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FinM 345 Stochastic Calculus:
4. Jump & Jump-Diffusion Stochastic Calculus:

4.1. Poisson Jump Calculus Basic Chain Rules:
The Poisson process is quite different from the continuous
diffusion process, primarily because of the discontinuity
property of the Poisson process and the property that multiple
jumps are highly unlikely during small increments in time
∆t.
• 4.1.1. Jump Calculus Rule for h(dP (t)): Thus, the

most basic rule is the zero-one law (ZOL) for jumps for
dP (t) in precision-dt compact differential form,

(dP )m(t)
dt
=
zol
dP (t), (4.1)

provided the integerm≥1, the casem=0 being trivial.
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An immediate generalization of this law is the following
corollary.
Corollary 4.1 Zero-One Jump Law for h(dP (t)):

h(dP (t))
dt
=
zol
h(1)dP (t) + h(0)(1− dP (t)), (4.2)

with probability one, provided the function h(p) is
right-continuous, such that values h(0) and h(1) exist
and are bounded.
Proof: This follows by simple substitution of the
zero-one jump law,

h(dP (t)) dt=
zol

h(1), dP (t)=1

h(0), dP (t)=0

dt=
zol
h(1)dP (t)+h(0)(1− dP (t)),

dP (t) = 0 or dP (t) = 1 with probability one to
precision-dt. �
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Formally, the differential dP (t) can be treated as a
condition to test whether there has been a jump. This
form (4.2) of the zero-one law suggests another extension
of the jump function definitions (B.178-B.179). For
example, recall in (B.185) for a jump at t1,

[F ](X(t1), t1) = F (X(t+1 ), t+1 )− F (X(t−1 ), t−1 ).

Definition 4.1. Jump Function [h](dP (t)):

[h](dP (t))
dt
=
zol
h(dP (t))− h(0) (4.3)

to precision-dt, provided h(p) is right-continuous, such
that values h(0) and h(dP (t)) exist and are bounded.
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With this definition, version (4.2) of the zero-one law can
immediately be written.

Corollary 4.2 Zero-One Jump Law for h(dP (t))

with Jump Function:

h(dP (t))
dt
=
zol
h(0) + [h](dP (t)) (4.4)

in terms of the jump function [h](dP (t)). Alternatively,
the jump function is written as

[h](dP (t))
dt
=
zol

(h(1)− h(0))dP (t). (4.5)
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• 4.1.2. Jump Calculus Rule forH(P (t), t):

Equations (4.4 – 4.5) are a primitive differential chain
rule for functions of only the Poisson differential dP (t).
However, more complex rules will be needed, for
instance, a chain rule for a combination of a simple
Poisson jump process in P (t) and a deterministic process
with explicit dependence on t.

Rule 4.1. Chain Rule forH(P (t), t):

LetH(p, t) be once continuously differentiable in t and
right-continuous in p.

dH(P (t), t)
dt
=
zol
Ht(P (t), t)dt+[H](P (t), t), (4.6)
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where
[H](P (t), t) dt=

zol
(H(P (t) + 1, t)−H(P (t), t)) dP (t) (4.7)

is the corresponding jump function definition for
functions of P (t) and t.

Begin Sketch of Proof: Proceeding formally with
differential precision-dt, the differential definition as an
increment yields

dH(P (t), t)=H(P (t+dt), t+dt)−H(P (t), t)

=H(P (t)+dP (t), t+dt)−H(P (t), t).

Next, using the zero-one jump law (4.2) for h(dP (t)) on
H(P (t) + dP (t), t+ dt) for fixed (P (t), t) to take
dP (t) out of its first argument
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and then expanding the second argument dt to two terms
up toHt,
dH(P (t), t) dt=

zol
H(P (t)+1, t+dt)dP (t)

+H(P (t)+0, t+dt)(1−dP (t))−H(P (t), t)
dt=
zol

(H(P (t), t)+Ht(P (t), t)dt)(1−dP (t))

+(H(P (t)+1, t)+Ht(P (t)+1, t)dt)dP (t)

−H(P (t), t)
dt=
zol
Ht(P (t), t)dt+(H(P (t) + 1, t)

−H(P (t), t))dP (t)
dt=
zol
Ht(P (t), t)dt+[H](P (t), t),

the last line due to using the jump function definition
(4.7).
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Also used was the bilinear differential form

dt dP (t)
dt
=
zol

0,

which is mainly responsible for the elimination of
combined continuous and jump changes.
The precision-dt jump differential Table 2.2.2 on L2-p51
was used to eliminate terms smaller than precision-dt
terms in the mean square sense. The dt factorHt(p, t) is
the partial derivative ofH with respect to t while p is
held fixed. Note that the jump function is defined for all t
so that if there is no Poisson jump, then the jump function
is identically zero since dP (t) = 0, the zero jump case.
�
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Remarks:

◦ The bilinear differential form dt dP (t)
dt
=
zol

0 is con-

sistent with the fact that the Poisson process has jump
discontinuities and thus jumps must be instantaneous.
◦ Consequently, continuous changes and jump

changes can be computed independently, since there
are zero continuous changes at each jump instant.
◦ This leads to the alternate form of Rule 4.1.
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Rule 4.2. Alternate Chain Rule forH(P (t), t):
LetH(p, t) be once continuously differentiable in t and
right continuous in p.

dH(P (t), t)
dt
=
zol
d(cont)H(P (t), t)

+d(jump)H(P (t), t),
(4.8)

where

d(cont)H(P (t), t) ≡ Ht(P (t), t)dt (4.9)

and

d(jump)H(P (t), t) ≡ [H](P (t), t). (4.10)
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Example 4.1. Stochastic Jump Power:
Let a 6= 0 and b > 0. Using the stochastic jump chain
rule (4.7) in differential form, we then have
d
[
baP (t)+ct

] dt=
zol

c ln(b)baP (t)+ctdt

+
(
ba(P (t)+1)+ct−baP (t)+ct

)
dP (t)

= baP (t)+ct(c ln(b)dt+(ba−1)dP (t)),

where the calculus rule, d(bct)=d(ec ln(b)t)=c ln(b)bct ,
for an arbitrary positive power base b with an exponential
rule has been used.
The corresponding jump integral derived from this
formula is∫ t

0
baP (s)+csdP (s) dt= 1

ba−1

((
baP (t)+ct − 1

)
−c ln(b)

∫ t
0
baP (s)+csds

)
,

provided ba 6= 1 .
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This integral formula simplifies if b = e and c = 0 to∫ t

0

exp(aP (s))dP (s) dt= (exp(aP (t))− 1)/(exp(a)− 1),

but still is different from the deterministic version,∫ t

0

exp(as)ds = (exp(at)− 1)/a.
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4.1.3. Jump Calculus Rule with General State
Y (t)=F (X(t), t): The chain rule for F (P (t), t) is
still too simple, so a chain rule for more general jump
processesX(t), such as for F (X(t), t), is needed.
First, a definition of a jump function for general
transformations is needed.

Definition 4.2. [Y ](t) for General Y (t)=F (X(t), t):

Let the process Y (t) = F (X(t), t) be a continuous
transformation of the processX(t) with jump function
[X](t) at t. Then the jump function in Y (t) is defined as

[Y ](t)= [F ](X(t), t)

= F (X(t)+[X](t), t)−F (X(t), t).
(4.11)
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Lemma 4.1. [Y ](t) for Y (t) = F (X(t), t) with
[X](t) = h(X(t), t)dP (t):

Let the process Y (t) = F (X(t), t) be a continuous
transformation of the processX(t) with jump function

[X](t) = h(X(t), t)dP (t)

at t, then

[Y ](t)= [F ](X(t), t)

= (F (X(t)+h(X(t), t), t)

−F (X(t), t)) dP (t).

(4.12)
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Proof: This follows from the Zero-One Jump Law (4.2)
for h(dP (t)) upon substitution of the jump of
[X](t) = h(X(t), t)dP (t) into the definition (4.11),
so that

[Y ](t)≡ F (X(t)+[X](t), t)−F (X(t), t)

= F (X(t)+h(X(t), t)dP (t), t)−F (X(t), t)

= (F (X(t)+h(X(t), t), t)−F (X(t), t))dP (t).

�
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Rule 4.3. Chain Rule for Jump in Y (t) = F (X(t), t):
Let Y (t) = F (X(t), t), such that the function F (x, t)

is continuously differentiable once in x and once in t. Let
theX(t) process satisfy the jump SDE,

dX(t) = f(X(t), t)dt+ h(X(t), t)dP (t), (4.13)

X(0) = x0 with probability one, while f(X(t), t) and
h(X(t), t) satisfy the mean square integrability
conditions with theW (t) argument replaced by the
X(t) arguments of f and h. In (4.13), the jump inX(t)

is [X](T−k ) ≡ X(T+
k )−X(T−k ) = h(X(T−k ), T−k )

for each kth jump-time Tk of P (t).
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Then
dY (t) = dF (X(t), t)

dt
=
zol

(Ft+fFx) (X(t), t)dt+[F ](X(t), t),
(4.14)

where wholesale arguments have been used for the
coefficient functions multiplying dt and dP (t),
respectively, and where the jump in Y (t) = F (X(t), t)

is given in (4.12) of Lemma 4.1.
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Sketch of Proof: Formally, a sketch of the proof uses the
increment form of the differential

dY (t)= Y (t+ dt)− Y (t)

= F (X(t+ dt), t+ dt)− F (X(t), t)

= F (X(t) + dX(t), t+ dt)− F (X(t), t).

Next, as for (4.6), (4.8) of the two prior rules, the
instantaneous jump changes (terms in dP (t) only, such
that [X](t) = h(X(t), t)dP (t)) are treated separately
from the continuous and smooth deterministic
changes, i.e., terms in dt only, such that

dX(det)(t) ≡ f(X(t), t)dt.
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Then the mean square approximations are used with their
implied precision-dt ,

dY (t) dt=
zol
Ft(X(t), t)dt+Fx(X(t), t)f(X(t), t)dt

+ (F (X(t)+[X](t), t)−F (X(t), t))
dt=
zol

(Ft+fFx) (X(t), t)dt

+(F (X(t)+h(X(t), t)dP (t), t)−F (X(t), t))
dt=
zol

(Ft+fFx) (X(t), t)dt

+(F (X(t)+h(X(t), t), t)−F (X(t), t)) dP (t),
where the Zero-One Jump Law (4.5) has been used to
take the dP (t) out of the argument of F and let it multiply
the jump change in F in the last line of the above
equation. Note that the jump change has been defined,
so that if there is no Poisson jump, then the jump
function is zero. �
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4.1.4. Transformations of Linear Jump with Drift
SDEs Consider the jump SDE, linear in the state process
X(t), with time-dependent coefficients,

dX(t) = X(t) (µ(t)dt+ ν(t)dP (t)), (4.15)

where here the initial condition isX(t0)=x0>0 with
probability one, µ(t) is called the drift or deterministic
coefficient and ν(t) is called the jump-amplitude
coefficient of the Poisson jump term. The jump in state is
[X](Tk)=ν(T−k ) for each jump of P (t), i.e.,
[P ](Tk)=1 for each k. Assume that the rate
coefficients, µ(t) and ν(t) are bounded, while
ν(t)>−1 (one jump and out condition: dP (T−1 )=1&
X(T+

1 )=X(T−1 )+dX(T−1 )=X(T−1 )−X(T−1 ) = 0 ).
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In the deterministic and linear diffusion cases,
transforming the state variable to its logarithm makes the
right-hand side independent of the transformed state
variable, so let

Y (t) = F (X(t)) ≡ ln(X(t)).

The most recent jump chain rule (4.14), (4.12) is
applicable in this case with

f(X(t), t) = X(t)µ(t)

and
h(X(t), t) = X(t)ν(t),

although the increment form of dF (X(t)) can be
directly expanded to get the same result.
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Since only the first partial derivative and the jump
function of F are needed, while F does not depend on t,
then

Fx(X(t)) = 1/X(t), Ft(X(t)) ≡ 0,

and from (4.12)

[F ](X(t))
dt
=
zol

(ln(X(t) +X(t)ν(t))

− ln(X(t))) dP (t)

=ln(1 + ν(t))dP (t),

(4.16)

where the logarithm subtraction rule
ln(A)− ln(B) = ln(A/B) , provided A > 0 and B > 0 ,
has been used to cancel out the linear state dependence in
the jump term. Note that the jump-amplitude becomes
singular and disastrous forX(t) as ν(t)→ (−1)+.
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Thus,
dY (t)= dF (X(t))

= Fx(X(t))X(t)µ(t)dt+ [F ](X(t))
dt
=
zol
µ(t)dt+ ln(1 + ν(t))dP (t).

(4.17)

The infinitesimal mean of Y (t), assuming the jump rate
is time-dependent E[dP (t)] = λ(t)dt too, is

E[dY (t)] = (µ(t) + λ(t) ln(1 + ν(t))) dt (4.18)

and the infinitesimal variance is
Var[dY (t)]

dt
= λ(t) ln2(1 + ν(t))dt, (4.19)

noting that the jump-amplitude has a power effect
between the infinitesimal expectation and the variance
unlike the Poisson infinitesimal property that
Var[dP (t)] = E[dP (t)].
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Since the final right-hand side of (4.17) does not depend
on the state Y (t), we can easily integrate for Y (t)

explicitly, leading to

Y (t) = Y (t0) +

∫ t

t0

µ(s)ds

+

∫ t

t0

ln(1 + ν(s))dP (s).

(4.20)

Exponentiation leads to the formal solution for the
original state,

X(t) =X(t0) exp

(∫ t

t0

µ(s)ds

+

∫ t

t0

ln(1 + ν(s))dP (s)

)
.

(4.21)
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• Linear Jump SDEs with Constant Coefficients

If the SDE has constant coefficients, µ(t) = µ0,
ν(t) = ν0 and λ(t) = λ0, then the solution is simpler:

X(t)
ims
=X(t0) exp (µ0(t−t0)

+ln(1+ν0)(P (t)−P (t0)))

=X(t0)exp (µ0(t−t0))(1+ν0)
(P (t)−P (t0)),

(4.22)

where, in the last line, the exponential-logarithm inverse
relation, exp(a ln(b)) = ba, has been used to move the
Poisson term out of the exponential.
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In this pure jump with drift process, the moments are
computed using the Poisson distribution on p. L1-p42,
coupled with the stationary property that the
distribution depends only on the time increment (and
the jump rate),

Prob[P (t)−P (t0)=k]=Prob[P (t−t0) = k]

=pk(λ0(t−t0))

=e−λ0(t−t0) (λ0(t−t0))k
k!

.
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Thus, the calculation of the mean of the process in (4.22)
is

E[X(t)]=x0e
µ0(t−t0)e−λ0(t−t0)

∑∞
k=0

(λ0(t−t0))k

k!
(1 + ν0)

k

=x0e
µ0(t−t0)−λ0(t−t0)eλ0(t−t0)(1+ν0)

=x0e
(µ0+λ0ν0)(t−t0),

growing in time if µ0 + λ0ν0 > 0, but decaying if
µ0 + λ0ν0 < 0. Note that λ0 > 0, but both µ0 and ν0

can be of any sign.
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The corresponding calculation of the variance ofX(t) is

Var[X(t)]=E[X2(t)]− E2[X(t)]

=x2
0e

2µ0(t−t0)e−λ0(t−t0)

·
∑
k=0

(λ0(t−t0))k

k!
(1 + ν0)

2k − E2[X(t)]

=x2
0e

2µ0(t−t0)−λ0(t−t0)eλ0(t−t0)(1+ν0)2

−x2
0e

2(µ0+λ0ν0)(t−t0)

=x2
0e

2(µ0+λ0ν0)(t−t0)
(
eλ0ν2

0(t−t0) − 1
)

=E2[X(t)]
(
eλ0ν2

0(t−t0) − 1
)
,

so the growth or decay is proportional to the mean
squared, but amplified asymptotically by the growing
term exp(λ0ν

2
0(t− t0)), as in the diffusion case.
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For the distribution, see the forward Subsection 4.2.3
(4.3.3, p. 109 of the textbook) for the linear
jump-diffusion SDE case.

Applications include stochastic population growth where
X(t) is the population size, such that the population
grows exponentially at intrinsic growth rate µ(t) in the
absence of stochastic disasters, but suffers from a
random linear disaster if the jump-amplitude rate
−1 < ν(t) < 0 or from a random linear bonanza if
ν(t) > 0. See also Ryan and Hanson (MB 1985) or
Chapter 11 summary on biological applications.
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4.2. Jump-Diffusion Rules and SDEs:

Wiener diffusion and simple Poisson jump processes
provide an introduction to SDEs in continuous time for
the simple jump-diffusion state processX(t),

dX(t) = (X(t), t)dt+ g(X(t), t)dW (t)

+h(X(t), t)dP (t),
(4.23)

whereX(0) = x0, with a set of continuous coefficient
functions {f, g, h}, possibly nonlinear in the state
X(t). However, in the process of introducing the
component Markov processes, too many rules have been
accumulated and in this section most of these rules will
be combined into one rule or a few rules.
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4.2.1. Jump-Diffusion Conditional Infinitesimal
Moments:
The conditional infinitesimal moments for the state
process are useful for application modeling and are given
by

E[dX(t)|X(t)=x]=(f(x, t)+λ(t)h(x, t))dt (4.24)

and

Var[dX(t)|X(t)=x]=
(
g2(x, t)+λ(t)h2(x, t)

)
dt,(4.25)

using (4.23) and assuming that the Poisson process is
independent of the Wiener process.
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The jump in the state at jumps Tk in the Poisson process,
i.e., [P ](Tk) = 1, is not an infinitesimal moment but
serves as a simple property of the SDE and is given by

[X](Tk) ≡ X(T+
k )−X(T−k ) = h(X(T−k ), T−k ) (4.26)

or

[X](t) = h(X(t), t)dP (t), (4.27)

under the assumptions that the jumps are instantaneous so
there are no time-continuous changes for the instant and
that in the interval (t, t+ dt] there is time for only one
jump, if any, of the Poisson term by the zero-one jump
rule. Note that no dP (t) appears in (4.26) since a jump
is assumed at t = Tk.
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Infinitesimal moments and jump condition characterize
the simple jump-diffusion, called simple to distinguish it
from the compound Poisson process, in which
h = h(x, t, q) denotes the random jump-amplitude
form when there is an underlying IID random variable
q = Q, while h&h2 need to be replaced by their mean
values.
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The jump-amplitude evaluation (4.26) at the pre-jump
time value T−k follows from the Itô forward integration
approximation and the right-continuity of P (t), as
discussed in the previous chapter and also means that the
jump-amplitude depends only on the immediate prejump
value of h, but not on the postjump value, which in a
sense is in the future.
The infinitesimal moment and jump properties are very
useful for modeling approximations of real applications,
by providing a basis for estimating the coefficient
functions f , g, and h, as well as some of the process
parameters, at least in the first approximation, through
comparison to the empirical values of the basic
probability for the stochastic integral equation.
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4.2.2 Stochastic Jump-Diffusion Chain Rule:

The corresponding stochastic chain rule for calculating
the differential of a composite process F (X(t), t)

begins by interpreting the differential as an infinitesimal
increment and recognizing that since the Poisson jumps
are instantaneous there is no time for continuous changes.
Thus, a critical concept in deriving the chain rule is
that the continuous changes and jump changes can be
calculated independently.
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The state process is decomposed into independent
continuous changes,

d(cont)X(t) = f(X(t), t)dt+ g(X(t), t)dW (t) (4.28)

and instantaneous discontinuous or jump changes,

d(jump)X(t) = [X](t) = h(X(t), t)dP (t), (4.29)

such that

dX(t) = d(cont)X(t) + d(jump)X(t). (4.30)
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Another critical concept is the transformation of the
conditioning for the jump. The differential Poisson
dP (t) serves as the conditioning for the existence of a
jump. This jump conditioning follows from the
probability distribution, for the differential Poisson
process which behaves asymptotically for small λdt as
the zero-one jump law, in dt-precison,

ΦdP (t)(k;λdt)=Prob[dP (t) = k]

=


1− λdt, k = 0

λdt, k = 1

0, k > 1

+ O2(λdt),
(4.31)

so that dP (t) behaves as an indicator function of the
jump counter k.
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The neglected error is O2(dt) = o(dt), i.e., dP (t) = 0

with asymptotic probability (1− λdt) if there is no
jump and dP (t) = 1 with asymptotic probability (λdt)

if there is a jump, while multiple jumps are likely to be
negligible.

Thus, the change of a composite function of the state
processX(t), dF (X(t), t), can be decomposed into the
sum of continuous and discontinuous changes.

The function F (x, t) is assumed to be at least twice
continuously differentiable in x and once in t.
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Due to the nonsmoothness, a two-term Taylor
approximation from continuous calculus yields, with
subscripts denoting partial derivatives, the continuous
change

d(cont)F (X(t), t) 'Ft(X(t), t)dt

+Fx(X(t), t)d(cont)X(t)

+1
2
Fxx(X(t), t)(d(cont)X(t))2,

which would be the chain rule for the compound function
F (X(t), t) of a deterministic functionX(t) with the
nonsmooth property.
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The discontinuous change follows from the
transformation of the jump inX(t) at time t given in the
previous section to the jump in the composite function
Y (t) = F (X(t), t),

d(jump)F (X(t), t) =(F (X(t) + h(X(t), t), t)

−F (X(t), t)) dP (t),

using the jump

[X](t) = h(X(t), t)dP (t)

and the continuity of F in t, such that when there is a
jump at time Tk in dP (t), the jump in F is evaluated at
the prejump time T−k ; else the discontinuous contribution
is zero.
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Combining the continuous and discontinuous process
changes while neglecting nonzero terms of o(dt) in the
mean square limit sense yields

dF (X(t), t)=F (X(t)+dX(t), t+dt)−F (X(t), t)
dt
=Ft(X(t), t)dt+Fx(X(t), t)

·(f(X(t), t)dt+ g(X(t), t)dW (t))

+1
2
Fxx(X(t), t)·g2(X(t), t)dt

+(F (X(t)+h(X(t), t), t)

−F (X(t), t))dP (t).

(4.32)

Rewriting (4.32) slightly leads to the final statement of
the Itô stochastic chain rule for jump-diffusions with
simple Poisson jumps.
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Rule 4.2 Jump-Diffusion Chain Rule or Itô’s Lemma
with Jumps:

Let F (x, t) be twice continuously differentiable in x and
once in t.

dF (X(t), t)
dt
=
(
Ft + fFx + 1

2
g2Fxx

)
(X(t), t)dt

+ (gFx) (X(t), t)dW (t)

+ (F (X(t) + h(X(t), t), t)

−F (X(t), t)) dP (t).

(4.33)
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Here, to summarize, it is assumed that the Wiener process
is independent of the Poisson processes and that the
quadratic differential Wiener process is replaced with
(dW )2(t)

dt
= dt, its mean. Thus, the part of the O(dt)

change in dF due to the Wiener process requires a
second derivative beyond the regular calculus first
derivative Taylor approximation and thus the nonsmooth
Wiener property plays a strong role. The second
derivative term is a diffusion term and hence the Wiener
process, dW (t), or its extension to the Gaussian
process, µ(t)dt+ σ(t)dW (t), is called a diffusion
process. However, the motivations for stochastic
diffusions and physical diffusions are quite different, but
they both lead to diffusion equations.
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The jump term uses the zero-one jump indicator
property of dP (t), so

[F ](X(t), t)=F (X(t) + [X](t), t)− F (X(t), t)

=F (X(t) + h(X(t), t)dP (t), t)

−F (X(t), t)

=(F (X(t) + h(X(t), t), t)

−F (X(t), t)) dP (t)

to pass the jump differential dP (t) from the state
argument of F (x, t) to a multiplying factor of the
potential jump difference F (x+ h(x, t), t)− F (x, t).
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To express this indicator property better and simpler,
replace F(X(t),t) by F(X(t)) and h(X(t), t) by J(t) ,
then

[F ](X(t))=F(X(t)+J(t)dP (t))−F(X(t))

=

{
F(X(t))−F(X(t))=0, dP (t) = 0

F(X(t)+J(t))−F(X(t), dP (t) = 1

}
,

=(F(X(t) + J(t))−F(X(t))dP (t),

since the last line is equivalent to the line before it by the
zero-one jump law.
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If there is a jump at t = Tk, then dP (t) produces a
change in the arguments (X(t), t) of both F and h to
(x, t) = (X(T−k ), T−k ).
If F and h are continuous in the explicit t-arguments,
then (x, t) = (X(T−k ), Tk) can be used.
However, in some of the more abstract books, through
a a failure to understand that the Poisson process,
dP (t), picks the the jump-time that goes only into the
jump terms (X(t−)ν(t−)dP (t) here) of the
jump-diffusion models, but arguments like
(X(t−), t−) appear in the diffusion terms where they
do not belong, since there the cumulative behavior of
the SDE automatically takes the new jump
information into account. Grade as D− ( ¨̂ ).
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4.2.2 Linear Jump-Diffusion SDEs

Let the linear jump and diffusion SDEs be combined into
a single jump-diffusion SDE,

dX(t)=X(t)(µ(t)dt+σ(t)dW (t)+ν(t)dP (t)), (4.34)

whereX(t0) = x0 > 0 with probability one (this is for
specificity, but only x0 6= 0 is sufficient to avoid a
change in sign, yet for financial assets usually only
x0 > 0 makes sense). The set of coefficients
{µ(t), σ(t), ν(t), λ(t)} is assumed to be bounded and
integrable, with ν(t) > −1 (otherwise, positivity of
X(t) cannot be maintained) and σ(t) > 0 (for
consistency with the interpretation of σ(t) as a standard
deviation coefficient of the diffusion process).
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The logarithmic transformation of the state process
Y (t) = ln(X(t)) transforms away the state from the
right hand side of the SDE using the jump-diffusion chain
rule (4.33) and the first two logarithmic derivatives, so

dY (t)=(µ(t)−σ2(t)/2)dt+σ(t)dW (t)

+ln(1+ν(t))dP (t).
(4.35)

The SDE (4.35) is a linear combination of the
deterministic, diffusion and jump processes with
deterministic time-dependent coefficients.
Recall that here the jump chain rule is

[Y ](t)=ln(X(t)+X(t)ν(t))−ln(X(t))
lol
=ln(1+ν(t)),

since by the law of logarithms (LOL)
ln(a)−ln(b)=ln(a/b), for positive a& b, soX(t)

cancels. {Do not confuse “LOL” with a texting abbreviation!}

FINM 345/Stat 390 Stochastic Calculus — Lecture4–page49 — Floyd B. Hanson



The SDE can be immediately, but formally integrated, to
yield

Y (t)=y0+

∫ t

t0

(
(µ(s)−σ2(s)/2)ds+σ(s)dW (s)

+ln(1+ν(s))dP (s)),

(4.36)

where y0 = ln(x0), recall that x0 > 0.

Inverting logarithmic state Y (t) back to the original state

X(t) = exp(Y (t))

leads to

X(t)=x0 exp

(∫ t

t0

(
(µ(s)−σ2(s)/2)ds+σ(s)dW (s)

+ln(1+ν(s))dP (s))

)
.

(4.37)
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• Linear Jump-Diffusion SDEs with Constant Coefficients:

For the special case of constant rate coefficients,
µ(t) = µ0, σ(t) = σ0, ν(t) = ν0 and λ(t) = λ0,
also setting t0 = 0, leads to the SDE

dX(t) = X(t) (µ0dt+σ0dW (t)+ν0dP (t)), (4.38)

X(t0) = x0 > 0 with probability one with solution,

X(t)=x0 exp
(
(µ0−σ2

0/2)t+σ0W (t)

+ln(1+ν0)P (t))

=x0(1+ν0)
P (t) exp

(
(µ0−σ2

0/2)t+σ0W (t)
)
,

(4.39)

applying the logarithm-exponential inverse property.
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Using the density φW (t)(w) for the diffusionW (t) on
L1-p23 and the discrete distribution
ΦP (t)(k) = pk(λ0t) on L1-p42 for the jump process
P (t), together with the pairwise independence of the two
processes, the state expectation can be found directly as

E[X(t)]=x0e
(µ0−σ2

0/2)te−λ0t

∞∑
k=0

(λ0t)
k

k!
(1 + ν0)

k

·
1
√

2πt

∫ +∞

−∞
e−w

2/(2t)eσ0wdw

=x0e
µ0te−λ0teλ0t(1+ν0) = x0e

(µ0+λ0ν0)t,

(4.40)

where the exponential series and completing the square
technique have been used.

FINM 345/Stat 390 Stochastic Calculus — Lecture4–page52 — Floyd B. Hanson



It is interesting to note that the conditional infinitesimal
expectation relative to theX(t) for this constant
coefficient case is

E[dX(t)|X(t)]/X(t) = (µ0 + λ0ν0)dt,

provided that the given condition valueX(t) 6= 0,
which means that if the above infinitesimal expected
result is interpreted as implying the expected rate, then
the state expectation in (4.40) is the same result as for the
equivalent deterministic process.

For more on this quasi-deterministic equivalence for
linear stochastic processes, see Hanson and Ryan (1989).
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Using similar applications of the same techniques, the
state variance is computed to be

Var[X(t)]=E[(X(t)− E[X(t)])2]

=E[X2(t)]− E2[X(t)]

=x2
0e

2(µ0−σ2
0/2)t

(
E
[
e2σ0W (t)(1+ν0)

2P (t)
]

−E2
[
eσ0W (t)(1+ν0)

P (t)
])

=x2
0e

2(µ0−σ2
0/2)t

(
e2σ2

0teλ0t((1+ν0)2−1)

−eσ2
0te2λ0ν0t

)
=x2

0e
2(µ0+λ0ν0)t

(
e(σ2

0+λ0ν2
0)t − 1

)
=E2[X(t)]

(
e(σ2

0+λ0ν2
0)t − 1

)
.

(4.41)
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The conditional infinitesimal variance relative to the
square of the state, in this constant coefficient case, is

Var[dX(t)|X(t)]/X2(t) = (σ2
0 + λ0ν

2
0)dt,

providedX(t) 6= 0, which in turn is the time integral of
the exponent, (σ2

0 + λ0ν
2
0)t, in the last line of (4.41) and

since this exponent must be positive (λ0 > 0), ensuring
exponential amplification in time relative to the
expectation exponential with exponent ((µ0 + λ0ν0)t),
which could be of any sign.
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The usual measure of the relative changes of a random
variable is called the coefficient of variation, which here
is

CV[X(t)] ≡
√

Var[X(t)]

E[X(t)]
=
√
e(σ2

0+λ0ν2
0)t − 1, (4.42)

providedX(t) 6= 0, which grows exponentially with
time t. The CV[X(t)] is often used in the sciences to
represent results, due to its dimensionless form. The
dimensionless form makes it easier to pick out general
trends or properties, especially if the CV[X(t)] can be
distilled into something very simple.
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The probability density for the solutionX(t) in (4.39)
in the case of the constant coefficient, linear
jump-diffusion SDE can be found by application of the
law of total probability (B.92) and the probability
inversion principle in Lemma (B.19).
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Thus, assuming x0 > 0 and σ0 > 0, with ln′(x) > 0,
ΦX(t)(x)≡Prob[X(t) ≤ x]

=
∑∞
k=0 Prob

[
x0e

(µ0−0.5σ2
0)t+σ0W (t)(1 + ν0)P (t)

≤ x|P (t) = k]·Prob[P (t) = k]

=
∑∞
k=0 pk (λ0t) Prob

[
x0e

(µ0−0.5σ2
0)t+σ0W (t)(1 + ν0)k]

≤x]
=
∑∞
k=0 pk (λ0t) Prob[W (t) ≤ (ln(x/x0)

−(µ0 − 0.5σ2
0)t− k ln(1 + ν0)

)
/σ0

]
=
∑∞
k=0 pk (λ0t) ΦW (t)

((
ln(x/x0)− (µ0 − 0.5σ2

0)t

−k ln(1 + ν0)) /σ0)

=
∑∞
k=0 pk (λ0t) Φn

((
ln(x/x0)− (µ0 − 0.5σ2

0)t

−k ln(1 + ν0)) /σ0; 0, t)

=
∑∞
k=0 pk (λ0t) Φn

(
ln(x); ln(x0) + (µ0 − 0.5σ2

0)t

+k ln(1 + ν0), σ2
0t
)
,
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where ΦW (t) is the distribution function ofW (t) in
(B.22) given in terms of the normal distribution function
Φn in (B.18) The last step again follows from the
conversion identity from standard to general normal
distribution, given in Exercise 9 on page B70. Thus, we
have just proven the following jump-diffusion probability
distribution theorem for the linear constant coefficient
SDE by elementary probability principles.
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Theorem 4.2.1 Jump-Diffusion Probability
Distribution for Linear Constant-Coefficient SDE.
LetX(t) formally satisfy the scalar, linear, constant
coefficient SDE (4.38) with initial condition
X(0) = x0 > 0. Then for each value of the jump
counter k, the distribution is a sequence of distributions,

ΦX(t)(x) =
∞∑
k=0

pk(λ0t)Φ
(k)
X(t)(x),

where each term of the sequence has the form
Φ

(k)
X(t)(x) = Φn

(
ln(x);µ(k)

n (t), σ2
n(t)

)
,

i.e., is a lognormal distribution (B.30) with normal mean
µ(k)
n (t) ≡ ln(x0) +

(
µ0 − 0.5σ2

0

)
t+ k ln(1 + ν0)

and normal variance
σ2
n(t) ≡ σ2

0t.

FINM 345/Stat 390 Stochastic Calculus — Lecture4–page60 — Floyd B. Hanson



For each k the logarithm of the solutionX(t) has a
general normal distribution, where the lognormal
moment formulas are given in the Properties B.20. The
probability density ofX(t) is found by the regular
chain-rule differentiating the distribution to yield

φX(t)(x)=
∑∞
k=0 pk (λ0t)

·x−1φn
(
ln(x);µ(k)

n (t), σ2
n(t)

) (4.43)

for x > 0, such that φX(t)(0) ≡ φX(t)(0
+) = 0.

As exp(ln(x)) = x→ 0+, ln(x)→ −∞,
x−1φn→C exp(−0.5 ln2(x)/σ2

n(t)−κ(t) ln(x)−α(t))

→ exp(−0.5 ln2(x)/σ2
n(t))→ 0+, where

κ(t)=1−µ(k)
n (t)/σ2

n(t) and
α(t)=0.5(µ(k)

n )2(t)/σ2
n(t).
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Remarks

◦ The fact φX(t)(0) ≡ φX(t)(0
+) = 0 is true because

for the limit as x→ 0+, the order− ln2(x) in the nor-
mal exponent dominates the− ln(x) from the algebraic
pole 1/x.
◦ For each k, the normal mean is shifted by an amount

ln(1 + ν0) and is weighted by the Poisson jump count-
ing probability pk(λ0t) = exp(−λ0t)(λ0t)

k/k!, so
the contributions decay like those of the exponential se-
ries due to the tremendous growth of the factorial func-
tion eventually dominating (λ0t)

k.
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