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FINM 345 Stochastic Calculus:
3. Jump-Diffusion Basic Stochastic Chain Rules:

3.1. Diffusion Calculus Basic Chain Rules:
• Recall most basic dt–precision rule: (dW )2(t)

dt
= dt.

• Higher order zero examples from summary Table 2.1.1:
(dW )3(t)

dt
= 0, dtdW (t)

dt
= 0, (dt)2 dt

= 0, etc.
• Preliminary forms for increments of general function
G(t) ≡ G(W (t), t):
∆G(W (t), t)≡G(W (t+∆t), t+∆t)−G(W (t), t),

so with ∆W (t) ≡W (t+ ∆t)−W (t),
∆G(W (t), t)=G(W (t)+∆W (t), t+∆t)−G(W (t), t).

• Similarly for the differential,
dG(W (t), t)=G(W (t)+dW (t), t+dt)−G(W (t), t).
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• 3.1.1. Special Diffusion Examples with G = G(W (t)) :
◦ Itô Cubic Integral using binomial expansion:

∆[W 3](t) =(W+∆W )3(t)−W 3(t)
bin
= (3W 2∆W+3W (∆W )2+(∆W )3) (t),

so in the dt–precision limit as ∆t→ dt→ 0,

d
[
W 3

]
(t)

dt
=
(
3W 2(t)dW (t)+3W (t)dt

)
,

where the 3wdt is the Itô correction to the deter-
ministic differential d(w3) = 3w2dw. Solving for
W 2(t)dW (t) and Itô integrating,∫ t

t0

W 2(s)dW (s)
int
=
dt

1

3

(
W 3(t)−W 3(t0)

)
−
∫ t

t0

W (s)ds,

where
(

int
=
dt

)
means integrating using dt–precision limits,

a formal version of IMS equality
(

ims
=
)

.
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Note that the Itô integral has only been reduced to an
explicit exact term plus a Riemann integral ofW (t).

◦ Itô General Power Integral using the full binomial ex-
pansion theorem (Online Appendix B.150),

∆
[
Wm+1

]
(t) = (W+∆W )m+1(t)−Wm+1(t)

bin
=

m∑
i=0

(
m+ 1

i

)
W i(t)(∆W )m+1−i(t),

where the passage to the limit as ∆t→ dt → 0+ and
the dt–precision limits leading to the Itô integral form,∫ t

0

Wm(s)dW (s)

and its reduction to an exact integral plus Riemann in-
tegral has been left as an Exercise.
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◦ Itô Exponential Integral : Using the laws of exponen-
tials (LOE) and the first few terms of the exponential
expansion (B.53), going directly to the formal differen-
tial form and skipping the more general increment form
to expedite applied stochastic calculations,

d
[
eW
]
(t)=

(
eW+dW−eW

)
(t)

loe
=
(
eW
(
edW−1

))
(t)

dt
=

(
eW
(
dW+

1

2
(dW )2

))
(t),

neglecting differential forms that are zero in dt–

precision limit, such as dW 3(t)
dt
= 0, dtdW (t)

dt
= 0,

(dt)2 dt
= 0 and higher powers.
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Using the basic mean square limit differential form,

(dW )2(t)
dt
= dt, so

d
[
eW
]
(t)

dt
=

(
eW

(
dW +

1

2
dt

))
(t).

This is almost like the deterministic differential,
d(ew) = ewdw, but here with an Itô stochastic cor-
rection eW (t)dt/2. Solving for eW (t)dW (t), the Itô
integral of the exponential of W (t) yields the implicit
integration∫ t

t0

eW (s)dW (s)
int
=
dt
eW (t)−eW (t0)−

1

2

∫ t

t0

eW (s)ds

by the FTSC.
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As with the integral ofW 2(t), the Itô integral of eW (t)

cannot be Itô integrated exactly and must be numerically
simulated if needed, e.g., using the Itô partial sums form
of the stochastic exponential,

Si+1
ifa
=

i∑
j=0

exp(Wi)∆Wi & Wi+1
ifa
=

i∑
j=0

∆Wj,

for t = ti+1 = (i + 1)∆t for t0 = 0 evenly spaced
using ∆ti = ∆t. The error is

Ei+1
ifa
=Si+1−

(
exp(Wi+1)−1−

1

2

i∑
j=0

exp(Wj)∆t

)
,

between the partial sums Si+1 and the difference ap-
proximation to the right-hand side, if t0 =0,
W (t0)=0 & exp(W (t0))=1.
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Remember that the cumulative noiseWi should always
be approximated by sums of simulated independent
increments ∆Wj for j=0: i−1, else big problems.
In the differential of the pure exponential, there is a clue
to an exact differential in the Itô mean square sense,
since the factor (dW +dt/2) suggests subtracting t/2
fromW (t). In fact,

d
[
eW (t)−t/2] dt

= eW (t)−t/2dW (t),

so ∫ t

0

eW (s)−s/2dW (s)
int
=
dt
eW (t)−t/2 − 1,

the perfect analog to the the deterministic integral∫ w
0
evdv = ew − 1, if an Itô shift t/2 is used.
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◦ Chain Rule 3.1. ForG(W (t)).
Let G(w) be twice continuously differentiable. Then
the differential form of the Itô stochastic chain rule for
G(W (t)) is

dG(W (t)) dt= G′(W (t))dW (t) +
1

2
G′′(W (t))dt,

corresponding to the integral form of the Itô stochastic
chain rule forG(W (t)),

G(W (t)) int=
dt
G(W (t0))+

∫ t

t0

G′(W (s))dW (s)+
1

2

∫ t

t0

G′′(W (s))ds,

for 0 ≤ t0 ≤ t.
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Sketch of Proof: Assuming G(w) is twice continu-
ously differentiable in the argumentw, we then see that
G(W (t)) has the differential:

dG(W (t))=G(W (t)+dW (t))−G(W (t))

dt
=G′(W (t))dW (t)+

1

2
G′′(W (t))(dW )2(t),

keeping only terms of dt–precision, neglecting terms
such as dW 3(t), dtdW (t) and (dt)2, finally us-

ing (dW )2(t)
dt
= dt, essentially satisfying the mean

square limit. This yields the differential form of the
Itô stochastic chain rule forG(W (t)) and the integral
form easily follows. �

The last term in the second derivative is the Itô stochas-
tic correction to the deterministic chain rule.
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Rewriting Stochastic Chain Rule 3.1 yields the funda-
mental theorem of stochastic calculus according to the
Itô:
Corollary 3.1. Form G′dW of Fundamental Theo-
rem of Itô Integral Calculus for Diffusions.
LetG(w) be twice continuously differentiable. Then∫ t

t0

G′(W (s))dW (s) int=
dt

G(W (t))−G(W (t0))

−
1

2

∫ t

t0

G′′(W (s))ds.

Remark: Recall the more elementary integral of a dif-
ferential form of the fundamental theorem of stochastic
diffusion calculus, which in fact leads to the exact part
of the Itô version, usingG and the FTSC,∫ t

t0

dG(W (s)) ims= G(W (t))−G(W (t0)).
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• 3.1.2. Diffusion Examples withG = G(W (t), t),
having Explicit Time Dependence:
◦ Chain Rule 3.2. for G(W (t), t) (Itô’s Lemma or

Formula):
Let G(w,t) be twice continuously differentiable in w and
once continuously differentiable in t. Then the differen-
tial Itô stochastic chain rule forG(W (t), t) is

dG(W (t), t) dt=
(
Gt +

1

2
Gww

)
(W (t), t)dt+Gw(W (t), t)dW (t),

corresponding to the integral form of the Itô stochastic
chain rule forG(W (t), t),

G(W (t), t) int=
dt

G(W (t0), t0) +
∫ t

t0
Gw(W (s), s)dW (s)

+
∫ t

t0

(
Gt + 1

2
Gww

)
(W (s), s)ds

for 0 ≤ t0 ≤ t.
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Sketch of Proof: Assuming G(w, t) is twice contin-
uously differentiable in the argument w and once con-
tinuously differentiable in t, by using a mean square or-
der modification of the Taylor approximation in (B.181),
G(W (t), t) has the differential

dG(W (t), t)= G(W (t) + dW (t), t+ dt)−G(W (t), t)
dt
= Gt(W (t), t)dt+Gw(W (t), t)dW (t)

+1
2
Gww(W (t), t)(dW )2(t)

where the partial derivatives are denoted with subscripts,
i.e.,
Gw(w, t) ≡

∂G

∂w
(w, t), Gt(w, t) ≡

∂G

∂t
(w, t),

Gww(w, t) ≡
∂2G

∂w2
(w, t).

{Beware of silly, confusing pure notation “Wt” for processes W(t), etc.}
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Taking the Itô mean square limit with (dW )2(t)
dt
= dt

and neglecting the higher order differential forms that
are zero in the dt–precision sense, such as dW 3(t),
dtdW (t) and (dt)2, yields the differential form of the
Itô Chain Rule for G(W (t), t). Again, the last term
in the second derivative is the Itô stochastic correction
to the deterministic chain rule. Translating the symbolic
differential form gives the substantial Itô stochastic in-
tegral form. �
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• 3.1.3. Remarks on Functions, Values and Partial
Derivatives & ∂–Phobias:
◦ For readers without much PDE background and apolo-

gies to those with such background, we note that there
are certain concepts that are important and there are sub-
tle differences in the functionG and its valuesG(w, t).
This is particularly true when there are two or more in-
dependent variables, such as the w = W (t) and t in
G(W (t), t). This does not arise when there is just one
independent variable, such as x in y = f(x). Another
complication is that the W (t) is a nondifferentiable
function, so do not form its derivative, but only com-
pute its differential dW (t), and that is best done for-
mally by the increment form of the differential.
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◦ The symbol G denotes a function specified by a set of
rules for its calculation, while G(w, t) is the value of
that function with its first argument evaluated at state
w and with the second argument at time t. Similarly,
G(W (t), t) is the value of G specified at the random
variable or state W (t) at time t in place of the realized
or dummy variable w. Further, X(t) = G(W (t), t)

is the path of the state in time and is nondifferentiable
along with W (t), i.e., X(t) is a composite function in
time through both arguments of G, implicitly through
W (t) and explicitly through the second argument t.
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◦ Using limits of Newton’s quotient for derivatives, the
partial derivatives of G(w, t) are defined, also giving
several alternate notations, at (w, t) as

Gw(w, t)=
∂G

∂w
(w, t) =

(
∂G

∂w

)∣∣∣∣ t
fixed

(w, t)

= lim
∆w→0

G(w + ∆w, t)−G(w, t)

∆w
and

Gt(w, t)=
∂G

∂t
(w, t) =

(
∂G

∂t

)∣∣∣∣ w
fixed

(w, t)

= lim
∆t→0

G(w, t+ ∆t)−G(w, t)

∆t
,

provided the limits exist. Hence, partial derivatives with one

of the variables fixed are based on the definition of ordinary

derivatives and are calculated as ordinary derivatives.
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◦ The partial derivatives Gw and Gt are defined as rules
based upon the target function rule G. For the top-
ics here, when the first argument is a random variable
w = W (t), (∂G/∂w)(W (t), t) is just Gw evalu-
ated at the first variable w = W (t) after differenti-
ation. We would never write GW (t) due to the non-
differentiable properties ofW (t).
The partial derivative is calculated first, and then it
is evaluated. For example, Gw(1, 2) can be computed
if we know Gw and it has a unique value at (1, 2), but
(G(1, 2))w = 0 = (G(1, 2))t, since G(1, 2) has
a fixed, constant value, presumably unique, at (1, 2).
The order of partial differentiation and partial derivative
function evaluation are very important.
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{So, Value 6= Function.}
◦ Another, more relevant, example illustrating the differ-

ence in the differential is multiplying by dt to avoid ob-
taining the singular derivative ofW (t), i.e.,

dG(W (t), t)
dt
=

(
Gtdt+GwdW (t)+

1

2
Gwwdt

)
(W (t), t),

contains the partial derivative of the function
G with respect to t evaluated at (W (t), t),
(∂G/∂t)(W (t), t)dt, rather than the partial deriva-
tive with respect to t written as the derivative of the
value G(W (t), t), (∂G/∂t)(W (t), t)dt, which
makes no sense since it would involve the derivative of
the nondifferentiable W (t) in t with probability one
(recall Th. 1.1, page L1-p26).
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◦ Corollary 3.1. Itô Integral of Partial Derivative:
Let g(W (t), t) satisfy the conditions of the IMS Def-
inition 2.1.1 (page L2-p19) for an Itô stochastic inte-
gral and be once continuously differentiable in w. Let
G(w, t) be the antiderivative of g(w, t) with respect
to w, i.e., Gw(w, t) = g(w, t), and let G(w, t) be
twice continuously differentiable in w, but only once in
t. If for 0 ≤ t0 ≤ t, then∫ t

t0

g(W (s), s)dW (s)
int
=
dt
G(W (t), t)−G(W (t0), t0)

−
∫ t

t0

(Gt+0.5 ∗ gw)(W (s), s)ds.

Sketch of Proof: The proof follows directly from Chain Rule 3.2 by

rearranging terms, sinceGw =g andGww =gw. �
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◦ Remark: Thus, the Itô stochastic diffusion integral
of g(W (t), t) can be reduced to an exact integral
G(W (t), t) − G(W (t0), t0) with respect to w, less
a quasi-deterministic Riemann integral over the diffu-
sion shifted drift function (Gt + 0.5 ∗ gw)(W (t), t).
Thus, if the partial differential equation (Gt + 0.5 ∗
gw)(w, t) = 0 is valid with gw(w, t) = Gww(w, t),
then the integral of g(W (t), t) is equal to the exactly
integrated partG(W (t), t)−G(W (t0), t0) in the Itô
mean square sense. This idea can be the basis for con-
structing exact stochastic diffusion integrals.
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◦ Example — Merton’s Analysis of the Black–Scholes
Option Pricing Model:
At this point in the text, a good, but abused application
in finance is Merton’s (1973) mathematical justification
and generalization of the Black–Scholes (1973 too) fi-
nancial options pricing model (see the text Ch. 10 Ap-
plications in Financial Engineering). The text survey
elaborates on Merton’s model, which has several state
dimensions — the bond, the stock and the option. Multi-
dimension SDEs are covered in Chapter.
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• 3.1.4. Itô Stochastic Natural Exponential
Construction :

From the differential of exp(W (t)) (page L3-p6) it is
seen that the stochastic exponential is not like the
deterministic natural exponential, where the derivative is
proportional to the original function.

◦ Deterministic Reference: For example, the natural ex-
ponential ex in the natural base e has the differential
property

d (ex) = exdx,

returning the original function times dx, and has the
inverse relationship to the natural logarithm

eln(x) = x

for x > 0.
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However, when the base b > 0 and in particular b 6= e,
then by the law of exponentials (LOE)

d (bx)
loe
= d

(
ex ln(b)

)
= bx ln(b)dx,

returning an additional factor ln(b).
For more generality, consider the deterministic model

d (eax) = aeaxdx,

where the parameter a is a nonzero constant.
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◦ General Diffusion Exponential SDE: The correspond-
ing stochastic model concerns finding the process
X(t) = G(W (t), t) such that

dX(t)= dG(W (t), t)
dt
= aG(W (t), t)dW (t)

= aX(t)dW (t).
{Note, the above equation is not a theorem, but
a problem.}The explicit t dependence is needed to
avoid correction factors in dt. Applying the appropriate
stochastic G(W, t)–chain rule to illustrate a technique
for inverting the chain rule to get the desired model in
terms of the composite functionG.
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◦ Simple Derivation for Pair ofG–PDEs:
We have

aG(W (t), t)dW (t)dt= dG(W (t), t)
dt=
(
Gt(W (t), t) + 1

2
Gww(W (t), t)

)
dt

+Gw(W (t), t)dW (t).

Since the differentials, dW (t) and dt, can be indepen-
dently varied functionally in this equation, the coeffi-
cients of dW (t) and dt can be separately set equal to
their values on both sides of the equation (dropping the
arguments ofG for simplicity):

Gw = aG & Gt +
1

2
Gww = 0.

{Note also, this is an example of a general technique
for finding exact solutions of SDEs.}
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◦ First PDE Exponential Solution in State w: The so-
lution of the first partial differential equation (PDE),
Gw = aG, really an ODE with t held fixed, is

G(w, t) = A(t)eaw,

since d(e−aw)/dw = −ae−aw (differentiation is
allowable for a regular continuous, i.e., nonstochastic,
function) so(

e−awG
)
w

= e−aw (Gw − aG) = 0,

which shows that the solution G = Aeaw satisfies the
first PDE, Gw = aG, by substitution, e−aw 6= 0.
Here, A(t) is a function, rather than constant, of in-
tegration since the differential equation is only inw and
t is arbitrary, although held fixed in the equation.
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Remark:

Given a differentiable function F (w, t), the notation
Fw(w, t) = 0 is shorthand for the partial deriviative(

∂F

∂w

)
t

fixed

(w, t) = 0.

This means that F (w, t) = A(t) for some function
A of t, since t is held fixed in the partial differentiation
with respect to w.
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◦ Second PDE Exponential Solution in Time t: Upon
substituting this current functional form into the second
PDE,Gt + 0.5Gww = 0, using

(A(t)eaw)t = eaw(A(t))t = A′(t)eaw,

(A(t)eaw)ww = A(t)(eaw)ww = a2A(t)eaw,
then

A′(t)eaw +
a2

2
A(t)eaw = 0.

Canceling out the common nonzero factor eaw,

A′(t) +
a2

2
A(t) = 0,

and solving for the function of integration yields

A(t) = Ce−a
2t/2,

where C is a genuine constant of integration.
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Remark: Note that an ultimate test of a solution of
a differential equation solution is the substitution test,
i.e., substituting the solution back into the equation and
verifying that the equation and any conditions are satis-
fied.

Substitution ofA(t) back into its ODE to verify the so-
lution,

A′(t) +
a2

2
A(t) = Ce−a

2t/2 ·
(
−
a2

2
+
a2

2

)
= 0.

{Differential Equation Substitution Rule: It does not
matter how you obtained a solution, because if you
can substitute it back into the equation and show that
it satisfies the equation then that is all you have to do.
Of course, it is useful to know how to solve DEs too.}
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◦ Reassembling Parts into X(t): By reassembling the
parts of the solution, we obtain the Itô general stochas-
tic form of the natural exponential (exponential in the
natural base e),

X(t) = G(W (t), t) = CeaW (t)−a2t/2,

systematically deriving and generalizing what pre-
viously was a guess for the stochastic natural-like
exponential eW (t)−t/2. The extra exponential term
(−a2t/2) is the special Itô correction that forces
something like the deterministic linear growth model
dy(t) = ay(t)dt for the stochastic exponen-
tial growth in the diffusion W (t) when dX(t) =

aX(t)dW (t).
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Since W (0+) = 0 with probability one, X(0+) =

G(0, 0+) = C, with probability one, is the initial
value of the state X(t), while a is a rate of growth.
The basic moments of the state trajectory can be calcu-
lated by using the density φW (t)(w) for W (t) (page
L1-p23).
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◦ Completing the Square Technique:
Some of the details are given to illustrate the use of
the completing the square technique when computing
exponential moments with respect to normal distribu-
tions. An illustration of the completing the square tech-
nique is presented for the expectation of an exponen-
tial whose exponent is linear (or affine) in W (t), i.e.,
exp(a(t)W (t)+b(t)) for fixed t.

Lemma 4.1. Completing the Square for
E[K(t)exp(a(t)W (t)+b(t))]:
Let a(t) 6=0, b(t) andK(t) 6=0 be bounded determin-
istic functions of t. Then

E
[
K(t)ea(t)W (t)+b(t)

]
= K(t)ea

2(t)t/2+b(t).

FINM 345/Stat 390 Stochastic Calculus — Lecture3–page33 — Floyd B. Hanson



Proof: Since the Wiener process density,

φW (t)(w) =
1
√

2πt
e−w

2/(2t),

−∞ < w < +∞, t > 0, from page L1-p23, is es-
sentially a function of the sampled dummy variable w
and t is only a parameter that we can hold fixed during
the integration, the deterministic functions of time are
treated as constants. By the laws of exponents, the ex-
ponent of the density and the exponent of the argument
of the expectation with the dummy variable substitution
W (t) = w are added together to obtain a complete
square of all quadratic w terms,
−w2/(2t) + a(t)w + b(t)

= −(w − a(t)t)2/(2t) + a2(t)t/2 + b(t).
(3.1)
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Thus,

E
[
K(t)ea(t)W (t)+b(t)

]
=K(t)

1
√

2πt

∫ +∞

−∞
e−(w−a(t)t)2/(2t)

·e+a2(t)t/2+b(t)dw

loe= K(t)ea2(t)t/2+b(t) 1
√

2πt

∫ +∞

−∞
e−v2/(2t)dv

=K(t)ea2(t)t/2+b(t)E[1],

=K(t)ea2(t)t/2+b(t),

where the fixed part of the integral with exponent
(a2(t)t/2+b(t)) has been separated out and the change
of variables v=w−a(t)twith dv=dw, t being fixed,
in the integral has been used to transform the completed
square part of the expectation integral into conservation
of probability E[1]=1 for the standard Wiener process.
�
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Example — Mean State E[X(t)]: Using Lemma 4.1,

E
[
CeaW (t)−a2t/2

]
= C = X(0+),

so the mean trajectory is a constant at the initial level
X(0+). However, the state variance, again using
Lemma 4.1 but with a(t) replaced by 2a following
application of the variance-expectation identity (B.186),
Var[X] = E[X2] − E2[X], to use the expectation
result above, is

Var
[
CeaW (t)−a2t/2

]
= E

[(
CeaW (t)−a2t/2

)2
]

−E2
[
CeaW (t)−a2t/2

]
=C2E

[
e2aW (t)−a2t

]
− C2

=C2
(
ea2t − 1

)
.
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Examining the standard deviation, or square root of the
variance,

σX(t) =
√

Var[X(t)] = C
√
ea2t − 1 ∼ Cea2t/2

as t→∞, it is seen that the RMS of stochastic fluctua-
tions grows exponentially with exponent a2t/2 starting
initially at σX(0+) = 0+.
Figure 3.1 is an illustration of the simulation of the in-
tegral of this natural exponential in the special case

I[gdW](t)=
∫ t

0
g(W (s), s)dW (s)

=
∫ t

0
eW (s)−s/2dW (s)

ims
= eW (t)−t/2 − 1,

i.e., when a = 1 = C.
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Also plotted in Figure 3.1 is the diffusion processW (t)

for comparison and the error,
Ei+1 = Si+1 − Ii+1,

between the simulation of the integral by Itô finite dif-
ference partial sums

Si+1 =
i∑

j=0

gj∆Wj,

and the simulation of the exact mean square integral
value for I[gdW](t),

Ii+1 = gi+1 − 1,

for i=0:n, where the integrand is

gi = exp(Wi − ti/2)

withWi=
∑i−1
j=0 ∆Wj and ti= i∆t for i=0:n+1.
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Observe that the integral initially tracks the Wi sim-
ulated noise, but eventually diverges from it. Also,
the error slowly degrades as time ti becomes long (not
shown), in this case for n = 10, 000 (note that this
is an approximate sample size since random sample
size is n + 1 = 10, 001 random increments) and
t = 2.0. The MATLAB code for the exactly integrable
g(W (t), t) in the Itô mean square diffusion integral
sense is given in Program C.12, called intgwtdw.m
in Online Appendix C.
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Figure 3.1: Simulated Itô IFA for stochastic diffusion integral In[gdW](ti+1)=Pi
j=0 gj∆Wj for i = 0 : n, using MATLAB randn with sample size

n = 10, 000 on 0 ≤ t ≤ 2.0. Presented are the simulated Itô partial sums
Si+1, the simulated noise Wi+1 and the error Ei+1 relative to the exact integral,

I(ims)[gdW](ti+1)
ims
= exp(Wi+1 − ti+1/2) − 1, in the Itô mean square

sense.
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•
∑
i g∆Wi book MATLAB code example (edited):

function intgwtdw

% Fig. 4.1 Book code example for int[g(w,t)dw], [t0,t]

% by RNG Simulation (3/2007):

% Generation is by summing g(W(i),t(i))dW(i)

% for i=0:n, but converted base 0 to base 1:

% matlab[G(W(i),T(i))DW(i);i=1:N+1] ...

% = math[g(W(i),t(i))dW(i);i=0:n].

% Sample g(w,t) = exp(w-t/2), exact g(w,t)-1, [0,t].

clc % clear variables,

clf % clear figures

fprintf(’\nfunction intgwtdw OutPut:’)

nfig = 0; % figure counter.

TF= 2.0;T0 = 0;N = 20000; NI = N+1;dt = (TF-T0)/NI;

% time grid: Fixed Delta{t}.

sqrtdt = sqrt(dt); % Set std. Wiener inc. time scale.

% Begin Sample Path Calculation:

kstate = 1;
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randn(’state’,kstate); % set state to repeat.

DW = sqrtdt*randn(1,NI); % random vector of N+1

T = zeros(1,NI+1); T(1) = 0; % set T initially.

W = zeros(1,NI+1); % Set W(1) for base 1 vector.

S = zeros(1,NI+1); % Set integral sum initially.

gv = zeros(1,NI+1); gv(1) = g(W(1),T(1)); % Initial;

Err = zeros(1,NI+1); % Set Error initially.

for i = 1:NI % Sim. Sample paths by Inc. Accum.:

T(i+1) = T(i) + dt;

W(i+1) = W(i) + DW(i);

gv(i+1) = g(W(i+1),T(i+1));

S(i+1) = S(i) + gv(i)*DW(i);%see subfun. below.

Err(i+1) = S(i+1) - (gv(i+1) -gv(1)); % g -> gv

end

T(1,NI+1) = TF; % Correct for rounding errors.

% Begin Plot:

nfig = nfig + 1;

fprintf(’\n\nFigure(%i): int[g](t) vs t Sims.\n’,nfig)
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figure(nfig);

scrsize = get(0,’ScreenSize’); % for target screen

ss = [5.0,4.0,3.5]; % figure spacing factors

plot(T,S,’k-’,T,W,’k-.’,T,Err,’k--’,’LineWidth’,2);

title(’\int g(W,t)dW(t) for g = exp(W(t)-t/2)’...

,’FontWeight’,’Bold’,’Fontsize’,44);

ylabel(’\int g(W,t)dW(t), W(t), g(W(t),t) - g(0,0)’...

,’FontWeight’,’Bold’,’Fontsize’,44);

xlabel(’t, Time’...

,’FontWeight’,’Bold’,’Fontsize’,44);

hlegend=legend(’\int g(W,t)dW(t)’,’W(t)’,’Error(t)’...

,’Location’,’SouthWest’);

set(hlegend,’Fontsize’,36,’FontWeight’,’Bold’);

set(gca,’Fontsize’,36,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.6 scrsize(4)*0.8]);

% End Main

%
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function gv = g(W,T)

% Example g(W(t),t) = exp(W(t) - t/2);

% Exact integral = g(W(t),t) - 1;

gv = exp(W - T/2);

% End intgwtdw Code
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In Figure 3.2 (Corrected from text 4.2, which was
incorrectly a copy of 4.3), the chain rule formulation of the
Itô diffusion integral of the simple exponential
g(X(t), t) = exp(W (t)) of the Example, on (L3-p5), is
compared to the Itô partial sums
Si+1 =

∑i
j=0 gj∆Wj =

∑i
j=0 exp(Wj)∆Wj . Unlike

the stochastic natural exponential exp(W (t)− t/2), the
simple exponential is not exactly integrable in the Itô mean
square sense since the stochastic chain rule introduces a
quasi-deterministic, regular-type integral for the diffusion
term

−0.5Gw(w, t) = −0.5g(w, t) = −0.5 exp(w).
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The partially integrated chain rule form is thus

Ii+1 = exp(Wi)− 1− 0.5 ∗
i∑

j=0

exp(Wj)∆t

withGt(w, t)=0. In the figure the error between the two
approximations of the integral is Ei+1 = Si+1 − Ii+1 and
the underlying diffusive noise isW (t). The error is very
small for a sample size of n=10, 000. The integration
significantly dampens the fluctuations in the original noise
W (t). The MATLAB code for this figure is given in
Program C.13, called intgxtdw.m in Online Appendix C.
Compare this code intgxtdw.m with the prior special case
code intgwtdw.m whenX(t) = W (t).
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Figure 3.2: Simulated Itô IFA to the diffusion integral In[g](ti+1) =Pi
j=0 gj∆Wj =

Pi
j=0 exp(Wj)∆Wj for i=0:n, using MATLAB randn

with sample size n+1=10, 001 on 0≤ tv ≤2.0. Presented are the simulated
Itô partial sums Si+1, the simulated noise Wi+1 and the error Ei+1 relative to
the stochastic chain rule partially integrated form Ii+1 given on (L3-p46).
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•
∑
i exp(W )∆Wi MATLAB code example (edited):

function intgxtdw

% Fig. 4.2 Book code for int[g(x(t),t)dw], [t0,t]

% Generation is by summing g(X(i),t(i))dW(i) for

% matlab[G(X(i),T(i))DW(i);i=1:N+1]

% = math[g(X(i),t(i))dW(i);i=0:n].

% Int[gdW](t)=G(W,t)-G(0,0)-Int[(g_t+0.5*g_w)(w,t)dt];

% G_w(w,t) = g(w,t), G_{ww}(w,t) = g_w(w,t).

% Here g(x,t) = exp(x) and x = w.

clc % clear variables

clf % clear figures

fprintf(’\nfunction intgxtdw OutPut:’)

nfig = 0; % figure counter.

TF= 2.0;T0 = 0;N =(TF-T0)*10000;NI=N+1;dt =(TF-T0)/NI;

sqrtdt = sqrt(dt); % Set standard Wiener increment.

% Begin Sample Path Calculation:

kstate = 1;

randn(’state’,kstate); % set state if repeated.
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dW = sqrtdt*randn(1,NI); % Generate samples for dW(t)

t = zeros(1,NI+1); t(1) = T0; % set T initially.

W = zeros(1,NI+1); % Set W(1) in place of W(0) = 0

X = zeros(1,NI+1); % Set integral sum initially.

gv = zeros(1,NI+1); gv(1) = g(X(1),t(1)); %initialize

sdw = zeros(1,NI+1); sdt = zeros(1,NI+1); %initialize

ev = zeros(1,NI+1); % Set Error initially.

for i = 1:NI % Simulated Sample paths by Inc. Accum.

t(i+1) = i*dt;

W(i+1) = W(i) + dW(i);

X(i+1) = W(i+1); % Set State for this g Example.

gv(i+1) = g(X(i+1),t(i+1));

sdw(i+1) = sdw(i)+gv(i)*dW(i);% g subfunction.

sdt(i+1) = sdt(i)-gthgw(X(i+1),t(i+1))*dt;% ’’

ev(i+1) = sdw(i+1)-exact(X(i+1),t(i+1))-sdt(i+1);

% CAUTION: For given g only!

end

t(NI+1) = TF; % Correct for rounding errors.
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% Begin Plot:

nfig = nfig + 1;

fprintf(’\n\nFigure(%i): int[g](t) vs t Sims\n’,nfig)

figure(nfig)

scrsize = get(0,’ScreenSize’); % for target screen

ss = [5.0,4.0,3.5]; % figure spacing factors

plot(t,sdw,’k-’,t,W,’k-.’,t,ev,’k--’,’LineWidth’,2);

title(’\int g(X,t)dW(t) for g = exp(X), X = W’...

,’FontWeight’,’Bold’,’Fontsize’,44);

ylabel(’\int g(X,t)dW(t), X = W(t) and Error(t)’...

,’FontWeight’,’Bold’,’Fontsize’,44);

xlabel(’t, Time’...

,’FontWeight’,’Bold’,’Fontsize’,44);

hlegend=legend(’\int g(X,t)dW(t)’,’X = W(t)’,’Error(t)’...

,’Location’,’SouthWest’);

set(hlegend,’Fontsize’,36,’FontWeight’,’Bold’);;

set(gca,’Fontsize’,36,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...
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,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.6 scrsize(4)*0.8]);

% End Main

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function gv = g(x,t) % ignore warning on unused t.

% Sample g(X(t),t) only, e.g.,

%1% gv = exp(x-t/2); % x = w.

%2% gv = exp(x); % x = w.

%3% gv = x; % x = w.

gv = exp(x);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function exactv = exact(x,t)

% Sample g(X(t),t) exact integrals only, e.g.,

%1% exactv = exp(x-t/2) - 1; % i.e., x=w, G=exp(w-t/2).

%2% exactv = exp(x) - 1; % i.e., x=w, G=exp(w).

%3% exactv = 0.5*(xˆ2-t); % i.e., x=w, G=0.5*(wˆ2-t).

exactv = exp(x) - 1; % i.e., x=w, G=exp(w).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
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function gthgwv = gthgw(x,t)

% Reg. Correction Int. of (G_t+0.5*G_{ww}), G_w=g

%1% gthgwv = 0; %i.e.,g=exp(x-t/2)=G,G_t=-0.5*G,G_{ww}=G

%2% gthgwv =0.5*exp(x);%i.e.,G=exp(w),G_t=0,G_{ww}=exp(w)

%3% gthgw 0; %i.e.,g=x=w,G=0.5*(wˆ2-t),G_t=-0.5,G_{ww}=1

gthgwv = 0.5*exp(x); % i.e.,G=exp(w),G_t=0,G_{ww}=exp(w)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% End intexpwtdw Code
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• 3.2. Transformations of Linear Diffusion Equations:

Consider the diffusion SDE, linear in the state process
X(t), with time-dependent coefficients

dX(t) = X(t) (µ(t)dt+ σ(t)dW (t)), (3.2)

where the initial condition isX(t0) = x0 > 0 with
probability one, µ(t) is called the drift or deterministic
coefficient and σ(t) is called the volatility or standard
deviation of the diffusion term. The diffusion coefficient
is usually defined asD = σ2(t)/2, so σ(t) =

√
2D.

The linear form of (3.2) is sometimes called the
multiplicative noise case, such as used in finance, the
stateX(t) multiplies the stochastic terms, and the word
noise refers to the randomness or stochastic properties
here.
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In the deterministic case, transforming the state variable
into its logarithm makes the right-hand side independent
of the transformed state variable, so let

Y (t) = F (X(t)) ≡ ln(X(t)).

Since we have F depending onX(t) rather thanW (t),
we go back to the basic treatment of the change as an
increment and expand the increment to second order,
dY (t) = log(X(t) + dX(t))− log(X(t))

dt=
1

X(t)
dX(t)−

1

2X2(t)
(dX)2(t)

dt= (µ(t)dt+ σ(t)dW (t))− 0.5σ2(t)(dW )2(t)

= (µ(t)− 0.5σ2(t))dt+ σ(t)dW (t), (3.3)

where we again used (dW )2(t)
dt
= dt and dropped

terms zero in dt–precision.
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Use has been made of the following partial derivatives
when F (x) = ln(x),
Ft(x)≡0, Fx(x)=1/x, Fxx(x)=−1/x2.

The final line in (3.3), with only differentials
dt& dW (t), is also called additive noise since it just
adds to the state value and can be immediately integrated,
as opposed to the multiplicative noise in the original SDE
in (3.2). In the above derivation, the Itô stochastic
correction on the drift µ(t) is the negative of the
diffusion coefficient σ2(t)/2. The final right-hand side
(3.3) defines a differential simple Gaussian process
(B.24), with the diffusion specified (±) by the
infinitesimal mean E[dY (t)]=(µ(t)−0.5σ2(t))dt

and infinitesimal variance of Var[dY (t)]=σ2(t)dt.
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So, the infinitesimal mean here is defined as
E[dY (t)]

and the infinitesimal variance is defined as
Var[dY (t)],

both defining a diffusion, given some technical
conditions, in each case neglecting orders smaller than
ord(dt) (means exact order dt, so “< ord(dt)” means the same

as “= o(dt)” and “≤ ord(dt)” means the same as “= O(dt)”) .
An alternate method of deriving (3.3) is to use the Itô
stochastic chain rule forG(W (t)), but withW (t)

replaced byX(t), subsequently expanding the
differentials dX(t) and (dX)2(t), then replacing them
by the SDE in (3.2) and neglecting any terms that are zero
in the dt–precision of modeling.
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Since the right-hand side of (3.3) does not depend on the
state Y (t), we can immediately integrate for Y (t) given
the coefficient functions leading to

Y (t)=y0+
∫ t

t0

(µ(s)−0.5σ2(s))ds+
∫ t

t0

σ(s)dW (s), (3.4)

where y0 = ln(x0).
Exponentiation leads to the formal solution for the
original state,

X(t)=x0 exp
(∫ t

t0

(µ(s)−0.5σ2(s))ds+
∫ t

t0

σ(s)dW (s)
)
. (3.5)
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◦ 3.2.1. Linear Diffusion SDEs with Constant Coeffi-
cients: If the SDE has constant coefficients, µ(t) =

µ0 and σ(t) = σ0, while letting t0 = 0, then the
solution is simpler:

X(t) = x0 exp
(
(µ0 − 0.5σ2

0)t+ σ0W (t)
)
. (3.6)

Note that if X(0+) = x0 is initially positive as de-
clared, then the solution X(t) will never become neg-
ative by the property of the exponential for real argu-
ments and the transformation Y (t) = ln(X(t)) is
proper with X(t) > 0. The state X(t) positivity fea-
ture is very important in biological and financial appli-
cations.
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In the additive noise case, borrowing the exponent form
in (3.3), the relation between the new and old values of Y
is computed by adding the noise

Y (t+ ∆t)=Y (t)+(µ0−0.5σ2
0)∆t+σ0∆W (t) (3.7)

or recursively in the time-step ∆ti from ti to ti+1 and
then summing the recursion,

Yi+1 = Yi + (µ0 − 0.5σ2
0)∆ti + σ0∆Wi

= y0 +
i∑

j=0

(
(µ0 − 0.5σ2

0)∆tj + σ0∆Wj

)
.
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So taking the expectation,

E[Yi+1] = y0 +
i∑

j=0

(
µ0 − 0.5σ2

0

)
∆tj

= y0 + (µ0 − 0.5σ2
0)

i∑
j=0

∆tj.

This result should be compared to the corresponding
deterministic additive or arithmetic recursion with
constant a,
zi+1 = zi + a, =⇒ zi+1 = z0 + (i+ 1) · a,

so the corresponding additive parameter form is
E[Yi+1] = y0 + (i+ 1)(µ0 − 0.5σ2

0)∆ti
(am)

,

where
∆ti

(am)
=

1

i+ 1

i∑
j=0

∆tj

is the arithmetic mean (AM) of the first (i+ 1) time-steps.
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As the multiplicative noise property can be seen by
rewriting (3.6) as a single step,
X(t+ ∆t)=X(t) exp

(
(µ0−0.5σ2

0)∆t+σ0∆W (t)
)
, (3.8)

so the new noise exponential contribution from ∆W (t)
multiplies the current value of the solutionX(t) to
produce the new valueX(t+ ∆t). The corresponding
recursive form in the time-step ∆ti from ti to ti+1,
followed by a summing of the recursion, yields
Xi+1 =Xi exp

(
(µ0−0.5σ2

0)∆ti+σ0∆Wi

)
= x0 exp

(∑i
j=0

(
(µ0−0.5σ2

0)∆tj +σ0∆Wj

))
= x0

∏i
j=0 exp

(
(µ0−0.5σ2

0)∆tj +σ0∆Wj

)
,

using the laws of exponents to turn the exponential of a
sum into a product of exponentials. We consider a
meaning for the Geometric name in Geometric
Brownian Motion (GBM) . . . . . . . . .
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Thus, taking the expectation and using the completing
the squares Lemma 4.1

E[Xi+1] = x0

i∏
j=0

exp (µ0∆tj). (3.9)

This result should be compared to the corresponding
deterministic multiplicative recursion or geometric
progression with constant r, xi+1 = rxi = x0r

i+1, so
the corresponding multiplicative parameter form is

E[Xi+1] = x0

(
ξi

(gm)
)i+1

,

where

ξi
(gm)

=

(
i∏

j=0

eµ0∆tj

) 1
i+1

is the geometric mean (GM) of the first (i+ 1) growth
steps ξj = eµ0∆tj for j = 0 : i.
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Applications include stochastic population growth, where
X(t) is the population size, µ(t) is an intrinsic growth
rate (rate of growth in the absence of stochastic or other
effects in the environment) and the σ(t)X(t)dW (t)

denotes the stochastic effects. The term
σ(t)X(t)dW (t) is called demographic stochasticity
since it looks like a stochastic perturbation from µ(t),
i.e., µdt −→ µdt+ σdW (t). Similarly, perturbations
of nonlinear saturation terms are called environmental
stochasticity. In biology, multiplicative or geometric
noise is also called density independent noise, since
dX(t)/X(t) is independent ofX(t).
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Another application is financial engineering, whereX(t)

is the investment return, µ(t) is the mean appreciation
rate and σ(t) is the investment volatility. In stochastic
finance, the processX(t) is called geometric Brownian
motion (GBM) due to the linear scaling on the right-hand
side for the dX(t) and, in particular, due to the stochastic
noise being multiplied by the state processX(t), i.e., the
multiplicative noise. In finance, one of the earliest
stochastic stock models was from the thesis of Bachelier
(1900), in which additive noise was used, but this work
did not attract much attention until after Black and
Scholes (Spring 1973) jointly with the mathematical
justification of Merton (Spring 1973), and others began
using multiplicative noise stock and options models.
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Multiplicative models are more appropriate in finance as
well as in biology, since random effects are more likely
to compound (as in compound interest) rather than
add.

{Note for the linear models, we have
Additive Noise⇐⇒ Arithmetic Mean

&
Multiplicative Noise⇐⇒ Geometric Mean

&
Multiplicative Wiener Noise⇐⇒ Geometric Brownian Motion }

See also Chapter 10 on financial engineering
applications.
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For the constant coefficient case of the linear stochastic
diffusion SDE, the solution can be shown to have a
log-normal distribution.

• Theorem 3.2. Solution of the Constant Coefficient,
Linear Stochastic Diffusion SDE is Log-Normally
Distributed: LetX(t) satisfy

dX(t) = X(t) (µ0dt+ σ0dW (t)), (3.10)

X(0) = x0 > 0 with probability one, where µ0 and
σ0 > 0 are constants. Then, the distribution ofX(t),
ΦX(t)(x) = Φn

(
ln(x);µn(t), (σn)2(t)

)
, (3.11)

where Φn is the normal distribution defined in (B.18),
µn(t) = ln(x0) +

(
µ0 − 0.5σ2

0

)
t & (σn)2(t) = σ2

0t.
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Proof: Using the probability inversion Lemma B19, the
distribution for the solutionX(t) in (3.6) can be derived
by reducing the distribution forX(t) to the known one
for Wiener processW (t) by invertingX(t) i n favor of
W (t). It is important here that x0 > 0, σ0 > 0 and that
the natural logarithm ln(x) is an increasing function
preserving the direction of an inequality.
ΦX(t)(x) = Prob[X(t) ≤ x]

= Prob
[
x0 exp

(
(µ0 − 0.5σ2

0)t+ σ0W (t)
)
≤ x

]
= Prob

[(
µ0 − 0.5σ2

0

)
t+ σ0W (t) ≤ ln(x/x0)

]
= Prob

[
W (t) ≤

(
ln(x/x0)− (µ0 − 0.5σ2

0)t
)
/σ0

]
= ΦW (t)

((
ln(x/x0)− (µ0 − 0.5σ2

0)t
)
/σ0; 0, t

)
= Φn

(
ln(x); ln(x0) +

(
µ0 − 0.5σ2

0

)
t, σ2

0t
)
.

{Note that monotonicity is required, e.g.,
ln′(x)=1/x>0.}
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The last step follows from the conversion identity from
the standard Wiener distribution ΦW (t) in (B.22) to
normal distribution Φn, given for Φn in Exercise 9 on
p. B.70. Thus, the probability distribution of the solution
X(t) is the general lognormal distribution of Online
Subsection B.1.6, where the exponent has the normal
distribution mean

µn(t) = ln(x0) +
(
µ0 − 0.5σ2

0

)
t

and normal variance

σ2
n(t) = σ2

0t,

i.e., the logarithm of the solutionX(t) has a general
normal distribution, where the lognormal moment
formulas are given in Properties B.20. �
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The probability density ofX(t) is found using the
regular calculus chain rule by differentiating the
distribution to yield

φX(t)(x) = x−1φn
(
ln(x);µn(t), σ2

n(t)
)
. (3.12)

Although the differentiation of the ln(x) distribution
argument leads to an algebraic pole in φX(t)(x),
φX(t)(0

+) ≡ 0, which is in fact the limit as x→ 0+.
The leading part of the exponentially small normal
distribution term exp(− ln2(x)/(2σ2

0t)) dominates the
simple algebraic pole 1/x = exp(− ln(x)) as
x→ 0+ with the larger logarithmic exponent in
magnitude.
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• 3.3. Functions of General Diffusion States & Time,
F (X(t), t):

The derivation for the special chain rule for the linear
SDE logarithm transformation suggests that a more
general chain rule for F (X(t), t) will be needed.

Rule 3.2. Chain Rule for Diffusion F (X(t), t):
Let Y (t) = F (X(t), t), such that function F (x, t) is
twice continuously differentiable in x and once in t. Let
theX(t) process satisfy the diffusion SDE,

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t), (3.13)

X(0) = x0 w.p.o., while f(X(t), t) and g(X(t), t)

satisfy the IMS integrability conditions with theW (t)

argument replaced by theX(t) arguments of f and g.
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Then

dY (t) = dF (X(t), t)

dt
=

(
Ft + fFx +

1

2
g2Fxx

)
(X(t), t)dt

+ (gFx) (X(t), t)dW (t),

where wholesale arguments have been used for the
coefficient functions multiplying dt and dW (t),
respectively.
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Sketch of Proof: Formally, using the increment form of
the differential,

dY (t)=Y (t+ dt)− Y (t)

=F (X(t+ dt), t+ dt)− F (X(t), t)

=F (X(t) + dX(t), t+ dt)− F (X(t), t).

Next, mean square approximations are used with their
implied precision-dt,

dY (t) dt=
(
Ftdt+FxdX(t)+

1

2
Fxx(dX)2(t)

)
(X(t), t)

dt=
(
Ftdt+Fx ·(fdt+ gdW (t))+

1

2
Fxxg

2dt

)
(X(t), t)

=
((
Ft+fFx+

1

2
g2Fxx

)
dt+gFxdW (t)

)
(X(t), t)
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where the dependence of the coefficients and their
derivatives is denoted by a wholesale (X(t), t) at the end
of each line, the diffusion SDE (3.13) has been substituted
for dX(t) and its square, the latter being truncated by the

basic diffusion rule (dW )2(t)
dt
= dt and other rules to

neglect zero terms to dt–precision, such as (dW )3(t),
dtdW (t) and (dt)2, given in the useful Table 2.1. �

⊗
End of Lecture 3 Notes.
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