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FinM 345 Stochastic Calculus:
7. Compound Jump-Diffusion Distribution
and Applications in Financial Engineering:

• 7.1. Compound Jump-Diffusion Distribution:
• 7.1.1 Distribution of Increment Log-Process:
Theorem 7.1. Distribution of the State Increment Logarithm Process
for Linear Mark-Jump-Diffusion SDE:
Let the logarithm-transform jump-amplitude be
ln(1+ν(t, q))=q. Then the increment of the logarithm
process Y (t)=ln(X(t)), assuming X(t0)=x0 >0 and
the jump-count increment, approximately satisfies

∆Y (t) ' µld(t)∆t+σd(t)∆W (t)+

∆P (t;Q)∑
j=1

Qj (7.1)

for sufficiently small ∆t,
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where µld(t)≡µd(t)−σ2
d(t)/2 is the log-diffusion (LD)

drift,σd >0 and the Qj are pairwise IID jump marks for
P (s; Q) for s ∈ [t, t+∆t), counting only jumps associated
with ∆P (t; Q) given P (t; Q), with common density
φQ(q). The Qj are independent of both ∆P (t; Q) and
∆W (t).

Then the distribution of the log-process Y (t) is the Poisson
sum of nested convolutions

Φ∆Y (t)(x)'
∞∑

k=0

pk(λ(t)∆t)
(
Φ∆G(t)(∗φQ)k

)
(x), (7.2)

where ∆G(t)≡µld(t)∆t+σd(t)∆W (t) is the
incremental Gaussian process and (Φ∆G(t)(∗φQ)k)(x)

denotes a convolution of one distribution with k identical
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densities φQ. The corresponding log-process density is

φ∆Y (t)(x)'
∞∑

k=0

pk(λ(t)∆t)
(
φ∆G(t)(∗φQ)k

)
(x). (7.3)

Proof: By the law of total probability (B.92), the distribution
of the log-jump-diffusion ∆Y (t)'∆G(t)+

∑∆P (t)
j Qj ,

dropping the Q parameter in ∆P (t; Q) to simplify, is
Φ∆Y (t)(x)≡ Prob[∆Y (t) ≤ x]

= Prob
[
∆G(t)+

∑∆P (t)
j=1 Qj ≤ x

]
ltp
=
∑∞

k=0 Prob
[
∆G(t)

+
∑∆P (t)

j=1 Qj ≤x
∣∣∣∆P (t)=k

]
·Prob[∆P (t)=k]

=
∞∑

k=0

pk(λ(t)∆t)Φ(k)(x),

(7.4)

where pk(λ(t)∆t) is the Poisson distribution with parameter
λ(t)∆t
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and the k-jump distribution is

Φ(k)(x) ≡ Prob

[
∆G(t) +

k∑
j=1

Qj ≤ x

]
.

For each discrete condition ∆P (t) = k, ∆Y (t) is the sum
of k + 1 terms, the normally distributed Gaussian diffusion
part ∆G(t) = µld(t)∆t + σd(t)∆W (t) and the Poisson
counting sum

∑k
j=1 Qj , where the marks Qj are assumed to

be IID but otherwise distributed with density φQ(q), while
independent of the diffusion and the Poisson counting
differential process ∆P (t). Using the fact that ∆W (t) is
normally distributed with zero-mean and ∆t-variance,
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Φ∆G(t)(x)=Prob[∆G(t)≤x]

=Prob[µld(t)∆t+σd(t)∆W (t)≤x]

=Prob[∆W (t)≤(x−µld(t)∆t)/σd(t)]

=Φ∆W (t)((x−µld(t)∆t)/σd(t))

=Φn((x−µld(t)∆t)/σd(t); 0, ∆t)

=Φn(x; µld(t)∆t, σ2
d(t)∆t),

provided σd(t)>0, while also using identities for normal
distributions, where Φn(x; µ, σ2) denotes the normal
distribution with mean µ and variance σ2.
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Since Φ(k) is the distribution for the sum of k + 1
independent random variables, with one normally distributed
random variable and k IID jump marks Qj for each k, Φ(k)

will be the nested convolutions as given in (B.100), i.e.,
φX1+X2+···+Xn(z)= (φX1 ∗φX2 ∗. . .∗φXn)(z)

=

8<:((. . . (φX1 ∗φX2)∗. . .∗φXn−1
)∗φXn)(z)

(φX1 ∗(φX2 ∗. . .∗(φXn−1
∗φXn) . . . ))(z)

9=; ,

where the convolution of a distribution or density f(y)
and a density φ(x) be

(f ∗φ)(z) ≡
∫ +∞

−∞
f(z − x)φ(x)dx (7.5)

provided the integral exists. The convolution arises when
finding the distribution for a sum of random variables, e.g.,
Φ(0) = Φ∆G(t), while Φ(1) is sum of the Gaussian process
and a one-jump Poisson process, ∆G(t) + ∆J1(t) , say.
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Upon expanding in convolutions starting from the
distribution for the random variable ∆G(t) and the kth
Poisson counting sum

Jk ≡
k∑

j=1

Qj,

we get
Φ(k)(x)=

(
Φ∆G(t)∗ φJk

)
(x) =

(
Φ∆G(t)

∏k
i=1 (∗φQi

)
)

(x)

=
(
Φ∆G(t) (∗φQ)k

)
(x),

using the identically distributed property of the Qi’s and the
compact convolution operator notation(
Φ∆G(t)

k∏
i=1

(∗φQi
)

)
(x)=((· · · (Φ∆G(t)∗φQ1)∗· · ·∗φQk

)(x),

which collapses to the operator power form for IID marks
analogously to reduction of a product to a power,∏k

i=1 c = ck, for some constant c.
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Substituting the distribution into the law of total probability
form (7.4), the desired result is (7.2), which when
differentiated with respect to x yields the kth density
φ∆Y (t)(x) in (7.3). �

Remark 7.1: Several specialized variations of this theorem
are found in Hanson and Westman [2002a,2002b], to these
papers are made here.
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Corollary 7.1. Density of Linear Jump-Diffusion with
Log-Normally Distributed Jump-Amplitudes
(not recommended due to thin, not fat tails):
Let X(t) be a linear jump-diffusion satisfying SDE (7.1) or
((5.69), p. 153, textbook) and let the jump-amplitude mark Q

be normally distributed such that
φQ(x; t) = φn(x; µj(t), σ2

j (t)) (7.6)
with jump (j) mean µj(t) = E[Q] and jump (j) variance
σ2

j (t) = Var[Q]. Then the jump-diffusion density of the
log-process Y (t) is

φ∆Y (t)(x)=
∞∑

k=0

pk(λ(t)∆t)φn(x; µld(t)∆t + kµj(t),

σ2
d(t)∆t + kσ2

j (t)).

(7.7)
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Proof: By (B.101) the convolution of two normal densities is
a normal distribution with a mean that is the sum of the
means and a variance that is the sum of the variances.
Similarly, by the induction exercise result in (B.196), the
pairwise convolution of one normally distributed diffusion
process ∆G(t) = µld(t)∆t + σd(t)∆W (t) density and
k random mark Qi densities φQ for i = 1:k will be a
normal density whose mean is the sum of the k + 1 means
and whose variance is the sum of the k + 1 variances.
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Thus, starting with the result (7.4) and then applying (B.196),
φ∆Y (t)(x)=

∑∞
k=0 pk(λ(t)∆t)

(
φ∆G(t) (∗φQ)k

)
(x)

=
∑∞

k=0 pk(λ(t)∆t)φn

(
x; µld(t)∆t+

∑k
i=1 µj(t),

σ2
d(t)∆t +

∑k
i=1 σ2

j (t)
)

=
∑∞

k=0 pk(λ(t)∆t)φn(x; µld(t)∆t + kµj(t),

σ2
d(t)∆t + kσ2

j (t)). �

Remarks 7.2: So the density of the log-process is a mixture or sum

of normal densities with shift means and variances.

The normal jump-amplitude jump-diffusion distribution has been used in

financial applications, initially by Merton (1976) and then by others such

as Torben Andersen, Benzoni and Lund (2002) of Northwestern

University and also by Hanson and Westman (2002).

FINM 345/Stat 390 Stochastic Calculus — Lecture7–page12 — Floyd B. Hanson



Corollary 7.2. Density of Linear Jump-Diffusion with
Log-Uniformly Distributed Jump-Amplitudes:
Let X(t) be a linear jump-diffusion satisfying SDE (7.1), and
let the jump-amplitude mark Q be uniformly distributed as
in ((5.28), L5-p58 or p. 138 textbook), i.e.,

φQ(q) =
1

b − a
U(q; a, b),

where U(q; a, b)= I{q∈[a,b]} is the unit step function or
indicator function on [a, b] with a < b . The jump-mean is
µj(t) = (b + a)/2 and jump-variance is σ2

j (t) = (b − a)2/12 .
Then the jump-diffusion density of the increment log-process
∆Y (t) satisfies the general convolution form (7.3), i.e.,

φ∆Y (t)(x)=
∑∞

k=1 pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)k

)
(x)

=
∑∞

k=1 pk(λ(t)∆t)φ(k)
ujd(x),

(7.8)

where pk(λ(t)∆t) is the Poisson distribution with parameter
λ(t) .
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The ∆G(t) = µld(t)∆t + σd(t)∆W (t) is the diffusion term
and Q is the uniformly distributed jump-amplitude mark. The
first few coefficients of pk(λ(t)∆t) for the uniform
jump-distribution (UJD), starting with a pure diffusion
density, are

φ
(0)
ujd(x)≡φ∆G(t)(x) = φn(x; µld(t)∆t, σ2

d(t)∆t), (7.9)

where φn(x; µld(t)∆t, σ2
d(t)∆t) denotes the normal density

with mean µld(t)∆t and variance σd(t)∆t ,
φ

(1)
ujd(x)=

(
φ∆G(t)∗φQ

)
(x)

= φsn(x−b, x−a; µld(t)∆t, σ2
d(t)∆t),

(7.10)

where φsn is the secant-normal density
φsn(x1, x2; µ, σ2)≡Φn(x1, x2; µ, σ2)/(x2−x1)

≡(Φn(x2; µ, σ2)−Φn(x1; µ, σ2))/(x2−x1)
(7.11)

with normal distribution Φn(x1, x2; µ, σ2) .
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Also,
φ

(2)
ujd(x)=

(
φ∆G(t)(∗φQ)2

)
(x)

= 2b−x+µld(t)∆t

b−a
φsn(x−2b, x−a −b; µld(t)∆t, σ2(t)∆t)

+x−2a−µld(t)∆t

b−a
φsn(x−a −b, x−2a; µld(t)∆t, σ2

d(t)∆t)

+σ2
d(t)∆t

(b−a)2

(
φn(x−2b; µld(t)∆t, σ2

d(t)∆t)

−2φn(x−a−b; µld(t)∆t, σ2
d(t)∆t)

+φn(x−2a; µld(t)∆t, σ2
d(t)∆t)

)
. (7.21)
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Proof: First the finite range of the jump-amplitude uniform
density is used to truncate the convolution integrals for each
k using existing results for the mark convolutions, such as
φ

(2)
(uq)(x) = (φQ ∗ φQ)(x) = φQ1+Q2(x) for IID marks

when k = 2.

The case for k = 0 is trivial since it is given in the theorem
equations (7.9).
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For a k = 1 jump,

φ
(1)
ujd(x)≡ (φ∆G(t)∗φQ)(x)≡

∫ +∞

−∞
φ∆G(t)(x−y)φQ(y)dy

=
1

b−a

∫ b

a

φn(x − y; µld(t)∆t, σ2
d(t)∆t)dy

=
1

b−a

∫ x−a

x−b

φn(z; µld(t)∆t, σ2
d(t)∆t)dz

=
1

b−a
Φn(x−b, x−a; µld(t)∆t, σ2

d(t)∆t)

= φsn(x−b, x−a; µld(t)∆t, σ2
d(t)∆t),

where −∞<x<+∞, upon change of variables and use of
normal density identities.
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For k = 2 jumps, the convolution of two copies of the
uniform distribution on [a, b] results in a triangular
distribution on [2a, 2b] which, from exercise result (B.197),
is

φ
(2)
(uq)(x)=(φQ∗φQ)(x)=

1

(b−a)2


x−2a, 2a≤x<a+b

2b−x, a+b≤x≤2b

0, otherwise

. (7.12)
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Hence,
φ

(2)
ujd(x)= (φ∆G(t)∗(φQ∗φQ))(x)

=
∫+∞

−∞φ∆G(t)(x−y)(φQ∗φQ)(y)dy

= 1
(b−a)2

(∫ a+b

2a
(y−2a)φ∆G(t)(x−y)dy

= +
∫ 2b

a+b
(2b−y)φ∆G(t)(x−y)dy

)
= 1

(b−a)2

(∫ x−2a

x−a−b
(x−z−2a)φ∆G(t)(z)dz

+
∫ x−a−b

x−2b
(2b−x+z)φ∆G(t)(z)dz

)
= 2b−x+µld(t)∆t

b−a
φsn(x−2b, x−a−b; µld(t)∆t, σ2

d(t)∆t)

+x−2a−µld(t)∆t

b−a
φsn(x−a−b, x−2a; µld(t)∆t, σ2

d(t)∆t)

+σ2
d(t)∆t

(b−a)2

(
φn(x−2b; µld(t)∆t, σ2

d(t)∆t)

−2φn(x−a−b; µld(t)∆t, σ2
d(t)∆t)

+φn(x−2a; µld(t)∆t, σ2
d(t)∆t)

)
,

where the exact integral for the normal density has been used.
�
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Remarks 7.3:

• This density form φsn in (7.11) is called a secant-normal
density since the numerator is an increment of the normal
distribution and the denominator is the corresponding
increment in its state arguments, i.e., a secant
approximation, which here has the form ∆Φn/∆x.

• The uniform jump-amplitude jump-diffusion distribution
has been used in financial applications, initially by
Hanson and Westman in (2002fmt) as a simple, but
appropriate, representation of a jump component of
market distributions, and some errors have been
corrected have been corrected in the textbook.
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• 7.2. Applications in Financial Engineering
and Mathematics:

• 7.1.1 Some Basic Background for Options
• Discrete Compound Interest for m discrete periods per year and for

n total periods starting with a present (also principal) value of
PV0 yields the future value after i periods at constant spot interest
rate r0 per year,

FVi = PV0(1 + r0/m)i,

for i = 0:n periods. The inverse under the same rate is
PV0 = FVi/(1 + r0/m)i,

but if a discounted loan, such as a bank gets from the Federal
Reserve bank, with the amount FVn due after n periods, then the
calculated discount rate β0 is slightly different than the spot interest
rate r0 and the amount that the borrower receives at i = 0 is

P̂V0 = FVn/(1 + β0/m)n.
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• Continuous Compound Interest follows from the discrete
case letting t=n/m be time in years and m → ∞ for
fixed t, yielding the limita

FV(t) = PV(0)er0t.

Letting B(t)=FV (t), whether a bank saving account or
money market fund or bond asset (technically a zero
coupon bond to avoid including income here), then

dB(t) = r0PV(0)er0tdt = r0B(t)dt.

aThis follows from with n=mt
(1+r/m)mt loe

= exp(mt ln(1+r/m))→exp(mt·r/m+O(1/m))→exp(rt)

as m→+∞.
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• Opportunity costs concern the benefits of considering alternate
investments, so if considering a bond at initial price B(0) at time t

with interest rate r0 in comparison with a stock at
S(0) = B(0) say for a fair comparison, with growth rate µ0, then
in absence of stochastic effects,

dB(t) = r0B(t)dt & dS(t) = µ0S(t)dt,

with S(t) = S(0) exp(µ0t), so the relative difference is

S(t)/B(t)=S(0) exp(µ0t)/(B(0) exp(r0t)) loe= exp((µ0−r0)t).

Hence, the stock would be chosen if µ0 >r0 else the bond would be

chosen. We choose the investment with the highest return,

∆B(t)/B(t) or ∆S(t)/S(t) . Such a reliable reference

investment, like a riskless bond, is called a numeraire for the more

risky stock. In the presence of risk due to stochastic effects, an

investment portfolio would be weighted with less and more risky

assets depending on the investor risk aversion.
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• Quick Options Glossary: (see Hull’s “trader’s bible” for more.)
* Financial Options: Investment contracts (a financial derivative,
i.e., “derived” from another investment) for limiting risk of financial
loss for underlying asset (e.g., common stocks; there are too many to
list).
* Holder: Buyer of stock options.
* Writer: Seller of stock options writer of the contract.
* Exercise or Strike Price: The contract price (K {marks a strike in
bowling} or E {can be confused with expectation}) for buying or
selling the underlying asset, often in discrete increments.
* Exercise or Strike Time: The contract expiration time (T) for
buying or selling the underlying asset, must be before the end of
trading day, possibly restrictions on days.
* Option Premium: The price (Po) of the option the holder pays to
the writer of the contract at t = 0, usual a clearing house is
involved, the clearing now undergoing a lot of changes.
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* Call Option (Simple or Vanilla Version): Option contract for the
holder to buy from the writer, on or before T, an amount of the asset
at price K.
* Put Option (Simple or Vanilla Version): Option contract for the
holder to sell to the writer, on or before T, an amount of the asset at
price K.
* Option Payoff: Payoff =max(θ·(S(t)−K), 0) where for
vanilla options, θ=1 for calls and θ=−1 for puts; not counting
the option price paid.
* European Options: Option contract that can only be exercised at
strike time T (easiest to price, not less flexible).
* American Options: Option contract that can be exercised at or
before strike time T (harder to price, but more flexible and common).
* Options Trading: For example, CBOE (Chicago Board of Options
Exchange) or ISE (International Securities Exchange).
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* Long Options: Buy and hold option.

* Short Options: Sell an options contract.

* ATM: At The Money: S(t)=K & Payoff =0.

* ITM: In The Money: Profit or Payoff >0.

* OTM: Out of The Money: Loss, technically, or θ·(S(t)−K), so

rational holder would would walk away and we assume Payoff =0,

unlike nonoptional future derivatives.

* Net Profit (or Loss): Payoff−Po for the holder, while its negative

for the writer. (However, this is the least complicated scenario.)

* Break Even Point (BEP): Underlying asset price for which the net

profit is zero, i.e., at S(t)=BEP≡K+θ·Po.
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Figure 7.1: Long Call Net Profit: Bullish; Holder Bets on Gains, so Buy and
Hold Call until Exercise to Buy Stock from Writer at K if S >BEP=K+Po,
else Walk (See The Equity Options Stategy Guide, Options Clearing Corporation
(OCC), April 2003, p. 10).
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Figure 7.2: Long Put Net Profit: Bearish; Holder Bets on Loss, so Buy and Hold
Put until Exercise to Sell Stock to Writer at K if S <BEP=K−Po, else Walk
(See The Equity Options Stategy Guide, Options Clearing Corporation (OCC),
April 2003, p. 12).
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Figure 7.3: Hedged Long Put Net Profit (Same as Fig. 7.1, different reasons):
Bullish; Holder Buys Put and also Hedges by Buying same Stock at S(0), so Loss
is limited byK−S(0)−Po, but for S(t)>K hold on net profit S(t)−BEP where
BEP = S(0)+Po (See also J.C. Hull, Options, Futures & Other Derivatives,
4th Edn. (not in 6th), p. 186; was IRS special tax case).

FINM 345/Stat 390 Stochastic Calculus — Lecture7–page29 — Floyd B. Hanson



• 7.1.2 Black-Scholes Simple Option Pricing
with Delta Hedging:

The famous option formula from eliminating instantaneous
volatility risk. Here, some Merton observations are used.
1. Geometric Brownian motion SDE for underlying asset

with price S(t) at t with constant coefficients {µ0, σ0}:
dS(t)=S(t)(µ0dt+σ0dW (t)) , S(0)=S0. (7.13)

2. Small time increment, ∆t�1, with S∆E,
∆S(t)'S(t)(µ0∆t+σ0∆W (t)), S(0)=S0.

3. Option price depends on underlying price and time,
Y (t) = F (S(t), t):

∆Y (t)=∆F (S(t), t)
'(Ft+µ0sFs+0.5σ2

0s2Fss)∆t+σ0sFs∆W (t),

where s = S(t) for brevity and all F partials are
evaluated at (S(t), t) and volatility risk is now
σ0Fs∆W (t). Note that all s-terms are in scale invariant.
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4. Stock and Options Portfolio with Ns stock shares and
Nf option shares with portfolio value,

V (t)=Nf F (S(t), t)+NsS(t),
taking the riskless bond, with ∆B(t)'r0B(t)∆t, as

optional.
5. The notorious Self-Financing Strategy: By the product

rule, neglecting only second order changes,
∆V (t)'Nf∆F +Ns∆S+F∆Nf +S∆Ns,

but we assume that the changes in the shares are much
smaller than the changes in the prices,
F∆Nf +S∆Ns �Nf∆F +Ns∆S then the
self-financing strategy is ∆V (t)'Nf∆F +Ns∆S or
∆V (t)'Nf((Ft+µ0sFs+0.5σ2

0s2Fss)∆t

+σ0sFs∆W (t))+Ns(µ0∆t+σ0∆W (t)),
noting that many authors like Hull overlook this assumption.

FINM 345/Stat 390 Stochastic Calculus — Lecture7–page31 — Floyd B. Hanson



{Also, recall the difficulty Black and Scholes had in getting their

1973 paper published and that Merton had to hold up his 1973

companion and justification paper until B&S’s paper was accepted.}
6. No Friction assumption: No transaction fees and no

dividends or other income to the portfolio (jumps!).
7. Portfolio Deviation and Volatility Risk:

Dev[∆V (t)|Y, S]=∆V (t)−E[∆V (t)|Y (t), S(t) = s]

=σ0s(Nf ·Fs+Ns)∆W (t).

8. Elimination of and Optimal Hedge against Volatility
Risk: Select portfolio share numbers so that

Nf ·Fs+Ns
∗
=0 =⇒ N∗

s =−N∗
f ·Fs or N∗

s /N∗
f =−Fs.

9. ∆F ≡∂F/∂s=Fs is the (Greek) Delta of the Portfolio
or the sensitivity of the option to the underlying stock or
asset at any time t and hence for the term Delta Hedging.
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10. If the Total Number of Shares N =N∗
s +N∗

f then the
instantaneous Share Fractions, provided Fs 6=1, are

N∗
s

N
=

−Fs

1−Fs

&
N∗

f

N
=

1

1−Fs

.

11. Optimal Portfolio Change and Value: By eliminating
N∗

s , which could be thought of as a simple control
variable,

∆V ∗(t)=N∗
f (∆F−sFs)=N∗

f (Ft+0.5σ2
0s2Fss)∆t

and
V ∗(t)=N∗

f (F −sFs).

Note that the volatility risk σ0dW (t) and the mean rate
µ0 have been eliminated together.
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12. Arbitrage Avoidance, i.e., in theory, a price differential
profit opportunities between securities cannot last long
before being discovered by other investors (cf. market
equilibrium theory), so it is assumed that the market
return is at the risk-free rate of r0, thus

∆V ∗(t)=r0V
∗(t)∆t, (7.14)

so substituting for ∆V ∗(t) & V ∗(t), also canceling out
the common factor of N∗

f , leads to the desired equation
for F (s, t) conditioned by S(t) = s.

13. Black-Scholes(-Merton) PDE of Option Pricing:
Ft(s, t)+0.5σ2

0s2Fss(s, t)=r0(F −sFs)(s, t). (7.15)
Note that the SDE is an equation for a trajectory of the
asset S(t), but the PDE is for F (s, t) with s and t as
functionally independent variables, giving a
2-dimensional view of F over a space-time values (s, t).
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14. BSM PDE Final, Exercise Conditions at t = T :
European Call Option:

F (S(T ), T )=C(S(T ), T )=max[S(T )−K, 0];
European Put Option:

F (S(T ), T )= P̂(S(T ), T )=max[K−S(T ), 0];
=⇒ Backward or Final Value PDE Problem
for the BSM PDE of Option Pricing, while the solution
is the option price or premium, which is the initial value
C(S0, 0) or P̂(S0, 0), respectively.
American Option Problems: Much more complicated,
because the final value problem is a Moving Boundary
Problem, F (S(τ ∗), τ ∗)=max[θ·(S(τ ∗)−K), 0],
where the unknown early exercise time τ ∗ ≤T can be
determined by the smooth contact point to the payoff
curve.
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15. Black & Scholes Formal Solution: In the 1973 paper
they gave for the European Call Option Price,

C(s, t)= C(s, t; T, K, r0, σ0)

=sΦn(d1(s, T−t, K, r0, σ0), 0, 1)

−Ke−r0(T−t)Φn(d2(s, T−t, K, r0, σ0), 0, 1),

(7.16)

where the BS argument functions are

d1(s, T−t, K, r0, σ0), 0, 1)≡ ln(s/K) + (r0 + σ2
0/2)(T−t)

σ0

√
T−t

,

d2(s, T−t, K, r0, σ0), 0, 1)≡ d1(s, T−t, K, r0, σ0), 0, 1)

−σ0

√
T−t,

(7.17)

where t<T . An important feature to note is that the BS
call option price has a single time dependence that is the
exercise time-to-go (T −t), due to stationarity, so the
formula is good for any exercise horizon that is positive.
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Also, note the payoff linear dependence on s and K is
preserved by transformation to the solution, but with two
different nonlinear coefficients.

The proof of that (7.16)-(7.17) is a solution of the PDE
problem (7.15) plus final condition is left as an exercise,
noting that this can be done by substitution, without any
knowledge of how to solve the PDE.
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16. Put-Call Parity for European Options: The relationship
beween the European call and put prices depends
essentially on the property of the maximum function.

Let Vc(t) be a call portfolio with one call option on a
share of stock plus cash in a bond at rate r0 such that it
will be worth K at t=T .
Let Vbp(t) be a put portfolio with one put option on the
stock plus one share of the stock.
{Really a hedged bullish spread.}
Present value of Bond at t = 0 is B0 =Ke−r0T .
Future value of Bond at t = T is B(T )=K.
Future value at T : Vc(T )=max[S(T )−K, 0]+B(T ).
Future value at T : Vbp(T )=max[K−S(T ), 0]+S(T ).
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Thus, Vbp(T )=Vc(T ) ∀ S(T )≥0, with corresponding
bond value B(T )≥0, since

Vbp(T )=

{
K, K ≥S(T )

S(T ), S(T )≥K

}
=max[S(T ), K]=Vc(T ).

Hence, also true at any pair {S(t)≥0, B(t)≥0}, there
is Put-Call Parity:

C(S(t), t)+B(t)= P̂(S(t), t)+S(t) (7.18)
or

Put-Call Parity in terms of Premia {C(S0, 0), P̂(S0, 0)}:
P̂(S0, 0)=C(S0, 0)+Ke−r0T −S0.

{Comment: For European options, it is only necessary, to
compute only one of the put-call pair by the Black-
Scholes formula (7.16), since the other can be computed
more easily by put-call parity (7.18).}
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17. Risk-Neutral Formulation: Since the BS problem is now

considered a “toy” model, with only diffusive noise and constant

coefficients, while Merton (1973) showed that variable coefficients

were not a big deal and in (1976) showed that jump noise killed the

delta hedging, it is helpful to look for the qualitative features of the

BS PDE formulation that could be transferable to more complicated

asset dynamics, such as jump-diffusions and stochastic volatility, the

so-called incomplete markets.

Reforming the BS-PDE (7.15),

Ft(s, t)+r0sFs(s, t)+0.5σ2
0s2Fss(s, t)=r0F (s, t),

we see that the mean rate µ0 has been replaced by the
risk-free rate r0 on the LHS, while the term r0F (s, t)

represents that part of the no-arbitrage condition that did
not come directly from the driving BS-SDE (7.13).
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Note that if F̂t(s, t)=r0F̂ (s, t), really an ODE, so
(e−r0tF̂ )t =0 ⇒ F̂ (s, t) = C(s)er0t, and this
suggest elimination of the non-derivative term by letting
G(s, t)=e−r0tF (s, t), yielding the risk-neutral form
of BS-PDE,

Gt(s, t)+r0sGs(s, t)+0.5σ2
0s2Gss(s, t)=0,(7.19)

corresponding to a hypothetical risk-neutral (RN) SDE,

dS(rn)(t)=S(rn)(t)(r0dt+σ0dW (t)). (7.20)

The corresponding European final condition for PDE
(7.19) is

G(S(T ), T )=e−r0T max[θ·(S(T )−K), 0],

a payoff discounted at rate r0 back to zero. The problem
with this formula is that it is still stochastic!
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Therefore we define (could say approximate) the
risk-neutral European option price as the discounted,
expected payoff (or expected, discounted payoff if r0

happens to be a stochastic interest rate),
F (rn)(S(T ), T )=e−r0T E(rn)

[
max

[
θ·
(
S(rn)(T )−K

)
, 0
]]

, (7.21)

where E(rn) denotes the expectation with respect to the
corresponding risk-neutral density φS(rn)(t)(s) or, in the
abstract, with respect to a risk-neutral measure, to be
determined using the Itô solution S(rn)(t) to the
SDE (7.20).
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• 7.1.1 Merton’s (1973) Three Asset (B,S,Y), Variable
Coefficient Generalization of the Black-Scholes Model, or
the Black-Scholes-Merton Model:
Merton’s more general version of Black Scholes is studied
for multi-dimension portfolios using an example of finance,
rather than the general treatment in textbook Chapter 5.

* Linear Stock-Price Stochastic Dynamics:
Let S(t) be the price of stock per share at time t, the riskier
asset, satisfies a linear SDE:

dS(t)/S(t) = µs(t)dt + σs(t)dWs(t), (7.22)
as a relative change, where the infinitesimal mean-volatility
coefficients {µs(t), σs(t)} can vary in time and the
diffusive differential dWs(t) is a zero-mean process with

independent increments, satisfying (dWs)
2(t)

dt
= dt.
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* Linear Bond-Price Stochastic Dynamics:
Let B(t) be the price of bond asset at time t, in particular a
default-free zero-coupon bond or discounted loan with
time-to-maturity T . Then the B(t) satisfies a linear diffusion
SDE,

dB(t)/B(t) = µb(t)dt + σb(t)dWb(t), (7.23)

where dWb(t) satisfies the same properties as dWs(t) for
the stock, except for the correlation ρ(t) between them, i.e.,

dWb(t)dWs(t)
dt
= ρ(t)dt is assumed, while

dWb(t)dWs(τ )
dt
= 0 if τ 6= t means there is no serial

correlation. If that σb(t) < σs(t), then the bond is the less
risky asset and if σb(t) ≡ 0 then the bond is called
risk-free or riskless.
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It can be shown that the instantaneous correlation
coefficient between stock and bond satisfies,

ρ≡
Cov[dS(t), dB(t)]√
Var[dS(t)]Var[dB(t)]

=
Cov[dWs(t), dWb(t)]

dt
, (7.24)

* Instantaneous Borrowing and Shortselling is Allowed
with Continuous Trading:
Under the contract, borrowing at rate r(t) from the bond is
allowed to buy more stock. Shortshort selling of stock and
options is also allowed with the gains saved in the bond
account. Although inclusion of the bond component in the
Black-Scholes model, as we have seen, was optional, but
many believe that the abuse of collateral, e.g., margins placed
with a broker to cover a short sale, was a significant cause of
the 2007-9 economic crises, so it is a good idea to include the
bond or bank account B(t).
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* Option Price is a Function of Stock and Bond Prices:
The option price per share at time t,

Y (t) = F (S(t), B(t), t; T, K), (7.25)
depends on the stock S(t) and bond B(t) price stochastic
variables, as well as on time t explicitly and parameters such
as the time-to-maturity time-to-exercise T and the contracted
expiration stock price K per share.
Using a two-state-dimensional version of the stochastic
diffusion chain rule, the return on the option asset, initially
keeping all quadratic terms in this two-dimensional Taylor
expansion, is

dY (t)= dF (S(t), B(t), t; T, K)
dt= Ftdt+FsdS(t)+FbdB(t)

+1
2

(
Fss(dS)2(t)+2FsbdB(t)dS(t)+Fbb(dB)2(t)

)
,

(7.26)

omitting higher order terms that are zero in dt-precision.
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Here, the {Fs, Fb, Fss, Fsb, Fbb} are the set of first and
second partial derivatives of F (s, b, t; T, K) with respect to
the underlying portfolio assets S = s and B = b. Upon
substituting for the quadratic asset differentials their leading
terms of dt-precision and creating a linear dynamics for the
option F ,
dY (t)dt=Y (t)(µy(t)dt+σys(t)dWy(t)+σyb(t)dWb(t)), (7.27)

where the new coefficient are defined as

Y (t)µy(t) ≡

Ft+µsSFs +µbBFb

+1
2

(
σ2

sS2Fss+2ρσsσbSBFsb+σ2
bB2Fbb

)
, (7.28)

Y (t)σys(t) ≡ σsSFs, (7.29)

Y (t)σyb(t) ≡ σbBFb. (7.30)
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* Self-Financing Portfolio Investments:
Let Ns(t) , Ny(t) and Nb(t) be the instantaneous number of
shares invested in the three assets, the stock, option, and
bond, at time t, respectively, such that the instantaneous
values of the assets in dollars are

Vs(t)=Ns(t)S(t), Vy(t)=Ny(t)Y (t), Vb(t)=Nb(t)B(t), (7.31)

respectively. However, it is assumed that under self-financing
there is a zero instantaneous aggregate portfolio value,

Vp(t)≡Vs(t)+Vy(t)+Vb(t)= 0, (7.32)

so that the bond value variable can be eliminated,

Vb(t) = −(Vs(t) + Vy(t)), (7.33)

and that is the analytical reason for eliminating the bond in
the Black-Scholes solution.
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It is further assumed that the absolute instantaneous return
from the value of the portfolio Vp(t) is a linear combination
of the instantaneous returns in each of the three assets,
(S, Y, B), giving the portfolio budget equation

dVp(t)=Ns(t)dS(t)+Ny(t)dY (t)+Nb(t)dB(t)

=Vs(t)
dS(t)
S(t)

+Vy(t)
dY (t)
Y (t)

+Vb(t)
dB(t)
B(t)

(7.34)

using (7.31) to convert from number of shares to asset value
assuming that none of the divisors are zero. Note that the
budget equation cannot be expressed as the portfolio
instantaneous rate of return, since Vp(t) = 0 although the
three assets are in return form.
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Substituting for the three asset stochastic dynamics from
(7.22), (7.23), (7.27) and eliminating the bond value Vb(t)

through (7.33), yields a more useful form of the budget
equation,

dVp(t)=Vs

(
dS
S −dB

B

)
+Vy

(
dY
Y −dB

B

)
=((µs−µb) Vs+(µy−µb) Vy) dt

+(σsVs+σysVy) dWs(t)

+(−σbVs+(σyb−σb) Vy) dWb(t).

(7.35)

See Merton ((1990), textbook Chapter 5; mainly an updated
collection of his pioneering papers) for more justification.
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Note that the first budget equation (7.34) on page L7-p49
does not really follow the Itô stochastic calculus, but states
that the absolute return on the portfolio is the number of
shares weighted sum of the absolute returns on the portfolio
assets. However, Merton (1990) argues that the missing
differential product terms, such as dNsS(t) and dNsdS(t),
represent consumption or external gains to the portfolio,
which would violate the self-financing assumption making
the portfolio open rather than closed to just the three assets.
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* Investor Hedging the Portfolio to Eliminate Volatility.
Since many investors as individuals or as a group act to avoid
stochastic effects, they tune or hedge their trading strategy, as
a protection against losses, by removing volatility risk
through removing the coefficients of the stock and bond
fluctuations. A main purpose of the stock and bond
underlying the option in the portfolio is to give sufficient
flexibility to leverage or hedge the stock and bond assets to
remove volatilities that would not be possible with the option
alone. Hence, setting the coefficients of dWs(t) and
dWb(t), respectively, to zero in (7.35),

σsV
∗

s +σysV
∗

y =0, (7.36)

−σbV
∗

s +(σyb−σb) V ∗
y =0. (7.37)
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The optimal system (7.36), (7.37) has a nontrivial solution for
the optimal values (V ∗

s , V ∗
b ) provided the system is singular,

i.e., the determinant of the system is zero,

0=Det

[
σs σys

−σb σyb−σb

]
=σs(σyb−σb)+σysσb, (7.38)

which leads to the Merton volatility fraction
σys

σs

=−
σyb−σb

σb

, (7.39)

provided σs 6= 0 and σb 6= 0. The single optimal
option-stock value relation that makes it work is

V ∗
s =−

σysV
∗

y

σs

. (7.40)
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Recalling budget constraint on V ∗
b , giving

V ∗
b =−

(
V ∗

s +V ∗
y

)
= −

(
1−

σys

σs

)
V ∗

y . (7.41)

Remarks Relating to Black-Scholes Model: In the case of
the nonstochastic, constant rate bond process, as in the more
traditional Black–Scholes model, µb = r0 and σb = 0, so
σyb = 0 and the option price is assumed to be independent
of the bond price B, i.e., F = F (S(t), t; T, K) and
Fb ≡ 0. Then only the optimal values (7.40) are obtained,
i.e., there is no Merton volatility fraction in the traditional
Black–Scholes model.
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Remarks Relating to Black-Scholes Model Continued:
However, taking the Merton volatility fraction as valid and
substituting in for the definitions of the option-stock volatility
σys and the option-bond volatility σyb from (7.29)–(7.30),
respectively, the option price then turns out to be
homogeneous [Merton (1990)] in S and B,

Y ∗ = Y ∗
s S + Y ∗

b B. (7.42)

Since this result is based upon the Merton volatility fraction,
it does not appear in the classical Black–Scholes model, and
the stock and bond dynamics no longer have common
stochastic diffusion forms.

FINM 345/Stat 390 Stochastic Calculus — Lecture7–page55 — Floyd B. Hanson



* Zero Expected Portfolio Return:
Further, to avoid arbitrage profits, the expected return must be
zero as well. Thus, the coefficient of dt in (7.35) must be
zero, aside from the assumption that Vp(t) = 0 would imply
that dVp(t) = 0, i.e.,

0=(µs − µb)V
∗

s +(µy−µb)V
∗

y

=
(
−(µs−µb)

σys
σs

+ (µy−µb)
)

V ∗
y ,

(7.43)

assuming V ∗
y 6= 0. Otherwise, there would be no option and

no optimal values (7.40) that would follow from the Merton
volatility fraction (7.39). This means that the portfolio
returns are hedged to complete equilibrium,
deterministically and stochastically.
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Thus, provided the option value V ∗
y 6= 0, by setting the

coefficient of V ∗
y in (7.43) to zero, Merton’s Black–Scholes

fraction becomes simply Merton’s fraction for the expected
returns, i.e.,

µy − µb

µs − µb

=
σys

σs

. (7.44)

Since it does not involve either of the bond related
volatilities, σb or σyb, this primary Merton fraction holds for
the Black–Scholes model as well. The Black–Scholes
fraction (7.44) states that the net drift ratio equals the
option-stock volatility ratio, where the net drift is relative to
the market interest/discount rate µb.
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Summary of Lecture 7?

1. Found Distributions of Compound-Jump-Diffusions, for
Simulations and Estimations, eventually.

2. Introduced Compound Interest, Continuous Time
Interest, Discounting and Option Definitions.

3. Studied Black-Scholes Problem and Solution, plus
(European) Put-Call Parity.

4. Explored Merton’s Foundations of BS and
Generalizations.

5. Next Time: Continue Merton’s PDE Treatment and
Perhaps Jump-Diffusion Option Pricing.
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