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• Normal-Uniform Hybrid Marks:
{Continuing unfinished part of Lecture 5.}

The very, very thin tails of the normal is consequence of the
insistence on infinite domain for exact integrals and for using
the large number of statistical tests and methods available.
Just truncating the normal to finite range does not fatten the
tails noticeably. However, an alternate idea is the combine the
truncated normal and the uniform distribution, i.e.,

φ
(nuq)
Q (q)=

(
pu

b−a
+

pnφn(q; µn, σ2
n)

Φn(a, b; µn, σ2
n)

)
U(q; (a, b)), (6.1)

where a<0<b, Φn(a, b; µn, σ2
n) is the distribution on

(a, b), while pu and pn are the respective uniform and
normal probabilities such that pu+pn =1.
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• MATLAB Mark Simulations:
• Uniform on (a,<b):

Q(uq) =a+(b-a)*rand=unifrnd(a,b).
• Normal for (mu,sigma):

Q(nq) =mu+sigma*randn=normrnd(mu,sigma).
• Double-Uniform for (a<0< b;p1):

Q(duq) =binornd(1,p1)*unifrnd(a,0)
+(1-binornd(1,p1))*unifrnd(0,b).

• Double-Exponential for (mu1<0< mu2;p1):
Q(deq) =binornd(1,p1)*exprnd(-mu1)
+(1-binornd(1,p1))*exprnd(mu2).

• Normal-Uniform for (a<0< b;mu,sigma,pu):
Q(nuq) =binornd(1,pu)*unifrnd(a,b)+(1-binornd(1,pu))

*AcceptedOnly{normrnd(mu,sigma)∈(a,b)}.

• For fixed probability values, the binornd(1,p*) can be replaced

by just p*, where p* = p1 or pu.

FINM 345/Stat 390 Stochastic Calculus — Lecture6–page3 — Floyd B. Hanson



FinM 345 Stochastic Calculus:
6. More Compound Jump-Diffusion Calculus:

• 6.1. State-Dependent Compound Jump-Diffusions:
(Beginning the section corresponding to the nonlinear mark-jump-diffusions
and linear simulations cancelled in Lecture 5.)
• 6.1.1 State-Dependent Generalizations for

Compound Poisson:
The space-time Poisson process is generalized to include
state-dependence with X(t) in both the jump-amplitude
and the Poisson measure, such that the jump-amplitude
counter is

dΠ(t;X(t), t)=

∫
Q

h(X(t), t, q)P(dt, dq;X(t), t) (6.2)

on the Poisson mark space Q with Poisson random
measure P(dt, dq; X(t), t), which helps to describe
the space-time Poisson mechanism and related calculus.
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The space-time state-dependent Poisson mark, Q = q, is
again the underlying random variable for the
state-dependent and mark-dependent jump-amplitude
coefficient h(x, t, q). The double time t arguments of dΠ,
dP and P are not considered redundant for modeling
applications, since the first time t or right-continuous time set
dt = [t, t + dt) is the usual Poisson jump process implicit
time dependence, similarly dq = [q, q + dq) is the
appropriate interval for right-continuous marks for
consistency, while the second to the right of the semicolon
denotes explicit or parametric time dependence paired with
explicit state dependence that is known in advance and is
appropriate for the application model.
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Alternatively, the Poisson zero-one law form may be used,
i.e.,

dΠ(t; X(t), t)
dt
=
zol

h(X(t), t, Q)dP (t; Q, X(t), t) (6.3)

with the jump of Π(t; X(t), t) being

[Π](Tk)=h(X(T −
k ), T −

k , Qk)

at jump-time Tk and jump-mark Qk. The multitude of
random variables in this sum means that expectations or other
Poisson integrals will be very difficult to calculate even by
conditional expectation iterations. {Caution: the shorthand
form h∆P should only be used, say for increments,
where ZOL holds, else the compound form

∑1+∆P
j=1 hj

must be used, where hj = h(X(T −
j , T −

j , Qj).}
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Definition 6.1:
The conditional expectation of P(dt, dq; X(t), t) is

E[P(dt, dq; X(t), t)|X(t)=x]=φQ(q; x, t)dqλ(t; x, t)dt, (6.4)

where φQ(q; x, t)dq is the probability density of the now
state-dependent Poisson amplitude mark and the jump rate
λ(t; x, t) now has state-time dependence. In this notation,
the relationship to the simple counting process is given by∫

Q
P(dt, dq; X(t), t) = dP (t; Q, X(t), t).

{Comment: When the current state process X(t) is
unknown, as it is prior to a solution, it is necessary to take this
kind of conditional expectation with further information.}
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Hence, when h(x, t, q) = h̃(x, t), i.e., independent of the
mark q, the space-time Poisson is the simple jump process
with mark-independent amplitude,

dΠ(t; X(t), t)
dt
=
zol

h̃(X(t), t)dP (t; Q, X(t), t),

but with nonunit jumps in general. Note, that we may write
dP (t; Q, X(t), t) = dP (t; X(t), t) here, since the Q as
a parameter of dP only denotes the Q-generation
capabilities of dP . Effectively the same form is obtained
when there is a single discrete mark, e.g.,
φQ(q) = δ(q − 1), so h(x, t, q) = h(x, t, 1) always.
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Theorem 6.1 Basic Conditional Infinitesimal Moments of
the State-Dependent Poisson Process:
E[dΠ(t; X(t), t)|X(t) = x]=

∫
Q h(x, t, q)φQ(q; x, t)dq

·λ(t; x, t)dt

≡ EQ[h(x, t, Q)]λ(t; x, t)dt

(6.5)

and
Var[dΠ(t; X(t), t)|X(t)=x]=

∫
Q h2(x, t, q)φQ(q; x, t)dq

·λ(t; x, t)dt

≡ EQ[h2(x, t; Q)]λ(t; x, t)dt.

(6.6)

Proof: The justification is the same justification as for (5.25)–(5.26)

{(5.26)-(5.27) in textbook}. It is assumed that the jump-amplitude

h(x, t, Q) is independently distributed due to Q from the underlying

Poisson counting process here, except that this jump in space is

conditional on the occurrence of the jump-time of the underlying Poisson

process. �
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• 6.1.2 State-Dependent Jump-Diffusion SDEs:

The general, scalar SDE takes the alternate but symbolic
forms,

dX(t)=f(X(t), t)dt + g(X(t), t)dW (t)

+

∫
Q

h(X(t), t, q)P(dt, dq; X(t), t)

dt
=
zol

f(X(t), t)dt + g(X(t), t)dW (t)

+h(X(t), t, Q)dP (t; Q, X(t), t)

(6.7)

for the state process X(t) with a set of continuous
coefficient functions {f, g, h}. However, the SDE model
is just a useful symbolic model for many applied
situations, but the more basic model relies on specifying
the method of integration.
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So for the Itô forward approximation,

X(t)= X(t0)+
∫ t

t0

(f(X(s), s)ds+g(X(s), s)dW (s)

+h(X(t), s, Q)dP (s; Q, X(s), s))
ifa= X(t0)+ lim

n→∞

[∑n
i=0

(
fi∆ti+gi∆Wi+

∑Pi+∆Pi

k=Pi+1hi,k

)]
,

(6.8)

where fi = f(Xi, ti), gi = g(Xi, ti),
hi,k = h(Xi, Tk, Qk), ∆ti = ti+1−ti >0, t0 ≥0

given, tn+1 = t, ∆Pi = ∆P (ti; Q, Xi, ti) and
∆Wi = ∆W (ti). Here, Tk is the kth jump-time and
Qk is the corresponding random mark.
{Note that when the simple infinitesimal Poisson term,
hdP , is expanded into increments, the compound form,∑Pi+∆Pi

k=Pi+1hi,k, had to be used!}
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The conditional infinitesimal moments for the state
process are

E[dX(t)|X(t) = x]=f(x, t)dt+h(x, t)λ(t; x, t)dt,

h(x, t)≡EQ[h(x, t, Q)],

(6.9)

and
Var[dX(t)|X(t) = x]=g2(x, t)dt

+h2(x, t)λ(t; x, t)dt,

h2(x, t)≡EQ[h2(x, t, Q)]

(6.10)

using (6.5), (6.6), (6.7) and the property that the Poisson
process is independent of the Wiener process.
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The jump in the state at jump time Tk in the underlying
Poisson process is

[X](Tk)≡X(T +
k )−X(T −

k )=h(X(T −
k ), T −

k , Qk) (6.11)

for k = 1, 2, . . . , now depending on the kth mark Qk at
the prejump-time T −

k at the kth jump.
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Rule 6.1. Stochastic Chain Rule for State-Dependent
SDEs: The stochastic chain rule for a sufficiently
differentiable function Y (t) = F (X(t), t) has the form

dY (t)= dF (X(t), t)=F (X(t)+dX(t), t+dt)−F (X(t), t)

= d(cont)F (X(t), t)+d(jump)F (X(t), t)
dt= Ft(X(t), t)dt+Fx(X(t), t)(f(X(t), t)dt

+g(X(t), t)dW (t))

+1
2
Fxx(X(t), t)g2(X(t), t)dt

+
∫

Q
(F (X(t) + h(X(t), t, q), t) − F (X(t), t))

·P(dt, dq; X(t), t)

(6.12)

to precision-dt. It is sufficient that F be twice
continuously differentiable in x and once in t.
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• 6.1.3. Linear State-Dependent SDEs:
Let the state-dependent jump-diffusion process satisfy an
SDE linear in the state process X(t) with time-dependent
rate coefficients
dX(t)dt=

zol
X(t)(µd(t)dt+σd(t)dW (t)+ν(t, Q)dP (t; Q)) (6.13)

for t > t0 with X(t0) = X0 and E[dP (t; Q)] = λ(t)dt,
where µd(t) denotes the mean and σ2

d(t) denotes the
variance of the diffusion process, while Qk denotes the kth
mark and Tk denotes the kth time of the jump process.
Again, using the log-transformation Y (t) = ln(X(t)) and
the stochastic chain rule (6.12),

dY (t)dt=
zol

(µd(t)−σ2
d(t)/2)dt+σd(t)dW (t)

+ln (1+ν(t, Q)) dP (t; Q)
(6.14)
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with immediate integrals

Y (t) = ln(x0) +

∫ t

t0

dY (s) (6.15)

and

X(t) = x0 exp

(∫ t

t0

dY (s)

)
, (6.16)

or in recursive form,

X(t + ∆t) = X(t) exp

(∫ t+∆t

t

dY (s)

)
. (6.17)
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• Linear Mark-Jump-Diffusion Simulation Forms:

For simulations, a small time-step, λi∆ti � 1,
approximation of the recursive form (6.17) would be more
useful with Xi = X(ti), µi = µd(ti), σi = σd(ti),
∆Wi = ∆W (ti), ∆Pi = ∆P (ti; Q) and the convenient
jump-amplitude coefficientapproximaton,
ν(t, Q) ' ν0(Q) ≡ exp(Q) − 1, i.e.,

Xi+1 'Xi exp
(
(µi−σ2

i /2)∆ti+σi∆Wi

)
Q∆Pi (6.18)

for i=1:N time-steps, where a zero-one jump law
approximation has been used, assuming a small incremental
jump count, λi∆ti � 1.
{Otherwise the compound Poisson form must be used and

Xi+1 'Xi exp
(
(µi−σ2

i /2)∆ti+σi∆Wi

)
Π∆Pi

j=1Qj .}
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For the diffusion part, it has been shown that

E
[
eσi∆Wi

]
= eσ2

i ∆ti/2,

using the completing the square technique. In addition, there
is the following lemma for the jump part of the increment
version of (6.18) without ZOL.

Lemma 6.1. Jump Term Expectation:

E
[
Π∆Pi

j=1(1 + ν0(Qj))
]

= eλi∆tiE[ν0(Q)], (6.19)

where E[∆Pi]=λi∆ti and ν0(Q)=exp(Q)− 1>−1.
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Proof: Using given forms, iterated expectations, the
Poisson distribution and the IID property of the marks Qk,
we then have
E
[
Π∆Pi

j=1 (1 + ν0(Qj))
]

= E∆P,Q

[
e

P∆Pi
j=1 Qj

]
iter=
exp

E∆P

[
EQ

[
e

P∆Pi
j=1 Qj

∣∣∣∆Pi

]]
loe=E∆P

[
EQ

[
Π∆Pi

j=1eQj

∣∣∣∆Pi

]]
iid=E∆P

[
Π∆Pi

j=1EQ

[
eQj

]]
ltp
= e−λi∆ti

∞∑
k=0

(λi∆ti)k

k!
Πk

j=1EQ

[
eQ
]

= e−λi∆ti
∑∞

k=0
(λi∆ti)

k

k!
Ek

Q

[
eQ
]

loe= e−λi∆ti
∑∞

k=0

(λi∆tiEQ[eQ])k

k!

= e−λi∆tieλi∆tiEQ

[
eQ
]

= eλi∆tiEQ[ν0(Q)]. �
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An immediate consequence of this result is the following
corollary.

Corollary 6.1. Discrete State Expectations.

E[Xi+1|Xi] ' Xi exp((µi + λiEQ[ν0(Q)])∆ti) (6.20)

is the single-step conditional expectation and

E[Xi+1] ' x0 exp

(
i∑

j=0

(µj + λjEQ[ν0(Q)])∆tj

)
(6.21)

is the unconditional or total expectation.

Further, as ∆ti and δtn → 0+, the continuous form of the
expectation follows and is given later in a corollary using
other justification.
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Example 6.1. Linear, Time-Independent, Constant-Rate
Coefficient Case.

In the linear, time-independent, constant-rate coefficient case
with µ(t)=µ0, σ(t)=σ0, λ(t)=λ0 and
ν(t, Q)=ν0(Q)=eQ−1,

X(t)=x0 exp
(
(µ0 − σ2

0/2)(t − t0)

+σ0(W (t) − W (t0))

+
∑P (t;Q)−P (t0;Q)

k=1 Qk

)
,

(6.22)

where the Poisson counting sum form is now more
manageable since the marks do not depend on the
prejump-times T −

k .
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Using the independence of the three underlying stochastic processes,
W (t−t0)=W (t)−W (t0), P (t−t0)=P (t; Q)−P (t0; Q) and
Qk , as well as the stationarity of the first two and the law of exponents to
separate exponents, leads to partial reduction of the expected state
process:

E[X(t)] iter=
exp

x0e(µ0−σ2
0/2)(t−t0)EW

[
eσ0W (t−t0)

]
·EP

[
P (t − t0)EQ

[
e

PP (t−t0)
j=1 Qj

∣∣∣P (t − t0)
]]

ltp
= x0eµ0(t−t0)

∑∞
k=0 E[P (t − t0)]EP

[
e

Pk
j=1 Qj

]
= x0eµ0(t−t0)

·e−λ0(t−t0)
∑∞

k=0
(λ0(t−t0))

k

k!

∏k
i=1 EQ

[
eQ
]

loe= x0eµ0(t−t0)e−λ0(t−t0)
∑∞

k=0
(λ0(t−t0))

k

k!
Ek

Q

[
eQ
]

= x0e(µ0+λ0(EQ[eQ]−1))(t−t0),

(6.23)

where λ0(t − t0) is the Poisson parameter and

E[exp(σ0W (t − t0))] = exp(σ2
0(t − t0)/2) was used.

FINM 345/Stat 390 Stochastic Calculus — Lecture6–page22 — Floyd B. Hanson



The Q = (−∞, +∞) is taken as the general mark space
range with expectation as with

EQ

[
eQ
]
=

∫
Q

eqφQ(q)dq.

Little more useful simplification can be obtained analytically,
except for infinite expansions or equivalent special functions,
when the mark density φQ(q) is specified. Numerical
procedures may be more useful for practical purposes. The
state expectation in this distributed mark case (6.23) should
be compared with the pure constant linear coefficient case in
L4-p51ff (or p. 146 of the textbook).
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• Example 6.2. — Linear Mark-JD Simulatorfor
Log-Uniformly Distributed Jump-Amplitudes:

{Continuing unfinished part of Lecture 5.}
The linear SDE jump-diffusion simulator MATLAB
code linjumpdiff03fig1.m in Online Appendix C can
be converted from the simple discrete jump process to the
distributed jump process here. The primary change is the
generation of another set of random numbers for the mark
process Q, e.g.,

Q = a + (b − a) ∗ rand(1, n + 1)

for a set of n + 1 uniformly distributed marks on (a, b) so
that the jump-amplitudes of X(t) are log-uniformly
distributed.
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An example is demonstrated in Figure 6.1 for uniformly
distributed marks Q on (a, b) = (−2, +1) and
time-dependent coefficients {µd(t), σd(t), λ(t)}. The
MATLAB linear mark-jump-diffusion code
linmarkjumpdiff09fig1.m , vectorization revision of
linmarkjumpdiff06fig1.m found in Online
Appendix C, is a modification of the pure linear
jump-diffusion SDE simulator code
linjumpdiff03fig1.m illustrated in Figure 5.1 – 5.3,
modified for for variable coefficients and mark-independent
jumps.
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The state exponent Y (t) is simulated, and it is best to
simulate Y (t) not X(t), with constant time-steps ∆t as

Y S(i+1)=Y S(i)+(µ(i)−σ2(i)/2)∗∆t

+σ(i)∗DW (i)+Q(i)∗DP (i)

with t(i+1)= t0+i∗∆t for i=1:n+1 with n=1000,
t0=0, 0≤ t(i)≤T =2 where Q(i)=ln(1+ν(i)) and
X(i) = x0 ∗ exp(Y (i)).
The mean state is calculated by exponent

Y M(i+1)=Y M(i)+(µ(i)+λ(i) ∗ ν)∗∆t

where ν ≡E[Q] and XM(i) = x0 ∗ exp(Y M(i)). The
cumsum can be used to handle the above i→ i + 1

recursions so primarily vector code can be obtained.
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The incremental Poisson jump term
∆P (ti) = P (ti + ∆t) − P (ti) is simulated by a binomial
RNG binornd for count n=1 and time-dependent vector
parameter Λ, i.e., the Bernoulli 0-1 process. In the older code
used a uniform random number generator on (0, 1) using the
acceptance-rejection technique (see p. 270, text) to
implement the zero-one jump law to obtain the probability of
λ(i)∆t that a jump is accepted there. The same random state
is used to obtain the simulations of uniformly distributed Q

on (a, b) conditional on a jump event. This technique is
useful in problems for which the Statistics Toolbox does not
have an appropriate RNG. For consistent usage, the standard
MATLAB randn should be replaced by the normrnd
normal RNG like binornd usage.
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Figure 6.1: Four linear mark-jump-diffusion sample paths for time-dependent
coefficients are simulated using MATLAB with N =1, 000 time-steps, maximum
time T = 2.0 and four randn and vector binornd states. Initially, x0 = 1.0.
Parameter values are given in vectorized functions using vector functions and dot-
element operations, µd(t) = 0.1∗sin(t), σd(t) = 1.5∗exp(−0.01∗t) and
λ=3.0 ∗ exp(−t.∗t). The marks are uniformly distributed on [−2.0, +1.0].
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• Example 6.3. Linear Mark-Jump-Diffusion Simulations
for Variable Coefficients, revised book MATLAB code
example (edited):
function linmarkjumpdiff09fig1

% Revised Linear for Linear Marked-Jump-Diff. 10/09

% SDE RNG Simulation with variable coefficients

% for t in [0,T]with sample variation:

% DX(t) = X(t)*(mu(t)*Dt + sig(t)*DW(t) + nu(Q)*DP(t),

% X(0) = x0.

% Or log-state:

% DY(t)=(mu(t)-sigˆ2(t)/2)*Dt+sig(t)*DW(t)+Q*DP(t),

% Y(0) = log(x0) and Q = ln(1+nu(Q)).

% Generation is by summing Wiener increments DW

% with Poisson jump increment added .

% Sufficiently SMALL increments assumed,

% so zero-one jump law;

% For demonstration purposes, Q will be assumed to be

% (qdist =1) UNIFORM on (qparm1,qparm2)=(a,b)
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% OR

% (qdist=2) NORMAL with (qparm1,qparm2)=(muj,sj2).

% Allows Separate Driver Input and Special Jump

% or Diffusion Handling.

clc % clear variables,

clf % clear figures

fprintf(’\nfunction linmarkjumpdiff09fig1 OutPut:’);

%%% Initialize input to jdsimulator with parameters:

N = 1000; t0 = 0; T = 2.0; % Set initial time grid:

idiff = 1; ijump = 1; x0 = 1.0;

qdist = 1;a = -2;b = +1;qparm1 = a;qparm2 = b; %Uniform

%OR E.G., Normal distribution:

%qdist = 2;muj = 0.28;sj2=+0.15;qparm1=muj;qparm2=sj2;

% set constant parameters.

fprintf(’\nN=%i; x0=%6.3f;t0=%6.3f;T=%6.3f;’,N,x0,t0,T);

fprintf(’\nqdist=%i*; qparm1=%6.3f; qparm2=%6.3f;’...

,qdist,qparm1,qparm2);

fprintf(’\n * qdist=1 for uniform Q-distribution.’);
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fprintf(’\n * qdist=2 for normal Q-distribution.’);

%

jdsimulator(idiff,ijump,qdist,qparm1,qparm2 ...

,N,x0,t0,T);

%

% END INPUT FOR JUMP-DIFFUSION SIMULATOR.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function jdsimulator(idiff,ijump,qdist,qparm1,qparm2 ...

,N,x0,t0,T)

nfig = 0; % initial figure counter.

NI = N + 1; Dt = (T-t0)/NI;

t = t0:Dt:T; tv = t(1,1:NI); % Compute time vector;

fprintf(’\nN=%i; NI=%i; length(t)=%i; ’,N,NI,length(t));

kjd = 4 - 2*idiff - ijump;

NP = N + 2; % #plot_points = #time_steps + 1.

muv = mu(tv); % Get time-dependent coefficient vectors

if idiff == 1, sigv = sigma(tv); end

if ijump == 1, lamv = lambda(tv); end
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if qdist==1 % Average nu(Q)=exp(Q)-1, UNIFORM Q-Dist.

numean=(exp(qparm2)-exp(qparm1))/(qparm2-qparm1)-1;

elseif qdist==2 % Average nu(Q)=exp(Q)-1, NORMAL Q-Dist.

numean=exp(qparm1-qparm2/2)-1;

end

sqrtDt = sqrt(Dt); % Standard Wiener increment moments.

sigsqrtDt = sqrtDt*sigv;

Lamv = Dt*lamv;

MuDt = Dt*muv;

MuldDt = MuDt - 0.5*sigsqrtDt.ˆ2; % Get Ito correction.

% Begin Sample Path Calculation:

kstates = 4;

XS = zeros(kstates,NI+1); % declare global state vector.

DW = zeros(1,NI);

QDP = zeros(1,NI);

MS = zeros(1,NI+1);

MS(1,2:NI+1) = cumsum(MuldDt);

% Compute Mean State Path:
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MSMDt = MuDt+numean*Lamv; % Mean exponent;

YM = zeros(1,NI+1);

YM(1,2:NI+1) = cumsum(MSMDt);

XM = x0*exp(YM);

for kstate = 1:kstates % Test Simulated Sample Paths:

if idiff == 1

randn(’state’,kstate); % Set initial normal state

DW = sigsqrtDt.*randn(1,NI);%sig*sqrt(Dt)*dP, NRNG

end

if ijump == 1

if qdist == 1 %Generate Uniform mark vector Q.

Q = qparm1+(qparm2-qparm1)*rand(1,NI);

elseif qdist == 2 %Generate Normal mark vector Q.

sj = sqrt(qparm2); Q = qparm1+sj*randn(1,NI);

end

QDP = Q.*binornd(1,Lamv,1,NI); % Q.*DP(t), 0-1.

end

WS = zeros(1,NI+1);
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PS = zeros(1,NI+1);

WS(1,2:NI+1) = cumsum(DW);% Set Sums

PS(1,2:NI+1) = cumsum(QDP);

YS = MS + WS + PS;

XS(kstate,:) = x0*exp(YS);% Invert exponent to state.

end

fprintf(’\nNP=%i;size(t)=[%i,%i];size(XS)=[%i,%i];size(XM)=[%i,%i];’...

,NP,size(t),size(XS),size(XM));

XSM = mean(XS,1);

fprintf(’\nNP=%i; size(XSM)=[%i,%i];’,NP,size(XM));

% Begin Plot:

scrsize = get(0,’ScreenSize’);

ss = 5.2; dss = 0.2; ssmin = 3.0;

nfig = nfig + 1;

stitle = {’Linear Mark-Jump-Diffusion Simulations’ ...

,’Linear Diffusion Simulations’ ...

,’Linear Mark-Jump Simulations’};

sylabel = {’X(t), Jump-Diffusion State’,’X(t) ...
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,Diffusion State’,’X(t), Jump State’};

slegend = {’X(t), State 1 ’,’X(t), State 2 ’ ...

,’X(t), State 3 ’,’X(t), State 4 ’ ...

,’XM(t), th. Mean=E[X(t)] ’...

,’XSM(t), Mean of Samples ’};

fprintf(’\n\nFigure(%i): Linear Jump-Diffusion Sims\n’ ...

,nfig)

figure(nfig)

plot(t,XS(1,1:NP),’k+-’ ...

,t,XS(2,1:NP),’k:’ ...

,t,XS(3,1:NP),’k--’ ...

,t,XS(4,1:NP),’k-.’ ...

,t,XM(1:NP),’g-’ ...

,t,XSM(1:NP),’b.-’ ...

,’LineWidth’,2); % Add for more States?

axis tight;

title(stitle(kjd),’FontWeight’,’Bold’,’Fontsize’,32);

ylabel(sylabel(kjd),’FontWeight’,’Bold’,’Fontsize’,32);
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xlabel(’t, Time’,’FontWeight’,’Bold’,’Fontsize’,32);

hlegend=legend(slegend,’Location’,’NorthEast’);

set(hlegend,’Fontsize’,16,’FontWeight’,’Bold’);

set(gca,’Fontsize’,28,’FontWeight’,’Bold’,’linewidth’,3);

ss = max(ss - dss,ssmin);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss 60 scrsize(3)*0.60 scrsize(4)*0.80]);

%

% End JDSimulator Code

%

% linear Time-Dependent SDE Coefficient Functions:

% (Change with application; fns. must be vectorizable,

% using vector element dot operations or vector fns.)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function M = mu(t)

% drift coefficient example, change with applications:

M = 0.1*sin(t);

% end mu(t)
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = sigma(t)

% drift coefficient example, change with applications:

S = 1.5*exp(-0.01*t);

% end sigma(t)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function L = lambda(t)

% drift coefficient example, change with applications:

L = 3.0*exp(-t.*t);

% end lambda(t)

% End Variable Coefficients Subfunction Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% End function linmarkjumpdiff09fig1.m
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• Exponential Expectations:

Sometimes it is necessary to get the expectation of an
exponential of the integral of a jump-diffusion process. The
procedure is much more complicated for distributed
amplitude Poisson jump processes than for diffusions since
the mark-time process is a product process, i.e., the product
of the mark process and the Poisson process. For the
time-independent coefficient case, as in a prior example, the
exponential processes are easily separable by the law of
exponents. However, for the time-dependent case, it is
necessary to return to using the space-time process P and the
decomposition approximation used in the mean square limit.
The h in the following theorem might be the amplitude
coefficient in (6.14) or h(s, q) = q = ln(1 + ν(s, q)).
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Theorem 6.2. Expectation for the Exponential of
Space-Time Counting Integrals.

Assuming finite second order moments for h(t, q) and
convergence in the mean square limit,

E
[
exp

(∫ t

t0

∫
Q h(s, q)P(ds, dq)

)]
=exp

(∫ t

t0

∫
Q

(
eh(s,q) − 1

)
φQ(q, s)dqλ(s)ds

)
≡exp

(∫ t

t0

(eh − 1)(s)λ(s)ds

)
,

(6.24)

where (eh − 1)(s) ≡ EQ[exp(h(s, Q)) − 1].
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Proof: Let the proper partition of the mark space over
disjoint subsets be

Qm = {∆Qj for j =1:m | ∪m
j=1 ∆Qj =Q}.

Since Poisson measure is Poisson distributed,

ΦPj
(k) = Prob[P(dt, ∆Qj)=k] = e−Pj

(Pj)
k

k!
with Poisson parameter

Pj ≡ E[P(dt, ∆Qj)] = λ(t)dtΦQ(∆Qj, ti)

for each subset {∆Qj}.

Similarly, let the proper partition over the time interval be
Tn = {ti|ti+1 = ti+∆ti for i=0:n, t0 =0,

tn+1 = t, maxi[∆ti]→0 as n→+∞}.
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The disjoint property over subsets and time intervals means
P([ti, ti + ∆ti), ∆Qj) and P([ti, ti + ∆ti), ∆Q′

j) will
be pairwise independent provided j′ 6= j for fixed i

corresponding to property (5.19) on L5-46 (or 5.15 in
textbook) for infinitesimals, while P([ti, ti + ∆ti), ∆Qj)

and P([ti, ti + ∆t′
i), ∆Q′

j) will be pairwise independent
provided i′ 6= i and j′ 6= j, corresponding to similar
property (5.16) in textbook, but omitted from lecture 1, for
infinitesimals. For brevity, let hi,j ≡ h(ti, q∗

j ), where
q∗

j ∈ ∆Qj , Pi,j ≡ Pi([ti, ti + ∆ti), ∆Qj) and
Pi,j ≡ λi∆tiΦQ(∆Qj). The IFA expansion and
reassembling limits are used , with Pi,j playing the dual roles
of the two increments (∆ti, ∆Qj), the law of exponents and

the independence denoted by ind
=
inc

, so we have the following:
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E
[
exp

(∫ t

t0

∫
Q

hP
)]

ifa= lim
n→∞

E

exp

 n∑
i=0

m∑
j=1

hi,jPi,j


ind=
inc

lim
n→∞

Πn
i=0Π

m
j=1E [exp (hi,jPi,j)]

= lim
n→∞

Πn
i=0Π

m
j=1 exp

(
−Pi,j

) ∞∑
ki,j=0

Pki,j

i,j

ki,j!
exp (hi,jki,j)

= lim
n→∞

Πn
i=0Π

m
j=1 exp

(
Pi,j (exp(hi,j) − 1)

)
= lim

n→∞
exp

 n∑
i=0

m∑
j=1

(exp(hi,j) − 1) λi∆tiΦQ(∆Qi, ti)


ifa=exp

(∫ t

t0

∫
Q

(exp(h(s, q)) − 1) φQ(q, s)dqλ(s)ds

)
≡exp

(∫ t

t0

(exp((h − 1)(s)))λ(s)ds

)
.
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Thus, the main technique is to unassemble the IFA limit
discrete approximation to get at the independent random part,
take its expectation and then reassemble the IFA limit,
justifying the interchange of expectation and
exponent-integration. �
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Remarks 6.1:
• Note that the mark space subset ∆Qj is never used

directly as a discrete element of integration, since the
subset would be infinite if the mark space were infinite.
The mark space element is used only through the
distribution which would be bounded. This is quite unlike
the time domain, where we can select t to be finite. If the
mark space were finite, say, Q = [a, b], then a concrete
partition of [a, b] similar to the time-partition can be
used.

• Also note that the dependence on (X(t), t) was not
used, but could be considered suppressed but absorbed
into the existing t dependence of h and P .

FINM 345/Stat 390 Stochastic Calculus — Lecture6–page44 — Floyd B. Hanson



Corollary 6.2. Expectation of X(t) for Linear SDE:

Let X(t) be the solution (6.16) with ν(t) ≡ E[ν(t, Q)] of
(6.13). Then

E[X(t)]=x0 exp

(∫ t

t0

(µd(s) + λ(s)ν(s)) ds

)
=x0 exp

(∫ t

t0

E[dX(s)/X(s)]ds

)
.

(6.25)

Proof: The jump part, i.e., the main part, follows from
exponential Theorem 6.2, (6.24) and the lesser part for the
diffusion is left as an exercise for the reader.

However, note that the exponent is the time integral of
E[dX(t)/X(t)], the relative conditional infinitesimal
mean, which is independent of X(s) and is valid only for the
linear mark-jump-diffusion SDE. �
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Remark 6.2:

The relationship in (6.25) is a quasi-deterministic
equivalence for linear mark-jump-diffusion SDEs and was
shown by Hanson and Ryan (MB 1989) . They also produced
a nonlinear jump counterexample that has a formal
closed-form solution in terms of the gamma function, for
which the result does not hold and a very similar example is
given in Exercise 9 in Chapter 4 of the textbook.
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• Moments of Log-Jump-Diffusion Process:

For the log-jump-diffusion process dY (t) in (6.14), suppose
that the jump-amplitude is time-independent and that the
mark variable was conveniently chosen as

Q = ln(1 + ν(t, Q))

so that the SDE has the form

dY (t)
dt
=
zol

µld(t)dt + σ(t)dW (t)+QdP (t; Q), (6.26)

where µld(t)≡µ(t)−σ2(t)/2, and in the case of
applications for which the time-step ∆t is an increment that
is not infinitesimal like dt, there is some probability of more
than one jump,

∆Y (t)=µld(t)∆t+σ(t)∆W (t)+

P (t;Q)+∆P (t;Q)∑
k=P (t;Q)+1

Qk. (6.27)
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The results for the infinitesimal case (6.26) are contained in
the incremental case (6.27).

The first few moments can be found in general for (6.27), and
if up to the fourth moment, then the skew and kurtosis
coefficients can be calculated. These calculations can be
expedited by the following lemma, concerning sums of
zero-mean IID random variables.
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Lemma 6.2. Zero-Mean IID Random Variable Sums:

Let {Xi|i = 1:n} be a set of zero-mean IID random
variables, i.e., E[Xi] = 0. Let M (m) ≡ E[Xm

i ] be the
mth moment and

S(m)
n ≡

n∑
i=1

Xm
i

with S(1)
n = Sn the usual partial sum over the set and

E[S(m)
n ] = nM (m); (6.28)

then the expectation of powers of Sn for m = 1:4 is

E [(Sn)m]=


0, m=1

nM (2), m=2

nM (3), m=3

nM (4)+3n(n−1)
(
M (2)

)2
, m=4


. (6.29)

FINM 345/Stat 390 Stochastic Calculus — Lecture6–page49 — Floyd B. Hanson



Proof: The proof is done first by the linear property of the
expectation and the IID properties of the Xi,

E
[
S(m)

n

]
=

n∑
i=1

E[Xm
i ] =

n∑
i=1

M (m) = nM (m). (6.30)

The m = 1 case is trivial due to the zero-mean property of
the Xi’s and the linearity of the expectation operator,
E[Sn] =

∑n
i=1 E[Xi] = 0.

For m = 2, the induction hypothesis from (6.29) is

E
[
S2

n

]
≡ E

[(
n∑

i=1

X2
i

)]
= nM (2),

where the initial condition at n = 1 is
E[S2

1 ] = E[X2
1 ] = M (2) by definition.
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The hypothesis can be proved easily by partial sum recursion
Sn+1 = Sn + Xn+1, application of the binomial theorem,
expectation linearity and the zero-mean IID property:
E
[
S2

n+1

]
= E

[
(Sn+Xn+1)2

]
=E

[
S2

n+2Xn+1Sn+X2
n+1

]
= nM (2)+2·0 ·0+M (2) =(n+1)M (2). (6.31)

QED for m = 2.

This is similar for the power m = 3, again beginning with
the induction hypothesis

E
[
S3

n

]
≡ E

( n∑
i=1

Xi

)3
 = nM (3).

where the initial condition at n = 1 is
E[S3

1 ] = E[X3
1 ] = M (3) by definition.
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Using the same techniques as in (6.31),
E
[
S3

n+1

]
= E

[
(Sn+Xn+1)3

]
= E

[
S3

n+3Xn+1S2
n+3X2

n+1S2
n+X3

n+1

]
= nM (3)+3 ·0·nM (2)+3 ·M (2) ·0+M (3)

= (n+1)M (3). (6.32)
QED for m = 3.

Finally, the case for the power m = 4 is a little different
since an additional nontrivial term arises from the product of
the squares of two independent variables.
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The induction hypothesis for m = 4 is

E
[
S4

n

]
≡ E

( n∑
i=1

Xi

)4
 = nM (4)+3n(n−1)(M (2))2,

where the initial condition at n = 1 is
E[S4

1 ] = E[X4
1 ] = M (4) by definition. Using the same

techniques as in (6.31),
E
[
S4

n+1

]
= E

[
(Sn+Xn+1)4

]
= E

[
S4

n+4Xn+1S3
n+6X2

n+1S2
n+4X3

n+1S1
n+X4

n+1

]
= nM (4)+3n(n−1)(M (2))2+4 ·0 ·nM (3)

+6 · M (2) ·nM(2)+4·M (3) ·0+M (4)

= (n+1)M (4)+3n(n+1)(M (2))2. (6.33)
QED for m = 4. �
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Remark 6.3: The results here depend on the IID and
zero-mean properties, but do not otherwise depend on the
particular distribution of the random variables. The results
are used in the following theorem.

Theorem 6.3. Some Moments of the Log-jump-Diffusion
(LJD) Process ∆Y (t):
Let ∆Y (t) satisfy the stochastic difference equation (6.27)
and let the marks Qk be IID with mean µj ≡EQ[Qk] and
variance σ2

j ≡VarQ[Qk]. Then the first four moments,
m=1:4, are

µljd(t) ≡ E[∆Y (t)]=(µld(t)+λ(t)µj)∆t; (6.34)

σljd(t) ≡ Var[∆Y (t)]=
(
σ2

d(t)+
(
σ2

j +µ2
j

)
λ(t)

)
∆t; (6.35)
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M
(3)
ljd (t) ≡ E

[
(∆Y (t)−E[∆Y (t)])3

]
=
(
M

(3)
j +µj

(
3σ2

j +µ2
j

))
λ(t)∆t, (6.36)

where M
(3)
j ≡EQ[(Qi−µj)

3];

M
(4)
ljd (t) ≡ E

[
(∆Y (t) − E[∆Y (t)])4

]
=
(
M

(4)
j + 4µjM

(3)
j +6µ2

jσ2
j +µ4

j

)
λ(t)∆t

+3
(
σ2

d(t)+
(
σ2

j +µ2
j

)
λ(t)

)2

(∆t)2, (6.37)

where M
(4)
j ≡EQ[(Qi−µj)

4].

FINM 345/Stat 390 Stochastic Calculus — Lecture6–page55 — Floyd B. Hanson



Proof: One general technique for calculating moments of the
log-jump-diffusion process is iterated expectations. Thus,
writing ∆P (t; Q) = ∆P (t) to suppress Q as the symbolic
generation parameter in ∆P when performing the iterated
expectations,

µljd(t)= E[∆Y (t)] = µld(t)∆t + σd(t) · 0

+E∆P (t)

[
EQ

[∑∆P (t)
i=1 Qi

∣∣∣∆P (t)
]]

= µld(t)∆t + E∆P (t)

[∑∆P (t)
i=1 EQ[Qi]

]
iid= µld(t)∆t + E∆P (t)[∆P (t)EQ[Q]]

= (µld(t) + µjλ(t)) ∆t,

proving the first moment formula, using the increment
jump-count.
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For the higher moments, the main key technique for efficient
calculation of the moments is decomposing the
log-jump-diffusion process deviation into zero-mean
deviation factors, i.e.,

∆Y (t)−µljd(t)=σd(t)∆W (t)

+
∑∆P (t)

i=1 (Qi−µj)

+µj(∆P (t)−λ(t)∆t),

where µj∆P (t)=
∑∆P (t)

i=1 µj was used. In addition, the
multiple applications of the binomial theorem and the
convenient increment power Table 1.1 for ∆W (t) and
Table 1.2 for ∆P (t) are used.
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The incremental process variance is found by
σljd(t)≡ Var[∆Y (t)]

= E
[(

σd(t)∆W (t)+
∑∆P (t)

i=1 (Qi−µj)

+µj(∆P (t)−λ(t)∆t))2
]

= σ2
d(t)E∆W (t)[(∆W )2(t)]+2σd ·0

+E
[(∑∆P (t)

i=1 (Qi−µj)+µj(∆P (t)−λ(t)∆t)
)2
]

= σ2
d(t)∆t+E∆P (t)

[∑∆P (t)
i=1

∑∆P (t)
k=1

·EQ[(Qi−µj)(Qk−µj)]

+2µj(∆P (t) − λ(t)∆t)
∑∆P (t)

i=1 EQ[(Qi−µj)]

+µ2
j (∆P (t)−λ(t)∆t)2

]
= σ2

d(t)∆t+E∆P (t)

[
∆P (t)σ2

j +0

+µ2
j (∆P (t)−λ(t)∆t)2

]
=
(
σ2

d(t)+
(
σ2

j +µ2
j

)
λ(t)

)
∆t.
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The cases of the third and fourth central moments are i
similarly calculated, however, they will be omitted for
simplicity, but can be found in the textbook sample Chapter 5
found online at
http://www.siam.org/books/dc13/DC13samplechpt.pdf .
SIAM Books currently has a sale on the textbook, code
DC13, for non-memberss at $72.80 until 31 December 2009
(the special coupon should have expired) at
http://www.siam.org/catalog/fb09.php

by searching the page for DC13, click on the title and set the
pull down menu to FB09 Sale Price – $72.80. Sorry, this sale
is not available outside North America at
www.cambridge.org/siam.
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Remarks 6.4:
• Recall that the third and fourth moments are measures of

skewness and peakedness (kurtosis), respectively. The
normalized representations in the current notation are the
coefficient of skewness,

η3[∆Y (t)] ≡ M
(3)
ljd (t)/σ3

ljd(t), (6.38)

from (B.11), and the coefficient of kurtosis from (B.12),
η4[∆Y (t)] ≡ M

(4)
ljd (t)/σ4

ljd(t). (6.39)

• For example, if the marks are normally or uniformly
distributed, then

M
(3)
j = 0,

since the normal and uniform distributions are both
symmetric about the mean, so they lack skew.
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Thus, we have the coefficient of skew

η3[∆Y (t)]=
µj

(
3σ2

j +µ2
j

)
λ(t)∆t

σ3
ljd(t)

=
µj

(
3σ2

j +µ2
j

)
λ(t)(

σ2
d(t)+

(
σ2

j +µ2
j

)
λ(t)

)3

(∆t)2
,

using σljd(t) given by (6.35). For the uniform
distribution, the mean µj is given by (B.15) explicitly in
terms of the uniform interval [a, b] and the variance σ2

j

by (B.16), while for the normal distribution, µj and σ2
j

are the given normal model parameters. In general, the
normal and unform distribution versions of the
log-jump-diffusion process X(t) will have skew,
although the component incremental diffusion and mark
processes are skewless.
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In the normal and uniform mark cases, the fourth moment
of the jump marks are

M
(4)
j /σ4

j =

 3, normal Qi

1.8, uniform Qi

 ,

which are in fact the coefficients of kurtosis for the
normal and uniform distributions, respectively, so

η4[∆Y (t)]=

3, normal Qi

1.8, uniform Qi

σ4
j +6µ2

jσ2
j +µ4

j

 λ(t)∆t
σ4

ljd(t)

+3
(
σ2

d(t)+
(
σ2

j +µ2
j

)
λ(t)

)2 (∆t)2

σ4
ljd(t)

.
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• The moment formulas for the differential
log-jump-diffusion process dY (t) follow immediately
from Theorem 6.2 (5.17 in textbook) by dropping terms
O((∆t)2) and replacing ∆t by dt.
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Summary of Lecture 6?

1.

2.

3.

4.

5.

6.

7.

8.
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