motivation 2.1.1.∫ t

0

(dW )2(t)≈ lim
n→∞

n∑
i=0

(∆Wi)2 = t:

Consider ∆Wi
dist
= N (w; 0, ∆t), but the short derivation

on L1-p25 implies there is a Zi = Zi(ti)
dist
= N (w; 0, 1)

such that ∆Wi =
√

∆t ·Zi for all i. The unbiased sample
variance of the Zi is
Varn+1[{Zi}n

i=0] =
∑n

i=0 Z2
i /n → σ2

Z as n → ∞
where the population variance is σ2

Z = 1 according to the
statistical limit theorems in FINM 331. Hence,∑n

i=0(∆Wi)2 =∆t
∑n

i=0 Z2
i =n·t· Varn+1[{Zi}n

i=0]/(n+1)→
t as n→∞ , i.e., the desired result due to the unit-variance of
the underlying standard normal Z & ∆t = t/(n + 1).

Code follows later . . . intdwdw.m in Online Appendix C
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•
∑

i(∆Wi)
2 and t book MATLAB code example:

function intdwdw

% Fig. 2.1 Example MATLAB code for integral of (dW)ˆ2:

clc % clear variables;

t0 = 0.0; tf = 1.0;

n = 1.0e+4; nf = n + 1; % set time grid: (n+1) steps;

dt = (tf-t0)/nf; % and (n+2) points;

sqrtdt = sqrt(dt); % dW(i) noise time scale so E[dW]=0;

kstate = 1; randn(’state’,kstate); % Fix randn state;

dW = sqrtdt*randn(nf,1); % simulate (n+1)-dW(i) sample;

t = t0:dt:tf; % get time vector t;

W = zeros(1,nf+1); % set initial diffusion condition;

sumdw2 = zeros(1,nf+1); % set initial integral sum;

for i = 1:nf % simulate integral sample path;

W(i+1) = W(i) + dW(i); % sum diffusion noise;

sumdw2(i+1) = sumdw2(i) + (dW(i))ˆ2; % sum;

end % Better to use cumsum here for vector code;

fprintf(’\n\nFigure 1: int[(dW)ˆ2](t) versus t\n’);
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nfig = 1;

figure(nfig);

scrsize = get(0,’ScreenSize’); % fig. spacing for screen;

ss = [5.0,4.0,3.5]; % figure spacing factors

plot(t,sumdw2,’k-’,t,t,’k--’,’LineWidth’,2); % 2 plots;

title(’\int(dW)ˆ2(t) Simulations versus t’...

,’FontWeight’,’Bold’,’Fontsize’,44);

ylabel(’\int(dW)ˆ2(t) and t, States’...

,’FontWeight’,’Bold’,’Fontsize’,44);

xlabel(’t, Time’...

,’FontWeight’,’Bold’,’Fontsize’,44);

hlegend=legend(’\int(dW)ˆ2(t)’,’t’...

,’Location’,’Southeast’);

set(hlegend,’Fontsize’,36,’FontWeight’,’Bold’);

set(gca,’Fontsize’,36,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.6 scrsize(4)*0.8]);

% End intdwdw Code
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• Theorem 2.1.3. Fundamental Theorem of Itô Stochastic
Diffusion Calculus.
Let g(w) be continuous and G(w) be continuously
differentiable, for 0 ≤ t, then

(a) d

[∫ t

0

g(W (s))dW (s)

]
ims
= g(W (t))dW (t);

(b)
∫ t

0
dG(W (s))

ims
= G(W (t)) − G(0).

(Comment: The proofs rely on straight-forward applications
of the IFA and IMS principles. See Hanson (2007),
pp. 45-46. Of course, the lower limit at s = 0 can be
replaced by some t0 such that 0 ≤ t0 ≤ t. The main point is
that the Fundamental Theorem of Regular Calculus is
preserved with IMS limits.)
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• Symbolic Notation — Itô Mean Square in dt−Precision:
Taking the mean square source as understood, we will use the

previous symbol dt
= instead of the current symbol ims

= , so
using the first part of the Fundamental Theorem 2.1.3, to
write our current results as stochastic differentials,

(dW )2(t)
dt
=dt,

W (t)dW (t)
dt
=

1

2
(d(W 2)(t)−dt)

or
d(W 2)(t)

dt
=2W (t)dW (t)+dt.
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• Quick dt−Precision Calculations by Increment
Expansion: Note that the differential increment
dW (t) ≡ W (t + dt) − W (t) can also be written
W (t + dt) = W (t) + dW (t) for any function, not just
W (t), leading to an alternate derivation for d(W 2)(t),

d(W 2)(t) ≡ W 2(t + dt) − W 2(t)

= (W + dW )2(t) − W 2(t)

= (W 2 + 2WdW + (dW )2 − W 2)(t)
dt
= 2WdW (t) + dt,

using some easy algebra and the fundamental differential

(dW )2(t)
dt
=dt of Wiener processes or Brownian motion.
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• Itô Piecewise-Constant Approximations (i-PWCA) for
general Problems: Associated with Wiener process integrand and
the use of the forward integration approximation is the assumption that
the integrand g(W (t), t) can be approximated by a right-continuous
set of step-function, i.e.,

g(W (s), s)'Zn(s)={zi : ti ≤s<ti+1, i=1:n+1},

where any t0 ≥0 and tn+1 = t. (Note that last point would contribute

zero area to the integral.) The approximate values zi depend on a

sequence of overlapping, past history processes

Wi ={W (s) : t0 ≤s <ti}, i.e., they are non-anticipatory or adapted

to Wi, in the sense of abstract probability analysis. The i-PWCA Zn(s)

must converge in the mean square to g(W (s), s) as n→ ∞. We use

zi = g(W (ti), ti), Itô’s forward approximation (IFA), denoted in the

limit n→∞ by ifa=. The general i-PWCA formulation is advanced

background for future work elsewhere, but we mostly rely on IFA here.
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• Theorem 2.1.4. Mean of Itô Stochastic Integral:

E

[∫ t

t0

g(W (s), s)dW (s)

]
ifa
= 0,

for 0 ≤ t0 ≤ t , assuming for g the mean square
integrability condition and the IFA (symbol ifa

=) forward
approximation limit assumption.

(Comment: The main idea of the proof is that the expectation
can be passed into the integral since formally the domain
[t0, t) of the integral and sum are deterministic, by
interchangeability E[

∑
igi∆Wi]=

∑
iE[gi∆Wi] , and since

gi and ∆Wi have “independent increments”, then
E[gi∆Wi]=E[gi]·E[∆Wi]=0 , assuming only that E[g] is
bounded, and reassembling by IFA, E[

∫
g ·dW ] ifa=0 . The

theorem is NOT true for approximating rules for θ > 0.)
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• Theorem 2.1.5. Covariance of Itô Stochastic Integral:

E
[∫ t

t0
f(W (s), s)dW (s)

∫ t

t0
g(W (r), r)dW (r)

]
ifa
=
∫ t

t0
E [f(W (s), s)g(W (s), s)] ds

for 0 ≤ t0 ≤ t, assuming that f(W (t), t) and g(W (t), t)

satisfy the mean square integrability condition and the IFA
limits assumption.

(Comment: Extending the formal interchangeability and
independent increment ideas from the prior theorem, i.e.,
E[
∑

ifi∆Wi

∑
jgj∆Wj]=

∑
i

∑
jE[figj∆Wi∆Wj], and

since fi, gj ,∆Wi and ∆Wj have independent increments
except when i=j giving E[∆Wi∆Wj]=∆tδi,j , so
E[
∑

ifi∆Wi

∑
jgj∆Wj]=

∑
i E[figi]·∆t, but

reassembling by IFA in reverse yields the above hypothesis.)
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An immediate corollory from when f = g, called Itô
isometry or martingale isometry, follows:

• Corollory 2.1.5. Variance of Itô Stochastic Integral:

E

[(∫ t

t0

g(W (s), s)dW (s)

)2
]

ifa
=

∫ t

t0

E
[
g2(W (s), s)

]
ds,

under prior assumptions.

(Comment: Since
∫

gdW has zero-mean by Th. 2.4, then
2nd Moment is the variance, E[(

∫
gdW )2]=Var[

∫
gdW ].

Also, isometry is a distance preserving map between metric
spaces, according to Wikipedia.)
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• Table 2.1.1. Summary of Itô Stochastic Diffusion
Differentials with an Accuracy in dt-precision:

Differential Itô Mean

Diffusion Form Square Limit

dW (t) dW (t)

dt dt

dt dW (t) 0

(dW )2(t) dt

(dW )m(t) 0, m ≥ 3

(dt)α(dW )m(t) 0, α > 0, m ≥ 1
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Some of these table entries have been the focus of homework
simulation problems, but proofs can be difficult. An example
is the (dW )m(t) dt= 0 when m ≥ 3 when the IFA mean and
IMS approximation need be found first, with∫ t

0
(dW )m(s) ifa=

∑n
i=0(∆Wi)m .

When the power is odd, m = 2k − 1, k ≥ 2 , the IFA mean
test is E[

∑n
i=0(∆Wi)2k−1] =

∑n
i=0 E[(∆Wi)2k−1] = 0 ,

exactly, since (∆Wi)2k−1 is an odd function. The IMS test
uses the square of the sum that is decomposed as a diagonal
and nondiagonal sums (

∑
j =

∑
j=i +

∑
j 6=i),

E[(
∑n

i=0(∆Wi)2k−1)2] =
∑n

i=0

∑n
j=0 E[(∆Wi)2k−1(∆Wj)2k−1]

=
∑n

i=0 E[
∑n

i=0(∆Wi)2(2k−1) +
∑

j 6=i(∆Wi)2k−1(∆Wj)2k−1]

= (4k − 3)!!
∑n

i=0(∆ti)2k−1 ≤ (4k − 3)!!δt2k−2
n t → 0,

as n→∞ and
∑

i∆t= t where (4k − 3)!! is from Table 1.1.
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When the power is even, m = 2k, k ≥ 2 , the IFA mean test
is different due to even function, E[

∑n
i=0(∆Wi)2k]

=
∑n

i=0 E[(∆Wi)2k]=(4k−3)!!
∑n

i=0(∆ti)k ≤δtk−1
n t→0 ,

approximately. The IMS test is

E[(
∑n

i=0(∆Wi)2k)2] =
∑n

i=0

∑n
j=0 E[(∆Wi)2k(∆Wj)2k]

=
∑n

i=0 E[
∑n

i=0(∆Wi)4k +
∑

j 6=i(∆Wi)2k(∆Wj)2k]

= (4k−1)!!
∑n

i=0(∆ti)2k+((2k−1)!!)2
∑n

i=0(∆ti)k
∑n

j=0(∆tj)k

≤ (4k−1)!!δt2k−1
n t+((2k−1)!!)2δt2k−2

n t2 →0
as n → ∞ after much more algebra and analysis (see text).
Hence,∫ t

0
(dW )m(s) ims= 0 and (dW )m(t) dt= 0

for m ≥ 3 , the latter using the fundamental theorem of
differential stochastic calculus on the former integral.
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2.2. Stochastic Integration for Jumps:
Usually a Itô process, also called a Gaussian process is a
process linear in the Wiener process with a mean and
volatility. However, in K. Itô’s early published Memoir of the
American Mathematics Society on stochastic differential
equations, he also treated the case of Poisson jumps, so
perhaps those who named the diffusion process for him did
not read that far into his work.
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• Definition 2.2.1. Poisson Jump Stochastic Integration.∫ t

0

h(X(s), s)dP (s)
ims
=

ms

lim
n→∞

[
n∑

i=0

h(X(ti), ti)∆P (ti)

]
,

where X(t) in the integrand function h depends on the jump
process P (t), but also can depend on the diffusion process
W (t). The integrand process h(X(t), t) is also assumed to
have a bounded mean integral of squares,

E

[∫ t

0

h2(X(s), s)ds

]
< ∞,

and h(X(t), t) to satisfy the Itô piecewise constant
approximations (i-PWCA) the mean square limits assumption
in the sense of the Itô’s forward approximation (IFA), with a
proper variable grid (∆ti) partition specifications on [0, t].
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(Comment: In this section, we will little time on mean square
convergence, since a sufficient amount of time was spent in
the last section for a course in financial applications.)

• Theorem 2.2.1. Fundamental Theorem of Poisson Jump
Calculus (FTPJC):
Let h(p) be continuous and H(p) be continuously
differentiable. Then

(a) d

(∫ t

0

h(P (s))dP (s)

)
ims
= h(P (t))dP (t), 0 ≤ t,

(b)
∫ t

0

dH(P (s))
ims
= H(P (t)) − H(0), 0 ≤ t.

The proof is very similar to that of the Wiener process in the
prior section, except that bounded variation is not needed for
Poisson jumps.
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• Theorem 2.2.2. Jump Integral of
∫

PdP :

I[P ](t)=

∫ t

0

P (s)dP (s)
ims
= I(ims)[P ](t)≡

1

2
(P (P−1))(t)

is the mean square limit integral, with

I(ims)[P ](t)
ims
=

ms

lim
n→∞

[In[PdP ](t)],

where the Itô forward integration approximation (IFA) is
In[PdP ](t)≡

∑n
i=0 P (ti)∆P (ti).

Proof, Formally by Increments: Recalling that
d(x2)=2xdx in regular (smooth) calculus, consider the
Poisson squared increment expansion

∆(P 2)(t)≡P 2(t + ∆t)−P 2(t)=((P +∆P )2−P 2) (t)

=(2P∆P +(∆P )2) (t).
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Taking the limit ∆t→0+ with ∆t→dt, replacing ∆P by
dP and (dP )2 dt

=dP using the zero-one jump law,
neglecting smaller order terms leads to
d(P 2)(t)

dt
=(2PdP + dP )(t), in probability. Solving for

the integrand-differential while forming an exact differential
yields in probability

(PdP )(t)
dt
=

1

2
d
(
P 2−P

)
(t).

Therefore, integration by the fundamental theorem of
stochastic jump integration leads formally to the primary
result,∫ t

0

(PdP )(s)=
1

2

∫ t

0

(d
(
P 2−P

)
(t))(s)

ims
=

1

2

(
P 2−P

)
(t),

where the initial Poisson condition P (0) = 0 w.p.o has been
used to eliminate the initial value of the integral.
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That takes care of the first part of the proof, but the technique
is general enough for other powers.

The details of the proof of mean square convergence is given
in Hanson (2007) and is too much to repeat here, even though
it is only valid when the jump rate λ is constant.

(Comment: Recall that a Poisson process is a counting
process and the Pythagorean counting theorem says that the
sum of integers is a triangular number, i.e.,
S(1)

n =
∑n

k=0k=n(n+1)/2, so the primary result
P (P −1)/2 is the n=P (t)−1th triangular number, such
that the number is short of P (t), but the sum is zero when
P (t)=1 due to the forward nature of IFA, using only the
left-hand endpoints of each subinterval.)
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• Table 2.2.1. Some stochastic jump integrals of powers
with an accuracy with error o(dt) as dt → 0+:

precision-dt:

m
∫ t

0
(P mdP )(s)

0 P (t)

1 (P (P −1))(t)/2

2 (P (P −1)(2P −1))(t)/6

3 (P 2(P −1)2)(t)/4

(Comment: The cases m=2 & 3 will be proved formally
for homework. These cases are all cases of supertriangular
numbers (Hanson, 2007), S(m)

n =
∑n

k=0 km, where
m≤0 & n≤0, again with n=P (t)−1.)
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If the sum form of Poisson integral holds for monomials, it
should hold for homogeneous functions of P (t), only.

• Theorem 2.2.3. Pure Poisson Integral as Sum Form:
Let h(p) be a continuous function, except that h(p)≡0 if
p<0, and let the process h(P (t)) a bounded mean square.
Then, ∫ t

0

h(P (s))dP (s)
ims
=

P (t)−1∑
k=0

h(k).

Proof: By FTPJC, d
∫ t

0
h(P )dP

dt
=(h(P )dP )(t) and

d
∑P −1

k=0h(k)=
∑P+dP −1

k=0 h(k)−
∑P −1

k=0h(k)
dt
=(h(P )dP )(t)

by increment algebra, so they have the same differential, but
also the same zero initial condition at t=0, so are the same,
i.e., the same starts and the same changes yield the same
result.
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• Theorem 2.2.4. Poisson Stochastic Integrals Given
Jump-Times Tk:
Let h(x, t) be a continuous function, let the process
h(X(t), t) have a bounded mean square, and satisfy the
i-PWCA mean square limits Assumption. Then,∫ t

0

h(X(s), s)dP (s)
ims
=

P (t)∑
k=1

h(X(T −
k ), T −

k ),

where Tk is the kth jump-time of Poisson process P (t) and
T −

k is the prejump-time. The usual no-jump, no-amplitude
convention is assumed, i.e.,

∑0
k=1 h(X(T −

k ), T −
k ) ≡ 0.

(Comment: This is more of a definition of the Poisson
process with coefficient h(X(t), t), but an elaborate
constructive proof along with consistency with the results of
prior theorem are given in Hanson (2007).)
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• Definition 2.2.2. Jump Function [X](t):
The jump value of the state X at the kth jump-time Tk is
really the “zeroth derivative” but is defined as

[X](Tk)≡X(T +
k )−X(T −

k ),

when the kth prejump is time T −
k . For finite discontinuities,

the jump function includes all the change of the function, the
zeroth change or discrete derivative of the state X(t).
Assuming right-continuity, then T −

k <T +
k =Tk.
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• Lemma 2.2.1. Mixed Differential Products
dt·dP (t) and dP (t)·dW (t):∫ t

0

ds·dP (s)
ims
= 0 or dt·dP (t)

dt
= 0,

and∫ t

0

dP (s)·dW (s)
ims
= 0 or dP (t)·dW (t)

dt
= 0,

where, recall, W (t) and P (t) are independent random
variables.

(Comment: The proofs are similar to the proof for
dt·dW (t) and are easy to motivate with IFA, but see the text
(2007, pp. 72-73) for more information on the IMS proofs.
Crudely, the first integrand is O((ds)2) and the second
O((ds)3/2), exceeding O(ds), i.e., dt-precision. )
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• Theorem 2.2.5. Mean Square Limit Form of Zero-One
Law:

Let m be a nonnegative integer and E[dP (t)] = λ(t)dt

with bounded maximum, λ∗ = max
t

[λ(t)]. Then∫ t

0

(dP )m(s)
ims
= P (t) or (dP )m(t)

dt
= dP (t).

(Comment: The mean square limit proof is left for the reader
as an exercise. Also, note that if x > 0 and m is an
integer, then xm = x means that x > 0 satisfies a
zero-one algebraic law: x = 0 or x = 1.)
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• Table 2.2.2. Some Itô stochastic jump differentials with
an accuracy with error o(dt) as dt → 0+.

Differential Itô Mean

Jump Form Square Limit

dP (t) dP (t)

dt dt

dt dP (t) 0

(dP )m(t) dP (t), m ≥ 1

dP (t) dW (t) 0

(dt)k(dP )m(t) 0, k ≥ 1, m ≥ 1

(dt)k(dP )m(t)(dW )n(t) 0, k ≥ 1, m ≥ 1, n ≥ 1
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Remarks on Table 2.2.2:

• In Table 2.2.2, differential entries are just symbols of the
underlying integral basis and care should be taken when
applying them to find the mean square representation of
differentials, especially when they appear in
multiplicative combinations.

• The mean square limit justification of the differential

power rule (dP )m(t)
dt
= dP (t) is left as an Exercise,

along with the Exercise previously mentioned for
dP (t)dW (t), but recall that dW (t) behaves like√

dtZ(t), where Z(t) is a standard (zero-mean,
unit-variance) process and E[dP (t)] = λ(t)dt.
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• Theorem 2.2.5. Some Mean Stochastic Jump Integrals:

Let h(X(t), t) satisfy the mean square integrability
condition on 0 ≤ t0 ≤ t and let X(t) be a Markov process,

E

[∫ t

t0

h2(X(s), s)ds

]
< ∞

and the Itô Forward Approximation (IFA) Expansion
Assumption for h(X(t), t), where E[dP (t)] = λ(t)dt.
Then

1. The Itô expectation of the standard jump integral is

E

[∫ t

t0

h(X(s), s)dP (s)

]
ifa
=

∫ t

t0

E[h(X(s), s)]λ(s)ds,
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2. Letting dP̂ (t) ≡ dP (t) − λ(t)dt be the simple
mean-zero Poisson process,

E

[∫ t

t0

h(X(s), s)dP̂ (s)

]
ifa
= 0.

3. An estimate inequality in the IFA sense,

E

[∣∣∣∣∫ t

t0

h(X(s), s)dP (s)

∣∣∣∣] ≤
∫ t

t0

E [|h(X(s), s)|] λ(s)ds.

4. Let h1 and h2 satisfy the same mean square integrability
condition as h; then the Itô covariance for jump integrals
is

E

[∫ t

t0

h1(X(s), s)dP̂ (s)

∫ t

t0

h2(X(r), r)dP̂ (r)

]
ifa
=

∫ t

t0

E [h1(X(s), s)h2(X(s), s)] λ(s)ds.
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5. The Itô variance for jump stochastic integrals is given by

E

[(∫ t

t0

h(X(s), s)dP̂ (s)

)2
]

ifa
=

∫ t

t0

E[h2(X(s), s)]λ(s)ds.

(Comment: This theorem is specified for IFA for simplicity
and fast calculation for financial application as given earlier
with similar diffusion W (t) results, but a more rigorous
treatment should use Itô Mean Square Limit. Note that h is a
jump-amplitude function, and usually the variance of the
compound Poisson process leads to E[h2] rather than
Var[h] as will be seen later.)
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