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FinM 345 Stochastic Calculus:
8. Merton BS+ Option Pricing Continued

and Jump-diffusion Financial Applications:
• 8.1. Merton BS+ Option Pricing Continued:

• 8.1.1 Merton PDE of Option Pricing:

To derive the PDE of Black–Scholes–Merton option
pricing, with definition of the option expected return µy in
((7.28), L70p47 or (10.24), textbook p. 296), is viewed as a
PDE for the option price function with the option trajectory
Y (t) replaced by the composite function equivalent
F (s, b, t; T, K) as a function of three independent variables
(s, b, t), the triplet (s, b, t) having replaced the two
underlying state trajectories (S(t), B(t)).
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This yields the PDE,

µyF ≡Ft+µssFs+µbbFb

+ 0.5
(
σ2

ss2Fss+2ρσsσbsbFsb +σ2
bb2Fbb

)
.

(8.1)

It is conceptually important to separate the view of s, b and t

as three deterministic, independent PDE variables and the
view of S(t) and B(t) as the two random SDE state
trajectories in time and to use each view in the appropriate
place.

Next, µy is eliminated using the Black–Scholes fraction
[(7.44) on L7-p57 or (10.41) textbook, p. 298] with
µy = µb + (µs − µb)σys/σs and the option-stock
induced volatility σys is eliminated using its definition in
[(7.29), L70-p47 or (10.25) textbook, p. 296], i.e.,
σys = σssFs/F .
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The option price F can be eliminated by Merton’s
homogeneous condition [(7.42), L7-p55 or (10.38) textbook,
p. 298] with y replaced by F ,

F =sFs+bFb,

incidentally eliminating both first partials Fs and Fb, and so,
0=Ft+0.5

(
σ2

ss2Fss+2ρσsσbsbFsb+σ2
bb2Fbb

)
. (8.2)

This Merton PDE of option pricing needs side conditions,
such as a final condition at the expiration time and boundary
conditions in the asset variables. The PDE and conditions
forming a final value problem (FVP). For the FVP, the
natural time variable is the time-to-maturity or
time-to-exercise or time-to-go τ = T − t, and Ft = −Fτ .
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Hence, the backward formulated PDE (8.2) in forward time t

can be written as a forward diffusion or parabolic PDE in
backward time τ ,

Fτ =0.5
(
σ2

ss2Fssv+2ρσsσbsbFsb+σ2
bb2Fbb

)
. (8.3)

It is conceptionally important to remember that the PDE
problem, (8.3) plus any final and boundary conditions, is a
deterministic problem in realized independent variables
(s, b, t=T − τ ), all stochasticity being eliminated, in
contrast to the SDE problem in the stochastic path variables
(S(t), B(t), Y (t)), which depends on the independent
variable t and underlying stochastic diffusion processes.
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In the classical Black–Scholes model, the bond price has no
volatility σb(t)=0, so the Merton homogeneous result
[(7.42), L7-p55 or (10.38) textbook p. 298] does not hold
since it is based upon the Merton volatility fraction, which is
invalid if σb(t)=0. Thus, starting back at the view of the
definition of µy as a PDE (8.1) setting all b partial derivatives
to zero, but eliminating µy using the Black–Scholes fraction
[(7.44), L7-p57 or (10.41) textbook p. 298] and σys using
[(7.29) on L70-p47 or (10.25) textbook, p. 296], letting the
option price function in backward time be defined as

F̂ (s, τ ; T, K) ≡ F (s, T − τ ; T, K),

which leads to Merton’s Black–Scholes option pricing
PDE, including a bond term,

F̂τ =0.5σ2
ss2F̂ss+µb(sF̂s+bF̂b−F̂ ). (8.4)
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If the assumption that the mean interest/discount rate is the
constant market rate, µb =r0 along with constant stock
volatility σs = σ0, then the standard Black–Scholes option
pricing PDE is obtained.

However, many texts do not use Merton’s elaborate
assumptions, which we have decomposed into a larger
number of individual assumptions here; these texts use a
different hedging argument to produce the Black–Scholes
PDE and the constant rate coefficient r0. Dropping the zero
aggregate assumption, the portfolio value is then

VP (t) = Ns(t)S(t) + Ny(t)Y (t) (8.5)

in terms of the number of shares times the price per share for
the option and the underlying stock.
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Similarly, the change in the portfolio value is given by the
budget equation

dVP (t)=Ns(t)dS(t)+Ny(t)dY (t), (8.6)

ignoring the missing differential forms as in Merton’s more
general version. Upon eliminating the resultant stochastic
terms to form a riskless portfolio, the coefficients of dWs(t),
again yields the stock-option relationship, relating the
number of stock shares to that of the options

Ns =−NyF̂s, (8.7)

called delta hedging since ∆F ≡ ∂F̂ /∂s is called the
Delta of the option [Wilmott, 2000], where the definition of
σys in ((7.29) on L70-p47 or (10.25) textbook, p. 296) has
been used.
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Thus,
VP =Ny (F̂ −sF̂s),

where the process Y (t) has been replaced by the composite
function definition Y = F̂ in [(7.24) on L7-45 or (10.25) in
textbook], and

dVP =Ny

(
−F̂τ +0.5s2F̂ss

)
dt.

Finally, it is assumed that the portfolio will earn at the
riskless rate, avoiding arbitrage profits without risk,

dVP (t)=r0Vp(t)dt, (8.8)
which upon eliminating VP and dVP leads to the
Black–Scholes option pricing PDE,

F̂τ =0.5σ2
ss2F̂ss+r0(sF̂s−F̂ ), (8.9)

independent of Ny as long as Ny 6= 0 and, as typically
written, no longer including the bond term as in Merton’s
version (8.4).
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The Black–Scholes option pricing equation (8.4) is a
parabolic or diffusion PDE in two asset values, s and b, but
degenerate in b since there is no diffusion term in b and only
a drift or mean rate term r0bF̂b.

Two elementary solutions of (8.4) can easily be verified:

• Only a stock asset: F̂ (s, b, τ ; T, K) = s.

• Only a deterministic bond asset:
F̂ (s, b, τ ; T, K) = B(T ) exp(−r0τ ).
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• 8.1.2 Final and Boundary Conditions
for Merton PDE of Option Pricing:

In the case of the European call option, the final option price,
for any value s of S(T ), satisfies the final option profit
conditions for calls or for puts,

F (S(T ), B(T ), T ; T, K)=

max[S(T )−K, 0],call

max[K−S(T ), 0],put


= max[θ(S(T )−K), 0],

(8.10)

where θ=1 for calls and θ=−1 for puts. Since S(T ) and
B(T ) are arbitrary but nonnegative, we can replace them by
the independent variables s and b respectively to form the
final condition for thePDE,

F (s, b, T ; T, K)=max[θ(s−K), 0]. (8.11)
We will return to the original call-put form (8.10) when
transforming to new variables.
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For the other boundary conditions, the discussion will be
simplified to the riskfree bond case, i.e., σb(t) = 0, as
assumed in the classical Black–Scholes case (8.9), except that
the time-dependent interest/discount rate, µb(t) = r(t),
will be retained. In the case of risky bonds, the boundary
conditions are given by diffusion PDEs instead of explicit
functions or values, so solving the PDE (8.3) by
computational methods, as in Chapter 8, is more practical.

The number of boundary conditions depends on the highest
order partial derivative for each independent state variable
in the PDE, one condition if it is first order and two
conditions if it is second order.
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Thus, for (8.3) it is two boundary conditions in the stock
and one in the bond. Time is not a state variable, but there is
one final condition (technically an initial condition for the
backward time variable τ ) since the time derivative is first
order.

At the zero stock price, s=0, Merton’s Black–Scholes PDE
(8.4) reduces to

F̂τ (0, b, τ ; T, K) = r̂(τ ) (bF̂b−F̂ ) (8.12)
upon setting s to zero in the coefficients, where
r̂(τ )≡r(T −τ ) and assuming the derivatives are bounded,
which is a risky assumption before finding the solution. This
is a first order PDE, all of which are classified as hyperbolic
PDEs, and the usual method of constructing a solution is
called the method of characteristics [Sneddon (1957].

FINM 345/Stat 390 Stochastic Calculus — Lecture8–page13 — Floyd B. Hanson



Noting that the PDE problem is a deterministic problem, the
PDE (8.12) is compared to the deterministic (non-Itô!)
chain rule for F̃ (b, τ )≡ F̂ (0, b, τ ; T, K),

dF̃ = F̃τdτ + F̃bdb, (8.13)

assuming that the differentials dτ and db can be varied
independently, and the ODEs for the characteristic path are
written maintaining relative proportions between the
differentials of (8.13) and the corresponding coefficients of
(8.12),

dτ

1
=−

db

r̂(τ )b
=−

dF̃

r̂(τ )F̃
.
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Solving these ODEs successively in pairs,
b=B̃(τ )=κe−R(τ), (8.14)

where κ is a characteristic path constant of integration and
the cumulative rate for time-dependent r(t) is

R(τ )≡
∫ τ

0

r̂(q)dq≡ r̂(0, τ )τ =
∫ τ

0

r(T −q)dq≡r(T −τ, T )τ, (8.15)

so averages like r(t, t+∆t)≡
∫ t+∆t

t
r(q)dq/∆t replace

constants like r0 in the variable coefficients case, and
F̃ =f(κ)e−R(τ),

where f =f(κ) is an arbitrary function of integration
depending on the constant κ from the (8.14) integration.
Using the first integral (8.14) to eliminate κ in favor of B̃

and τ yields

F̃ (B̃(τ ), τ )=f
(
B̃(τ )eR(τ)

)
e−R(τ). (8.16)
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It is not necessary to know much about the method of
characteristics, since the reader can verify the solution by the
usual substitution procedure. The arbitrary function f can be
eliminated by applying the final condition (8.11) at τ =0

with R(0) = 0,

F̃ (B̃(0), 0)=f(B̃(0))=F (0, B̃(0), T ; T, K)

=max[θ(−K), 0]=0.5(1−θ)K,
i.e., non-zero only for a put when θ = −1. Since
B̃(0)=B(T ) is considered arbitrary at this point,
f(B̃)=0.5(1−θ)K, a constant (beware: Merton (1973)
assumes B(T )=1), leading to the complete particular
solution
F̃ (b, τ )= F̂ (0, b, τ ; T, K)=0.5(1−θ)Ke−R(τ), (8.17)
independent of b = B̃(τ ).
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Note that B̃(τ ) is a deterministic path function of a
deterministic ODE problem since it is derived from the
deterministic PDE problem, (8.12) plus conditions, so is
different from the stochastic path function B̂(τ ) for the SDE
problem, or more precisely the stochastic ODE problem. The
boundary condition (8.17) corresponds to a boundary
condition used by Wilmott (2000) for finite differences
applied to Black–Scholes-type models.

However, since we cannot assume the partial derivatives are
bounded for the full Merton model (8.3), we will only assume
that the option price will be bounded in the limit of zero stock
price:

F̂ (s, b, τ ; T, K) is bounded as s → 0+. (8.18)
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For large s, it is more difficult to find the proper boundary
condition. However, one heuristic choice is to assume that
for large s the diffusion term will be exponentially small so
the drift terms will dominate:

F̂τ ' r̂(τ )(sF̂s+bF̂b−F̂ ). (8.19)
As with the small stock price limit, the conjecture (8.19)
needs to be verified for a solution. Again applying the method
of characteristics to F̃ (s, b, τ ) ≡ F̂ (s, b, τ ; T, K), or
checking by substitution, but with four variables,

{
τ, b, s, F̂

}
,

instead of three,
dτ

1
= −

db

r̂(τ )b
= −

ds

r̂(τ )s
= −

dF̂

r̂(τ )F̂
.

Integration leads to three constants or functions of
integration.
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Two of the functions of integration can be eliminated in favor
of the independent variables s and b,

F̂ (S, B, τ ; T, K) = g
(
SeR(τ), BeR(τ)

)
e−R(τ), (8.20)

where g = g(s exp(R(τ )), b exp(R(τ ))) is an arbitrary
function of integration obtained by integrating both the stock
and bond characteristic ODEs effectively generating two
constants of integration, and R(τ ) is given in (8.15).
Applying the final condition (8.11) when s>K yields

F̂ (s, b, 0; T, K) = max[θ(s−K), 0] = 0.5(1+θ)(s−K),

so that g is a constant function and the complete particular
solution
F̂ (S, B, τ ; T, K) ' 0.5(1 + θ)(S − Ke−R(τ)). (8.21)
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A similar boundary condition is also specified in
Wilmott’s (2000) finite difference applications. However, it
turns out we will not need this condition here, but the
condition suggests that the option price will not be bounded
as s→+∞.

The bond boundary condition or conditions are not as
straightforward, since the final bond price per share does not
appear explicitly in the final option profit formula. At the zero
bond price, b = 0, the Black–Scholes PDE (8.9) reduces to

F̂τ (s, 0, τ ; T, E)= r̂(τ )(sF̂s− vF̂ )+0.5σ2
ss2F̂ss (8.22)

upon setting b to zero in the coefficients, assuming the
derivatives are bounded.

FINM 345/Stat 390 Stochastic Calculus — Lecture8–page20 — Floyd B. Hanson



However, (8.22) is a diffusion equation rather than a
boundary value, so there has been very little simplification of
the original Black–Scholes PDE except that the dimension
has been reduced to one from two state variables. This may
still be useful for computational methods. The reduction in
dimension is similar for the Merton version (8.3) of the
Black–Scholes option pricing PDE, the only difference being
that the drift term is absent. For either PDE, setting
b = B(T ) in the PDE leads to no simplification since B(T )

would be arbitrary. There is still hope, since Merton has a
way of transforming away B(T ) analytically, but this
transformation is modified here.
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• 8.1.3 Black-Scholes+ European Option Pricing
Formula by Risk-Neutrality (RN):

The lectures will not continue with the rest of Merton’s derivation of the
BS pricing formulas, since they are mainly of interest in academic
finance, although there are some good examples of applied analytical
techniques. From [(7.21) on L7-p42)], the RN prices are
F (rn)(S(T ), T )=e−r0T E(rn)

[
max

[
θ·

(
S(rn)(T )−K

)
, 0

]]
, (8.23)

at the exercise time with implied conditioning on
S(0) = S0, so generalizing with conditioning on any
t∈ [0, T ), then

F (rn)(s, t)= e−r0(T−t)E(rn)
[
max

[
θ·

(
S(rn)(T )−K

)
, 0

]∣∣S(t)=s
]
,

(8.24)

recalling that θ=1 of a call and θ=−1 for a put. Further by
stationarity of W (t) , we have

ΦW (T )−W (t)(w)
dist
= ΦW (T −t)(w) = Φn(w, 0, T − t).
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So the we can write the more useful and applicable
risk-neutral stock price solution at exercise relative to current
time t and current state S(t)=s, with replacement µ0 =r0,
from [(3.6) on L3-p58], as

S(rn)(T )=se(r0 − 0.5σ2
0)(T − t) + σ0W (T − t) (8.25)

or the log-return log-normally distributed form,
ln(S(rn)(T ))=ln(s)+(r0−0.5σ2

0)(T −t)+σ0W (T −t). (8.26)

For notational simplicity and for later generalizations, let
µ` =µ`(τ )≡ (r0−0.5σ2

0)τ = E[ln(S(rn)(T )/s)|S(t) = s],

σ2
` =σ2

` (τ )≡ σ2
0τ = Var[ln(S(rn)(T )/s)|S(t) = s].

With moderately more work, we can generalize this notation
to incomplete markets like jump-diffusion markets.
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Given S(t)=s conditioning, let φS(rn)(T )(y) be the
risk-neutral density for S(rn)(T ) with critical of the maximum
ramp function at y∗ =K and let the standard normal variable
be z=(ln(y/s)−µ`)/σ` =w/

√
τ , having critical value at

z∗(s, τ )=(ln(K/s)−µ`)/σ2
` (τ ), with change of densities,

φS(rn)(T )(y)dy=φS(rn)(T )(y)(dy/dz)dz=φW (T −t)/
√

T −t(z)dz,

with last term just φn(z; 0, 1)dz. Hence,
F (rn)(s, t)= e−r0(T − t)

∫ +∞

−∞
max[θ(y−K), 0]φS(rn)(T )(y)dy

= e−r0(T − t)θ
∫ θ·∞

K

(y−K)φS(rn)(T )(y)dy

= e−r0(T −t)θ
∫ θ·∞

z∗(s,τ)

(
seσ`z+ µ` −K

)
φn(z; 0, 1)dz

= se−0.5σ2
` θ

∫ θ·∞

z∗(s,τ)

eσ`zφn(z; 0, 1)dz

−Ke−r0(T − t)θ
∫ θ·∞

z∗(s,τ)

φn(z)dz.
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The final integrals are called the tail probabilities. We can
get the BS formulas, with some normal distribution
manipulations that we have done before, such as

θ

∫ θ·∞

z∗(s,τ)

φn(z; 0, 1)dz= δθ,1−θΦn(z∗; 0, 1)=Φn(−θz∗; 0, 1),

θ

∫ θ·∞

z∗(s,τ)

eσ`zφn(z; 0, 1)dz
cts= 1√

2π
e+0.5σ2

` θ

∫ θ·∞

z∗(s,τ)

e−0.5(z−σ`)
2

dz

= e+0.5σ2
` Φn(−θ(z∗−σ`); 0, 1),

the last lines by the completing the square technique. Thus,
F (rn)(s, t)= sΦn(θ(σ`−z∗); 0, 1)−Ke−r0τ Φn(−θz∗; 0, 1).

When the normal distribution arguments are replaced by the
beginning notational definitions, then,

θ(σ`−z∗(s, τ ))= θ(ln(s/K)+µ`+σ2
` )/σ`

= θ(ln(s/K)+(r0+σ2
0)τ/(σ0

√
τ )

= θd1(s, τ ; K, r0, σ0).
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The d1-function is the first normal argument function of the
Black-Scholes formula and the second, d2 is found next,

−θz∗(s, τ )= θ(ln(s/K)+µ`)/σ`

= θ(ln(s/K)+(r0−σ2
0)τ )/(σ0

√
τ )

= θd2(s, τ ; K, r0, σ0)

= θ(d1(s, τ ; K, r0, σ0) − σ0
√

τ ).
yielding:
Theorem 8.1. Black-Scholes European Option Pricing
Formula:

F (rn)(s, t)= sΦn(θd1(s, τ ; K, r0, σ0); 0, 1)

−Ke−r0τ Φn(θd2(s, τ ; K, r0, σ0); 0, 1),
(8.27)

with the BS European option prices combined with θ=1

for the call and θ=−1 for the put, but usually the standard
normal notation Φ(di(s, τ ))=Φn(di(s, τ ); 0, 1) is used,
where recall τ =T − t, the time-to-exercise.
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• 8.1.3 Jump-Diffusion (JD) European Option Pricing
Formula by Risk-Neutrality (RN) and EMM:

First consider the partially constant coefficient compound or
mark-jump-diffusion asset or stock price model,

dS(t)/S(t)=µ0dt+σ0dW (t)+dCP(t, Q), (8.28)

with S(0)=S0 and CP(t, Q)=
∑P (t)

j=1 ν(Qj). However,
we will be interested in the conditioned value at the current
time, S(t)=s for s>0 with ν ≡E[ν(Q)], such that

E[dS(t)|S(t)=s]=s(µ0+λ0ν)dt,

Var[dS(t)|S(t)=s]=s(σ2
0+λ0ν2)dt,

so that in a risk-neutral jump-diffusion environment, we need
that the earning rate is at the risk-free rate r0, so

µ
(rn)
0 +λ0ν =r0, or µ

(rn)
0 =r0−λ0ν,

taking µ0 as the eliminant.
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Hence, the risk-neutral jump-diffusion stock price SDE is

dS(rn)(t)=S(rn)(t)(r0dt+σ0dW (t)+dC̃P(t, Q)),(8.29)

where C̃P(t, Q)≡
∑P (t)

j=1 ν(Qj)−λ0νt is the mean-zero
compound Poisson.

Incidentally, you can show that C̃P(t, Q), properly
constructed, is a martingale, while W(t) for diffusion is
started as one. In the “abstract”, we have given the Poisson
process an equivalent martingale measure (EMM) shift of
its drift, i.e., dCP(t, Q)=dC̃P(t, Q)+λ0νdt. In general,
we can also do something similar for the diffusion by letting
dW (t)=dW̃ (t)+γ0dt for some constant γ0 6=0, so
dS(t)/S(t)= (µ0+γ0σ0+λ0ν)dt+σ0dW̃ (t)+dC̃P(t, Q)

emm= r0dt+σ0dW̃ (t)+dC̃P(t, Q).
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Risk-neutrality has been enforced by selecting

γ0
emm
=

r0−µ0−λ0ν

σ0

and γ0 is called the jump-diffusion risk-premium, while its
components are the diffusion risk-premium

γ
(d)
0

emm
=

r0−µ0

σ0

and the additive jump risk-premium

γ
(j)
0

emm
=

−λ0ν

σ0

weighted by the diffusive volatility by convention. One can
show that using the solution [(4.39) on L4-p51],

E[e−(µ0+λ0ν)tS(T )|S(t)=s]=E[e−(r0+γ0σ0)tS(T )|S(t)=s]=s,

so the both arguments of the expectations are martingales.

FINM 345/Stat 390 Stochastic Calculus — Lecture8–page29 — Floyd B. Hanson



If one wanted to, the equivalent martingale measure M̃ can
be calculated using a Girsanov change of measure with the
Radon-Nykodym derivative, in the case of pure diffusions
(D) [textbook, p. 383],

dM̃ (d)(T )

dM (d)(t)
=

φfW (T )(w̃)dw̃

φW (t)(w)dw
=e

+γ
(d)
0

(
w̃ − γ

(d)
0 t/2

)
,

while a “concrete” jump-diffusion (JD) version of Girsanov’s
theorem can be found in [textbook, Chapt. 12, p. 384ff].
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Risk-Neutral Assumptions Summary from Merton’s
Jump-Diffusion Paper (1976):
• Jumps are due to Extreme Changes in Firm’s Specifics,

i.e., Non-Systematic Risks, e.g., bankruptcy, adverse legal
rulings, unfavorable publicity, important discoveries, etc.

• Portfolio-Market Return Correlation beta (i.e.,
Cov[RS, RM ]/Var[RM ], where return RX =∆X/X for
X =S or M (market reference)) is Zero and can be
constructed by Delta =∂Vp/∂s Hedging.

• Thus, Jump-Diffusion Model is Arbitrage-Free.
• ∴ Risk-Neutral World (a Hull-ism) =⇒E[S(t)] =

S0 exp(r0t)=⇒µ0+λ0ν =r=⇒µ0 =µ(rn) ≡r0−λ0ν.
◦ Similarly, for time-dependent coefficients,

µ(t)=µ(rn)(t)≡r0−λE[ν(t, Q)].
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Returning to the main task of calculating the jump-diffusion
risk-neutral European option pricing problem constant
with coefficients, using the solution [(6.22) on L6-p21 or
(5.51) textbook, p. 144], with ν(Q)=eQ−1 but in
time-shifted risk-neutral form by τ =T −t and S(rn)(t)=s,

S(rn)(T )=s exp
(
(r0−λ0ν−σ2

0/2)τ +σ0W (τ )+
P (τ)∑
j=1

Qj

)
.,

Next using iterated expectations and the law of total
probability let the risk-neutral options price,
F (rn)(s, t)= e−r0τE(rn)

[
max

[
θ
(
S(rn)(T )−K

)
, 0

]∣∣S(t)=s
]

= e−r0τEW (τ)

[
EP (τ)

[
EQ[max

[
θ(S(rn)(T ) − K, 0

]
|P (τ ), S(rn)(t) = s

]]]
= e−r0τ

∑∞
k=0 pk(λ0τ )ESk

[
θ

∫ θ∞

w∗(s,τ,Sk)

dw φW (τ)(w)(
se(r0−λ0ν−σ2

0/2)τ+σ0w+Sk −K
)]

.
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Here, the partial sum Sk ≡
∑k

j=1Qj and the w-critical value
such that S(rn)(T )=K is, in standard normal form,

z∗(s, τ, Sk)=
w∗(s, τ, Sk)√

τ
=

ln(K/s)−(r0−λ0ν−σ2
0/2)τ −Sk

σ0
√

τ
.

You can show by IID properties that the basic statistics of Sk

E[Sk]=kE[Q]=kQ=kµj and Var[Sk]=kVar[Q]=kσ2
j for

k ≥ 0. Reformulating the option price, let

F (rn)(s, t)=
∞∑

k=0

pk(λ0τ )ESk
[A(s, τ, Sk) − B(s, τ, Sk)]

where the tail probability functions are

A(s, τ, Sk)= seSk−(λ0ν+σ2
0/2)τ θ

∫ θ∞

z∗(s,τ,Sk)

dz φn(z; 0, 1)eσ0
√

τz

cts= seSk−λ0ντΦn(θ(σ`−z∗(s, τ, Sk)); 0, 1)

= seSk−λ0ντΦn(θ d1(s exp(Sk−λ0ντ ), τ ); 0, 1),
where recall σ2

` =σ2
0τ , and that d1(s, τ ) is the first BS

argument function.
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Similarly, where

B(s, τ, Sk)= Ke−r0τ θ

∫ θ∞

z∗(s,τ,Sk)

dz φn(z; 0, 1)

cts= Ke−r0τΦn(−θz∗(s, τ, Sk); 0, 1)

= Ke−r0τΦn(θ d2(s exp(Sk−λ0ντ ), τ ); 0, 1),
where d2(s, τ ) is the second BS normal argument function.
Relabeling the Black-Scholes option price version from
(8.27),
F (bs)(s, τ ; K, r0, σ0)= sΦn(θd1(s, τ ; K, r0, σ0); 0, 1)

−Ke−r0τ Φn(θd2(s, τ ; K, r0, σ0); 0, 1),
so the jump diffusion formula version can be written as a
mixture of BS option prices and formulated as a theorem:
Theorem 8.2. Jump-Diffusion Risk-Neutral European Option Pricing
Formula:

F (rn)(s, t)=
∞∑

k=0

pk(λ0τ )ESk

[
F (bs)(s exp(Sk−λ0ντ ), τ ; ∗)

]
. (8.30)
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Remarks:
• The premium is the initial option price which is F (rn)(s, 0) with the

time-to exercise τ =T . However, the general formulation means that
F (rn)(s, t) is the premium for an option starting at time t for an
exercise time of τ maturing at T .

• The option prices, generally, depend on an infinite number of
Black-Scholes options, averaged as Poisson counting sums and a
corresponding sum of jump-amplitude marks. The k = 0 term, when
S0 =0, is the pure Black-Scholes result with an extra jump discount,

F
(rn)
0 (s, t)=exp(−λ0τ )F (bs)(s exp(−λ0ντ ), τ ; ∗).

• Option maturities usually are in months or a few years, so the
zero-one jump law is not useful in truncating the Poisson sum at some
low jump count of k.

• Unlike the mean and variance of Sk, the expectation ESk of the kth
shifted Black-Scholes option price term, the mark densty φQ(q)
needs to be known.
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• 8.1.4 Monte Carlo Simulated European Option
Pricing for Log-Uniform Jump-Diffusions:

Merton in 1976 first gave the jump-diffusion European
option pricing formula as a Poisson sum of Black-Scholes
option prices using the thin-tailed log-normal jump-amplitude
distribution, but the derivation details (Merton’s works are
usually short on details) given in the last section was from a
Monte Carlo option pricing paper of Zhu and Hanson (2005)
using the fat-tailed log-uniform jump-amplitude distribution.

If the mark density φQ(q) for the log-return is uniform on
(a,b) than so is that for S1 =Q1, but even for k=2, as
previous noted and shown in the textbook, S2 =Q1+Q2 has
a triangular distribution on (2a, 2b). The partial sum
densities of Sk become more complex with k.
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However, the simulation of the European call option pricing
at t=T and s=S0 can be simplified by not simulating Sk

for each k, but by simulating with the compound process
itself,

Ŝ(T )=

P (T )∑
j=1

Qj, (8.31)

while letting θ=1 for the call, Ĉ(rn) =F (rn) and
C(bs) =F (bs), so our more compact and reassembled
compound Poisson expectation becomes

Ĉ(rn)(s, T )=E bS(T )

[
C(bs)

(
se

bS(T )−λ0νT , T
)]

. (8.32)
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Consider i=1:n Poisson counter samples Pi from P (T ),
thus the samples are IID. Then let the Ui,j for j =1:Pi be
IID standard uniform variates, i.e., on (0, 1), for each i

such that the log-jump-amplitudes on (a, b) are

Qi,j =a+(b−a)Ui,j

and

Ŝi =

Pi∑
j=1

Qj =aPi+(b−a)

Pi∑
j=1

Ui,j, (8.33)

for i=1:n IID compound Poisson random variables with
corresponding uniform jump-amplitudes.
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The simple Monte Carlo estmate (see Hanson [(2007),
Chapter 9] for an introduction or Glasserman (2004) for the
main Monte Carlo reference for finance; Monte Carlo is
named for the gambling capital of Europe, but it originated
and was implemented at Los Alamos, so it is often called the
Metropolis algorithm for the implementer, with Fermi,
Ulam and von Neumann playing important roles) is based
upon the average approximation to an integral of interest,
here to finance,

Ĉn =
1

n

n∑
i=1

C(bs)

(
seŜi − λ0ν T , T

)
≡

1

n

n∑
i=1

Ĉ(bs)
i ,

noting that the Black-Scholes samples Ĉ(bs)
i are IID random

variables based upon the compound Poisson samples Ŝi.
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For the asymptotic limits, the strong law of large numbers
(SLLN) implies Ĉn → C(s, T ) with probability one as
n → ∞. Concerning the convergence error, using the IID
property of Ĉ(bs)

i , the standard deviation is given by

σ bCn
=

σ̂(bs)

√
n

≡

√√√√Var
[
C(bs)

(
se bSi(T )−λνT , T

)]
n

≡

√√√√Var
[
Ĉ(bs)

i

]
n

.

However, this is too difficult to calculate, but may be
estimated by the unbiased sample variance,

ŝ(bs) =

√√√√ 1

n − 1

n∑
i=1

(
Ĉ(bs)

i − Ĉn

)2

.

Note that due to the O(1/
√

n) , in order to reduce the
standard deviation σ bCn

by a factor of ten, the number of
simulations n has to be increased one hundredfold.
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Thus, for reasonable accuracy, a very large number of
samples are needed for the simulation. However, there are
many modifications of the simple Monte Carlo techniques
with the goal to reduce the size of the variance (σ(bs))2.
These variance reduction techniques include
thetic-antithetic (AT) (i.e., the thesis and its opposite)
techniques and optimal control variate (OCV) techniques.
Let Ŝ(a)

i and Ĉ(abs)
i be the antithetic variates to Ŝi and Ĉ(bs)

i ,
respectively, then the thetic-antithetic averaged, BS
discounted payoff be

Xi =0.5
(
Ĉ(bs)

i +Ĉ(abs)
i

)
, (8.34)

where the antithetic is
Ĉ(abs)

i ≡C(bs)(S0e
bS(a)
i −λνT, T )

,for i=1:n.
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Similarly, thetic-antithetic averaged jump-amplitude
partial sum exponential is

Yi = 0.5
(
exp

(
Ŝi

)
+ exp

(
Ŝ(a)

i

))
,

So the antithetic and thetic variates can be used together to
double the sample size without significant computational cost
[Phelim Boyle (1977), father of Monte Carlo options]. The
Yi are also used in the control deviation of the control
adjusted payoff

Zi(α) = Xi − α · (Yi − exp(λ0νT )) , (8.35)

where α is the actual adjustable control parameter.
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The sample mean of Zi(α) produces the Monte Carlo
estimator for C(S0, T ), since

Zn(α)≡
n∑

i=1

Zi(α)/n =Xn−α(Y n−exp(λ0νT )),

is an unbiased estimation with E[Zn(α)]=C(S0, T ) using
IID mean properties E[Xn]=E[Xi]=C(S0, T ) and
E[Y n]=E[Yi]=exp(λ0νT ). The variance of Zn(α) is

σ2
Zn(α)

≡Var
[
Zn(α)

]
=Var[Zi(α)]/n ,

following from IID property of the Zi(α). However,
Var[Zi(α)]=Var[Xi]−2αCov[Xi, Yi]+α2Var[Yi].

So, the optimal parameter α∗ to minimize Var[Zi(α)] is
α∗ =Cov[Xi, Yi]/Var[Yi], (8.36)

i.e., related to the BS (Xi) and jump-amplitude (Yi) averaged
antithetic-thetic variates.
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Using this optimal parameter α∗,

Var[Z∗
i ]≡Var[Zi(α

∗)]=
(
1 − ρ2

Xi,Yi

)
Var[Xi],

where ρXi,Yi
is the correlation coefficient between Xi and

Yi. We also know that

Var[Xi]=0.5
(
1+ρ bC(bs)

i , bC(abs)
i

)
Var

[
Ĉ(bs)

i

]
because Var

[
Ĉ(abs)

i

]
=Var

[
Ĉ(bs)

i

]
.
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In general, the parameter α∗ is not known exactly, so
estimation is needed along with the following results.
Lemma:

Var
[
e

bSi +e
bS(a)
i

]
=2

(
eλbνT −2e2λνT +eλT (ea+b−1)

)
,

where ν̂ =(exp(2b) − exp(2a))/(2(b − a))−1 and
ν =(exp(b) − exp(a))/(b − a)−1.

Proof: Follows from properties of the antithetic pair(
Ŝi, Ŝ(a)

i

)
.
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Lemma: An unbiased estimator for α∗ is

α̂=
n

n − 1

XY n−XnY n

σ2
Y

, (8.37)

where Xn =
∑n

i=1 Xi/n is the sample mean, simlarly for
XY n and Y n.

Proof: Basically, the condition for an unbiased estimate
E[α̂]=α∗ can be shown to be true.

Remark: For more details on removing higher order biases,
see Zhu and Hanson (2005).
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Monte Carlo Options pseudo-Algorithm with Antithetic and
Control Variance (ACV) Reduction Techniques:
for i = 1:n

Randomly generate Pi by Inverse Transform Method;

Randomly generate IID Ui,j, j = 1:Pi;

Set bSi = aPi + (b− a)
PPi

j=1 Ui,j;

Set bS(a)
i = (a + b)Pi − bSi;

Set C(bs)
i = C(bs)

“
S0 exp

“ bSi − λ0νT
”

, T
”
;

Set C(abs)
i = C(bs)

“
S0 exp

“ bS(a)
i − λ0νT

”
, T

”
;

Set Xi = 0.5
“
C(bs)

i + C(abs)
i

”
;

Set Yi = 0.5
“
exp( bSi) + exp

“ bS(a)
i

””
;

end %for i
Compute bα according to (8.37);

Set bZn = 1
n

Pn
i=1 Xi − bα( 1

n

Pn
i=1 Yi − eλ0νT );

Estimate bias bBn as in Zhu-Hanson (2005);

Get European call bZn = bZn − bBn;

Get European put bP by Put-Call Parity.
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Table 1: Comparison of Option Prices by ACV Monte Carlo

K
S0

C P ε C(bs) P(bs) C∗ P∗

0.8 269.81 0.01 2.e-3 269.80 2.e-6 269.82 0.02

0.9 132.36 1.45 0.03 130.98 0.07 132.39 1.47

1.0 40.07 20.27 0.11 30.49 10.69 40.05 20.25

1.1 5.49 76.60 0.06 1.13 72.24 5.50 76.61

1.2 0.31 147.17 0.01 4.e-3 146.87 0.32 147.19

Option parameters: K =1000, r0 =0.1, T =0.2. S&P 500
estimated parameters (’88-’03): σ0 =0.1074, λ0 =64, a=−0.028,
b=0.026. Simulation count n=10, 000. Here, ε = σ bZn

=σZ/
√

n.
The C∗ and P∗ values are obtained by more simulations, say
n = 400, 000 sample points, as a good approximation of the true
values. See sample code.
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Theorem: Jump-Diffusion European Option Prices are
Bigger than Black-Scholes Option Prices (independent of
the Q-mark distribution):

C(jd)(S0, T ; K, r0, σ0) ≥ C(bs)(S0, T ; K, r0, σ0),

and

P(jd)(S0, T ; K, r0, σ0) ≥ P(bs)(S0, T ; K, r0, σ0),

independent of the Q-mark distribution.
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Monte Carlo Advantages [Hanson (2007), p. 266ff]:

• Error is theoretically independent of problem
dimension, nx = dim[V], V is the Markov simulation
space of points ~X .

• Thus, there is no curse of dimensionality, but it is best if
nx ≥ 5 or so and several random samples are used, i.e.,{
X

(k)
i,j

∣∣∣ i=1:nx, j =1:n sample points, k=1:K samples
}

.

• It works for complex integrands and domains.

• It is not too sensitive to a reasonable sample random
number generator.
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Monte Carlo Disadvantages

• There are probabilistic error bounds, not strict errors
bounds that cannot be exceeded, e.g., 32% of samples
can exceed standard error, σf/

√
n ' σ̂n/

√
n.

• Irregularity of F (~x) is not considered, so missed
spikes or outliers are possible.

• Generating many large random sample sets for high
accuracy can be costly in computer and user time.

• Interplay of functions and volumes can be very
complex.

{Caution: Any advantages and disadvantages are subject to
testing and performance evaluation in each case.}
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Monte Carlo Test Ratios:
When comparing two different Monte Carlo methods, one
with with variance σ2

1 and another with σ2
2 , both likely to be

estimated values, then compare the methods with the
variance reduction ratio from method 1 relative to 2,

VRR1,2 = σ2
1/σ2

2, (8.38)
that is, method 2 is the better variance reducer if
VRR1,2 > 1 and significantly larger.
Also it is necessary to check on the computational costs of
the variance reduction so they are not excessive, i.e., using
the computational cost ratio

CCR1,2 = τ1/τ2, (8.39)
where τ1 is the computational cost (e.g., CPU time) of the
first method and τ2 for the second method.
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Summary of Lecture 8?

1.

2.

3.

4.

5.
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